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Abstract

We generalize the asymptotic analysis of Bethuel–Brezis–Hélein [4] for
Ginzburg-Landau functionals to a model for thin films of ferromagnetic
materials.

1 Introduction

In this paper, we consider ferromagnetic bodies, represented by a bounded,
open domain Ω ⊂ R3. The magnetization of Ω is described by a vector field
m : Ω → R3 which satisfies the saturation constraint |m| = 1 almost everywhere.
In the absence of an external magnetic field, and with the contribution of a
crystalline anisotropy neglected, the energy of this configuration, as derived in
the theory of micromagnetics, is given by the expression

E(m) =
ε2

2

∫
Ω

|∇m|2 dx+
1
2

∫
R3

|∇u|2 dx, (1)

where u ∈ H1(R3) is determined by the static Maxwell equations, written in
the form

∆u = divm in R
3 (2)

for the extension of m by 0 outside of Ω.
The first term on the right hand side of (1), called the exchange energy,

penalizes spatial variations of m. It models the tendency for parallel alignment
of the magnetization vectors of the underlying atomic structure. The parameter
ε is a material constant. The second term is the so-called magnetostatic energy.
It corresponds to the energy of the magnetic field induced by m. For more
details, see e. g. Hubert–Schäfer [16].

Our aim is to study minimizers of E for ferromagnetic samples in the shape
of very thin films. That is, we assume that Ω is of the form Ω = Ω′× (0, δ) for a
small number δ > 0. We want to find the limiting behaviour for this variational
problem in a special asymptotic regime, defined by certain relations between
the thickness δ of the film, the length scale L of the cross section Ω′, and the
parameter ε. Namely, we study the limit δ → 0 under the condition ε2

Lδ = 1.
With respect to polynomial order, this is the border case of the situation studied
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by DeSimone–Kohn–Müller–Otto [8]. In this paper, the limiting behaviour for
δ/L→ 0 and ε2

Lδ log(L/δ) → 0 was established.

For simplicity, we set L = 1 in the rest of the paper. Thus the condition above
yields δ = ε2. We assume that Ω′ ⊂ R2 is a bounded, open, simply connected
domain with smooth boundary. For 0 < ε ≤ 1, we define Ωε = Ω′ × (0, ε2). For
a vector field m ∈ L2(Ωε,R

3), we denote by uε(m) the unique distributional
solution of the equation (2) for Ω = Ωε in the space H1(R3). That is, uε(m) ∈
H1(R3) is to satisfy ∫

R3
∇uε(m) · ∇φdx =

∫
Ωε

m · ∇φdx (3)

for all φ ∈ C∞
0 (R3). For k ≥ 1, let Sk denote the unit sphere in Rk+1. Divide E

by ε4, to obtain the functionals

Eε(m) =
1

2ε2

(∫
Ωε

|∇m|2 dx +
1
ε2

∫
R3

|∇uε(m)|2 dx
)

(4)

on the space

H1(Ωε, S
2) =

{
m ∈ H1(Ωε,R

3) : |m| = 1 almost everywhere
}
.

Note that one of the properties of the magnetostatic energy is that it favours
a magnetization which is tangential on the boundary ∂Ωε. Thus for minimizers
of Eε, the third component of m tends to be small on the surfaces Ω′ × {0, ε2}
(cf. Sect. 2).

Let us now consider the limit ε ↘ 0. The first difficulty that we encounter
for this problem is that we have necessarily

lim
ε↘0

Eε(mε) = ∞ (5)

for any choice of mε ∈ H1(Ωε, S
2). Indeed, suppose this weren’t true. Then one

could find a sequence εk ↘ 0, such that the maps

m̄k(x′) =
1
ε2k

∫ ε2k

0

mεk
(x′, s) ds, x′ ∈ Ω′, (6)

would converge weakly in H1(Ω′,R3). For the limit map m ∈ H1(Ω′, S2), write
m = (m′,m3), where m′ ∈ H1(Ω′,R2) and m3 ∈ H1(Ω′). Then it must satisfy
|m′| = 1 and m3 = 0 almost everywhere in Ω′, and m′ ·ν′ = 0 almost everywhere
on ∂Ω′, where ν′ is the outer normal vector to ∂Ω′. (The arguments to prove
this are given in the proof of Proposition 4.1 below.) But there is no map
in H1(Ω′,R3) with these properties, hence (5) holds true. This rules out the
“naive” approach of trying to establish weak H1-convergence for minimizers of
Eε, or even Γ-convergence of the functionals.

What kind of limiting behaviour can one expect instead for ε↘ 0? Consider
for the moment a simplification of Eε. Assume that the magnetization m =
(m′,m3) is independent of the third argument, and model the penalization ofm3

by the L2-norm (instead of the magnetostatic energy). Owing to the constraint
|m| = 1 almost everywhere, this leads to the functionals

Fε(m) =
1
2

∫
Ω′

(
|∇′m|2 +

1 − |m′|2
ε2

)
dx′, m = (m′,m3) ∈ H1(Ω′, S2),
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where ∇′ = ( ∂
∂x1 ,

∂
∂x2 ). This on the other hand is reminiscent of the Ginzburg-

Landau functionals

Iε(f) =
1
2

∫
Ω′

(
|∇′f |2 +

1
2ε2

(|f |2 − 1)2
)
dx′, f ∈ H1(Ω′,R2).

The limiting problem for ε↘ 0 for minimizers of Iε was first studied by Bethuel–
Brezis–Hélein [3, 4], and by numerous other authors since then. One of the
main results (which was proven in [4] for star-shaped domains, and extended
by Struwe [26, 27] to arbitrary bounded domains with smooth boundaries) can
be summarized as follows. Suppose that for 0 < ε ≤ 1, certain maps fε ∈
H1(Ω′,R2) are given, which minimize Iε for fixed Dirichlet boundary data g :
∂Ω′ → S1. Then there exist finitely many points x′1, . . . , x′N ∈ Ω′ (their number
depending on the topological degree of g) and a sequence εk ↘ 0, such that
the sequence {fεk

} converges in C∞
loc(Ω

′\{x′1, . . . x′N},R2) to a harmonic map
f : Ω\{x′1, . . . , x′N} → S1. Identifying R2 with the complex plane C, we can
write f in the form

f(z) =

⎛
⎝ N∏

j=1

z − zj

|z − zj|

⎞
⎠ eiθ(z),

or the complex conjugate of this, where zj = x1
j + ix2

j for x′j = (x1
j , x

2
j). The

function θ satisfies ∆′θ = 0 in Ω′, where ∆′ is the Laplace operator in R2.
This (and more) has been generalized to the corresponding problem for the
functionals Fε by André–Shafrir [1] and Hang–Lin [12].

Our aim is to prove a similar result for minimizers of Eε. For technical reasons,
we impose Dirichlet boundary data on ∂Ω′×(0, ε2). It turns out (cf. Proposition
4.1) that only two choices for the boundary data are reasonable, namely

m = (−ν2, ν1, 0) on ∂Ω′ × (0, ε2) (7)

(where we write ν′ = (ν1, ν2) for the normal vector to ∂Ω′), and the same with
ν′ replaced by −ν′. Moreover, the second case is reduced to the first one by
reflection. Thus we define H̄1(Ωε, S

2) to be the space of all mapsm ∈ H1(Ωε, S
2)

satisfying (7), and consider only maps therein. For every ε ∈ (0, 1], we fix a map
mε which minimizes Eε in H̄1(Ωε, S

2).
The Euler-Lagrange equation for this variational problem is

ε2(∆mε + |∇mε|2mε) −∇uε(mε) + (mε · ∇uε(mε))mε = 0 in Ωε, (8)

and we have the homogeneous Neumann boundary conditions

∂mε

∂x3
= 0 on Ω′ × {0, ε2}.

There exists another form of (8) which will prove useful. Namely, denoting by
∧ the exterior product ∧ : Rn × Rn → Λ2Rn, it is easily checked that (8) is
equivalent to

ε2 div(mε ∧∇mε) = mε ∧∇uε(mε) in Ωε. (9)

Both (8) and (9) are to be understood in the distribution sense.
Before we state our first main result, let us define the operator which is to

play the role of a limit of ε−2uε for ε ↘ 0. Suppose m′ ∈ W 1,4/3(Ω′,R2) is a
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map with the property m′ · ν′ = 0 almost everywhere on ∂Ω′. Then for any
φ ∈ C∞

0 (R3), we have∣∣∣∣
∫

Ω′
m′(x′) · ∇′φ(x′, 0) dx′

∣∣∣∣ =
∣∣∣∣
∫

Ω′
div′m′(x′)

(
φ(x′, 0) −−

∫
Ω′
φ(y′, 0) dy′

)
dx′

∣∣∣∣
≤ C‖ div′m′‖L4/3(Ω′)‖∇φ‖L2(R3)

for a constant C = C(Ω′), owing to the continuity of the trace operator T :
H1(Ω1) → L4(Ω′), which is given by Tv(x′) = v(x′, 0). (Here div′ denotes the
divergence in R2.) Hence there exists a unique function u(m′) ∈ H1

loc(R
3) with

‖∇u(m′)‖L2(R3) + ‖u(m′)‖L6(R3) <∞, such that∫
Ω′
m′(x′) · ∇′φ(x′, 0) dx′ =

∫
R3

∇u(m′) · ∇φdx

for every φ ∈ C∞
0 (R3). We define furthermore u′(m′) = Tu(m′). By standard

results from the theory of singular integrals (see [25]), it follows that u′(m′) ∈
W

1,4/3
loc (Ω′).

We have the following version of results of [4, 26, 27, 12].

Theorem 1.1 (i) There exist a sequence εk ↘ 0 and a point x′0 ∈ Ω′, such
that the maps m̄k, defined as in (6), converge weakly in H1

loc(Ω′\{x′0},R3),
and weakly in W 1,p(Ω′,R3) for any p < 2, to a map of the form m̄ =
(m′, 0) with |m′| = 1 almost everywhere.

(ii) The limit map m′ satisfies the equations

div′(m′ ∧∇′m′) = m′ ∧∇′u′(m′) in Ω′ (10)

and

∆′m′ + |∇′m′|2m′−∇′u′(m′)+ (m′ ·∇′u′(m′))m′ = 0 in Ω′\{x′0} (11)

in the distribution sense.

(iii) If R2 is identified with C, then m′ is of the form

m′(z) =
z − z0
|z − z0| e

iθ(z), z ∈ Ω′\{z0}, (12)

where z0 = x1
0 + ix2

0 for x′0 = (x1
0, x

2
0), and θ : Ω′ → R is a solution of

∆′θ = m′ ∧∇′u′(m′) in Ω′. (13)

The proof of Theorem 1.1 will follow roughly the outline of the arguments in [4],
and it will also use some arguments from [12]. The problem considered here has a
few additional difficulties however. For instance, the nonlinear constraint |m| =
1 almost everywhere generates nonlinearities in the Euler-Lagrange equation
which involve first derivatives. It has been shown in [12], how this problem by
itself may be overcome; but in conjunction with the fact that the Ωε’s are three-
dimensional domains, the situation is even more difficult. We cannot expect

4



that minimizers of Eε are smooth here (cf. Brezis–Coron–Lieb [6], Lin [18]),
and in particular we do not have certain pointwise estimates for the gradient,
as we have in two dimensions. For variational problems of this kind, regularity
can usually be obtained only if the energy is small. But we have seen in (5),
that this is not the case if ε becomes small. What we will prove instead is that
suitable estimates for the gradients hold except in small, controllable sets.

Another difference to the situation of [12] is the fact that the functionals Eε

contain the non-local operator uε. However, it turns out that this only causes
minor difficulties for this problem.

The result of Theorem 1.1 has the disadvantage that it requires Dirichlet
boundary data on ∂Ω′×(0, ε2). It would be more natural to consider minimizers
of Eε among all maps in H1(Ωε, S

2). However, we need the boundary conditions
for technical reasons. To obtain an idea of the thin film limiting behaviour
for free boundary data nevertheless, we consider a model problem, based on a
generalization of the Ginzburg-Landau functionals Iε, in Sect. 5. We will find
a similar result as Theorem 1.1, but instead of one vortex in the interior of the
domain Ω′, we will rather have two “half-vortices” at the boundary.

Vortices at the boundary have also been studied by Kurzke [17] for a slightly
different model (with the Ginzburg-Landau penalizing term replaced by a con-
straint). Similar results as those presented in Sect. 5 are proven in Kurzke’s
work, among other things.

Notation. As we have already done above, we will systematically mark objects
belonging to R2 with a prime to distinguish them clearly from their three-
dimensional equivalents.

For x′0 ∈ R
2 and r > 0, we write B′

r(x
′
0) for the open ball in R

2 with centre
x′0 and radius r. Moreover, we define D′

r(x
′
0) = Ω′ ∩ B′

r(x
′
0), and Dr,ε(x′0) =

D′
r(x′0) × (0, ε2) for ε ∈ (0, 1].

2 Preliminaries

In this section, we will prove certain estimates that will be needed later. In
particular, we will find an upper bound for the terms in Eε(mε) of the type as
expected from the theory of [3, 4]. Moreover, we will obtain certain relations
between the magnetostatic energy and the L2-norm of the third component of
the magnetization.

Lemma 2.1 Suppose that c is the smallest constant satisfying the inequality

‖v(·, 0)‖L4(Ω′) ≤ c‖∇v‖L2(R3)

for all v ∈ H1(R3). (Such a constant exists by the trace theorem for Sobolev
spaces.) Then for any ε ∈ (0, 1], any map m = (m′,m3) ∈ H̄1(Ωε, S

2) satisfies
the inequality

‖∇uε(m)‖L2(R3) ≤ c
(
4
√
ε‖∇m‖L4/3(Ωε) + 2‖m3(·, 0)‖L4/3(Ω′)

)
.

Proof. Note that∫
R3

|∇uε(m)|2 dx =
∫

Ωε

m · ∇uε(m) dx
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=
∫

Ω′×{ε2}
m3 uε(m) dx′ −

∫
Ω′×{0}

m3 uε(m) dx′

−
∫

Ωε

divmuε(m) dx

≤ c‖∇uε(m)‖L2(R3)

(
‖m3(·, 0)‖L4/3(Ω′) + ‖m3(·, ε2)‖L4/3(Ω′)

+3
∫ ε2

0

‖∇m(·, s)‖L4/3(Ω′) ds

)
.

We have ∫ ε2

0

‖∇m(·, s)‖L4/3(Ω′) ds ≤
√
ε‖∇m‖L4/3(Ωε)

and

‖m3(·, ε2) −m3(·, 0)‖4/3

L4/3(Ω′) =
∫

Ω′

∣∣∣∣∣
∫ ε2

0

∂m3

∂x3
(x′, s) ds

∣∣∣∣∣
4
3

dx′

≤ ε2/3‖∇m‖4/3

L4/3(Ωε)

by the Hölder inequality. The claim now follows immediately. �

Lemma 2.2 There exists a constant C, depending only on Ω′, such that

Eε(mε) ≤ C − π log ε

for any ε ∈ (0, 1].

Proof. Sincemε is Eε-minimizing, it suffices to construct any map which satisfies
the inequality. We assume for simplicity that the closed unit ball B′

1(0) is
contained in Ω′. (Otherwise we scale and translate everything.)

Choose a map n0 ∈ H1(B′
1(0), S2) with

n0(x1, x2) = (−x2, x1, 0) on ∂B′
1(0),

and another map n′
1 ∈ H1(Ω′\B′

1(0), S1), such that n′
1 = (−ν2, ν1) on ∂Ω′ and

n′
1(x

1, x2) = (−x2, x1) on ∂B′
1(0). Define now

nε(x1, x2, x3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(n′
1(x

1, x2), 0), if (x1, x2) ∈ Ω′\B′
1(0),

(−x2, x1, 0)√
(x1)2 + (x2)2

, if (x1, x2) ∈ B′
1(0)\B′

ε(0),

n0(x1/ε, x2/ε), if (x1, x2) ∈ B′
ε(0).

It is readily checked that∫
Ωε

|∇nε|2 dx ≤ (C1 − 2π log ε)ε2

and ∫
Ωε

|∇nε|4/3 dx ≤ C2ε
2
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for constants C1, C2 which depend only on Ω′ and the choice of n0 and n′
1. Write

nε = (n′
ε, n

3
ε). Then Lemma 2.1 implies that

‖∇uε(n′
ε, 0)‖L2(R3) ≤ C3ε

2,

where C3 = C3(Ω′, n0, n
′
1). Finally, we have

‖∇uε(nε) −∇uε(n′
ε, 0)‖L2(R3) = ‖∇uε(0, n3

ε)‖L2(R3) ≤ ‖(0, n3
ε)‖L2(Ωε) ≤

√
πε2,

because n3
ε is supported in Dε,ε(0). Combine these inequalities, and the lemma

is proven. �

Lemma 2.3 For ε ∈ (0, 1], suppose that m = (m′,m3) ∈ H1(Ωε,R
3) is a map

which satisfies m3 = 0 almost everywhere on ∂Ω′ × (0, ε2). Then∫
Ωε

(m3)2 dx ≤ (1 + ε2)ε2
∫

Ωε

|∇m3|2 dx + 2
∫

R3
|∇uε(m)|2 dx+ ε4|Ω′|.

Proof. The basic idea for the following arguments is due to Gioia–James [11].
Define the function φ ∈ H1(R3) by φ ≡ 0 in (R2\Ω′) × R, and

φ(x′, x3) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if x3 ≤ 0,∫ x3

0
m3(x′, s) ds if 0 < x3 ≤ ε2,(

2 − x3

ε2

) ∫ ε2

0
m3(x′, s) ds if ε2 < x3 ≤ 2ε2,

0 if x3 > 2ε2,

for x′ ∈ Ω′. Then we have

|∇′φ(x′, x3)| ≤
∫ ε2

0

|∇′m3(x′, s)| ds

in Ω′ × (0, 2ε2), and ∇′φ = 0 elsewhere. Thus∫
Ωε

|∇′φ|2 dx ≤ ε4
∫

Ωε

|∇m3|2 dx.

Furthermore, since ∂φ
∂x3 = m3 in Ω′ × (0, ε2),

∂φ

∂x3
(x′, x3) = − 1

ε2

∫ ε2

0

m3(x′, s) ds in Ω′ × (ε2, 2ε2),

and ∂φ
∂x3 = 0 elsewhere, we have∫

R3
|∇φ|2 dx ≤ 2

∫
Ωε

(ε4|∇m3|2 + (m3)2) dx.

Testing (3) with φ yields∫
Ωε

(m3)2 dx =
∫

Ωε

m · ∇φdx −
∫

Ωε

m′ · ∇′φdx

=
∫

R3
∇uε(m) · ∇φdx−

∫
Ωε

m′ · ∇′φdx

≤
∫

R3
|∇uε(m)|2 dx+

1
2

∫
Ωε

(ε4|∇m3|2 + (m3)2) dx

+
ε4

2
|Ω′| + ε2

2

∫
Ωε

|∇m3|2 dx.
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The term with the integrand (m3)2 on the right hand side can be absorbed, and
the inequality follows. �

Lemma 2.4 There exists a constant C, depending only on Ω′, such that for
0 < ε ≤ 1, the inequality

1
ε2

∫
Ωε

(
|∇m3

ε |2 +
∣∣∣∣∂mε

∂x3

∣∣∣∣
2

+
(m3

ε)2

ε2

)
dx+

1
ε4

∫
R3

|∇uε(mε)|2 dx ≤ C

is satisfied.

Proof. We combine an argument from [12] with Lemma 2.2 and Lemma 2.3.
For almost every x3 ∈ (0, ε2), we have∫

Ω′

(
|∇′m′

ε(x
′, x3)|2 +

1
4ε2

(m3
ε(x

′, x3))2
)
dx′

=
∫

Ω′

(
|∇′m′

ε(x
′, x3)|2 +

1
4ε2

(1 − |m′
ε(x

′, x3)|2)
)
dx′

≥
∫

Ω′

(
|∇′m′

ε(x
′, x3)|2 +

1
4ε2

(1 − |m′
ε(x

′, x3)|2)2
)
dx′ ≥ −2π log ε− C1

for a constant C1 = C1(Ω′). For the last step, we have used results from [26, 27].
Together with Lemma 2.2, this yields

1
ε2

∫
Ωε

(
|∇m3

ε |2 +
∣∣∣∣∂mε

∂x3

∣∣∣∣
2

− (m3
ε)

2

4ε2

)
dx+

1
ε4

∫
R3

|∇uε(mε)|2 dx

= 2Eε(mε) − 1
ε2

∫
Ωε

(
|∇′m′

ε|2 +
1

4ε2
(m3

ε)
2

)
dx ≤ C2 = C2(Ω′).

Finally, we use Lemma 2.3 to finish the proof. �

3 Regularity and a gradient estimate

We now want to find a pointwise estimate for ∇mε of the form |∇mε| ≤ C/ε
for an appropriate constant C, similarly as in [3] or [12]. As pointed out in the
introduction, this can only be expected to be true under additional assumptions
however.

First we observe that regularity and a gradient estimate are implied by a
small energy condition.

Lemma 3.1 There exist constants ε0, λ0 > 0, depending only on Ω′, such that
for any ε ∈ (0, ε0] and for any x′0 ∈ Ω′ and r ≥ ε2 with the property

1
ε2

∫
Dr,ε(x′

0)

(
|∇mε|2 +

r2

ε4
|∇uε(mε)|2

)
dx ≤ λ0,

the map mε is smooth in Dr/2,ε(x′0), and ∇mε is continuous in Dr/2,ε(x′0).
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Proof. In the case B′
r(x

′
0) ⊂ Ω′, Hölder continuity of mε in Dr/2,ε(x′0) was

proven in [20, Proposition 2.1]. Higher regularity then follows by well-known
arguments (cf. Borchers–Garber [5], Simon [24]). If B′

r(x
′
0) �⊂ Ω′, it is not

difficult to modify the arguments such that they prove the claim also in this
situation (combining them e. g. with methods from Schoen–Uhlenbeck [23]).

Different arguments to prove regularity for minima of functionals of the form
of Eε can be found in papers of Hardt–Kinderlehrer [13] and Carbou [7]. (If they
are to be applied here, they first have to be adapted to the situation of thin films
however.) All of these arguments use well-known methods from the regularity
theory for harmonic maps (cf. Schoen-Uhlenbeck [22, 23], Hélein [14, 15], Evans
[10], Bethuel [2]). �

Lemma 3.2 There exist numbers ε1, λ1, c1 > 0, depending only on Ω′, with the
following property. Suppose that for ε ∈ (0, ε1], we have a point x′0 ∈ Ω′ and a
radius r ∈ [ε2, ε], such that

1
ε2

∫
D2r,ε(x′

0)

(
|∇mε|2 +

r2

ε4
|∇uε(mε)|2

)
dx ≤ λ1.

Then
sup

Dr/2,ε(x
′
0)

|∇mε| ≤ c1
r
.

Proof. We use a modified version of an argument due to Schoen [21].
Assume the lemma is false. Then there exist a sequence εk ↘ 0 and mini-

mizers mk ∈ H̄1(Ωεk
, S2) of Eεk

, such that

mk ∈ C1(Drk,εk
(x′k), S2)

(cf. Lemma 3.1) for certain points x′k ∈ Ω′ and certain numbers rk ∈ [ε2k, εk],
and

1
ε2k

∫
D2rk,εk

(x′
k)

(
|∇mk|2 +

r2k
ε4k

|∇uεk
(mk)|2

)
dx =: µk → 0,

but
sup

Drk/2,εk
(x′

k)

|∇mk| > dk

rk
,

where dk → ∞ for k → ∞.
For each k, set

Φk(σ) = (rk − σ)2 sup
Dσ,εk

(x′
k)

|∇mk|2, 0 < σ ≤ rk,

and
Φk(0) = r2k sup

0<s<ε2k

|∇mk(x′k, s)|2.

Choose ρk ∈ [0, rk), such that

Φk(ρk) = max
0≤σ≤rk

Φk(σ).

Moreover, choose yk = (y′k, y
3
k) ∈ Dρk,εk

(x′k) with the property

|∇mk(yk)| = sup
Dρk,εk

(x′
k
)

|∇mk|

9



if ρk > 0, and yk = (y′k, y
3
k) ∈ {x′k} × [0, ε2k] with

|∇mk(yk)| = sup
{x′

k}×(0,ε2k)

|∇mk|

if ρk = 0. Set ek = |∇mk(yk)|. Note that

d2
k < 4Φ(rk/2) ≤ 4Φk(ρk) = 4(rk − ρk)2e2k,

i. e. e−1
k < 2 rk−ρk

dk
. The rescaled maps

m̂k(x) = mk(x/ek + yk)

are thus defined and smooth at least in the set

Dk = (B′
dk/4(0) ∩ Ω′

k) × (−eky
3
k, ek(ε2k − y3

k)),

where Ω′
k = ek(Ω′ − y′k). Moreover, they have the properties

|∇m̂k(0)| = 1 (14)

and

sup
Dk

|∇m̂k|2 ≤ e−2
k sup

D(rk+ρk)/2,εk
(x′

k)

|∇mk|2

≤ 4
e2k(rk − ρk)2

Φk

(
rk + ρk

2

)
≤ 4
e2k(rk − ρk)2

Φ(ρk) = 4. (15)

We have ∫
Ωεk

∩Bs(x1)

|∇mk|2 dx ≤ C1(µk + rk)min{s, ε2k}

for all x1 ∈ Drk,εk
(x′k) and s ≤ rk, for a constant C1 = C1(Ω′). This is proven in

[20, Lemma 2.2] for the case B2rk
(x′k) ⊂ Ω′. If B2rk

(x′k) intersects the boundary
of Ω′, then one can use the same arguments, combined with methods from [23],
to prove the inequality. In particular, we have∫

Dk∩B1(0)

|∇m̂k|2 dx ≤ C1(µk + εk)min{1, ekε
2
k}. (16)

Remember that mk satisfies the equation

ε2k(∆mk + |∇mk|2mk) = ∇uεk
(mk) − (mk · ∇uεk

(mk))mk in Ωεk
.

Let v̂k ∈ H1(R3) be the unique solutions of

∆v̂k = div m̂k.

Then it follows that m̂k satisfies

e2kε
2
k(∆m̂k + |∇m̂k|2m̂k) = ∇v̂k − (m̂k · ∇v̂k) m̂k in Dk.

Note that e2kε
2
k ≥ d2

k/4 → ∞ for k → ∞.

10



By standard estimates, we have ‖∇v̂k‖Lp(B2(0)) ≤ C2 = C2(p) for any p <∞.
We conclude that there exist C3 = C3(Ω′) and γ = γ(Ω′) > 0, such that

‖∇m̂k‖C0,γ(B1(0)∩Dk) ≤ C3. (17)

But this is clearly a contradiction to (14) and (16). �

Lemma 3.2 is not yet good enough for our purpose. The next lemma will give
an improvement.

Lemma 3.3 For every C0 > 0, there exist numbers ε2, λ2, c2 > 0, depending
only on C0 and Ω′, with the following property. Suppose that for ε ∈ (0, ε2],
there is a point x′0 ∈ Ω′, such that ∇mε is continuous in Dε,ε(x′0), and satisfies

sup
Dε,ε(x′

0)

|∇mε| ≤ C0

ε2
(18)

and
1
ε2

∫
Dε,ε(x′

0)

|∇m3
ε |2 dx ≤ λ2.

Then
sup

Dε/2,ε(x
′
0)

|∇mε| ≤ c2
ε
.

Proof. We use similar arguments as in the proof of Lemma 3.2, and we combine
them with arguments due to Hang–Lin [12].

Assume that the lemma is false. Then we construct the sequence {m̂k} as
in the proof of Lemma 3.2. In this case, m̂k has the properties (14), (15), (17),
and

1
ekε2k

∫
Dk

|∇m̂3
k|2 dx = µk → 0. (19)

Furthermore, the condition (18) guarantees that ekε
2
k ≤ C0.

We choose a subsequence (without changing notation), such that both eky
3
k

and ek(ε2k−y3
k) converge to a number in [0, C0]. Assume first that limk→∞ eky

3
k =

limk→∞ ek(ε2k − y3
k) = 0. Define the maps

m̄k(x′) =
1
ε2k

∫ ek(ε2k−y3
k)

−eky3
k

m̂k(x′, s) ds, x′ ∈ Ω′
k.

We may assume that Ω′
k converges to a set Σ′ ⊂ R2 of the form

Σ′ =
{
x′ ∈ R

2 : a′ · x′ < α
}
, (20)

for some a′ = (a1, a2) ∈ S1 and 0 ≤ α ≤ ∞. Moreover, by (17), we may assume
that m̄k converges to a map m̄ : Σ′ → S2 in the C1-sense.

We want to show that m̄ is a locally energy minimizing map for the Dirichlet
energy, i. e. for any ball B′

R(x′) ⊂ Σ′ and any map n̄ ∈ H1
loc(Σ

′, S2) with n̄ = m̄
outside of B′

R(x′), we have∫
B′

R(x′)
|∇′n̄| dx′ ≥

∫
B′

R(x′)
|∇′m̄| dx′. (21)

11



To this end, suppose there existed such a map n̄ which didn’t satisfy (21), i. e.∫
B′

R(x′)
|∇′n̄| dx′ ≤

∫
B′

R(x′)
|∇′m̄| dx′ − σ

for a positive number σ. Then clearly for any sufficiently large k, one could
construct a map nk ∈ H1(Ωεk

, S2) with nk = mk outside ofD′
R/ek,εk

(x′/ek+y′k),
such that∫

D′
R/ek,εk

(x′/ek+y′
k)

|∇nk|2 dx ≤
∫

D′
R/ek,εk

(x′/ek+y′
k)

|∇mk|2 dx− σε2k
2
.

Moreover,

1
ε2k

‖∇uεk
(mk) −∇uεk

(nk)‖L2(R3) =
1
ε2k

‖∇uεk
(mk − nk)‖L2(R3)

≤ 1
ε2k

‖mk − nk‖L2(Ωεk
)

≤
√

2πR
ekεk

≤
√

8πR
dk

→ 0.

This would give a contradiction to the minimality of Eεk
(mk).

Hence m̄ : Σ′ → S2 is a locally energy minimizing map. It satisfies ∇m̄3 = 0
and |∇m̄| ≤ 2 in Σ′, and |∇m̄(0)| = 1. If α < ∞ in the representation (20) of
Σ′, then m̄ ≡ (−a2, a1, 0) on ∂Σ′. All this follows easily from the construction
of m̄ and the inequalities (14), (15), and (19). It is readily concluded that m̄ is
of the form

m̄(x′) = (ei(b′·x′+β), 0), x′ ∈ Σ′,

for some b′ ∈ S
1 and β ∈ R. But Hang–Lin [12] proved that this is not a locally

energy minimizing map. Thus in this case, we have a contradiction.
If either limk→∞ eky

3
k > 0 or limk→∞ ek(ε2k − y3

k) > 0, we use similar ar-
guments. In this case, a subsequence of {m̂k} converges to a locally energy
minimizing map m̂ : Σ′ × (s, t) → S2, where Σ′ is as before, and s < t. More-
over, ∂m̂

∂x3 = 0 on Σ′ × {s, t}. We conclude that

m̂(x′, x3) = (ei(b′·x′+β), 0), x′ ∈ Σ′, s < x3 < t,

as before. Again we can use the arguments of [12] to obtain a contradiction and
thus conclude the proof. �

4 Proof of Theorem 1.1

The following is the key lemma for the proof of Theorem 1.1. It will enable us
to apply certain arguments from [4] and from [26, 27].

Lemma 4.1 There exist ε3, λ3, c3 > 0, depending only on Ω′, such that the
following holds true. For ε ∈ (0, ε3], suppose there exists x′0 ∈ Ω′ with the
property∫

D2ε,ε(x′
0)

( |∇m3
ε |2

ε2
− |∇mε|2
ε2 log ε

+
(m3

ε)2 + |∇uε(mε)|2
ε4

)
dx ≤ λ3. (22)
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Then mε is smooth in Dε/2,ε(x′0) with

sup
Dε/2,ε(x

′
0)

|m3
ε | ≤

1
2

(23)

and
sup

Dε/2,ε(x
′
0)

|∇mε| ≤ c3
ε
. (24)

Proof. Choose a number γ ∈ (1, 2). We can find a radius r ∈ (ε2, εγ), such that

r

∫
(∂B′

r(x′
0)∩Ω′)×(0,ε2)

|∇mε|2 do ≤ 2λ3ε
2

2 − γ
.

(Otherwise we would have

∫
Dε,ε(x′

0)

|∇mε|2 dx ≥ 2λ3ε
2

2 − γ

∫ εγ

ε2

dr

r
= −2λ3ε

2 log ε,

in contradiction to (22).) Moreover, there exists a number s ∈ (0, ε2), such that

r

∫
(∂B′

r(x′
0)∩Ω′)×{s}

|∇mε|2 do′ ≤ 4λ3

2 − γ
,

where do′ indicates the arc length measure.
If ε ≤ ε3 ≤ r0 for a certain number r0 which depends only on Ω′, then

∂B′
r(x

′
0)∩Ω′ is connected. Hence for x′, y′ ∈ ∂B′

r(x
′
0)∩Ω′, we have in this case

|mε(x′, s) −mε(y′, s)| ≤
∫

(∂D′
r(x′

0)∩Ω′)×{s}
|∇mε| do′ ≤

√
8πλ3

2 − γ
.

If λ3 ≤ 2−γ
32π , then the right hand side is at most 1

2 . If ε3 (and thus r) is also
small enough, then mε(∂D′

r(x′0) × {s}) is contained in a ball of radius 1. Then
it is easy to construct a map nε ∈ H1(D′

r(x
′
0) × {s}, S2) with nε = mε on

∂D′
r(x

′
0) × {s}, and ∫

D′
r(x′

0)

|∇′nε(x, s)|2 dx′ ≤ C1(λ3 + ε3)

for a constant C1 = C1(γ,Ω′). If B′
r(x′0) ⊂ Ω′, we extend nε to Dr,ε(x′0) by

nε(x′, x3) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
nε((1 − |x3 − s|/r)−1x′, s), if |x3 − s| ≤ r − |x′|,
mε(rx′/|x′|, x3 − r + |x′|), if x3 > r − |x′| + s,

mε(rx′/|x′|, x3 + r − |x′|), if x3 < s− r + |x′|,

and to Ωε by nε = mε outside of Dr,ε(x′0). If B′
r(x

′
0) �⊂ Ω′, we construct a similar

extension. In both cases, we find thus a map nε ∈ H̄1(Ωε, S
2) with nε = mε in

Ωε\Dr,ε(x′0), and ∫
Dr,ε(x′

0)

|∇nε|2 dx ≤ C2(λ3 + ε3)ε2

13



for a constant C2 = C2(γ,Ω′).
Note that

‖∇uε(mε) −∇uε(nε)‖L2(R3) = ‖∇uε(mε − nε)‖L2(R3)

≤ ‖mε − nε‖L2(Dr,ε(x′
0))

≤ √
2πε1+γ .

By the minimizing property of mε, we have

1
ε2

∫
Dr,ε(x′

0)

|∇mε|2 dx ≤ 1
ε2

∫
Dr,ε(x′

0)

|∇nε|2 dx

+
1
ε4

(
‖∇uε(nε)‖2

L2(R3) − ‖∇uε(mε)‖2
L2(R3)

)
≤ C2(λ3 + ε3) + C3ε

γ−1
3

for a constant C3 = C3(Ω′). For the last step, we have used Lemma 2.4 and the
inequality above.

If λ3 and ε3 are sufficiently small, we can now apply Lemma 3.1, and find
that mε is smooth in Dr/2,ε(x′0). Lemma 3.2 then even implies that |∇mε(x′0)| ≤
2c2/r. Furthermore, we can apply the same arguments for any point x′ ∈
Dε,ε(x′0) instead of x′0. Hencemε is even smooth inDε,ε(x′0), and |∇mε| ≤ 2c2/ε2

in this set.
Now, according to Lemma 3.3, we have (24) for a constant c3 = c3(Ω′),

provided that λ3 and ε3 are chosen appropriately. With this, the inequality (23)
follows easily from the fact∫

D2ε,ε(x′
0)

(m3
ε )

2 dx ≤ λ3ε
4,

if λ3 is sufficiently small. �

For the proof of Theorem 1.1, we can now proceed as in [4].
For a fixed ε ∈ (0, 1], cover Ω′ with a collection of balls {B′

ε/2(x
′
i)}1≤i≤I with

the properties x′i ∈ Ω′ and

B′
ε/8(x

′
i) ∩B′

ε/8(x
′
j) = ∅ for i �= j. (25)

(For instance, a maximal collection of balls with centres in Ω′, such that (25)
holds, will do.) Consider all balls in this collection which satisfy∫

D2ε,ε(x′
i)

( |∇m3
ε |2

ε2
− |∇mε|2
ε2 log ε

+
(m3

ε )
2 + |∇uε(mε)|2

ε4

)
dx > λ3 (26)

for the constant λ3 from Lemma 4.1. By Lemma 2.2 and Lemma 2.4, the
number of such balls is bounded by a number J which depends only on Ω′.
Using Lemma 4.1, we conclude that there exists a constant R = R(Ω), such that
for any sufficiently small ε, we can construct a set of points y′ε1, . . . , y

′
εJ ∈ Ω′

with the properties

|y′εi − y′εj | ≥ 8Rε or yεi = yεj for 1 ≤ i, j ≤ J,

and

|m3
ε | ≤

1
2

and |∇mε| ≤ c3
ε

in Ωε\
(

J⋃
i=1

DRε,ε(y′εi)

)
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for the constant c3 from Lemma 4.1. Now we pick a sequence εk ↘ 0, such that
for every i = 1, . . . , J , we have

y′εki → y′i (k → ∞)

for a certain point y′i ∈ Ω′. Choose ρ > 0, such that any two balls B′
ρ(y

′
i) and

B′
ρ(y

′
j) are disjoint, unless y′i = y′j . If k is sufficiently large, then

|m3
εk
| ≤ 1

2
and |∇mεk

| ≤ c3
εk

in Ωεk
\
(

J⋃
i=1

Dρ,εk
(y′i)

)
.

In particular, for any sufficiently large k, the topological degree of the restriction
of mεk

to ∂D′
ρ(y′i)×{s} is well-defined for all i = 1, . . . , J and all s ∈ (0, ε2k), and

is independent of s. Clearly it must be non-zero for at least one of the points y′i.
Without loss of generality, we may assume that this point is always the same;
we denote it by x′0. It follows from the arguments in the proof of Theorem V.2
in [4], or Proposition 3.4 in [26] (cf. also Proposition 5.1 below), that

1
ε2k

∫
Dρ,εk

(x′
0)

|∇mεk
|2 dx ≥ 2π log(ρ/εk) − C1

for a constant C1 which is independent of k and ρ, provided that k is sufficiently
large.

Comparing this with Lemma 2.2, we obtain uniform estimates for

1
ε2k

∫
Ω′\Dρ,εk

(x′
0)

|∇mεk
|2 dx

for any ρ > 0, and for
1
ε2k

∫
Ω′

|∇mεk
|p dx

for any p ∈ [1, 2). After passing to a subsequence once more, we find a map

m̄ ∈ H1
loc(Ω′\{x′0}, S2) ∩

⋂
1≤p<2

W 1,p(Ω′, S2),

which is the limit of the maps m̄k in the sense specified in Theorem 1.1. Now
we use the following result.

Proposition 4.1 For p > 4
3 and for a sequence εk ↘ 0, suppose that mk =

(m1
k,m

2
k,m

3
k) ∈W 1,p(Ωεk

, S2) are distributional solutions of

ε2k div(mk ∧∇mk) = mk ∧∇uεk
(mk) in Ωεk

, (27)

satisfying the Neumann boundary conditions ∂mk

∂x3 = 0 on Ω′ × {0, ε2k}. Define
vk = ε−2

k uεk
(mk) and

m̄k(x′) =
1
ε2k

∫ ε2k

0

mk(x′, s) ds, x′ ∈ Ω′.

Suppose that

sup
k∈N

(
1
ε2k

∫
Ωεk

|∇mk|p dx+
1
2

∫
R3

|∇vk|2 dx
)
<∞. (28)
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Then there exist a map m̄ = (m′, 0) ∈ W 1,p(Ω′, S1 × {0}) and subsequences
{m̄kj} and {vkj}, such that

m̄kj ⇀ m̄ weakly in W 1,p(Ω′,R3), (29)

∇vkj ⇀ ∇u(m′) weakly in L2(R3,R3). (30)

The limit map satisfies m′ · ν′ = 0 almost everywhere on ∂Ω, and the equation
(10) holds in the distribution sense.

We postpone the proof and finish first the proof of Theorem 1.1. We now know
that m̄ is of the form m̄ = (m′, 0), where m′ satisfies (10). Then (11) follows
from (10). Moreover, we see that∫

Ω′\Bρ(x′
0)

|∇m′|2 dx′ ≤ −2π log ρ+ C2

for a constant C2 which is independent of ρ. We conclude that x′0 ∈ Ω′, for
otherwise we would have a contradiction to Lemma VI.1 in [4]. This proves (i)
and (ii) in Theorem 1.1.

For the proof of (iii), note first that m̄ is smooth in Ω′\{x′0}. This is proved
by standard arguments from the regularity theory of harmonic maps (see [14,
15, 9, 28, 19]. In particular, there exists a continuous function θ : Ω′\{x′0} → R,
such that m′ has the representation (12), owing to the choice of the boundary
data. We compute

m′(x′) ∧∇′m′(x′) = ∇′θ(x′) +
(x2

0 − x2, x1 − x1
0)

|x′ − x′0|2
, x′ = (x1, x2) ∈ Ω′\{x′0}.

The second term on the right hand side is divergence free in Ω′ in the distribution
sense. Hence, θ is a distributional solution of (13). This completes the proof of
Theorem 1.1. �

Proof of Proposition 4.1. Is clear that there exist m̄ = (m′,m3) ∈ W 1,p(Ω′, S2)
and v ∈ H1

loc(R
3), such that (29) and (30), for v instead of u(m′), hold for a

certain subsequence. Since |mk| = 1 almost everywhere, we may assume that
m̄kj → m̄ strongly in Lq(Ω′,R3) for any q <∞.

For any φ ∈ C∞
0 (R3), we have∫

R3
∇vk · ∇φdx =

1
ε2k

∫
Ωεk

mk · ∇φdx.

In the limit, this yields∫
R3

∇v · ∇φdx =
∫

Ω′
m̄(x′) · ∇φ(x′, 0) dx′

=
∫

Ω′
m3(x′)

∂φ

∂x3
(x, 0) dx′ −

∫
Ω′

div′m′(x′)φ(x′, 0) dx′

+
∫

∂Ω′
ν′(x′) ·m′(x′)φ(x′, 0) do′(x′).

If the third component of m̄ didn’t vanish, or if the trace of m̄ on ∂Ω′ weren’t
tangential to the boundary of Ω′, it would be easy to construct a sequence of test
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functions such that the left hand side of this equation would be bounded and
the right hand side would diverge. Thus we have m3 = 0 almost everywhere
in Ω′, and m′ · ν′ = 0 almost everywhere on ∂Ω′, as the proposition claims.
Moreover, we see that v = u(m′).

For ψ′ ∈ C∞
0 (Ω′), set ψ(x′, x3) = ψ′(x′). Test (27) with ψ. An integration

by parts in the third component yields∫
Ωεk

∇ψ · (m1
k∇m2

k −m2
k∇m1

k) dx+
∫

Ωεk

ψvk

(
∂m2

k

∂x1
− ∂m1

k

∂x2

)
dx (31)

−
∫

Ωεk

vk

(
m1

k

∂ψ

∂x2
−m2

k

∂ψ

∂x1

)
dx = 0.

We have a continuous embedding A : H1(R3) → C0,α([0, 1], Lp/(p−1)(Ω′)) for
α = 1

2 − 2
3p > 0, given by the mapping

(Av)(t) = v(·, t), 0 ≤ t ≤ 1.

Moreover, the trace operator H1(R3) → Lp/(p−1)(Ω′ × {0}) is compact, and we
may hence assume that vkj (·, 0) → u′(m′) strongly in Lp/(p−1)(Ω′). Hence (31)
implies in the limit∫

Ω′
(∇′ψ′ · (m′ ∧∇′m′) + ψ′u′(m′) curl′m′ + v′∇′ψ′ ∧m′) dx′ = 0,

where curl′ is the curl operator in R2. Now we can integrate by parts again and
find that (10) holds true. �

5 Free boundary data: A model problem

We’d like to drop now the Dirichlet boundary conditions in Theorem 1.1, i. e.
to study the minimizers of Eε among all maps in H1(Ωε, S

2). The analysis is
difficult in this situation however, therefore we consider first a simpler variational
problem which may serve as a model for the more complex one.

We have already established certain connections between the magnetostatic
energy and the L2-norm of the third component of the magnetization in the
previous sections. We may therefore regard the limiting problem for the func-
tionals Fε defined in the introduction as a model for the corresponding problem
for Eε under Dirichlet boundary conditions. The minimizers of Fε on the other
hand show a similar behaviour as those of the Ginzburg-Landau functionals Iε.

For free boundary data, we need to penalize m′ · ν′ on ∂Ω′ × (0, ε2) as well.
For this purpose, we consider a boundary integral of the form∫

∂Ω′×(0,ε2)

(m′ · ν′)2 do.

Throughout the rest of this section, we work in two dimensions. Therefore, we
drop the prime marking two-dimensional objects. Hence from now on, Ω is a
bounded, open, simply connected domain in R2 with smooth boundary, and
ν = (ν1, ν2) denotes the outer normal vector to its boundary. We further set
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τ = (τ1, τ2) = (−ν2, ν1). For x0 ∈ Ω and r > 0, we denote Dr(x0) = Ω∩Br(x0)
and D∗

r (x0) = ∂Ω ∩Br(x0).
For a fixed α ∈ (0, 1], and for 0 < ε ≤ 1, we consider the functionals

Jε(f) =
1
2

∫
Ω

(
|∇f |2 +

1
2ε2

(|f |2 − 1)2
)
dx+

1
2εα

∫
∂Ω

(f · ν)2 do

on H1(Ω,R2). For any ε ∈ (0, 1], we fix a minimizer fε ∈ H1(Ω,R2) of Jε.
Our aim is to prove a result similar to those in [4] and [26, 27] for the

functionals Jε, in order to obtain an idea of the limiting behaviour for minimizers
of Eε without restrictions on the boundary data.

Theorem 5.1 There exist a sequence εk ↘ 0 and a set Σ ⊂ Ω, which is either
of the form Σ = {x0} for a point x0 ∈ Ω, or Σ = {x1, x2} for two points x1, x2 ∈
∂Ω, such that fεk

→ f weakly in H1
loc(Ω\Σ,R2) and weakly in W 1,p(Ω,R2) for

all p < 2, where f : Ω\Σ → S1 is a harmonic map. The case Σ = {x0} can only
occur if α = 1.

The proof of Theorem 5.1 will follow roughly the outline of the arguments in
[26, 27]. First we need an estimate for the energy of fε.

Lemma 5.1 There exists a constant C, depending only on Ω, such that

Jε(fε) ≤ C − απ log ε (32)

for 0 < ε ≤ 1.

Proof. We assume for simplicity that ∂Ω contains two points x1 and x2, such
that

∂Ω ∩B1(xi) = {x ∈ B1(xi) : (x− xi) · ν(xi) = 0} , i = 1, 2,

and B2(x1) ∩B2(x2) = ∅. If this is not the case, we may map Ω onto a domain
which has this property by a C2-diffeomorphism. It is then easy to check that
the following construction gives rise to a map which satisfies the estimate (32).

For 0 < ε ≤ 1, set xiε = xi + εαν(xi), i = 1, 2. Define

gε(x) =

⎧⎪⎪⎨
⎪⎪⎩

x− x1ε

|x− x1ε| , if x ∈ B1(x1),

x2ε − x

|x2ε − x| , if x ∈ B1(x2).

This map satisfies ∫
Ω∩B1(xi)

|∇gε|2 dx ≤ π log(2/εα)

and ∫
∂Ω∩B1(xi)

(gε · ν)2 do ≤
∫ 1

−1

ε2α

s2 + ε2α
ds ≤ εα

∫ ∞

−∞

ds

s2 + 1
= πεα

for i = 1, 2. Obviously gε can be extended to Ω such that it satisfies (32). Hence
also fε satisfies (32). �
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Lemma 5.2 The maps fε are smooth in Ω and satisfy |fε| ≤ 1 and |∇fε| ≤ C/ε
for a constant C which depends only on Ω.

Proof. The maps fε satisfy the equations

∆fε =
1
ε2

(|fε|2 − 1)fε in Ω, (33)

with boundary conditions

∂fε

∂ν
= − 1

εα
(fε · ν)ν on ∂Ω. (34)

The regularity thus follows from standard results in the theory of elliptic equa-
tions.

To prove |fε| ≤ 1, we apply the maximum principle, similarly as in [3] or
[26]. More precisely, for any fixed ε, we consider the function g = |fε|2 in the
set Ω+ = {x ∈ Ω : g(x) > 1}. We have

∆g =
2
ε2

(g − 1)g + 2|∇fε|2 ≥ 0 in Ω+,

∂g

∂ν
= − 2

εα
(fε · ν)2 ≤ 0 on ∂Ω.

Hence g can take its maximum neither in Ω+ nor on ∂Ω ∩ ∂Ω+, unless it is
constant in Ω+. It follows that g ≤ 1, and thus |fε| ≤ 1.

For the gradient estimate, we first estimate the Dirichlet energy of fε on balls
of radius ε. For a given point x ∈ Ω, choose a cut-off function η ∈ C∞

0 (B2ε(x))
with the properties 0 ≤ η ≤ 1, η ≡ 1 in Bε(x), and |∇η| ≤ 2/ε. We have∫

Ω

η2|∇fε|2 dx =
1
ε2

∫
Ω

η2(1 − |fε|2)|fε|2 dx− 2
∫

Ω

η
∂η

∂xi
fε · ∂fε

∂xi
dx

− 1
εα

∫
∂Ω

η2(fε · ν)2 do

≤ C1

2
+

1
2

∫
Ω

η2|∇fε|2 dx

for a constant C1 = C1(Ω). Here and in the following, we use the summation
convention, i. e. we sum over repeated indices from 1 to 2. We conclude that∫

Bε(x)

|∇fε|2 dx ≤ C1.

We can now use a blow-up argument similar to those in the proofs of Lemma
3.2 and Lemma 3.3. If the estimate weren’t true, then we could find solutions
fk ∈ C∞(Ω,R2) of (33) and (34) for certain numbers εk ∈ (0, 1], such that
certain points xk ∈ Ω would exist with the property

ek := |∇fk(xk)| = sup
Ω

|∇fk| > ck
εk
,

where ck → ∞ for k → ∞. Define

f̂k(x) = fk

(
2
√
C1 x

ek
+ xk

)
,
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so that |∇f̂k(0)| = 2
√
C1, and |∇f̂k| ≤ 2

√
C1 wherever f̂k is defined. We see

that a subsequence of {f̂k} converges to a solution f̂ : Σ → R2 of Laplace’s
equation ∆f̂ = 0, with either Σ = R

2 or Σ =
{
x ∈ R

2 : a · x > α
}

for some
a ∈ S1 and some α ≥ 0. In the latter case, we have homogeneous Neumann
boundary conditions for f̂ on ∂Σ. Furthermore, we have |∇f̂(0)| = 2

√
C1, but

also

|∇f̂(0)| ≤ 2
π

∫
Σ∩B1(0)

|∇f̂ | dx ≤ 2√
π

(∫
Σ∩B1(0)

|∇f̂ |2 dx
) 1

2

≤ 2

√
C1

π

by the mean value theorem and the energy estimate above. Hence we have a
contradiction, and the estimate is proven. �

Lemma 5.3 There exist C > 0 and r0 > 0, depending only on Ω, such that for
0 < ε ≤ 1, x0 ∈ ∂Ω, and 0 < r ≤ r0, we have

1
2ε2

∫
Dr(x0)

(|fε|2 − 1)2 dx+
1
εα

∫
D∗

r (x0)

(fε · ν)2 do

≤ Cr

[∫
Dr(x0)

|∇fε|2 dx+
∫

Ω∩∂Br(x0)

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)2
)
do (35)

+
1
εα

∑
x∈∂Ω∩∂Br(x0)

(fε(x) · ν(x))2 +
r

εα

]
.

Proof. Let ψ ∈ C∞(Ω,R2) be a vector field which satisfies ψ · ν = 0 on ∂Ω.
Consider the 1-parameter family of diffeomorphisms Ψt : Ω → Ω, obtained as
the solution to

∂Ψt

∂t
= ψ ◦ Ψt, Ψ0 = id,

for t in a neighbourhood of 0. From the condition d
dt |t=0Jε(fε ◦ Ψt) = 0, we

derive by an integration by parts

0 =
∫

Ω

[
∂ψi

∂xj

∂fε

∂xi
· ∂fε

∂xj
− 1

2
divψ

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)
)]

dx

− 1
εα

∫
∂Ω

[
1
2
τ i ∂

∂xi
(ψ · τ)(fε · ν)2 + κ(ψ · τ)(fε · ν)(fε · τ)

]
do, (36)

where κ = τ i ∂ν
∂xi

· τ is the curvature of ∂Ω.
For an appropriate choice of r0, there exists a vector field φ = (φ1, φ2) ∈

C∞(Dr0(x0),R2) with the properties

• φ · ν = 0 on D∗
r0

(x0),

• |φ(x) − (x− x0)| ≤ C1|x− x0|2,

• | ∂φi

∂xj (x) − δij | ≤ C1|x− x0|,
for a constant C1 = C1(Ω). Choosing ψ = ηφ as a test vector field in (36),
where η ∈ C∞

0 (Br(x0)), we see that

1
4ε2

∫
Ω

(|fε|2 − 1)2η dx+
1

2εα

∫
∂Ω

(fε · ν)2η do
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≤ C3r

[∫
Ω

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)2
)
η dx+

1
εα

∫
∂Ω

(
(fε · ν)2 + |fε · ν|

)
η do

]

+
∫

Ω

[
φi ∂η

∂xj

∂fε

∂xi
· ∂fε

∂xj
− 1

2
φ · ∇η

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)2
)]

dx

− 1
εα

∫
∂Ω

(∇η · τ)(φ · τ)(fε · ν)2 do,

where C3 = C3(Ω). Approximating the characteristic function of Br(x0) by η,
we conclude that (35) holds for a constant C = C(Ω), provided that r0 ≤ 1

4C3
.

�

Now, choose two numbers β, γ with 3α
4 ≤ β < γ < α.

Lemma 5.4 There exist constants ε0, λ, C > 0, depending only on Ω, β, and
γ, such that for any ε ∈ (0, ε0] and any x0 ∈ Ω, the condition∫

D
εβ (x0)

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)2
)
dx+

1
εα

∫
D∗

εβ (x0)

(fε ·ν)2 do ≤ −λ log ε (37)

implies |fε| ≥ 1
2 in Dεγ (x0) and |fε · ν| ≤ 1

4 on D∗
εγ (x0), and

1
2ε2

∫
Dεγ (x0)

(|fε|2 − 1)2 dx+
1
εα

∫
D∗

εγ (x0)

(fε · ν)2 do ≤ C(λ + εα/2). (38)

Proof. For Bεβ (x0) ⊂ Ω, this is proven in [26]. In the other case, we assume for
simplicity that x0 ∈ ∂Ω. The general case can be reduced to these two special
cases.

There exists a radius r ∈ (εγ , εβ) with the property

r

∫
Ω∩∂Br(x0)

(
|∇fε|2 +

1
2ε2

(|fε|2 − 1)2
)
do

+
r

εα

∑
x∈∂Ω∩∂Br(x0)

(fε(x) · ν(x))2 ≤ 4λ
γ − β

. (39)

Estimate (38) then follows from Lemma 5.3.
Recall that |∇fε| ≤ C1/ε for a constant C1 = C1(Ω) by Lemma 5.2. Hence

if we had a point x ∈ Dεγ (x0) with |fε(x)| < 1
2 , then we would conclude that

|fε| ≤ 3
4 in Dcε(x) for c = 1

4C1
, and we would find thus a contradiction to (38),

provided that λ and ε0 are sufficiently small. Hence |fε| ≥ 1
2 in Dεγ (x0).

We extend ν and τ to ∂Dr(x0), such that they are normal and tangential,
respectively, to that boundary. If ε0 is small enough, then Dr(x0) is strictly
star-shaped in the sense that (x − x1) · ν(x) ≥ r/4 on ∂Dr(x0) for some point
x1 ∈ Dr(x0). Using the Pohožaev identity for solutions of (33) (cf. [4, 26]), we
obtain∫

∂Dr(x0)

(x− x1) · ν
∣∣∣∣∂fε

∂ν

∣∣∣∣
2

do+
1
ε2

∫
Dr(x0)

(|fε|2 − 1)2 dx

=
∫

∂Dr(x0)

(
(x− x1) · ν

∣∣∣∣∂fε

∂τ

∣∣∣∣
2

− 2(x− x1) · τ ∂fε

∂ν
· ∂fε

∂τ

)
do.
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Note that we have proven (38) actually for the radius r instead of εγ . Combining
the identity above with this version of (38) and with (39), we conclude that∫

D∗
r (x0)

∣∣∣∣∂fε

∂τ

∣∣∣∣
2

do ≤ C2

[∫
D∗

r (x0)

∣∣∣∣∂fε

∂ν

∣∣∣∣
2

do+ λ+ εα/2

]

for a constant C2 = C2(Ω, β, γ). By the boundary conditions (34), we even have∫
D∗

r (x0)

∣∣∣∣∂fε

∂τ

∣∣∣∣
2

do ≤ C2

[
1
ε2α

∫
D∗

r (x0)

(fε · ν)2 do+ λ+ εα/2

]
≤ C3

εα
,

where C3 = C3(Ω, β, γ). Here we have used again the version of (38) for the
radius r. For x, y ∈ D∗

r(x0), it follows that

|fε(x) − fε(y)| ≤ C4

√
|x− y| ε−α/2,

where C4 = C4(Ω, β, γ). The estimate for |fε · ν| on D∗
εγ (x0) is now proven

similarly as the one for |fε| in Dεγ (x0). �

Choose now a number r0 > 0, such that for each x0 ∈ Ω and every r ∈ (0, r0],
the sets Dr(x0) and D∗

r(x0) are connected. For 0 < r ≤ R ≤ r0 and x0 ∈ Ω,
define

Ar,R(x0) = Ω ∩BR(x0)\Br(x0), A∗
r,R(x0) = ∂Ω ∩BR(x0)\Br(x0).

Suppose that a continuous map f : Ω → R2 is given, such that |f | ≥ 1
2

in Ar,R(x0) and |f · ν| ≤ 1
4 on A∗

r,R(x0). These conditions imply in particular

|f · τ | ≥
√

3
4 on A∗

r,R(x0). Hence the sign of f · τ is constant on each connected
component of A∗

r,R(x0) (of which there are exactly two). In the following, when
we say that f · τ changes sign in D∗

r(x0), we mean that it takes both signs on
A∗

r,R(x0). If it doesn’t change sign, we may extend the map g = f |Ω∩∂BR(x0) to
∂DR(x0) in such a way that |g| ≥ 1

2 and |g · ν| ≤ 1
4 hold also on D∗

R(x0). We
say that g is topologically non-trivial, if the topological degree of this extension
(which maps ∂DR(x0) ∼= S1 to R2\B1/2(0)) is non-zero.

The following is a generalization of Proposition 3.4′ in [27].

Proposition 5.1 For x0 ∈ Ω and 0 < r < R ≤ r0, suppose that f ∈ C1(Ω,R2)
satisfies 1

2 ≤ |f | ≤ 1 in Ar,R(x0) and |f · ν| ≤ 1
4 on A∗

r,R(x0). Suppose further-
more that

Jε(f) ≤ K(1 − log ε)

and
1

2ε2

∫
D

εβ (x0)

(|f |2 − 1)2 dx+
1
εα

∫
D∗

εβ (x0)

(f · ν)2 do ≤ K

for some number K. There exists a constant C, depending only on Ω, β, and
K, such that the following is true.

(i) Suppose BR(x0) ⊂ Ω and r ≥ ε. If f restricted to ∂BR(x0) has not the
topological degree 0, then∫

Ar,R(x0)

|∇f |2 dx ≥ 2π log(R/r) − C.
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(ii) Suppose x0 ∈ ∂Ω and r ≥ εα. If f · τ changes sign in D∗
r(x0), then∫

Ar,R(x0)

|∇f |2 dx ≥ π log(R/r) − C.

(iii) Suppose x0 ∈ ∂Ω and r ≥ εα. If f · τ does not change sign in in D∗
r (x0),

and if f |Ω∩∂BR(x0) is topologically non-trivial, then∫
Ar,R(x0)

|∇f |2 dx ≥ 4π log(R/r) − C.

Proof. We only give a proof for (ii). Part (i) is proven in [26, 27], and the proof
of (iii) is very similar to the proof of (ii). The following arguments are for the
most part the same as in [26, 27].

We assume for simplicity that x0 = 0 and ν(0) = (0,−1). Using polar
coordinates x = ρeiθ, we can write

f(x) = σ(x)ei(θ+φ(x)),

where σ, φ ∈ C1(Ar,R(0)) with 1
2 ≤ σ ≤ 1. We can choose φ such that either

|φ(x)| ≤ C1(|f(x) · ν(x)|+ ρ) or |φ(x)− π| ≤ C1(|f(x) · ν(x)|+ ρ) on A∗
r,R(0) for

a constant C1 = C1(Ω).
Note that

|∇f |2 ≥ σ2|∇θ + ∇φ|2 =
σ2

ρ2

(
1 + 2

∂φ

∂θ

)
+ σ2|∇φ|2.

Furthermore,∫
Ar,R(0)

σ2

ρ2
dx =

∫
Ar,R(0)

1
ρ2
dx+

∫
Ar,R(0)

σ2 − 1
ρ2

dx

≥ π log(R/r) − C2 +
∫

Ar,R(0)

σ2 − 1
ρ2

dx

for a constant C2 = C2(Ω). Note that for every ρ ∈ [r,R], we have

−
∫

Ω∩∂Bρ(0)

1
ρ

∂φ

∂θ
dθ ≤ C1

⎛
⎝ ∑

x∈∂Ω∩∂Bρ(0)

|f(x) · ν(x)| + 2ρ

⎞
⎠ .

Thus

2
∫

Ar,R(0)

σ2

ρ2

∂φ

∂θ
dx ≥ 2

∫
Ar,R(0)

σ2 − 1
ρ2

∂φ

∂θ
dx− 2C1

∫
A∗

r,R(0)

( |f · ν|
ρ

+ 1
)
do.

We write∫
Ar,R(0)

σ2 − 1
ρ2

∂φ

∂θ
dx =

∫
A

r,εβ (0)

σ2 − 1
ρ2

∂φ

∂θ
dx+

∫
A

εβ ,R
(0)

σ2 − 1
ρ2

∂φ

∂θ
dx
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(provided that r < εβ < R; otherwise we consider only one of these terms), and
we estimate∣∣∣∣∣
∫

A
r,εβ (0)

σ2 − 1
ρ2

∂φ

∂θ
dx

∣∣∣∣∣ ≤ 1
ε

(∫
A

r,εβ (0)

(σ2 − 1)2 dx

) 1
2
(∫

A
r,εβ (0)

|∇φ|2 dx
) 1

2

≤ 4K +
1
8

∫
A

r,εβ (0)

|∇φ|2 dx,

and∣∣∣∣∣
∫

A
εβ,R

(0)

σ2 − 1
ρ2

∂φ

∂θ
dx

∣∣∣∣∣ ≤ 1
εβ

(∫
A

εβ ,R
(0)

(σ2 − 1)2 dx

)1
2
(∫

A
εβ ,R

(0)

|∇φ|2 dx
)1

2

≤ 8Kε2−2β(1 − log ε) +
1
8

∫
A

εβ,R
(0)

|∇φ|2 dx.

Similarly we prove∫
Ar,R(0)

1 − σ2

ρ2
dx+

∫
A∗

r,R(0)

( |f · ν|
ρ

+ 1
)
do ≤ C3(Ω,K, β).

Finally, ∫
Ar,R(0)

σ2|∇φ|2 dx ≥ 1
4

∫
Ar,R(0)

|∇φ|2 dx.

To complete the proof, we only need to combine these estimates. �

Proof of Theorem 5.1. For each ε ∈ (0, 1], define the set

Sε =
{
x ∈ Ω : |fε(x)| < 1

2

} ∪ {
x ∈ ∂Ω : |fε · ν| > 1

4

}
.

Choose a maximal collection of balls Bm = Bεβ (xm), m = 1, . . . ,M , such that
xm ∈ Sε and Bεβ/4(xl)∩Bεβ/4(xm) = ∅ for l �= m. Then obviously this collection
covers Sε. Moreover, Lemma 5.1 and Lemma 5.4 imply that M is bounded by
a number which is independent of ε. For each m, we use the arguments in the
proof of Lemma 5.4 to show that

1
2ε2

∫
D2εβ (xm)

(|fε|2 − 1)2 dx+
1
εα

∫
D∗

2εβ (xm)

(fε · ν)2 do ≤ C1,

where C1 = C1(Ω, β).
With the arguments from [4, 26, 27] (i. e. similarly as in the proof of Theorem

1.1), combined with the arguments from the proof of Lemma 5.4, we can now
find numbers R > 0 and N ∈ N, which are independent of ε, and points

yε1, . . . , yεN ∈ Ω ∩
m⋃

m=1

Bm,

such that

|yεi − yεj | ≥ 8Rεα or yεi = yεj for 1 ≤ i, j ≤ N,
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and

|fε| ≥ 1
2

in Ω\
(

N⋃
i=1

BRεα(yεi)

)
,

|fε · ν| ≤ 1
4

on ∂Ω\
(

N⋃
i=1

BRεα(yεi)

)
,

for any ε ∈ (0, 1]. Again we may pick εk ↘ 0 such that yεki → yi for certain
points yi ∈ Ω. Choose ρ > 0, such that Bρ(yi)∩Bρ(yj) = ∅, unless yi = yj , and
Bρ(yi) ⊂ Ω, unless yi ∈ ∂Ω. Now we may pick a subsequence (without changing
notation) and relabel the points yi, such that either

• y1 ∈ Ω and fεk
|∂Bρ(y1) is topologically non-trivial, or

• y2, y3 ∈ ∂Ω and fεk
· τ changes sign in D∗

Rεα(y2) and in D∗
Rεα(y3).

(The conditions of (iii) in Proposition 5.1 cannot be satisfied for large k’s, be-
cause there is not enough energy.) Setting either Σ = {y1} or Σ = {y2, y3}, we
conclude, using Proposition 5.1, that a subsequence of {fεk

} converges weakly
in H1

loc(Ω\Σ,R2) and weakly in W 1,p(Ω,R2) for all p < 2. To see that the limit
is a harmonic map from Ω\Σ → S1, we use the form

div(fε ∧∇fε) = 0 in Ω

of (33). In order to prove that Σ ⊂ Ω can only happen for α = 1, we repeat
the arguments above with balls of radius ε instead of εα, and show thus that a
vortex in the interior of Ω needs more energy than available for α < 1. �
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