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Abstract

We consider the approach to self-similarity (or dynamical scal-
ing) in Smoluchowski’s coagulation equations for the solvable kernels
K(x, y) = 2, x+ y and xy. We prove the uniform convergence of den-
sities to the self-similar solution with exponential tails under the reg-
ularity hypothesis that a suitable moment have an integrable Fourier
transform. For the discrete equations we prove uniform convergence
under optimal moment hypotheses. Our results are completely anal-
ogous to classical local convergence theorems for the normal law in
probability theory. The proofs are simple and rely on the Fourier in-
version formula and the solution by the method of characteristics for
the Laplace transform.

1 Introduction

Smoluchowski’s coagulation equation

∂tn(t, x) =
1
2

∫ x

0
K(x−y, y)n(t, x−y)n(t, y)dy−

∫ ∞

0
K(x, y)n(t, x)n(t, y)dy,

(1.1)
is a widely studied mean-field model for cluster growth [4, 8, 17]. We study
the evolution of n(t, x), the number of clusters of mass x per unit volume
at time t, which coalesce by binary collisions with a symmetric rate kernel
K(x, y). Equation (1.1) has been used as a model of cluster growth in a
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surprisingly diverse range of fields such as physical chemistry, astrophysics,
and population dynamics (see [4] for a review of applications). In addition,
over the past few years a rich mathematical theory has been developed for
these equations. (Aldous [1] provides an excellent introduction.)

Most kernels in applications are homogeneous, that is K(αx,αy) =
αγK(x, y), x, y, α > 0, for some exponent γ [4]. A mathematical prob-
lem of scientific interest is to study self-similar or dynamical scaling be-
havior for homogeneous kernels. There are no general mathematical results
for this problem despite an extensive scientific literature (especially formal
asymptotics and numerics [13, 16]). It is known that γ plays a crucial role.
On physical grounds, we expect solutions to (1.1) to conserve total mass∫∞
0 xn(t, x)dx. For γ ≤ 1, mass-conserving solutions exist globally in time

under suitable moment hypotheses [5]. It is then typical in applications
to assert that the solutions approach “scaling form” [16], but there is no
rigorous justfication for this in general. For γ > 1, there is no solution
that preserves mass for all time. This breakdown phenomenon is known as
gelation. It was first demonstrated by McLeod with an explicit solution to
the kernel K = xy. The general result using only the growth of the kernel
was proved probabilistically by Jeon [10] (see also [6] for a simple analytical
proof). It is natural to ask whether the blow-up is self-similar, but there are
no general results on this problem yet.

There are a number of results, however, for the solvable kernels K = 2,
x + y and xy (see [14] and references therein). It is quite remarkable that
two central theorems in probability– the Lévy-Khintchine characterization of
infinitely divisible distributions, and the characterization of the (weak) do-
mains of attraction of stable laws –have exact analogues for Smoluchowski’s
coagulation equations [2, 14]. These results suggest that a variety of limit
theorems for Smoluchowski’s equation can be proved in a simple manner by
exploiting the probabilistic analogy. They also suggest that the analytical
methods used to prove these classical theorems in probability, actually ap-
ply to a wider range of problems involving scaling phenomenon for integral
equations of convolution type. In [14] we proved necessary and sufficient
conditions for convergence in distribution to self-similar solutions for these
kernels. The main tools were the solution for the Laplace transform of the
number density n and a fundamental rigidity lemma for scaling limits in
terms of functions of regular variation.

Under stronger regularity hypotheses on the initial data, these weak
convergence results can be strengthened to uniform convergence of densi-
ties using the Fourier inversion formula. Kreer and Penrose [12] follow this
approach for the constant kernel; also see [3]. In this article, for K = 2
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and x + y we present uniform convergence theorems to the self-similar so-
lutions with exponential tails for the continuous and discrete Smoluchowski
equations. For K = 2, this considerably strengthens the result of Kreer and
Penrose. For K = x + y the convergence theorem is new. For K = xy, we
prove uniform convergence of densities to self-similar form as t approaches
the gelation time Tgel. The task is simplified by a well-known change of
variables that reduces the problem to a study of K = x + y [4]. Uniform
convergence to the self-similar solutions with “fat” or “heavy” tails is more
delicate, and will be considered separately.

Use of the Fourier inversion formula is classical in probability theory. It
is used by Feller to prove uniform convergence of densities in the normal
law [7, XV.5.2]. Feller’s argument is simple and robust, and can be easily
extended to the solvable kernels. Our main new idea is to use the method
of characteristics in the right half plane to obtain strong decay estimates on
the Fourier transform.

In addition to simplicity, the proofs reveal the role of regularity of initial
data in the uniform convergence of densities. Equation (1.1) is hyperbolic
and it is easy to see that discontinuities in the initial data persist for all finite
times. On the other hand, the self-similar solutions are analytic. Thus, one
expects some regularity on the initial data is necessary to obtain uniform
convergence to a self-similar solution. Loosely speaking, regularity of the
initial data n0(x) translates into a decay hypothesis on its Fourier transform.
We need only the weak decay implied by integrability.

The uniform convergence theorem for the continuous Smoluchowski equa-
tion with kernels K(x, y) = 2, x + y and xy, corresponding to γ = 0, 1, 2
respectively, may be stated in a unified manner as follows. Presuming the
γ-th and (γ+1)-st moments are finite, we may scale so both moments are 1.
Let Tγ = ∞ for γ = 0, 1, Tγ = Tgel = 1 for γ = 2. The self-similar solutions
with exponential tails are explicitly described by [14]

n(t, x) = mγλ
−γ−1
γ n∗,γ(xλ−1

γ ), (1.2)

where

m0(t) = t−1, m1(t) = 1, m2(t) = (1 − t)−1, (1.3)
λ0(t) = t, λ1(t) = e2t, λ2(t) = (1 − t)−2, (1.4)

and

n∗,0(x) = e−x, xn∗,1(x) = x2n∗,2(x) =
1√
4π
x−1/2e−x/4. (1.5)
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Theorem 1.1. Let n0 ≥ 0,
∫∞
0 xγn0(x)dx =

∫∞
0 x1+γn0(x)dx = 1, and

x1+γn0 ∈ A(R). Then the solution to Smoluchowski’s equation with K = 2,
x+ y or xy (for γ = 0, 1, 2 resp.) with initial data n(0, x) = n0(x) satisfies

lim
t→Tγ

sup
x̂>0

x̂1+γ |m−1
γ λ1+γ

γ n(t, x̂λγ) − n∗,γ(x̂)| = 0.

Here A(R) is the Wiener algebra of functions with integrable Fourier
transform [11]. It is classical that this is the optimal hypothesis for uniform
convergence to the normal law [7]. However, we do not know whether this
is the optimal hypothesis for the Smoluchowski equation.

We digress briefly into some issues of analysis that we do not consider
in the rest of the paper. It is known that functions in A(R) possess some
delicate regularity properties. For example, a function in A(R) has a loga-
rithmic modulus of continuity in a neighborhood where it is monotonic. It
is definitely not obvious whether this regularity is truly necessary to obtain
uniform convergence. If v0(ik) =

∫∞
0 e−ikxx1+γn0(x)dx it also follows that

v0 ∈ H1(R) ∩ A(R), since v0 is the boundary limit of an analytic function
(the Laplace transform of x1+γn0). Here H1 denotes the classical Hardy
space. This is turn means that v0 has some hidden regularity and integra-
bility properties. It is worth remarking that the precise characterization of
A(R) remains an outstanding open problem in harmonic analysis, though
several sufficient conditions are known (see [11]).

It has been traditional to treat the discrete Smoluchowski equations sepa-
rately from the continuous equations. Yet, within the framework of measure
valued solutions [14, 15], the discrete Smoluchowski equations simply corre-
spond to the special case of a lattice distribution, a measure valued solution
supported on the lattice hN and taking the form νt =

∑∞
l=1 nl(t)δhl(x),

where δhl(x) is a Dirac delta at hl. If h is maximal we call νt a lattice
measure with span h. The coefficients nl satisfy the discrete Smoluchowski
equations

∂tnl(t) =
1
2

l−1∑
j=1

κl−j,jnl−j(t)nj(t) −
∞∑

j=1

κl,jnl(t)nj(t), (1.6)

where κl,j = K(lh, jh). Physically, this case is of importance, since some
mass aggregation processes (e.g., polymerization) have a fundamental unit of
mass (e.g., a monomer). The uniform convergence theorem for the continu-
ous Smoluchowski equations has a natural extension to this case. Again, our
analysis mimics Feller’s [7] treatment of convergence of lattice distributions
to the normal law, and the proof follows easily after the uniform convergence
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theorem. The hypotheses are simpler — we only need the optimal moment
hypotheses.

Theorem 1.2. Let ν0 ≥ 0 be a lattice measure with span h such that∫∞
0 xγν0(dx) =

∫∞
0 x1+γν0(dx) = 1. Then with l̂ = lhλ−1

γ and n̂l(t) =
h−1m−1

γ λ1+γ
γ nl(t) we have

lim
t→Tγ

sup
l∈N

l̂1+γ
∣∣∣n̂l(t) − n∗,γ(l̂)

∣∣∣ = 0.

2 Uniform convergence of densities for the con-

stant kernel K = 2

2.1 Evolution equations and scaling

Let C+ = {s ∈ C | Re s ≥ 0}. For s ∈ C+ we let

ũ(t, s) =
∫ ∞

0
e−sxn(t, x) dx

denote the Laplace transform of the number density n. We take the Laplace
transform of (1.1) with K = 2, and its limit as s → 0 to see that ũ(t, s)
solves

∂tũ = ũ2 − 2ũ(t, 0)ũ, ∂tũ(t, 0) = −ũ(t, 0)2. (2.1)

There is no loss of generality in supposing that the initial time t = 1,
and we assume that the initial data n0(x) = n(1, x) satisfy

∫∞
0 n0(x)dx =∫∞

0 xn0(x)dx = 1, whence ũ(t, 0) = m0(t) = t−1.
Under these assumptions, the weak convergence result of [1, 14] implies

that
lim
t→∞ tũ(t, st−1) = u∗(s) :=

1
1 + s

, s ∈ C+. (2.2)

(We use the classical equivalence between pointwise convergence of the
Fourier transform and weak convergence of probability measures [7].) Here
u∗(s) is the Laplace transform of n∗(x) = e−x. In the present situation,
(2.2) is easy to verify from the explicit solution formula

ũ(t, s) =
1
t

ũ0(s)
t(1 − ũ0(s)) + ũ0(s)

, (2.3)

since ũ0(0) = −∂sũ0(0) = 1.
Notice that u∗ is not absolutely integrable on the imaginary axis, since

|u∗(ik)| ∼ |k|−1 as |k| → ∞. The weak decay of the Fourier transform
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is caused by the jump discontinuity at x = 0, since n∗(x) = 0 for x <
0. In order to obtain a uniform convergence result, we must smooth this
discontinuity. Thus, we consider the mass density xn which has Laplace
transform ṽ(s) = −∂sũ. In particular, the self-similar solution satisfies

xn∗(x) = xe−x, v∗(s) =
1

(1 + s)2
, |v∗(ik)| =

1
1 + k2

, k ∈ R. (2.4)

Henceforth, we switch to self-similar variables. Let

τ = log t, u(τ, s) = eτ ũ(eτ , se−τ ) = tũ(t, s/t). (2.5)

In real space, this corresponds to the mass-preserving rescaling

x̂ = xt−1 = xe−τ , n̂(τ, x̂) = e2τn(eτ , eτ x̂) = t2n(t, x). (2.6)

In these variables, the transforms become

u(τ, s) =
∫ ∞

0
e−sx̂n̂(τ, x̂) dx̂, v(τ, s) =

∫ ∞

0
e−sx̂x̂n̂(τ, x̂) dx̂.

We will use the Fourier inversion formula for integrable v(t, ik),

x̂n(τ, x̂) =
1
2π

∫
R

eikx̂v(τ, ik) dk. (2.7)

In self-similar variables the equation of evolution for u is

∂τu+ s∂su = −u(1 − u). (2.8)

Equation (2.8) may be solved by the method of characteristics. A char-
acteristic originating at s0 is denoted s(τ ; s0) and solves

ds

dτ
= s, s(0; s0) = s0, hence s(τ ; s0) = eτs0. (2.9)

The geometry of characteristics is particularly simple: they are rays ema-
nating from the origin. In particular, the imaginary axis is invariant under
the flow of (2.9). Along characteristics we have

du

dτ
= −u(1 − u), whence u(τ, s) =

u0(s0)e−τ

(1 − u0(s0)(1 − e−τ ))
. (2.10)

We are interested in the growth of the derivative v = −∂su. Differentiating
equation (2.8), we see that on characteristics the derivative solves

dv

dτ
= −2(1 − u)v, thus v(τ, s) =

v0(s0)e−2τ

(1 − u0(s0)(1 − e−τ ))2
. (2.11)
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It is easy to see that |u| and |v| decay along characteristics. Indeed, we have
from (2.10) and (2.11) that

|u(τ, s)| ≤ |u0(s0)|e−τ

1 − |u0(s0)|(1 − e−τ )
, (2.12)

and

|v(τ, s)| ≤ |v0(s0)|e−2τ

(1 − |u0(s0)|(1 − e−τ ))2
≤ |v0(s0)|e−2τ

(1 − |u0(s0)|)2
. (2.13)

2.2 The main theorem

Theorem 2.1. Suppose n0(x) ≥ 0,
∫
n0(x)dx =

∫∞
0 xn0(x)dx = 1, and

xn0 ∈ A(R). Then in terms of the rescaling in (2.6) we have

lim
τ→∞ sup

x̂>0
x̂|n̂(τ, x̂) − n∗(x̂)| = 0. (2.14)

Proof. The assumption xn0 ∈ A(R) guarantees that
∫

R
|v0(ik)|dk < ∞. By

the Fourier inversion formula (2.7) it is sufficient to show that

lim
τ→∞

∫
R

|v(τ, ik) − v∗(ik)|dk = 0. (2.15)

The main goal is to control the integrals over the tails, since for fixed R > 0,
(2.2) together with the dominated convergence theorem implies

lim
τ→∞

∫ R

−R
|v(τ, ik) − v∗(ik)|dk = 0.

We will control the tails of v(τ, ik) and v∗ separately. It is sufficient to
consider only k ≥ 0, since |v(τ, ik)| = |v(τ,−ik)|. Note∫ ∞

R
|v(τ, ik) − v∗(ik)|dk ≤

∫ ∞

R
|v(τ, ik)|dk +

∫ ∞

R
|v∗(ik)|dk.

But |v∗(ik)| = (1+ |k|2)−1 by (2.4), so that
∫∞
R |v∗(ik)|dk ≤ R−1. Moreover,

since u and v converge to u∗ and v∗ pointwise, we can choose T so large
depending upon R that

sup
τ≥T

|u(τ, iR)| ≤ 2
R
, sup

τ≥T
|v(τ, iR)| ≤ 2

R2
. (2.16)

The control obtained from (2.16) propagates as the characteristics flow out-
wards. Precisely, for any point ik with R ≤ k ≤ eτ−TR choose a start-
ing time τ0(k) so that the preimage at time τ0(k) of ik is iR. Explicitly,
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e−(τ0−T )k = R. Then using the decay estimate (2.13) on the time interval
[τ0(k), τ ] and the boundary control (2.16) we have

|v(τ, ik)| ≤ |v(τ0, iR)|e−2(τ0−T )

(1 − |u(τ0, iR)|)2 ≤ CR−2

(
R

k

)2

= Ck−2.

Integrating this estimate over the transition region we have

∫ Reτ−T

R
|v(τ, ik)|dk ≤ C

∫ ∞

R
k−2dk = CR−1.

We now consider the tail region k ≥ Re(τ−T ) = R̃eτ . We use (2.13) again
on the time interval [0, τ ] to obtain∫ ∞

R̃eτ

|v(τ, ik)|dk ≤ e−2τ

∫ ∞

R̃eτ

|v0(ike−τ )|
(1 − |u0(ike−τ )|)2dk

= e−τ

∫ ∞

R̃

|v0(ik)|
(1 − |u0(ik)|)2dk ≤

(
sup
|k|≥R̃

1
(1 − |u0(ik)|)2

)
e−τ‖v0‖L1 .

Since |u0(ik)| < 1 for k 
= 0, and lim|k|→∞ u0(ik) = 0 by the Riemann-
Lebesgue lemma, sup|k|≥R̃(1 − |u0(ik)|)−1 <∞.

Remark 2.2. The proof of the theorem implies the stronger assertion that
if v(τ, ik) ∈ L1 for any τ > 0, then we have uniform convergence of the mass
density.

2.3 The discrete Smoluchowski equations

We consider measure solutions of the form νt =
∑∞

l=1 nl(t)δhl(x), where
δhl(x) denotes a Dirac mass at hl. To avoid redundancy, we always assume
that h is the span of the lattice, that is the maximal h > 0 so that all initial
clusters, and thus clusters at any time t > 0, are concentrated on hN. We
will call νt a lattice measure with span h. Notice that if the initial number
of clusters and mass are finite, by rescaling nl and h we may assume that∫∞
0 ν0(dx) =

∫∞
0 xν0(dx) = 1. Under these conditions, the weak convergence

theorem of [14] asserts that limt→∞ tũ(t, s/t) = u∗(s). We show that this
theorem may be strengthened by use of Fourier series. The Fourier transform
of νt is the Fourier series

ũ(t, ik) =
∑
l∈N

nl(t)e−ilhk,
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which has minimal period 2π/h. Thus, nl(t) = (h/2π)
∫ π/h
−π/h e

ilhkũ(t, ik) dk,
or

t2nl(t) =
h

2π

∫ πeτ /h

−πeτ /h
exp(ilhke−τ )u(τ, ik) dk, (2.17)

in self-similar variables from (2.5). We integrate by parts and let

l̂ = lhe−τ = lht−1, n̂l(t) = h−1t2nl(t) (2.18)

to obtain

l̂n̂l(t) = tlnl(t) =
1
2π

∫ πeτ/h

−πeτ /h
eil̂kv(τ, ik) dk. (2.19)

As in Theorem 2.1 we expect the right hand side to converge to l̂n∗(l̂).

Theorem 2.3. Let ν0 ≥ 0 be a lattice measure with span h such that∫∞
0 ν0(dx) =

∫∞
0 xν0(dx) = 1. Then with the scaling (2.18) we have

lim
t→∞ sup

l∈N

l̂
∣∣∣n̂l(t) − n∗(l̂)

∣∣∣ = 0. (2.20)

Proof. By (2.19) and the continuous Fourier inversion formulas it suffices to
show that

lim
τ→∞ sup

l̂≥0

∣∣∣∣∣
∫ πeτ/h

−πeτ /h
eil̂kv(τ, ik)dk −

∫
R

eil̂kv∗(ik)dk

∣∣∣∣∣ = 0.

As earlier it suffices to consider k > 0. The integrals

∫ R

−R
|v(τ, ik) − v∗(ik)|dk,

∫ R̃eτ

R
|v(τ, ik)|dk,

∫ ∞

R
|v∗(ik)|dk

are controlled exactly as in the proof of Theorem 2.1. It only remains to
estimate the integral of |v − v∗| over the tail region R̃eτ < k < πeτ/h. We
assume that π/h > R̃, for otherwise there is nothing to prove. But then by
the exact solution (2.9) and the uniform decay estimate (2.13) we have

∫ πeτ /h

R̃eτ

|v(τ, ik)|dk ≤ e−τ

∫ π/h

R̃

|v0(ik)|
|1 − u0(ik)(1 − e−τ )|2dk ≤ C(R̃, u0, v0)e−τ .

This estimate is true for the following reason. Since the domain of integra-
tion is finite, it suffices to show that the integrand is uniformly bounded. It is
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only necessary to control the denominator. Since u0(ik) =
∑

l∈N
nl(0)e−ilkh

with nl(0) ≥ 0 we have |u0(ik)| ≤ 1, and

u0(ik) = 1 if and only if k =
2πm
h

,m ∈ Z.

In particular, we have the strict inequality

min
k∈[R̃, π

h
]
|1 − u0(ik)| ≥ δ > 0.

Therefore,

∣∣1 − u0(ik)(1 − e−τ )
∣∣ ≥ |1 − u0(ik)| − |u0(ik)|e−τ ≥ δ − e−τ ≥ δ

2

for sufficiently large τ .

3 Uniform convergence of densities for the addi-

tive kernel

3.1 Self-similar solution and rescaling

In this section we prove the analogue of Theorem 2.1 for the additive kernel.
The proof is similar to the previous section. However, the characteristics
are nonlinear in this case, and this changes the analysis. The self-similar
solution with exponential tail found by Golovin [9] is

n(t, x) = e−4tn∗(xe−2t) where n∗(x̂) =
1√

2πx̂3
e−x̂/2. (3.1)

The total number of clusters,
∫∞
0 n∗(x)dx, is infinite. This situation may be

resolved by working with the variables

ũ(t, s̃) =
∫ ∞

0
e−s̃xxn(t, x) dx and ϕ̃(t, s̃) =

∫ ∞

0
(1 − e−s̃x)n(t, x)dx,

which are the Laplace transform of the mass density xn(t, x) and a renor-
malised number density in unscaled variables. It is easy to check that ϕ̃
solves the simple equation

∂tϕ̃− ϕ̃∂s̃ϕ̃ = −ϕ̃. (3.2)

We consider the mass-preserving rescaling

u(t, s) = ũ(t, e−2ts), ϕ(t, s) = e2tϕ̃(t, e−2ts). (3.3)
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This corresponds to the mass-preserving rescaling

x̂ = xe−2t, n̂(t, x̂) = e4tn(t, x̂e2t) = e4tn(t, x). (3.4)

It follows that u and ϕ are related through u = ∂sϕ, with

u(t, s) =
∫ ∞

0
e−sx̂x̂n̂(t, x̂)dx̂, ϕ(t, s) =

∫ ∞

0
(1 − e−sx̂)n̂(t, x̂)dx̂. (3.5)

We restrict ourselves to initial data with finite mass and second moment
normalized so that

∫∞
0 xn0(x)dx = 1 and

∫∞
0 x2n0(x)dx = 1. The scaling

solution with these moments is a trivial rescaling of Golovin’s solution and
its profile n∗,1 from (1.5) has the Laplace transform

u∗(s) =
1√

1 + 2s
. (3.6)

The weak convergence theorem of [14] ensures that

lim
t→∞u(t, s) = u∗(s), s ∈ C+, (3.7)

and the convergence is uniform on compact sets by Montel’s theorem. Note
that the convergence also holds on the imaginary axis, by the equivalence
between weak convergence of probability measures and pointwise conver-
gence of their Fourier transforms. On the imaginary axis, |u∗(ik)| ∼ |k|−1/2

as |k| → ∞. Hence, it is not in L1. As earlier, we resolve the situation by
considering v = −∂su.

3.2 Evolution equations and characteristics

The equations of evolution for ϕ and u are

∂tϕ+ (2s − ϕ)∂sϕ = ϕ, (3.8)
∂tu+ (2s − ϕ)∂su = −u(1 − u). (3.9)

These equations may be solved by the method of characteristics. A charac-
teristic originating at s0 is denoted s(t; s0) and solves

ds

dt
= 2s − ϕ, s(0; s0) = s0. (3.10)

Along characteristics we have

dϕ

dt
= ϕ, and

du

dt
= −u(1 − u). (3.11)
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Integrating (3.11) we have

ϕ(t, s) = etϕ0(s0), u(t, s) =
u0(s0)e−t

1 − u0(s0)(1 − e−t)
. (3.12)

We are interested in the growth of the derivative v = −∂su. Differenti-
ating equation (3.9), and using (3.5), we obtain along characteristics

dv

dt
= −3(1 − u)v. (3.13)

We substitute for u from (3.12) and integrate to obtain

v(t, s) =
v0(s0)e−3t

(1 − u0(s0)(1 − e−t))3
. (3.14)

|u| decays along characteristics as in (2.12). By (3.14), |v| decays on char-
acteristics according to

|v(t, s)| ≤ |v0(s0)|e−3t

|1 − u0(s0)(1 − e−t)|3 ≤ |v0(s0)|e−3t

(1 − |u0(s0)|)3
. (3.15)

3.3 Geometry of characteristics

Our analysis relies on the key observation that the domain of analyticity of
ϕ(t, s) (and hence u(t, s) and v(t, s)) grows as t does. This may be explained
using the explicit solution for characteristics.

We substitute for ϕ(t, s) from (3.11) in (3.10) and integrate, to obtain

e−2ts(t; s0) = s0 − ϕ0(s0)(1 − e−t). (3.16)

We therefore define the flow map Φt : C+ → C by

Φt(s0) = s(t; s0) = e2t
[
s0 − ϕ0(s0)(1 − e−t)

]
. (3.17)

Φt is analytic for Re s0 > 0, as we have from (3.17)

dΦt(s0)
ds0

= e2t
(
1 − u0(s0)(1 − e−t)

)
. (3.18)

Let Dt denote the image Φt(C+). We claim that Dt is strictly larger than
C+. This follows by considering the image of the imaginary axis under Φt

and a continuity argument. For any t ≥ 0, let Γt denote the image of the



13

imaginary axis, and let Γ−t denote its preimage. By the explicit formula
(3.16) we have

Γt = {z | z = ik − ϕ0(ik)(1 − e−t), k ∈ R},
Γ−t = {z | ik = z − ϕ0(z)(1 − e−t), k ∈ R}.

Clearly, Φt(0) = 0 so that Γt always includes the origin. But, if 0 
= z ∈ Γt

then Re z < 0. Indeed, Re z = −(1 − e−t)Reϕ0(ik) and

Reϕ0(ik) =
∫ ∞

0
(1 − cos kx)n0(x)dx > 0, k 
= 0,

since n0 is continuous. The inverse of Φt is denoted by Φ−1
t : Dt → C+. It

is easy to see that Φ−1
t is analytic in the interior of Dt, and thus from the

explicit solution formulas (3.12) we see that ϕ(t, s) (and hence u(t, s) and
v(t, s)) are analytic in Dt. The analyticity of v(t, s) is used in the proof.

3.4 The main theorem

The proof of the main theorem is similar to the proof of Theorem 2.1, how-
ever it is more delicate to control the tails of the integrals uniformly. We
will need the following uniform Riemann-Lebesgue lemma. Let us denote
the positive semicircle of radius R by CR = {s ∈ C+ | |s| = R}
Lemma 3.1. Let x2n0(x) ∈ L1 and v0(s) =

∫∞
0 e−sxx2n0(x)dx. Then

lim
R→∞

sup
s∈CR

|v0(s)| = 0. (3.19)

Proof. Let ε > 0, s ∈ C+. We choose a step function gε =
∑Nε

k=1 ck1[ak,bk]

so that ‖x2n0 − gε‖L1 < ε. But then, ‖e−sx(x2n0 − gε)‖L1 < ε. Therefore,

|v0(s)| ≤ ε+
∣∣∣∣
∫ ∞

0
e−sxgε(x)dx

∣∣∣∣ = ε+

∣∣∣∣∣
Nε∑
k=1

ck

∫ bk

ak

e−sxdx

∣∣∣∣∣ ≤ ε+
Cε

|s| .

Theorem 3.2. Suppose n0(x) ≥ 0,
∫∞
0 xn0(x)dx =

∫∞
0 x2n0(x)dx = 1, and

x2n0 ∈ A(R). Then in terms of the rescaling (3.4) we have

lim
t→∞ sup

x̂>0
x̂2|n̂(t, x̂) − n∗,1(x̂)| = 0. (3.20)
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Proof. The assumption x2n0 ∈ A(R) implies that
∫

R
|v0(ik)| dk < ∞. It is

sufficient to prove that

lim
t→∞ sup

x>0

∣∣∣∣
∫

R

eikx [v(t, ik) − v∗(ik)] dk
∣∣∣∣ = 0. (3.21)

Firstly, by the weak convergence result (3.7) and the dominated convergence
theorem, for fixed R > 0,

lim
t→∞

∫ R

−R
|v(t, ik) − v∗(ik)| dk = 0.

It remains to control the tails |k| ≥ R. It suffices to consider k > 0 because
|v(t, ik)| = |v(t,−ik)|. We control the tails of v and v∗ separately. It follows
from the explicit formula (3.6) that∫ ∞

R
|v∗(ik)| dk ≤ C

∫ ∞

R
k−3/2 dk ≤ CR−1/2.

It again follows from formula (3.6) and the uniform convergence of v on
compact subsets, that for sufficiently large T

sup
t≥T

max
s∈CR

|u(t, s)| ≤ CR−1/2 and sup
t≥T

max
s∈CR

|v(t, s)| ≤ CR−3/2. (3.22)

Let us consider the “transition zone” R ≤ k ≤ Re2(t−T ). For any point
ik, there exists a unique time τ(k) ≥ T so that ik is the image of some point
s0 ∈ CR after time τ(k)−T . Thus, from the explicit solution formula (3.16)

e−2(τ(k)−T )ik = s0 − ϕ(T, s0)(1 − e−(τ(k)−T )).

But |ϕ(T, s0)| ≤ |s0| so that

e−2(τ(k)−T ) ≤ 2
|s0|
k

= 2
R

k
.

It then follows from the decay estimate (3.15) and (3.22) that

|v(t, ik)| ≤ |v(τ, s0)|e−3(τ−T )

(1 − |u(τ, s0)|)3 ≤ Ck−3/2.

Integrating this estimate we have

∫ Re2(t−T )

R
|v(t, ik)| dk ≤ C

∫ ∞

R
k−3/2 dk = CR−1/2.
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A
−1

B

CD

 Φ

ΦΓ
t

t

A’

B’

Γ−t

t

Figure 3.1: A = Φt(iR̃), B = iR̃e2t, C = iR2, Im(D) = R2, A′ = iR̃,
B′ = Φ−1

t (iR̃e2t)

Finally, consider the tail region k > Re2(t−T ) = R̃e2t. To complete the
proof of Theorem 3.2 we will use the analyticity of v(t, s) in Dt and contour
deformation. For large finite R2 <∞ consider the domain ABCD shown in
Figure 3.4. The path AB is chosen so that A′B′ = Φ−1

t (AB) is a straight
line. CD is parallel to the real axis. Then by Cauchy’s theorem∣∣∣∣

∫ R2

R̃e2t

eikxv(t, ik) dk
∣∣∣∣ =

∣∣∣∣
∫

BC
eikxv(t, ik) dk

∣∣∣∣
=
∣∣∣∣
∫

DA
esxv(t, s) ds +

∫
AB

esxv(t, s) ds +
∫

CD
esxv(t, s) ds

∣∣∣∣ .
Let σ denote Re s. Since σ < 0 in Dt for s ∈ CD we see that the last integral
is estimated by∣∣∣∣

∫
CD

esxv(t, s) ds
∣∣∣∣ ≤ sup

s∈CD
|v(t, s)|

∫ 0

−∞
eσxdσ =

sups∈CD |v(t, s)|
x

.

By the decay estimate (3.15) we have

sup
s∈CD

|v(t, s)| ≤ sup
s∈CD

|v0(Φ−1
t (s))|e−3t(

1 − |u0(Φ−1
t (s))|)3 .
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It follows from the uniform Riemann-Lebesgue lemma 3.1 that as R2 → ∞,
sups∈CD |v0(Φ−1

t (s)))| → 0. We thus let R2 → ∞ to conclude that

∣∣∣∣
∫ ∞

R̃e2t

eikxv(t, ik) dk
∣∣∣∣ ≤

∣∣∣∣∣
∫

Γt,A

esxv(t, s) ds

∣∣∣∣∣+
∣∣∣∣
∫

AB
esxv(t, s) ds

∣∣∣∣ . (3.23)

where Γt,A denotes the path from A to ∞ on Γt. Notice that (3.23) holds
independent of x. The virtue of deforming the contour is that the integrals
are now easy to estimate. We first use the exact solution (3.14) and then a
change of variables with (3.18) to obtain

∫
Γt,A

esxv(t, s) ds =
∫

Γt,A

esx
e−3tv0(Φ−1

t (s))(
1 − u0(Φ−1

t (s)(1 − e−t))
)3 ds

= e−t

∫ ∞

R̃
eΦt(ik)x v0(ik)

(1 − u0(ik)(1 − e−t))2
dk.

Since ReΦt(ik)x ≤ 0, this yields the estimate∣∣∣∣∣
∫

Γt,A

esxv(t, s) ds

∣∣∣∣∣ ≤ e−t‖v0‖L1 sup
|k|≥R̃

∣∣1 − u0(ik)(1 − e−t)
∣∣−2

.

Similarly, we have by (3.14) and (3.18)∣∣∣∣
∫

AB
esxv(t, s) ds

∣∣∣∣ = e−t

∣∣∣∣
∫

A′B′
eΦt(s0)x v0(s0)

(1 − u0(s0)(1 − e−t))2
ds0

∣∣∣∣
≤ e−t|A′B′| sup

s0∈A′B′

∣∣1 − u0(s0)(1 − e−t)
∣∣−2

.

Now, the point A′ = iR̃ is independent of t. It also follows from (3.17) that
B′ = Φ−1

t (iR̃e2t) converges to the point s0 that solves iR̃ = s0 − ϕ0(s0).
Thus, we have the exponential decay estimate | ∫AB e

sxv(t, s) ds| ≤ Ce−t

independent of x.

3.5 The discrete Smoluchowski equations

With the proof of Theorem 3.2 in hand, it is easy to obtain a uniform
convergence theorem for the discrete Smoluchowski equations with additive
kernel. Moreover, it is easy to obtain uniform control over the tail region,
without the contour deformation argument.
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Let νt =
∑∞

l=1 nl(t)δhl(x) denote a measure-valued solution to (1.1).
We first adapt the inversion formula to self-similar variables. In unscaled
variables we have

ṽ(t, ik̃) := −∂s̃ũ(t, ik̃) =
∫ ∞

0
e−ik̃xx2νt(dx) =

∞∑
l=1

h2l2nl(t)e−ik̃hl,

h2l2nl(t) =
h

2π

∫ π/h

−π/h
eilhk̃ṽ(t, ik̃)dk̃,

Let
l̂ = lhe−2t, n̂l(t) = h−1e4tnl(t). (3.24)

Then we can rewrite the above inversion formula using self-similar variables
k = k̃e2t and v(t, ik) = e−2tṽ(t, ik̃) as

l̂2n̂l(t) = h−1e4t l̂2nl(t) =
1
2π

∫ πe2t/h

−πe2t/h
eil̂kv(t, ik) dk. (3.25)

Theorem 3.3. Let ν0 ≥ 0 be a lattice measure with span h such that∫∞
0 xν0(dx) =

∫∞
0 x2ν0(dx) = 1. Then with the scaling (3.24) we have

lim
t→∞ sup

l∈N

l̂2
∣∣∣n̂l(t) − n∗,1(l̂)

∣∣∣ = 0.

Proof. By (3.25) and the continuous Fourier inversion formulas it suffices to
show that

lim
t→∞ sup

l̂≥0

∣∣∣∣∣
∫ πe2t/h

−πe2t/h
eil̂hkv(t, ik) dk −

∫
R

eil̂hkv∗(ik) dk

∣∣∣∣∣ = 0.

The integral over [−R,R] and the transition zone R < |k| < R̃e2t is con-
trolled as in the proof of Theorem 3.2, and it only remains to control the
integral of |v(t, ik)| over the tail region R̃e2t < k < πe2t/h. This is consid-
erably simpler than in the previous proof. We use the exact solution (3.14)
and change variables using (3.18) to obtain

∫ πe2t/h

R̃e2t

eikxv(t, ik) dk = e−3t

∫ πe2t/h

R̃e2t

eikxv0(Φ−1
t (ik))(

1 − u0(Φ−1
t (ik))(1 − e−t)

)3 dk
= e−t

∫
Γ−t(R̃,π/h)

exΦt(s0)v0(s0)
(1 − u0(s0)(1 − e−t))2

ds0.
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Γ−t(R̃, π/h) denotes the segment along Γ−t from Φ−1
t (R̃e2t) to Φ−1

t (πe2t/h).
The exact solution (3.16) shows that Γ−t(R̃, π/h) converges to a smooth
compact curve defined implicitly by ik = s0 − ϕ0(s0), R̃ ≤ k ≤ π/h. Thus,

e−t

∣∣∣∣∣
∫

Γ−t(R̃,π/h)

exΦt(s0)v0(s0)
(1 − u0(s0)(1 − e−t))2

ds0

∣∣∣∣∣ ≤ C(R̃, u0, v0)e−t.

4 Self-similar gelation for the multiplicative kernel

For K = xy, McLeod solved the coagulation equation explicitly for monodis-
perse initial data, and showed that a mass-conserving solution failed to exist
for t > 1. The second moment satisfies m2(t) = (1− t)−1. The divergence of
the second moment implies further that the (formal) conservation of mass
breaks down at this critical time. A rescaled limit of McLeod’s solution is
the following self-similar solution for K = xy [1]:

n(t, x) =
1√
2π
x−5/2e−(1−t)2x/2, x > 0, t < 1. (4.1)

The problem of solving Smoluchowski’s equation with multiplicative ker-
nel can be reduced to that for the additive kernel by a change of variables [4].
Let us briefly review this. In unscaled variables we define

ψ̃(t, s̃) =
∫ ∞

0
(1 − e−s̃x)xn(t, x)dx. (4.2)

Then ψ̃ solves the inviscid Burgers equation:

∂tψ̃ − ψ̃∂sψ̃ = 0. (4.3)

The gelation time for initial data with finite second moment is Tgel =
(
∫∞
0 x2ν0(dx))−1 and this is exactly the time for the first intersection of

characteristics [14]. We presume the solution is scaled so the second and
third moments are 1; then Tgel = 1. The connection between the additive
and multiplicative kernels is that ψ̃ solves (4.3) with initial data ψ̃0, if and
only if ϕ̃(τ, s̃) is a solution to (3.2) with the same initial data, where

ψ̃(t, s̃) = eτ ϕ̃(τ, s̃), with τ = log(1 − t)−1. (4.4)
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For solutions n(t, x) and ñ(t, x) to Smoluchowski’s equation with multiplica-
tive and additive kernels respectively, this means that

xn(t, x) = (1 − t)−1ñ(τ, x) (4.5)

for all t ∈ (0, 1), if and only if the same holds at t = 0.
We thus obtain a scaling limit as t → Tgel directly from Theorem 3.2.

The self-similar variables in real space are

x̂ = (1 − t)2x, n̂(t, x̂) =
n(t, x̂(1 − t)−2)

(1 − t)5
=

n(t, x)
(1 − t)5

, (4.6)

and the self-similar profile is

n∗,2(x̂) =
1√

4πx5
e−x̂/4. (4.7)

Notice that (4.6) is not a mass-preserving rescaling; indeed, the rescaled
mass diverges:∫ ∞

0
x̂n̂(t, x̂)dx̂ =

1
1 − t

∫ ∞

0
xn(t, x)dx =

1
1 − t

→ ∞,

Instead, (4.6) preserves the second moment:∫ ∞

0
x̂2n̂(t, x̂)dx̂ = (1 − t)

∫ ∞

0
x2n(t, x)dx = 1, t ∈ [0, 1).

The explanation is that the scaling in (4.6) is designed to capture the behav-
ior of the distribution of large clusters as t approaches Tgel — the average
cluster size is (1−t)−1. Correspondingly, the mass of the self-similar solution
is infinite.

Theorem 4.1. Suppose n0(x) ≥ 0,
∫∞
0 x2n0(x)dx =

∫∞
0 x3n0(x)dx = 1,

and x3n0 ∈ A(R). Then

lim
t→1

sup
x̂>0

x̂3|n̂(t, x̂) − n∗,2(x̂)| = 0. (4.8)

Theorem 3.3 may be similarly adapted to K = xy. In the discrete
case, the correspondence (4.5) between solutions of Smoluchowski’s equa-
tions with multiplicative and additive kernels becomes

hlnl(t) = (1 − t)−1ñl(τ). (4.9)

We introduce self-similar variables via

l̂ = lh(1 − t)2, n̂l(t) = h−1(1 − t)−5nl(t). (4.10)

Then directly from Theorem 3.3 we obtain the following.
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Theorem 4.2. Let ν0 ≥ 0 be a lattice measure with span h such that∫∞
0 x2ν0(dx) =

∫∞
0 x3ν0(dx) = 1. Then with the rescaling (4.10) we have

lim
t→1

sup
l∈N

l̂3
∣∣∣n̂l(t) − n∗,2(l̂)

∣∣∣ = 0. (4.11)

Acknowledgements

The authors thank the Max Planck Institute for Mathematics in the Sci-
ences, Leipzig for hospitality during part of this work. G.M. thanks Timo
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