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GLOBAL SOLUTIONS OF NONLINEAR TRANSPORT EQUATIONS FOR
CHEMOSENSITIVE MOVEMENT

H.J. HWANG, K. KANG, AND A. STEVENS

Abstract. A widespread phenomenon in moving microorganisms and cells is their ability to orient themselves
in dependence of chemical signals. In this paper we discuss kinetic models for chemosensitive movement, which
take into account also evaluations of gradient fields of chemical stimuli which subsequently influence the motion
of the respective microbiological species. The basic type of model was discussed by Alt [1], [2] and in Othmer,
Dunbar, and Alt [17]. Chalub, Markowich, Perthame and Schmeiser rigorously proved that, in three dimensions,
these kind of kinetic models lead to the classical Keller-Segel model as its drift-diffusion limit when the equation
for the chemo-attractant is of elliptic type [3], [4]. In [11] it was proved that the macroscopic diffusion limit
exists in both two and three dimensions also when the equation of the chemo-attractant is of parabolic type. So
far in the rigorous derivations only the density of the chemo-attractant was supposed to influence the motion
of the chemosensitive species. Here we are concerned with the effects of evaluations of gradient fields of the
chemical stimulus on the behavior of the chemosensitive species. In the macroscopic limit some effects result
in a change of the classical parabolic Keller-Segel model for chemotaxis. Under suitable structure conditions
global solutions for the kinetic models can be shown.

Introduction

The starting point of our considerations is the classical chemotaxis model as discussed by Keller and Segel
(see [13] and [14]). This system is of advection-diffusion type and consists of two coupled parabolic equations

(1)
∂ρ

∂t
= ∇ · (D(ρ, S)∇ρ− χ(ρ, S)ρ∇S),

(2) τ
∂S

∂t
= D0∆S + αρ− βS, α, β, τ ≥ 0.

Here ρ = ρ(x, t) denotes the density of chemotactic cells and S = S(x, t) is the density of the chemo-attractant.
The cells are attracted by the chemical and χ denotes their chemotactic sensitivity. The first rigorous derivation
of the macroscopic chemotaxis equations from microscopic models, namely interacting stochastic many particle
systems, was given in [21]. In [10] a survey about known results on existence of global solutions and finite time
blowup for this type of model is given.

In [3] a kinetic model for equation (1) was discussed with a reduced version of equation (2) which is the
Poisson equation without decay term

(3) −∆S = αρ.

The following kinetic equation for the oriented cell density f = f(x, v, t) ≥ 0 is considered in [3, page 3]

(4)
∂f

∂t
+ v · ∇xf =

∫
V

(T [S]f ′ − T ∗[S]f)dv′,

where x, v, and t indicate position, velocity, and time, respectively. Here the abbreviations f ′ = f(x, v′, t),
T [S] = T [S](x, v, v′, t) and T ∗[S] = T [S](x, v′, v, t) are used. The first term on the right hand side of (4)
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describes the turning into direction v and the second term the turning away from v. The cell density ρ fulfills

ρ(x, t) =
∫

V

f(x, v, t)dv,

where V is the set of admissible velocities which is assumed to be compactly supported.
Using stochastic models for the motion of bacteria and leukocytes Alt formally derived (1) from a transport

equation similar to (4), [1, section 8], [2, section 3]. Later a general formulation of this velocity-jump process
was presented and studied in [17, section 3]. In [18] and [19] Othmer and Hillen studied the formal diffusion
limit of a transport equation of (4) by moment expansions, which generalizes parts of Alt’s earlier works [1],
[2]. A hyperbolic scaling and its formal limit are discussed in [6].

Based on [19] a rigorous proof of the macroscopic limit was given in [3]. After using diffusive scaling of time
and space, the non-dimensional form of (4) leads to [3, page 4]

(5) ε2
∂fε

∂t
+ εv · ∇xfε = −Tε[Sε](fε), x ∈ R

n, v ∈ V, t > 0

where
Tε[Z](g) =

∫
V

(T ∗
ε [Z]g − Tε[Z]g′)dv′.

The diffusion limit ε→ 0 was studied for initial conditions

(6) fε(x, v, 0) = f0(x, v), x ∈ R
n, v ∈ V,

and (5) being coupled to equation (3) for the chemo-attractant. In [3] it was shown that the coupled nonlinear
system (5), (6), and (3) results in Keller-Segel type equations for chemotaxis as its macroscopic drift-diffusion
limit under suitable conditions turning kernel in three dimension (compare e.g. [3, Theorem 5] and [4, Theorem
2]). In [3] and [4], it was also proved that for suitable turning kernels, blow up can be prevented on the kinetic
level for fixed ε > 0.

In [11], as an extension of [3], the authors prove that such kinetic models have a macroscopic diffusion limit
in both two and three dimensions also when the equation of the chemo-attractant is of parabolic type, i.e. τ > 0,
which is the original version of the chemotaxis model. An independent related result is announced to be given
in [5].

In this article, we consider turning kernels depending not only on S but also on ∇S, like formally discussed,
among others, in [22] and [19], i.e.

(7) ε2
∂fε

∂t
+ εv · ∇xfε = −Tε[Sε,∇Sε](fε), x ∈ R

n, v ∈ V, t > 0

with initial condition (6) coupled to

(8) τ
∂Sε

∂t
= ∆Sε + αρε − βSε, τ ≥ 0, α > 0, β ≥ 0.

where

(9) ρε =
∫

V

fεdv.

In the sequel, for notational convenience, we write Tε[Sε,∇Sε] as Tε[Sε], unless any confusion is to be expected
Here we emphasize that the condition on the turning kernel include detection also of spatial gradients of the
chemo-attractant by the chemotactic cells. This behavior results under certain conditions in a macroscopic
model which varies from the classical Keller-Segel system by additional higher order terms.

Our main result is that suitable turning kernels which take into account the effects of gradient measurements
of the chemical exclude blow up of the solutions in finite time on the kinetic level in two dimensions (compare
Theorem 2.8 and Theorem 2.15 for elliptic and parabolic cases, respectively). The result can be extended to
three dimensions under some restrictions on the turning kernels (compare Theorem 2.10 and Theorem 2.16 for
the elliptic and parabolic cases, respectively). We also show the existence of a macroscopic diffusion limit of
the kinetic model in two and three dimensions. More precisely, under similar assumptions on the turning kernel
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K[S] as given in [3], we prove that the coupled nonlinear system (6), (7), and (8) converges to Keller-Segel type
equations and their variants for ε→ 0 (compare Theorem 3.4). Our main tool is the potential estimate for S. In
particular, in case the chemo-attractant equation is of elliptic type, i.e. τ = 0 and in two dimensions, log-type
estimates for the chemical S are used to obtain global existence for the kinetic model (similar techniques were
used in [12, Lemma 4]).

The plan of this paper is as follows: In section 1, we introduce notations used in this article and briefly
review derivations of the macroscopic equation presented in [3] and [11]. In section 2, we prove that the kinetic
model (7)-(9) has a global solution for ‘suitable’ turning kernels. In section 3, we prove existence of the diffusion
limit for a short time interval. In section 4 we give concrete examples on how the specific dependencies of the
turning kernel result in different macroscopic equations.

1. Preliminaries

We first introduce some notations which will be used throughout this article and recall some of the observa-
tions presented in [3].

• We denote by G the Bessel potential, which is the fundamental solution of the differential operator
1 − ∆ in R

n (see [20, page 130-132])

(10) G(x) =
1
4π

∫ ∞

0

e−π |x|2
4s − s

4π s
−n+2

2
ds

s
.

• By Γ we denote the fundamental solution of the differential operator ∂t − ∆x + β in R
n × R+

(11) Γ (x, t) =
1

(4πt)
n
2

exp
(
−|x|2

4t
− βt

)
.

• For Ω ⊂ R
n and 1 ≤ q ≤ ∞, Lq(Ω) denotes the Banach space of measurable functions with

‖u‖Lq(Ω) =
(∫

Ω

|u(x)|q dx
)1/q

, q <∞ and ‖u‖L∞(Ω) = ess sup
Ω

|u|.

• Let Ωt = Ω × (0, t). For 1 ≤ q ≤ ∞, Lq(Ωt) denotes the Banach space of all measurable functions with
the finite norm

‖u‖Lq(Ωt) =
(∫ t

0

∫
Ω

|u(x, t)|q dx dt
)1/q

.

• For 1 ≤ q ≤ ∞, W k,q(Ω) denotes the usual Sobolev space; i.e., W k,q(Ω) = {u : Dαu ∈ Lq(Ω), 0 ≤ |α| ≤ k}.
• Cα(Ω) denotes the Banach space of functions that are Hölder continuous with exponent α ∈ (0, 1),

and Ck,α(Ω) consists of all functions whose derivatives up to k−th order are Hölder continuous with
exponent α ∈ (0, 1).

• Let f ∈ L1(Rn). The Fourier transform of f is denoted by f̂(ξ) =
∫

Rn f(x)e−x·ξdx.
• The convolution of two functions f and g is denoted by f ∗ g(x) =

∫
Rn f(x− y)g(y)dy =

∫
Rn f(y)g(x−

y)dy.
• By C = C(α, β, . . .) we denote a constant depending on the prescribed quantities α, β, . . . . The domain

Ω considered in this article is R
n, n = 2, 3.

To make this note self-contained, we review the formal derivation of the macroscopic equation from the kinetic
model presented in [3] (compare the details in [3, page 5-7]). For simplicity we assume for a moment τ = 1, α = 1,
and β = 1 (other cases can be formally derived in a similar way without any difficulty). Since the integral of
Tε[S](f) with respect to the velocity vanishes, we obtain the macroscopic conservation equation

(12)
∂ρε

∂t
+ ∇ · Jε = 0,

where Jε(x, t) = ε−1
∫

V
vfε(x, v, t)dv is the flux density. The turning kernel is assumed to have the following

asymptotic expansion Tε[S] = T0[S] + εT1[S] +O(ε2). Then the turning operator can be expanded in a similar
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way and

Tk[S](f) =
∫

V

(T ∗
k [S]f − Tk[S]f ′)dv′.

By asymptotic expansion of fε = f0 + εf1 +O(ε2) and Sε = S0 + εS1 +O(ε2), the equation for the leading order
terms can be obtained from (7):

(13) T0[S0](f0) = 0, S0 = ρ0 ∗ Γ, ρ0 =
∫

V

f0dv.

Comparing coefficients in (7) results in

v · ∇xf0 = −T0[S0](f1) − T1[S0](f0) − T0S [S0, S1](f0)

where T0S [S0, S1] is part of the turning operator T and its kernel is the Frechet derivative of T0 with respect
to S, evaluated at S0 in the direction S1. Here, we recall the assumptions on the leading order terms of the
turning operator and two useful lemmas presented in [3, (A0), Lemma 1, and Lemma 2, page 6-7].
Assumption 1.1. There exists a bounded velocity distribution F (v) > 0, such that T ∗

0 [S]F = T0[S]F ′ and∫
V

vF (v)dv = 0,
∫

V

F (v)dv = 1.

The turning rate T0[S] is bounded, and there exists a constant γ = γ[S] > 0 such that T0[S]/F ≥ γ for all
(v, v′) ∈ V × V, x ∈ R

n, and t > 0.
Lemma 1.2. Let ζ : R→R, g : V→R, and let

φS
ε [S] =

Tε[S]F ′ + T ∗
ε [S]F

2
, φA

ε [S] =
Tε[S]F ′ − T ∗

ε [S]F
2

,

denote the symmetric and, respectively, antisymmetric part of Tε[S]F ′. Then∫
V

∫
V

Tε(Fg)ζ(g)dv =
1
2

∫
V

∫
V

φS
ε [S](g − g′)(ζ(g) − ζ(g′))dv′dv

+
1
2

∫
V

∫
V

φA
ε [S](g + g′)(ζ(g) − ζ(g′))dv′dv.

The same holds for Tk[S] with analogous definitions of φS
k [S] and φA

k [S].
Proof. See Lemma 1 in [3].

With g = f/F and ζ = id one obtains
Lemma 1.3. Let Assumption 1.1 hold. Then, the entropy equality∫

V

T0[S](f)
f

F
dv =

1
2

∫
V

∫
V

φS
0 [S]

(
f

F
− f ′

F ′

)2

dv′dv ≥ 0

holds. For g ∈ L2(V ; dv/F ), the equation T0[S](f) = g has a unique solution f ∈ L2(V ; dv/F ) satisfying∫
V
fdv = 0 if and only if

∫
V
gdv = 0.

Proof. See Lemma 2 in [3].

From the entropy equality, we deduce that

f0(x, v, t) = ρ0(x, t)F (v).

Since T0S [S0, S1](f0) = 0, we obtain

T0[S](f1) = −vF · ∇ρ0 − ρ0T1[S0](F ).

The right hand side satisfies the solvability condition from Lemma 1.3 and therefore the solution can be written
as

f1 = −κ(x, v, t) · ∇ρ0(x, t) − Θ(x, v, t)ρ0(x, t) + ρ1(x, t)F (v),
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where κ = κ[S0] and Θ = Θ[S0] are the solutions of

T0[S0](κ) = vF, T0[S0](Θ) = T1[S0](F ),

and ρ1 is the macroscopic density of f1, which is a new unknown. By passing to the limit ε→0 in (12), the
convection-diffusion equation reads

∂tρ0 −∇ · (D[S0]∇ρ0 − ρ0H [S0]) = 0

where

H [S0](x, t) =
∫

V

v ⊗ κ[S0](x, v, t)dv, D[S0] = −
∫

V

vΘ[S0](x, v, t)dv,

together with
∂S0

∂t
= ∆S0 + ρ0 − S0.

The specific form of H [S0] and D[S0] in dependence of different possible turning kernels will be discussed
later.

2. Global solution of the kinetic model

In this section we show that solutions of the coupled system (6)-(9) in two and three dimensions do not blow
up in finite time for fixed ε > 0 if the turning kernel satisfies a certain structure condition. Without loss of
generality we set ε = 1 in (6) and α = 1 in (8). We consider two problems, namely the elliptic and the parabolic
equation for the chemo-attractant. First we recall some well-known facts needed for our purpose.

Theorem 2.1. (Young’s inequality) Suppose 1 ≤ p, q, r ≤ ∞. If f ∈ Lp(Rn) and g ∈ Lr(Rn), then
f ∗ g ∈ Lq(Rn) and

(14) ||f ∗ g||Lq(Rn) ≤ ||f ||Lp(Rn)||g||Lr(Rn),
1
q

=
1
p

+
1
r
− 1.

Proof. See e.g. [8, page 232-233].

Lemma 2.2. Let a (t) and b (t) be positive functions. Let y (t) > 0 be differentiable in t and satisfy

y′ ≤ a (t) y ln y + b (t) y.

Then

y (t) ≤
[
y (0) exp

(∫ t

0

b (s) e−
R

s
0 a(τ)dτds

)]exp(
R t
0 a(s)ds)

.

Proof. Dividing both sides of the inequality by y, we get z′ ≤ a(t)z+ b(t) where z = ln y. Using a standard
Gronwall argument, we deduce the lemma.

Lemma 2.3. (Gronwall’s inequality) Let g and h be positive functions. Suppose that f is continuous and
satisfies

f(t) ≤ g(t) + h(t)
∫ t

0

f(s)ds.

Then

f(t) ≤ g(t) + h(t)
∫ t

0

g(s)e
R t

s
h(τ)dτds.

Proof. Computations are straightforward, and thus details are omitted (see e.g. [7, page 624-625]).

The structure condition on the turning kernel T [S] is assumed to be as follows.
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Assumption 2.4. There exist nonnegative constants Ci ≥ 0, i = 1, 2, ..., 5 such that for all x ∈ R
n, n = 2, 3,

v, v′ ∈ V , t ∈ R
+, and S ∈W 1,∞(Rn), the turning kernel T satisfies

(15) 0 ≤ Tε[S](x, v, v′, t) ≤ C1 + C2S(x+ εv, t) + C3S(x− εv′, t) + C4|∇S(x+ εv, t)| + C5|∇S(x− εv′, t)|,

(16) |∇Tε[S](x, v, v, t)| ≤ C2|∇S(x+ εv, t)| + C3|∇S(x− εv′, t)| + C4|∇2S(x+ εv, t)| + C5|∇2S(x− εv′, t)|.
This means that the cells can measure the concentration and the spatial gradient of the chemo-attractant

up to a distance ε from their position and this may affect the movement of the cells.
Remark 2.5. The turning kernel, as given above, describes the turning from direction v′ into direction v. This
means, that the actual or ‘old’ direction is evaluated by checking backwards, whereas the evaluation of possible
new directions are checked forwards (e.g. by lamelliopodial protrusion) Checking the possible new directions also
backwards if compared to the actual direction of motion is also possible to be taken into account in the following
considerations. We leave this out to make the paper more readable. Nevertheless, it is important to note that a
forward evaluation of the actual direction v′ causes a technical problem in our approach so far.

We first consider the case that the chemo-attractant equation is of elliptic type.

a) Elliptic case: τ = 0

In this part, we consider the elliptic equation for the chemo-attractant S for two cases: β > 0 and β = 0.
First, we treat the case when β > 0 and may set β = 1 without loss of generality, i.e.

(17) −∆S = ρ− S.

Dimension n = 2:
We start with elementary properties of the Bessel potential G in two dimensions.

Lemma 2.6. Let G be the Bessel potential in R
2. Then G ∈ Lp(R2) for any p with 1 ≤ p <∞ and ∇G ∈ Lp(R2)

for any p with 1 ≤ p < 2. Furthermore, the following estimates are satisfied:

(18) ||G||Lp(R2) ≤ Cp, 1 ≤ p <∞,

(19) ||∇G||Lp(R2) ≤ C
2p

2 − p
, 1 ≤ p < 2.

Proof. For n = 2, the Bessel potential is (compare (10))

G(x) =
1
4π

∫ ∞

0

e−π
|x|2
4s − s

4π
ds

s
.

Using a change of variables, we have

||G||Lp(R2) ≤ C

∫ ∞

0

e−s

s
||e−

|x|2
4s ||Lp(R2)ds ≤ C

∫ ∞

0

e−ss−1+1/pds ≤ Cp.

We thus obtain (18). In a similar way, for the gradient of G, we have

||∇G||pLp(R2) ≤ C

∫ ∞

0

e−s

s2
||xe−

|x|2
4s ||Lp(R2)ds ≤ C

∫ ∞

0

e−ss−
3
2 + 1

p ds ≤ C
2p

2 − p
,

as long as 1 ≤ p < 2. Therefore we deduce (19) for 1 ≤ p < 2.

The next lemma shows various estimates for the chemo-attractant S.
Lemma 2.7. Let S be a solution of (17) in R

2. Then S satisfies the following estimates

(20) ||S(t)||Lp(R2) + ||∇S(t)||Lq(R2) ≤ C(p, q)||ρ0||L1(R2), 1 ≤ p <∞, 1 ≤ q < 2,

(21) ||∇S(t)||L2(R2) ≤ C||ρ0||L1(R2)

[
ln
(
||ρ(t)||2L2(R2) + 1

)]1/2

.
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Proof. The first estimate (20) is an easy consequence of mass conservation, Lemma 2.6, and Young’s
inequality. Thus it suffices to show the estimate (21). From (17) we obtain the Fourier transform Ŝ(ξ) =
ρ̂(ξ)/(|ξ|2 + 1), and thus, we have

||∇S(t)||L2(R2) = ||ξŜ(t)||L2(R2) = || |ξ|ρ̂(t)|ξ|2 + 1
||L2(R2),

where Plancherel’s equality is used. The above integral can be estimated by splitting R
2 of the ξ-space into two

parts: ∫
R2

|ξρ̂(t)|2
(|ξ|2 + 1)2

dξ =
∫
|ξ|<R

· · · +
∫
|ξ|>R

· · · = I1 + I2,

where R > 0 will be chosen later. Using Hölder’s inequality and Plancherel’s equality we have

I1 ≤ ||ρ̂(t)||L∞(R2)

[∫
|ξ|<R

|ξ|2
(|ξ|2 + 1)2

dξ

]1/2

≤ C||ρ(t)||L1(R2)

[
ln(R2 + 1)

]1/2
,

I2 ≤ || |ξ|
|ξ|2 + 1

||L∞(|ξ|>R)||ρ̂(t)||L2(R2) ≤ CR−1||ρ(t)||L2(R2).

Therefore we obtain

||∇S(t)||L2(R2) ≤ C||ρ(t)||L1(R2){ln(R2 + 1)}1/2 + CR−1||ρ(t)||L2(R2)

≤ C
[
1 + ||ρ(t)||L1(R2){ln(||ρ(t)||2L2(R2) + 1)}1/2

]
.

We optimized the above inequality by choosing R = ||ρ(t)||L2(R2). Since ||ρ||L1(R2) = ||f0||L1(R2×V ), we deduce
(21) and our Lemma.

The next theorem shows global existence of solutions for system (6)-(9) with τ = 0.
Theorem 2.8. ( τ = 0, β > 0) Let Assumption 2.4 hold and β > 0. Assume that f0,∇f0 ∈ (L1∩L∞)(R2×V ).
Then there exist global solutions f(·, ·, t),∇f(·, ·, t) ∈ (L1 ∩L∞)(R2 ×V ) and S(·, t) ∈ W 1,p(R2) for all 1 ≤ p ≤
+∞ of system (6)-(9) with ε > 0 fixed but arbitrary.

Proof. Without loss of generality, we assume ε = 1. Mass is conserved for ρ, thus ||ρ(·, t)||L1(Rn) =
||f0||L1(Rn×V ).

∂tf(x, v, t) + v · ∇xf(x, v, t) =
∫

V

T [S](x, v, v′, t)f(x, v′, t)dv′ −
∫

V

T [S](x, v′, v, t)f(x, v, t)dv′.

Using Assumption 2.4, we get

f(x, v, t) ≤ f0(x− vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds+ Cf1(x, v, t) + Cf2(x, v, t)

where f1 and f2 satisfy

∂tf1(x, v, t) + v · ∇xf1(x, v, t) =
∫

V

[S(x+ v, t) + |∇S(x+ v, t)|]f(x, v′, t)dv′,

∂tf2(x, v, t) + v · ∇xf2(x, v, t) =
∫

V

[S(x− v′, t) + |∇S(x− v′, t)|]f(x, v′, t)dv′,

with initial conditions fi(x, v, 0) = 0 for i = 1, 2. We first consider f1. One can easily see that

f1(x, v, t) =
∫ t

0

[S(x− vs+ v, t− s) + |∇S(x− vs+ v, t− s)|]ρ(x− vs, t− s)ds,

After simple calculations, we obtain the following estimates

||f1(·, ·, t)||Lp(Rn×V ) ≤ C sup
0≤s≤t

||S(·, s)||W 1,p(Rn)

∫ t

0

||ρ(·, t− s)||Lp(Rn)ds.
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For the term f2, we have

f2(x, v, t) =
∫ t

0

∫
V

[S(x− vs− v′, t− s) + |∇S(x− vs− v′, t− s)|f(x− vs, v′, t− s)dv′ds.

Applying Young’s inequality, (14)

||(S(·, t− s) + |∇S(·, t− s)|) ∗ f(x− vs, ·, t− s)||L∞(V ) ≤ sup
0<s<t

||S(·, s)||W 1,p(Rn)||f(x− vs, ·, t− s)||Lp′(V ),

where p and p′ are conjugate exponents. If p ≥ 2, then p′ ≤ p and so we have by interpolation between p and 1,

||f(x− vs, ·, t− s)||Lp′(V ) ≤ C(V )||f(x− vs, ·, t− s)||Lp(V ).

Hence,

||f2(·, ·, t)||Lp(R2×V ) ≤ sup
0<s<t

||S(·, s)||W 1,p(R2)

∫ t

0

||f(·, ·, t− s)||Lp(R2×V )ds.

Therefore, summing up the estimates above, we obtain for p ≥ 2

(22) ||f(·, ·, t)||Lp(R2×V ) ≤ ||f0(·, ·)||Lp(R2×V ) + C(1 + sup
0≤s≤t

||S(·, s)||W 1,p(R2))
∫ t

0

||f(·, ·, s)||Lp(R2×V ).

By Lemma 2.7, we have for p = 2

||f(·, ·, t)||L2(R2×V ) ≤ ||f0(·, ·)||L2(R2×V ) + C

(
1 + sup

0≤s≤t

[
ln
(
||f ||2L2(R2×V ) + 1

)]1/2
)∫ t

0

||f(·, ·, s)||L2(Rn×V ).

Then, applying Gronwall’s inequality (2.2), we obtain f ∈ L2(R2 × V ). Now, using bootstrap arguments we
obtain the L∞−estimate by applying repeatedly Lemma 2.6, Young’s inequality (14), and Gronwall’s inequality.
Next we show L∞−estimates for the derivatives of f . For convenience let j = 1, 2 be arbitrary but fixed and
we denote by f̃ and T̃ [S] the partial derivatives ∂xjf and ∂xjT [S] respectively.

∂tf̃(x, v, t) + v · ∇xf̃(x, v, t) =
∫

V

T̃ [S](x, v, v′, t)f(x, v′, t)dv′ +
∫

V

T [S](x, v, v′, t)f̃(x, v′, t)dv′

−
∫

V

T̃ [S](x, v′, v, t)f(x, v, t)dv′ −
∫

V

T [S](x, v′, v, t)f̃(x, v, t)dv′.

Then, in a similar manner as before, we obtain

f̃(x, v, t) ≤ f̃0(x− vt, v) + Cf̃1(x, v, t) + Cf̃2(x, v, t) + Cf̃3(x, v, t) + Cf̃4(x, v, t),

where

f̃1(x, v, t) =
∫ t

0

∫
V

T̃ [S](x− vs, v, v′, t− s)f(x− vs, v′, t− s)dv′ds,

f̃2(x, v, t) =
∫ t

0

∫
V

T [S](x− vs, v, v′, t− s)f̃(x− vs, v′, t− s)dv′ds,

f̃3(x, v, t) = −
∫ t

0

∫
V

T̃ [S](x− vs, v′, v, t− s)f(x− vs, v, t− s)dv′ds,

f̃4(x, v, t) = −
∫ t

0

∫
V

T [S](x− vs, v′, v, t− s)f̃(x− vs, v, t− s)dv′ds.

We consider first f̃1(x, v, t). Here we use the fact that the L∞ and Lp-norm of f , depending on t, are bounded,
which was shown above. Therefore we have

|f̃1(x, v, t)| ≤ sup
0<s<t

||f(·, s)||L∞(Rn×V )

∫ t

0

∫
V

|T̃ [S](x− vs, v, v′, t− s)|dv′ds.

Using Assumption 2.4, one can easily see

||f̃1(·, ·, t)||Lp(R2×V ) ≤ C sup
0<s<t

||f(·, s)||L∞(Rn×V ) sup
0<s<t

||S(·, s)||W 2,p(R2)
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≤ C sup
0<s<t

||f(·, s)||L∞(Rn×V ) sup
0<s<t

||ρ(·, s)||Lp(R2) ≤ C = C(t, |V |),

where we used a standard estimate for the chemo-attractant equation. Since f̃3 has the same structure as f̃1,
f̃3 satisfies the estimates above. On the other hand, f̃2 is estimated, due to Assumption 2.4, as follows:

|f̃2(x, v, t)| ≤ sup
0<s<t

||S(·, s)||W 1,∞(Rn)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds.

Again, due to a standard estimate for the chemo-attractant equation, we get

|f̃2(x, v, t)| ≤ sup
0<s<t

||f̃ ||Lq(Rn)

∫ t

0

∫
V

f̃(x− vs, v′, t− s)dv′ds,

where q is sufficiently large (i.e. q > 2). Integration over R
n × V yields

||f̃2(·, ·, t)||Lp(R2×V ) ≤ C

∫ t

0

||f̃(·, ·, t− s)||Lp(R2)ds,

where we again used the boundedness of the Lp-norm of f and C = C(|V |, t). f̃4 can be treated in the same
manner, thus we omit the details. To sum up, we obtain

||∇f(·, ·, t)||Lp(R2×V ) ≤ C(|V |, t) + C(|V |, t)
∫ t

0

||∇f(·, ·, t− s)||Lp(R2×V )ds.

Gronwall’s inequality justifies our claim. Repeating this process for higher regularity of f and S, we can easily
see that this estimate is valid also in case p = ∞. This completes the proof.

Next we consider more specific types of turning kernels in case β = 0. Let C2, C3, C5 = 0 in Assumption 2.4
which gives the structure condition. In other words, the turning kernel T is supposed to satisfy

(23) 0 ≤ Tε[S](x, v, v′, t) ≤ C(1 + |∇S(x+ εv, t)|), |∇Tε[S](x, v, v′, t)| ≤ C|∇2S(x+ εv, t)|.
Here we recall that the kernel K = −(1/2π) ln |x| for the Laplace operator −∆ has the property ∇K ∈ Lp

loc(R
2)

for any 1 ≤ p < 2. This will be used in the next theorem.
Theorem 2.9. (τ = 0, β = 0): Let f0, f0x ∈ L1 ∩ L∞(R2 × V ) and β = 0. Suppose the turning kernel
satisfies the structure condition (23). Then there exist global solutions f,∇f ∈ L∞ ((0,∞);L1

+ ∩ L∞(R2 × V )
)

and ∇S ∈ L∞ ((0,∞);Lp(R2)
)

for all 2 < p ≤ ∞ of the system (6)-(9) with ε > 0 fixed but arbitrary.
Proof. Without loss of generality, we assume ε = 1. We first decompose ∇S into two parts

∇S = ∇SL + ∇SS = ρ ∗
(
− x

2π|x|2 I|x|≥1

)
+ ρ ∗

(
− x

2π|x|2 I|x|≤1

)
,

where IA denotes the characteristic function of a set A. By mass conservation and Young’s inequality, we have

||∇SL(t)||L∞(R2) ≤ 1
2π

||f0||L1(R2×V ).

Hence the estimate reduces to considering ∇SS only and we may replace ∇S by ∇SS in the assumption on the
turning kernel. In a similar way as described in the proof of Theorem 2.8, we obtain for p ≥ 1

f(x, v, t) ≤ f0(x − vt, v) + C

∫ t

0

ρ(x− vs, t− s)ds+ Cf1(x, v, t),

where

f1(x, v, t) =
∫ t

0

|∇SS(x− vs+ v, t− s)|ρ(x − vs, t− s)ds.

Simple calculations show

||f1(·, ·, t)||Lp(R2×V ) ≤ C sup
0≤s≤t

||∇SS(·, s)||Lp(R2)

∫ t

0

||ρ(·, t− s)||Lp(R2)ds.
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To sum up, we obtain

(24) ||f(·, ·, t)||Lp(R2×V ) ≤ C + C(1 + sup
0≤s≤t

||∇SS(·, s)||Lp(R2))
∫ t

0

||f(·, ·, t− s)||Lp(Rn×V )ds.

Here we note that the above a priori estimate (24) holds for all p ≥ 1. First we choose a specific p with 1 < p < 2,
which ensures, due to the Young’s inequality, that

||SS(·, t)||Lp(R2) ≤ C||f0||L1(R2×V ).

Then by Gronwall’s inequality we get a bound, globally in time, for f in Lp(R2) for such chosen p. By bootstrap
arguments, we obtain f ∈ L∞

loc([0,∞);L∞(R2×V )). By similar procedures as given in the proof of Theorem 2.8,
a L∞-estimate for ∇f can be obtained. ∇S ∈ L∞ ((0,∞);Lp(R2)

)
, 2 < p ≤ ∞ is due to the Hardy-Littlewood-

Sobolev theorem (see [20, page 119-120]). Since this is also verified by embedding arguments for general elliptic
equations, we skip the details. This completes our proof.

Dimension 3:
Next we state the three dimensional analog of our main theorem under some restrictions on the turning

kernel. To be more precise, we assume that C3 = C5 = 0 in (15) and (16), i.e.

(25) 0 ≤ T [S](x, v, v′, t) ≤ C (1 + S(x+ εv, t) + |∇S(x+ εv, t)|) ,

(26) |∇T [S](x, v, v′, t)| ≤ C
(
|∇S(x + εv, t)| + |∇2S(x+ εv, t)|

)
.

In this situation, unlike in the two dimensional case in Theorem 2.8, it is not necessary to assume that β �= 0.
We briefly explain why C3, C5 are assumed to be zero in three dimension. Indeed, as seen in the previous
calculations, we end up with the following estimate

(27) ||f(·, ·, t)||Lp(R3×V ) ≤ C + C
(
1 + sup

0≤s≤t
||SS(·, s)||W 1,p(R3)

) ∫ t

0

||f(·, ·, t− s)||Lp(R3×V )ds.

On the other hand, in three dimension, due to behavior of the potential, we have

(28) ||SS(·, s)||W 1,p(R3) ≤ C||ρ0||L1(R3), for 1 ≤ p <
3
2
.

However, in case C3 or C5 are nonzero, one can easily show that estimate (27) is valid provided that p ≥ 2
(compare the estimate for f2 and f4 on page 6), but this does not enable us to use bootstrap arguments to get
higher regularity for f because of (28). Therefore we assume C3 = C5 = 0. Since the proof of our next theorem
is similar to the previous one, we just state it without proof.
Theorem 2.10. (τ = 0, β ≥ 0): Let f0,∇f0 ∈ L1∩L∞(R3×V ) and let β ≥ 0. Suppose the turning kernel satis-
fies the structure conditions (25) and (26). Then there exist global solutions f,∇f ∈ L∞ ((0,∞);L1 ∩ L∞(R3 × V )

)
and

(1) if β = 0, then S ∈ L∞ ((0,∞);Lp(R3)
)
, 3 < p ≤ ∞ and ∇S ∈ L∞ ((0,∞);Lp(R3)

)
, 3/2 < p ≤ ∞

(2) if β > 0, then S ∈ L∞ ((0,∞);W 1,p(R3)
)
, 1 ≤ p ≤ ∞

of system (6)-(9) with ε > 0 fixed but arbitrary.
Remark 2.11. It is worth mentioning that Theorem 2.10 also holds when the turning kernel satisfies the
following structure conditions, instead of (25) and (26),

0 ≤ T [S](x, v, v′, t) ≤ C (1 + S(x− εv′, t) + |∇S(x− εv′, t)|) ,

|∇T [S](x, v, v′, t)| ≤ C
(
|∇S(x− εv′, t)| + |∇2S(x− εv′, t)|

)
.

This is obvious from the procedure in the proof of Theorem 2.8.
We would like to thank B. Perthame for pointing this out during his visit at MPI MIS in Leipzig.
We do not know if the theorem above is valid in case the turning kernel fulfills the structure condition (15)

and (16) like in the two dimensional case.
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b) Parabolic case: τ > 0
In this part, the parabolic equation for the chemo-attractant in (8) is considered. From now on we let τ = 1

without loss of generality and, for simplicity, we also set α = 1. Then (8) for S reads

(29) ∂tS − ∆S = ρ− βS, S(x.0) = S0(x) β ≥ 0.

To make our arguments simpler, from now on, we assume S0 = 0 (see Remark 2.14 for the case S0 �= 0). In the
next lemma we recall some basic properties of Γ in dimension 2.

Dimension 2:
Lemma 2.12. Let Γ be the fundamental solution for the operator ∂t −∆x +β in R

2. Then Γ ∈ Lp(R2) for any
p with 1 ≤ p <∞, and ∇Γ ∈ Lp(R2) for any q with 1 ≤ p < 2 satisfying:∫ t

0

||Γ(·, s)||Lp(R2)ds ≤ C(β)p, 1 ≤ p <∞
∫ t

0

||∇Γ(·, s)||Lp(R2)ds ≤ C(β)
2p

2 − p
, 1 ≤ p < 2.

Proof. The proof is similar to Lemma 2.6, thus we omit details.

In the next lemma, we show Lp and L2 estimates for S and ∇S, respectively.
Lemma 2.13. Let S be a solution of (29) in R

2 and S0 = 0. Then S satisfies the following estimates

(30) ||S(t)||Lp(R2) + ||∇S(t)||Lq(R2) ≤ C(β, p, q)||ρ0||L1(R2), 1 ≤ p <∞, 1 ≤ q < 2,

(31) ||∇S(t)||2L2(R2) ≤ C

(
1 + ||ρ0||L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t
ln(||ρ(τ)||2L2(R2))

))
,

where (f)+ indicates the positive part of f .
Proof. By Duhamel’s principle and using the fundamental solution Γ in (11), we have

(32) S(x, t) =
∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds.

By using Lemma 2.12, mass conservation, and Young’s inequality (14), we easily get (30). To estimate
||∇S||L2(R2), we take the Fourier transform of (32) and use Plancherel’s equality to get

||∇S(t)||L2(R2) = ||ξŜ(t)||L2(R2) ≤
∫ t

0

∥∥∥|ξ|Γ̂(·, s)ρ̂(·, t− s)
∥∥∥

L2(R2)
ds =

∫ r

0

· · · +
∫ t

r

· · ·,

where r > 0 will be chosen appropriately later. Note that the Fourier transform of Γ is Γ̂(ξ, s) = exp(−s(4ξ2+β)).
For 0 < s < r, due to the Hölder’s inequality and Plancherel’s equality, we have∫ r

0

· · · ≤
∫ r

0

∥∥|ξ| exp(−s(4ξ2 + β))
∥∥

L∞(R2)
||ρ̂(s)||L2(R2)ds

≤ C sup
0≤s≤t

||ρ||L2(R2)

∫ r

0

s−1/2ds ≤ Cr1/2 sup
0≤s≤t

||ρ||L2(R2).

For r < s < t, due to mass conservation and Hölder’s inequality, now applied in the opposite way, we have∫ t

r

· · · ≤
∫ t

r

∥∥|ξ| exp(−s(4ξ2 + β))
∥∥

L2(R2)
||ρ̂(s)||L∞(R2)ds

≤ C||ρ0||L1(R2)

∫ t

r

1
s
ds ≤ C||ρ0||L1(R2)| ln t− ln r|,

where we used ||ρ̂||L∞(R2) ≤ ||ρ||L1(R2). Therefore we obtain

||∇S(t)||L2(R2) ≤ C

(
r1/2 sup

0≤s≤t
||ρ||L2(R2) + ||ρ0||L1(R2)| ln t− ln r|

)
.
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We optimize the upper bound for the above inequality by choosing r = min
{(

sup0≤s≤t ||ρ||L2(R2)

)−2
, t
}
.

Therefore we deduce our lemma.

Remark 2.14. For the case S0 �= 0, which is assumed to be sufficiently smooth one has

S(x, t) =
∫ t

0

Γ(·, s) ∗ ρ(·, t− s)ds+
∫

R2
Γ(x− y, t)S0(y)dy.

This gives the following variants of the estimates in the above lemma.

||S(t)||Lp(R2) + ||∇S(t)||Lq(R2) ≤ C(||S0||Lp(R2) + ||∇S0||Lq(R2) + ||ρ0||L1(R2)), 1 ≤ p <∞, 1 ≤ q < 2,

||∇S(t)||2L2(R2) ≤ C

(
1 + ||∇S0||L2(R2) + ||ρ0||L1(R2)

(
1 + (ln t)+ + sup

0≤τ≤t
ln(||ρ(τ)||2L2(R2))

))
.

Since computations are straightforward, we omit the details.
As in the previous elliptic case, we can establish global existence for the system (6) -(9) with τ = 1.

Theorem 2.15. τ > 0: Let Assumption 2.4 hold and β ≥ 0. Assume that f0,∇f0 ∈ (L1 ∩ L∞)(R2 × V ).
Then there exist global solutions f(·, ·, t),∇f(·, ·, t) ∈ (L1 ∩ L∞)(R2 × V ) and S(·, t),∇S(·, t) ∈ Lp(R2) for all
1 ≤ p ≤ +∞ of system (6)-(9) with ε > 0 fixed but arbitrary.

Proof. Once we have the essential estimate (31) for ||∇S||L2(R2), the proof is similar to the elliptic case
with τ = 0. Regularity of S is due to standard theory of general parabolic equations. Since the arguments are
straightforward if compared to the elliptic case, we omit the details.

Dimension 3:
If the turning kernel satisfies (25) and (26) instead of Assumption 2.4, global existence can also be proved

in three dimension. The arguments are more or less the same as for τ = 0 in three dimensions, so details are
skipped.
Theorem 2.16. τ > 0, β ≥ 0: Let (25) and (26) be satisfied. Assume that f0,∇f0 ∈ L1 ∩ L∞(R3 × V ).
Then there exist global solutions f(·, ·, t),∇f(·, ·, t) ∈ (L1 ∩ L∞)(R3 × V ) and S(·, t),∇S(·, t) ∈ Lp(R3) for all
1 ≤ p ≤ +∞ of system (6)-(9) with ε > 0 fixed but arbitrary.

3. Diffusion limits of the kinetic model

In this section, the diffusion limit for kinetic models of type (6)-(9) is presented. First, in a lemma, we review
estimates for S which satisfies an equation of elliptic type, i.e.

−∆S = ρ− βS β ≥ 0, in R
n, n = 2, 3.

We use standard arguments, which are known as potential theory. Proofs are straightforward (compare e.g. [9,
Chap. 2 & 8] and [20, Chap. V]).
Lemma 3.1. Let I = [0, T ) ⊂ R and 0 < T <∞. Suppose ρ ∈ L∞(I; (W 1,1(Rn) ∩W 1,q(Rn))) where q > n.

(i): In the case either n = 2, β > 0 or n = 3, β ≥ 0:

S ∈ L∞(I;W 2,p(Rn)) ∩ L∞(I; C2+α(Rn)), 1 ≤ p <∞, 0 < α ≤ q − n

q
,

and S satisfies the following estimate

||S||L∞(I;W 2,p(Rn)) + ||S||L∞(I;C2+α(Rn)) ≤ C(||ρ||L∞(I;W 1,1(Rn)) + ||ρ||L∞(I;W 1,q(Rn))).

(ii): In the case n = 2 and β = 0:

∇S ∈ L∞(I;W 1,p(R2)) ∩ L∞(I; C1+α(R2)), 1 ≤ p <∞, 0 < α ≤ q − 2
q

,
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and S satisfies the following estimate

||∇S||L∞(I;W 1,p(R2)) + ||∇S||L∞(I;C1+α(R2)) ≤ C
(
||ρ||L∞(I;W 1,1(R2)) + ||ρ||L∞(I;W 1,q(R2))

)
.

As in [3] we need similar assumptions on φS
ε [S] and φA

ε [S], which are the symmetric and antisymmetric parts
of Tε[S] (see Lemma 1.2).

Assumption 3.2. There exist γ > 0 and a non-decreasing function Λ ∈ L∞
loc, such that

φS
ε [S] ≥ γ

(
1 − εΛ(||∇S||W 1,∞(Rn))

)
FF ′

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ(||∇S||W 1,∞(Rn)),

where F ∈ L∞(V ) is a positive velocity distribution satisfying Assumption 1.1.

Theorem 3.3. Let Assumptions 1.1 and 3.2 hold and let q > n with n = 2, 3. Suppose that the equation for
the chemo-attractant S is of elliptic type. Let one of following conditions hold;

(i): if n = 2, β > 0, the turning kernel satisfies Assumption 2.4.

(ii): if n = 2, β = 0, the turning kernel satisfies (23).

(iii): if n = 3, β ≥ 0, the turning kernel satisfies (25) and (26).

Assume further that

f0 ∈ Υq ≡W 1,1(Rn × V ) ∩W 1,q(Rn × V ;
dxdv

F q−1
).

Then there exists t∗ > 0, independent of ε, such that the solutions fε, Sε satisfy

fε ∈ L∞((0, t∗); Υq),

∇Sε ∈ L∞((0, t∗);W 1,p(Rn) ∩ C1+α(Rn)), 1 ≤ p <∞, α =
q − n

q
if n = 2, β = 0,

Sε ∈ L∞((0, t∗);W 2,p(Rn) ∩ C2+α(Rn)), 1 ≤ p <∞, α =
q − n

q
otherwise,

(33) rε =
fε − ρεF

ε
∈ L2((0, t∗); Rn × V :

dxdvdt

F
).

Proof. This can be shown by following the same procedure as given in the proof of Theorem 4 in [3], and
therefore, we present a brief sketch of this proof. Simple calculations shows

d

dt

∫
Rn

∫
V

f q
ε

F q−1
dvdx ≤ CΛ(||∇S||W 1,∞(Rn))

∫
Rn

∫
V

f q
ε

F q−1
dvdx.

The next step is to estimate Sε:

||∇Sε(·, t)||C1,α(Rn) ≤ C(1 + ||∇ρε(·, t)||Lq(Rn)) ≤ C̃(1 + ||ρε(·, t)||Lq(Rn)),

here we used the estimates in Lemma 3.1.
d

dt

∫
Rn

∫
V

f q
ε

F q−1
dvdx ≤ C[1 + (

∫
Rn

∫
V

f q
ε

F q−1
dvdx)

1
q ]
∫

Rn

∫
V

f q
ε

F q−1
dvdx.

This shows the first two statements. The rest can be done by the same method as given in the proof of Theorem
4 in [3], and thus we omit the details.

Now we are ready to prove the existence of the diffusion limit in a short time interval.
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Theorem 3.4. Let the assumption of Theorem 3.3 hold. Suppose that the equation for the chemo-attractant S is
of elliptic type (τ = 0). Assume further that for families (Sε), which are uniformly bounded in L∞

loc([0,∞); C2+α(Rn))
for some α with 0 < α ≤ 1, such that Sε,∇Sε, and ∇2Sε converge to S0,∇S0, and ∇2S0 as ε→ 0, respectively,
in Lp

loc([0,∞); Rn) for some p > n/(n− 1) with n = 2, 3, we have the convergence

Tε[Sε] → T0[S0] in Lp
loc([0,∞); Rn × V̄ × V̄ ),

(34)
Tε[Sε](F )

ε
=

2
ε

∫
V

φA
ε [Sε]dv′ → T1[S0](F ) in Lp

loc([0,∞); Rn × V̄ ).

Then the solutions fε and Sε of (6)-(9) satisfy

fε → ρ0F in L∞((0, t∗); Υq) weak ∗,

∇Sε → S0 in W 1,q
loc ((0, t∗); Rn), 1 ≤ q <∞ if n = 2, β = 0.

Sε → S0 in W 2,q
loc ((0, t∗); Rn), 1 ≤ q <∞ otherwise.

Proof. Since the proof is similar to that of Theorem 5 in [3], we again present only a brief sketch of the
procedure. First we note, due to (33), that

Jε =
1
ε

∫
V

vfεdv =
∫

V

vrεdv ∈ L2((0, t∗);L2(Rn))

uniformly in ε. From the cell conservation equation ∂tρε + div Jε = 0, one can easily see that

∂t(∇Sε) ∈ L2((0, t∗);L2
loc(R

n))

by considering the gradient of the convolution of (8). The strong convergence follows combining the above
estimate and the parabolic regularity for the convolutions defining Sε and ∇Sε from ρε. Therefore, the kinetic
equation (7) leads to

ε
∂fε

∂t
+ v · ∇xfε = −ρε

T [Sε](F )
ε

− Tε[Sε](rε).

By assumption (34) and passing to the limit, we obtain

T0[S0](r0) = −vF · ∇ρ0 − ρ0T1[S0](F ).

This equation can be solved due to Lemma 1.3. The limit of the cell conservation equation is ∂tρ0 +∇ · J0 = 0
with J0 =

∫
V vr0dv. This completes the proof.

A similar result can be established if the chemo-attractant equation is of parabolic type. Since the method
of proof does not change when compared to elliptic case, we present only the statements without further details.

Lemma 3.5. Let I = [0, T ) ⊂ R and 0 < T < ∞ and n = 2 or 3. Suppose ρ ∈ L∞(I;W 1,1(Rn)) ∩
L∞(I;W 1,q(Rn)) where q > n and S satisfies the chemo-attractant equation of parabolic type with β ≥ 0.

S ∈ L∞(I;W 2,p(R2)) ∩ L∞(I; C2+α(R2)), 1 ≤ p <∞, 0 < α ≤ q − 2
q

if n = 2,

S ∈ L∞(I;W 2,p(R3)) ∩ L∞(I; C2+α(R3)), 1 ≤ p <∞, 0 < α ≤ q − 3
q

if n = 3,

and S satisfies the following estimate

||S||L∞(I;W 2,p(Rn)) + ||S||L∞(I;C2+α(Rn)) ≤ C(||ρ||L∞(I;W 1,1(Rn)) + ||ρ||L∞(I;W 1,q(Rn))). n = 2, 3.

Proof. Proofs are standard and straightforward (see e.g. [15, Chap. 4] and [16, Chap. 4 & 6]).

Again, as in the previous case, we have following result, which is independent of ε.
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Theorem 3.6. Let Assumption 1.1 and Assumption 3.2 hold and let q > n with n = 2, 3. Suppose that the
turning kernel satisfies (25) and (26). Assume further that

f0 ∈ Υq = W 1,1(Rn × V ) ∩W 1,q(Rn × V ;
dxdv

F q−1
).

Then there exists a t∗ > 0, independent of ε, such that the solution fε, Sε satisfies

fε ∈ L∞((0, t∗); Υq),

Sε ∈ L∞((0, t∗);W 2,p(Rn) ∩ C2+α(Rn)), 1 ≤ p <∞, α =
q − n

q
,

rε =
fε − ρεF

ε
∈ L2

(
(0, t∗); Rn × V :

dxdvdt

F

)
.

Theorem 3.7. Let the assumptions in Theorem 3.6 hold. Assume further that for families (Sε), which are
uniformly bounded in L∞

loc([0,∞); C2+α(Rn)) for some α with 0 < α ≤ 1, such that Sε,∇Sε, and ∇2Sε converge
to S0,∇S0, and ∇2S0 as ε→ 0, respectively, in Lp

loc([0,∞); Rn) for some p > n/(n− 1) with n = 2, 3, we have
the convergence

Tε[Sε] → T0[S0] in Lp
loc([0,∞); Rn × V̄ × V̄ ),

Tε[Sε](F )
ε

=
2
ε

∫
V

φA
ε [Sε]dv′ → T1[S0](F ) in Lp

loc([0,∞); Rn × V̄ ).

Then the solutions fε and Sε of (6)-(9) satisfy

fε → ρ0F in L∞((0, t∗);χq) weak ∗,

Sε → S0 in Lq
loc((0, t

∗);W 2,q(Rn)), 1 ≤ q <∞,

Proof. The arguments are similar to those for Theorem 3.4.

4. Examples

When dealing with chemosensitive movement of biological species, questions of major interest are, how do the
individuals ‘measure’ the chemical signal, how is this information processed and what kind of behavior results.
In the following we discuss some parts of this problem. First we give a short summary of the mathematical
terminology which accounts for the possible biological behavior of the cells as suggested by Tranquillo and Alt,
[22]:

Kinesis describes the dependence of movement of an individual on a scalar stimulus or other information
about time and position along its path. Kinesis can be characterized as positional, which means induced by
a purely positional signal, or temporal(ly differential), which describes an adapting response induced by a
temporal(ly differential) signal. An increasing positional signal or a positive temporal(ly differential) signal can
induce positive orthokinesis by increasing the (mean) speed, and positive klinokinesis by decreasing the turning
rate and/or the absolute magnitude of turn angles.

The so-called signal for chemosensitive movement is the carrier of information which is perceived from a
stimulus field and possibly stored by the individual, and which governs the individual response. In this context
we are just looking at external signals. Depending on geometry and kinetics of stimulus perception, signal
transduction and motor response, various types of signals carrying various components of information may be
present at the same time.

Spatial - the stimulus is evaluated at (at least) two distinct locations around the individual, which are related
to its direction (compare example 4.1, 4.3, and 4.4).

Temporal(ly) differential) - the stimulus is evaluated at (at least) two different times (compare example 4.1).
Positional - the stimulus is evaluated momentarily (compare example 4.4).
Directional - the stimulus is evaluated along the individual direction or its relation to a directional stimulus

field, e.g. a spatial gradient at its position (compare examples 4.1, 4.3, 4.4, 4.5, and 4.6).
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Taxis is the dependence of individual movement on a directional stimulus related to the movement direction.
It can be induced by direct (e.g. spatial) or indirect (e.g. temporal) determination of the movement direction, or
some other evaluations about the movement direction in relation to an external directional field (e.g. a stimulus
gradient) The stimulus gradient can be spatial, temporal or perceived along the motion path. Here klinotaxis
describes the dependence of the turning behavior on the current direction. Taxis with directed turning is given
by a directional bias of the turn angle distribution of the turning rate. This can be induced only by a directional
signal, but also by others than a spatial signal. Taxis without directed turning is not mentioned so often, but
also of importance. This is a turning response depending on the locomotion direction. The directional signal
might be spatial or temporal (for example, bacteria changing their turning frequency)

Discussions of possible turning rates in this context are also given in [1], [2], [17] and [18], [19].
In [18], [19] the macroscopic limit is formal. It is assumed that the turning kernel has an expansion in ε

which is assumed to be given. Here the ε-expansion is related to possible evaluations of the chemo-attractant
by the cells.

The first example is very general and allows also dependencies on time derivatives of the chemo-attractant.
Since we did not prove regularity for St so far the macroscopic limit in this case has to be considered only formal.
Nevertheless, from this example other rigorous examples can be extracted, which will be discussed after.
Example 4.1. (formal for α > 0, rigorous for α = 0)

The turning kernel we consider first is of the following form, which is of general type:

Tε[s] = φ
(
S(x+ εv, t), S(x− εv′, t), S(x, t− ε),∇S(x+ εv, t),∇S(x− εv′, t),

(35) ∂tS(x+ εv, t), ∂tS(x− εv′, t), ∂tS(x, t− ε), v
)

+ εψ(
v · v′
|v||v′| ),

where φ : R
12→R and ψ : R→R are smooth and φ + εψ is strictly positive (∇S contributes two entries, ∂x1S

and ∂x2S). Here S satisfies the chemo-attractant equation either of elliptic type or of parabolic type with α ≥ 0
and β > 0 in two dimensions. For α = 0 the S-equation is completely decoupled, therefore for this case the
derivation given below is rigorous. Our aim is to (formally) derive the macroscopic equation from the turning
kernel given above. We do not include direct dependencies at this point, like S(x, t), St(x, t),∇S(x, t). These
will be discussed later in more specific examples.

For convenience, we use the following notational abbreviation:

φ[S,∇S, ∂tS, v] := φ(S(x, t), S(x, t), S(x, t),∇S(x, t),∇S(x, t), ∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),

φi[S,∇S, ∂tS, v] := φi(S(x, t), S(x, t), S(x, t),∇S(x, t),∇S(x, t), ∂tS(x, t), ∂tS(x, t), ∂tS(x, t), v),
where φi(· · ·) indicates the partial derivative of φ with respect to the ith argument with i = 1, 2, ..., 12. By the
asymptotic expansion of Tε = T0 + εT1 +O(ε2), one can easily see that

T0 = T0[S, v] = φ[S,∇S, ∂tS, v]

and
T1 = T1[S, v, v′] = (φ1[S,∇S, ∂tS, v]v − φ2[S,∇S, ∂tS, v]v′) · ∇S + φ3[S,∇S, ∂tS, v]∂tS

+(φ3+i[S,∇S, ∂tS, v]v − φ5+i[S,∇S, ∂tS, v]v′) · ∇Sxi

+(φ8[S,∇S, ∂tS, v]v − φ9[S,∇S, ∂tS, v]v′) · ∇St

−φ10[S,∇S, ∂tS, v]∂2
t S + ψ(

v · v′
|v||v′| ),

where we used the summation convention, which is understood over repeated indices running from 1 to 2. From
now on we use, unless any confusion is to be expected, the following notations.

T ′
0[S, v] := T0[S, v′], f ′

i(v, x, t) := fi(v′, x, t), i = 1, 2.

Furthermore, we define Φ, Φ̃, Φ̂, and Φ̄ as follows;

Φ[S0,∇S0, ∂tS0] :=
∫

V

T ′
0[S0, v]dv′, Φ̃[S0,∇S0, ∂tS0, v] :=

∫
V

T1[S0, v
′, v]dv′,
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Φ̂[S0,∇S0, ∂tS0, v] :=
∫

V

T1[S0, v, v
′]f ′

0(v, x, t)dv
′,

Φ̄[S0,∇S0, ∂tS0, v] :=
1

Φ[S0,∇S0, ∂tS0]

∫
V

T ′
0[S0, v]T1[S0, v, v

′]dv′.

From T0[S0](f0) = 0, we have

f0(v, x, t) =
φ[S0,∇S0, ∂tS0, v]ρ0(x, t)

Φ[S0,∇S0, ∂tS0]
,

and therefore, it is easy to see Φ̂(v) = Φ̄(v)ρ0. Due to T0[S0](f1) = −T1[S0](f0) − v · ∇f0, we have

f1(v, x, t) =
1

Φ[S0,∇S0, ∂tS0]

(
−v · ∇f0(v, x, t) − Φ̃[S0,∇S0, ∂tS0, v]f0(v, x, t) + Φ̂[S0,∇S0, ∂tS0, v]

)
.

Computing Jε =
∫

V vf1(v, x, t)dv, we obtain

(36) Jε = −
∫

V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv −

∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0
Φ[S0,∇S0, ∂tS0]

dv +
∫

V

viΦ̂[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv.

The first integral in (36) becomes∫
V

vivj∂xjf0

Φ[S0,∇S0, ∂tS0]
dv =

ρ0

Φ[S0,∇S0, ∂tS0]

∫
V

(
vivj∂xj (

φ[S0,∇S0, ∂tS0, v]
Φ[S0,∇S0, ∂tS0]

)
)
dv

+
∂xjρ0

Φ2[S0,∇S0, ∂tS0]

∫
V

vivjφ[S0,∇S0, ∂tS0, v]dv =
Ai

Φ
ρ0 +

Bij

Φ2
∂xjρ0,

where

(37) Ai = Ai[S0,∇S0, ∂tS0] =
∫

V

vivj∂xj

(
φ[S0,∇S0, ∂tS0, v]
Φ[S0,∇S0, ∂tS0]

)
dv,

(38) Bij = Bij [S0,∇S0, ∂tS0] =
∫

V

vivjφ[S0,∇S0, ∂tS0, v]dv.

The second integral in (36) leads to∫
V

viΦ̃[S0,∇S0, ∂tS0, v]f0(v)
Φ[S0,∇S0, ∂tS0]

dv =
Ci

Φ2(S0,∇S0, ∂tS0)
ρ0,

where

(39) Ci = Ci[S0,∇S0, ∂tS0] =
∫

V

viΦ̃[S0,∇S0, ∂tS0, v]φ[S0,∇S0, ∂tS0, v]dv.

The last integral in (36) becomes∫
V

viΦ̂[S0,∇S0, ∂tS0, v]
Φ[S0,∇S0, ∂tS0]

dv =
∫

V

viΦ̄[S0,∇S0, ∂tS0, v]ρ0

Φ[S0,∇S0, ∂tS0]
dv =

Di

Φ
ρ0,

where

(40) Di = Di[S0,∇S0, ∂tS0] =
∫

V

viΦ̄[S0,∇S0, ∂tS0, v]dv.

Summing up, we obtain the macroscopic equation

∂tρ0 = ∂xi

(
Ai

Φ
ρ0 +

Bij

Φ2
∂xjρ0 +

Ci

Φ2
ρ0 −

Di

Φ
ρ0

)
, Φ = Φ[S0,∇S0, ∂tS0],

where Ai, Bij , Ci and Di are defined in (37)-(40). �
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Remark 4.2. In the above example, we remark that if we drop out the explicit dependence of the last argument
v in the functional φ in (35), then the term ψ(v ·v′/|v||v′|) does not influence the resulting macroscopic equation
any more. This is due to the fact that only Ci and Di depend on ψ (Ai, Bi do not), and Ci = Di = 0 in case φ
is independent of v. This is well expected from a biological point of view since reorientations without any bias
can not have a macroscop effect.

In the following we will see how to evaluate Ai, Bij , Ci and Di in more specifically.
Example 4.3. (rigorous for α ≥ 0)

We present another example of turning kernels, which is more specific than previous one.

(41) Tε[s] = φ(S(x+ εv, t), S(x− εv′, t),∇S(x+ εv, t),∇S(x− εv′, t)),

where S satisfies chemo-attractant equation of elliptic type with β > 0 in two dimension. Note that φ : R
2 ×

R
2 × R

2→R is an even function with respect to the variable ∇S, and increasing and decreasing for the first
and second argument, respectively. We also assume the structure condition of Assumption 1.1 and structure
condition in Assumption 2.4, i.e.

|Tε[S](x, v, v′, t)| ≤ C(1 + S(x+ εv, t) + S(x− εv′, t) + |∇S(x+ εv, t)| + |∇S(x− εv′, t)|).
Using the asymptotic expansion of the turning kernel, i.e. Tε[S] = T0[S]+ εT1[S]+O(ε2), we can easily see that

T0[S] = φ(S(x, t), S(x, t),∇S(x, t),∇S(x, t)),

and
T1[S] = (φ1(S, S,∇S,∇S)v − φ2(S, S,∇S,∇S)v′) · ∇S

+
2∑

i=1

(φ2+i(S, S,∇S,∇S)v − φ4+i(S, S,∇S,∇S)v′) · ∇Sxi .

Here φk, k = 1, 2, ..., 6 indicates differentiation of φ with respect to the k−th argument. One can easily see that
the symmetric φA

ε [S] and antisymmetric part φS
ε [S] of turning kernel satisfy

φS
ε [S] ≥ γ

(
1 − εΛ(||∇S||W 1,∞(Rn))

)
FF ′,

∫
V

φA
ε [S]2

FφS
ε [S]

dv′ ≤ ε2Λ(||∇S||W 1,∞(Rn)),

where γ > 0 and Λ ∈ L∞
loc is a non-decreasing function. By asymptotic expansion of fε and Sε, the leading order

equation becomes

f0(x, v, t) =
ρ0(x, t)
|V | .

We remark that f0 is independent of v. Since the ε-order equation is T0[S0](f1) = −(v · ∇ρ0)/|V | − T1[S0](f0),
we have to calculate

T1[S0](f0) = −ρ0(φ1 + φ2)∇S0 · v −
2∑

i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v.

Therefore,

T0[S0](f1) = −v · ∇ρ0

|V | + ρ0(φ1 + φ2)∇S0 · v +
2∑

i=1

ρ0(φ2+i + φ4+i)∇S0,xi · v,

due to the solvability condition, and thus we get

f1 = −v · ∇ρ0

|V |2φ +
ρ0(φ1 + φ2)∇S0 · v

|V |φ +
ρ0(φ2+i + φ4+i)∇S0,xi · v

|V |φ .

Let µ =
∫

V
|v|2dv. Using the above results, we obtain the flux density Jε =

∫
V
vf1dv +O(ε), where

Jε = − µ

2|V |2
∇ρ0

φ
+

µ

2|V |
(φ1 + φ2)ρ0∇S0

φ
+

2∑
i=0

µ

2|V |
(φ2+i + φ4+i)ρ0∇S0,xi

φ
.
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Hence the diffusion limit is

(42)
∂

∂t
ρ0 = ∇ · (D∇ρ0 − χρ0∇S0 −

2∑
i=1

χ̃iρ0∇S0,xi)

where

D =
µ

2|V |2φ, χ =
µ(φ1 + φ2)

2|V |φ , χ̃i =
µ(φ2+i + φ4+i)

2|V |φ , i = 1, 2,

coupled to −∆S0 = ρ0 − βS0. Here we remark that it is not known whether solutions for the macroscopic
equation (42) blowup in finite time or not.
Example 4.4. If we choose an appropriate turning kernel, also the classical Keller-Segel model with constant
coefficients can be obtained. Indeed, if the turning kernel (41) is replaced by

Tε[s] = φ(S(x, t), S(x + εv, t),∇S(x+ εv, t),∇S(x− εv′, t)),

then, by following similar computations as given above, we have

(43)
∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2φ∇ρ0 −
µφ2

2|V |φρ0∇S0 −
2∑

i=1

µ(φ2+i + φ4+i)
2|V |φ ρ0∇S0,xi

)
.

Now we specify φ as follows

(44) φ(x1, x2, x3, x4, x5, x6) = ϕ(x2 − x1) + ϕ(x5 − x3) + ϕ(x6 − x4),

where
ϕ(x) = C1

√
1 + x2 + C2x, C1 > C2 > 0.

Concerning the gradient terms this example seems a bit artificial but it shows how higher order terms might
cancel out. Since ϕ(0) = C1, ϕ

′(0) = C2, it is easy to see that φ = C1, φ2 = C2, φ3 = φ4 = −C2, and
φ5 = φ6 = C2. Therefore (43) leads to

∂

∂t
ρ0 = ∇ ·

(
µ

2|V |2C1
∇ρ0 −

µC2

2|V |C1
ρ0∇S0

)
,

which is the classical version of the Keller-Segel model. The diffusion coefficient and chemotactic sensitivity,
respectively, are D = µ/(2|V |2C1), χ = (µC2)/(2|V |C1), which are both constants in this case. �
Example 4.5. (rigorous, α ≥ 0, β > 0)

The next example considers time variations of the chemical S.

(45) Tε = σS(x+ εv, t) + h(∂tS(x, t),∇S(x, t), v) + C2,

where σ ≥ 0 is a fixed constant and h : R×R
n×R

n→R, n = 2, 3 is smooth and bounded, say −C1 ≤ h ≤ C1 with
0 < C1 < C2. Note that the turning kernel satisfies the structure condition in Assumption 2.4. By asymptotic
expansion, one can easily see that

T0 = σS(x, t) + h(∂tS(x, t),∇S(x, t), v) + C2, T1 = σv · ∇S(x, t).

We denote by H the integration of h+C2 with respect to v, i.e. H [S] =
∫

V
(h(∂tS,∇S, v) + C2) dv. After simple

computations, we obtain

f0(v, x, t) =
σS0(x, t) + h(∂tS0,∇S0, v) + C2

σS0(x, t)|V | +H [S0]
ρ0,

f1(v, x, t) =
1

σS0(x, t)|V | +H [S0]
(−v · ∇f0(v, x, t) + σρ0v · ∇S0) .

From now on, for simplicity, we skip the arguments of each variable unless confusion is to be expected. To
obtain the macroscopic equation, we consider

Jε =
∫

V

vf1dv =
1

σS0|V | +H [S0]

(
−
∫

V

v(v · ∇f0)dv + σ

∫
V

v(v · ∇S0)dvρ0

)
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=
1

σS0|V | +H [S0]

(
−
∫

V

v(v · ∇f0)dv + σµρ0∇S0

)
,

where µ = (1/n)
∫

V
|v|2dv. It remains to calculate

∫
V
v(v · ∇f0)dv. Simple computations show∫

V

vi(v · ∇f0)dv = (
µ(σS0 + C2)

σS0|V | +H [S0]
ρ0)xi + (Aij [S0]ρ0)xj ,

where

Aij [S0] =
∫

V

vivjh(∂tS,∇S, v)
σS0|V | +H [S0]

dv.

Therefore, the macroscopic equation becomes

(46) ∂tρ0 = ∇ ·
(

1
σS0|V | +H [S0]

[
∇(

µ(σS0 + C2)
σS0|V | +H [S0]

ρ0) + (Aij [S0]ρ0)xj

]
− σµ

σS0|V | +H [S0]
ρ0∇S0

)
.

This equation is rigorously derived with related turning kernel (45) since it satisfies Assumption 3.2. As a
specific example, we consider the case

h(∂tS,∇S, v) = C1
γ∂tS + v · ∇S

N (S)
, N (S) =

√
1 + γ2|∂tS|2 + |∇S|2,

where γ is a fixed constant. Then one can easily see

H [S0] =
C1γ∂tS0|B1|

N (S0)
+ C2|B1|, Aij [S0] =

C1µγ∂tS0

(σS0|B1| +H [S0])N(S0)
,

Therefore, the macroscopic equation (46) can be explicitly calculated, namely for γ = 0 (H [S0] = C2|B1| and
Aij [S0] = 0).

(47) ∂tρ0 = ∇ ·
(

µ

(σS0 + C2)|V |2∇ρ0 −
σµ

(σS0 + C2)|V |ρ0∇S0

)
.

On the other hand, if σ = 0, then the last term in (46) does not appear. In such case the macroscopic equation
(46) reads

∂tρ0 = ∇ ·
(

1
H [S0]

∇(
µC2

H [S0]
ρ0) + (Aij [S0]ρ0)xj

)
,

where (Aij [S0] =
∫

V vivjh(∂tS,∇S, v)/H [S0]dv.
We also remark that Aij = 0 in (46) in case h is odd with respect to the variable v. �
In the next example we discuss the influence of non-local terms in h.

Example 4.6. (formal for α > 0, rigorous for α = 0)
Consider

Tε = σS(x+ εv, t) + h(∂tS(x+ εv, t), v · ∇S(x+ εv, t)) + C2,

where h : R × R→R, n = 2, 3 is smooth and bounded, say −C1 ≤ h ≤ C1 with 0 < C1 < C2. Note that it the
structure condition in Assumption 2.4 is satisfied. Then

T0 = T0[S, v] = σS + h(∂tS, v · ∇S) + C2,

T1 = T1[S, v] = σv · ∇S + h1(∂tS, v · ∇S)v · ∇St + h2(∂tS, v · ∇S)viSxi,xjvj .

where h1, h2 indicate partial derivatives with respect the first and second argument, respectively. We denote

H [S] =
∫

V

(h(∂tS(x, t), v · ∇S(x, t)) + C2) dv.

K[S] =
∫

V

T ′
1(v)dv

′ =
∫

V

(
h1(∂tS, v

′ · ∇S)v′ · ∇St + h2(∂tS, v
′ · ∇S)v′iSxi,xjv

′
j

)
dv′,
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where
∫

V
v′ · ∇Sdv′ = 0. From the asymptotic expansion, we get

f0 =
σS0 + h(∂tS0, v · ∇S0) + C2

σS0|V | +H(S0)
ρ0, f1 =

−v · ∇f0 − f0K[S0] + T1[S0, v]ρ0

σS0|V | +H [S0]
.

Therefore, we have

Jε =
∫

V

vf1dv = − 1
σS0|V | +H [S0]

(
∫

V

vivj∂xjf0dv +K[S0]
∫

V

vif0dv − ρ0

∫
V

viT1[S0, v]dv)

Thus, the macroscopic equation becomes

∂tρ0 = −∇ · Jε = ∇ ·
(

1
σS0|V | +H [S0]

(
∫

V

vivj∂xjf0dv +K[S0]
∫

V

vif0dv − ρ0

∫
V

viT1[S0, v]dv)
)
.

Next we consider a specific example of the turning kernel above. For example, suppose h is given as follows;

h = h(∂tS(x+ εv, t− ε), v · ∇S(x+ εv, t)) =
C1v · ∇S(x+ εv, t)√

1 + (v · ∇S(x+ εv, t))2
.

Then one can easily calculate
H [S0] = C|V |, f0 = G[S0, v]ρ0,

where

G[S0, v] =
σS0 + h(∂tS0, v · ∇S0) + C

(σS0 + C)|V | .

On the other hand,

K[S0] =
∫

V

(
1

(1 + (v · ∇S0)2)
1
2
− (v · ∇S0)2

(1 + (v · ∇S0)2)
3
2

)
vivjS0,xixjdv = L[S0]∆S0 −M [S0]|∇S0|2∆S0,

where

(48) L[S0] =
1
n

∫
V

|v|2√
1 + (v · ∇S0)2

dv, M [S0] =
1
n2

∫
V

|v|4

(1 + (v · ∇S0)2)
3
2
dv.

Hence, summing up, we obtain

f1 =
1

(σS0 + C)|V |
(
−v · ∇(G[S0, v]ρ0) −G[S0, v]ρ0(L[S0]∆S0 −M [S0]|∇S0|2∆S0) + T1[S0, v]ρ0

)
,

Using f1 above, we calculate

Jε =
∫

V

vf1dv = − 1
(σS0 + C)|V |

∫
V

vvj∂xj (G[S0, v]ρ0)

− (L[S0]∆S0 −M [S0]|∇S0|2∆S0)
(σS0 + C)|V | ρ0

∫
V

vG[S0, v] +
1

(σS0 + C)|V |

∫
V

vT1[S0, v]ρ0.

After simple computations, we obtain
∫

V vT1[S0, v] = σµ∇S0,
∫

V vG[S0, v] = L[S0]∇S0/(σS0 + C)|V |), and∫
V
vvj∂xj (G[S0, v]ρ0) = (µ/|V |)∇ρ where µ = (1/n)

∫
V
|v|2dv. Therefore, the macroscopic equation reads

∂tρ0 = ∇ ·
( µ

(σS0 + C)|V |2∇ρ0 −
σµ

(σS0 + C)|V |ρ0∇S0

+
L[S0](L[S0]∆S0 −M [S0]|∇S0|2∆S0)

(σS0 + C)2|V |2 ρ0∇S0

)
,

where L[S0] and M [S0] are defined in (48). The third term is completely due to the nonlocal dependencies of h.
Compare (47) for the local formulation. �
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