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WELL–POSEDNESS FOR A CLASS OF HYPERBOLIC SYSTEMS OF
CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS

LUIGI AMBROSIO, FRANÇOIS BOUCHUT, CAMILLO DE LELLIS

Abstract. In this paper we consider a system of conservation laws in several space di-
mensions whose nonlinearity is due only to the modulus of the solution. This system, first
considered by Keyfitz and Kranzer in one space dimension, has been recently studied by
many authors. In particular, using standard methods from DiPerna–Lions theory, we im-
prove the results obtained by the first and third author, showing existence, uniqueness and
stability results in the class of functions whose modulus satisfies, in the entropy sense, a
suitable scalar conservation law. In the last part of the paper we consider a conjecture on
renormalizable solutions and show that this conjecture implies another one recently made
by Bressan in connection with the system of Keyfitz and Kranzer.

1. Introduction

In this note we consider the Cauchy problem for the system of conservation laws⎧⎪⎪⎨
⎪⎪⎩

∂tui +
n∑

α=1

∂xα(fα(|u|)ui) = 0

ui(0, ·) = ui(·)
(1)

where u = (u1, . . . , uk) : R+ × Rn → Rk. The system (1) was first considered by Keyfitz
and Kranzer in one space dimension in [9] and then studied by several authors (see [6], [8],
and [11] for the literature on it).

As a partial answer to a conjecture of Bressan (see Section 3.3 of [4]), in [2] it was shown
the existence of weak solutions to (1) when |u| ∈ L∞ ∩ BV (Rn) and |u| ≥ c > 0 for some
c. Following the suggestion of the last section of [4] these solutions were constructed with
the following method (an higher dimensional analog of what applied earlier in one space
dimension; see for example Section 8.2 of [11]). We first find the modulus ρ := |u| by
solving, in the sense of Kruzhkov, the conservation law⎧⎪⎪⎨

⎪⎪⎩
∂tρ +

n∑
α=1

∂xα

(
fα(ρ)ρ

)
= 0

ρ(0, ·) = ρ(·) .

(2)

Then we construct an approximation scheme for the ODE ẋ(t) = f(ρ(t, x(t))), which formally
gives, via the method of characteristics, the angular part θ = u/ρ of the solution. In this
construction we used the results of [1], where the first author extended the DiPerna–Lions
theory to BV vector fields satisfying natural L∞ bounds, as in [7], on the distributional
divergence.
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In this paper we show how the results of [1] on transport equations with BV coefficients and
standard arguments from DiPerna–Lions theory yield a straightforward proof of the existence
of such solutions, without passing through approximations of the ODE ẋ(t) = f(ρ(t, x(t))).
This proof gives also uniqueness and stability under perturbation of the initial data and
allows to remove the assumption |u| ≥ c > 0. See Theorem 2.6 for the precise statements.

In the last section we formulate a conjecture (see Conjecture 4.3) which is closely related
to the one of Section 3.3 of [4]. Indeed, using arguments from DiPerna–Lions theory, we show
that a positive answer to Conjecture 4.3 would give a positive answer to that of Bressan (see
Proposition 4.4).

2. Preliminaries and statement of Theorem 2.6

Before stating the main theorem, we recall the notion of entropy solution of a scalar
conservation law and the classical theorem of Kruzhkov, which provides existence, stability
and uniqueness of entropy solutions to the Cauchy problem for scalar laws.

Definition 2.1. Let g ∈ W 1,∞
loc (R,Rn). A pair (η, q) of functions η ∈ W 1,∞

loc (R,R), q ∈
W 1,∞

loc (R,Rn) is called an entropy–entropy flux pair relative to g if

q′ = η′g′ L1–almost everywhere on R. (3)

If, in addition, η is a convex function, then we say that (η, q) is a convex entropy–entropy
flux pair. A weak solution ρ ∈ L∞(R+

t × Rn
x) of⎧⎨

⎩
∂tρ + divx[g(ρ)] = 0

ρ(0, ·) = ρ(·)
(4)

is called an entropy solution if ∂t[η(ρ)]+divx[q(ρ)] ≤ 0 in the sense of distributions for every
convex entropy–entropy flux pair (η, q).

In what follows, we say that ρ ∈ L∞(R+ × Rn) has a strong trace ρ at 0 if for every
bounded Ω ⊂ Rn we have

lim
T↓0

1

T

∫
[0,T ]×Ω

|ρ(t, x) − ρ(x)| dx = 0 .

Theorem 2.2 ([10] Kruzhkov). Let g ∈ W 1,∞
loc (R,Rn) and ρ ∈ L∞. Then there exists a

unique entropy solution ρ of (4) with a strong trace at 0. If in addition ρ ∈ BVloc(R
n), then,

for every open set A ⊂⊂ Rn and for every T ∈ ]0,∞[, there exists an open set A′ ⊂⊂ Rn

(whose diameter depends only on A, T , g and ‖ρ‖∞) such that

‖ρ‖BV (]0,T [×A) ≤ ‖ρ‖BV (A′) . (5)

Remark 2.3. In many cases the requirement that ρ has strong trace at 0 is not neces-
sary. Indeed, when g is sufficiently regular and satisfies suitable assumptions of genuine
nonlinearity, Vasseur proved in [12] that any entropy solution has a strong trace at 0.

Definition 2.4. A weak solution u of (1) is called a renormalized entropy solution if |u| is
an entropy solution of the scalar law (2) with a strong trace at 0.
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The suggestion of using the terminology “renormalized entropy solutions” has been taken
from [8]. This terminology is more appropriate than the one of “entropy solutions” used in
[2], because the usual notion of entropy (or admissible) solution of a hyperbolic system of
conservation laws does not coincide with the one of renormalized entropy solutions. Let us
recall the usual notion of entropy solution for systems (cp. Section 4.3 of [6]):

Definition 2.5. Let Fα : Rk → Rk, α = 1, . . . , n, be Lipschitz and consider the system

∂tu +
n∑

α=1

∂xα[Fα(u)] = 0 u : Ω ⊂ R+ × Rn → Rk . (6)

A pair (η, q) of functions η ∈ W 1,∞
loc (Rk,R), q ∈ W 1,∞

loc (Rk,Rn) is called a convex entropy–
entropy flux pair for the system (6) if η is convex and if for every open set Ω and for
every smooth solution u of (6) we have ∂t[η(u)] + divx[q(u)] = 0. A weak solution u of
(6) is called an entropy solution if for for every convex entropy–entropy flux pair we have
∂t[η(u)] + divx[q(u)] ≤ 0 in the sense of distributions.

Indeed it can be shown that, already in one space dimension, there exist entropy solutions
of (1) which are not renormalized entropy solutions, see for example section 3.1 of [4]. On
the other hand one can show (at least when f ∈ C2) that every C2 entropy η for (1) is of
the form h(|v|) + |v|H(v/|v|) for |v| > 0 (see for example Lemma 1.1 of [8]). Thus, it follows
from Corollary 3.4 of [1] (see Lemma 2.8 below) that if u is a renormalized entropy solution,
then u satisfies ∂t[η(u)] + divx[q(u)] ≤ 0 for every convex entropy–entropy flux pair which is
C2 on Rk \ {0}.
Theorem 2.6. Let f ∈ W 1,∞

loc (R,Rk) and |u| ∈ L∞ ∩ BVloc. Then there exists a unique
renormalized entropy solution u of (1). If uj is a sequence of initial data such that

(a) |uj | ≤ C for some constant C,
(b) for every bounded open set Ω, there is a constant C(Ω) such that

∥∥|uj |∥∥
BV (Ω)

≤ C(Ω),

(c) uj → u strongly in L1
loc,

then the corresponding renormalized entropy solutions uj converge strongly in L1
loc to u.

The proof of the theorem follows from the theory of renormalized solutions to the transport
equation

∂t(ρw) + divx(gw) = 0, w : Ω ⊂ R ×Rn → Rk (7)

and from the results of [1].

Definition 2.7 ([7] DiPerna–Lions renormalized solutions). Let Ω ⊂ R × Rn be open and
assume that (ρ, g) ∈ L∞(Ω,R ×Rn) satisfy ∂tρ + divxg = 0 in the sense of distributions. A
w ∈ L∞(Ω,Rk) is called a renormalized solution of (7) if for every h ∈ C1(Rk) we have

∂t(ρh(w)) + divx(gh(w)) = 0 in D′(Ω).

Corollary 3.4 and Remark 3.5(3) of [1] give

Lemma 2.8. If (ρ, g) in Definition 2.7 are in BVloc, then every bounded weak solution w :
Ω → Rk of (7) is a renormalized solution.
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Remark 2.9 (Initial conditions). If (z, m) ∈ L∞(R ×Rn,R×Rn) satisfy ∂tz + divxm = 0
in ]0, T [×Rn, then by simply testing the equation against appropriate smooth functions we
get that for every ϕ ∈ C∞

c (Rn) the map t → ∫
Rn ϕ(x)z(t, x) dx coincides almost everywhere

with a uniformly continuous function. Hence, by a density argument we conclude that, after
discarding a set of t’s of measure 0,

t → z(t, ·) has a weak limit in L1
loc as t ↓ 0. (8)

This gives that z has a “weak” trace z at 0. Assume ρ and g are as in Definition 2.7 and that
w solves ∂t(ρw) + divx(gw) = 0 in ]0, T [×Rn. Apply (8) to z = ρ and m = g and denote by
ρ(0, ·) the trace of ρ at 0. Then note that we can apply (8) to z = ρw and m = gw. Thus,
it is natural to understand a bounded weak solution w of⎧⎨

⎩
∂t(ρw) + divx(gw) = 0

ρw(0, ·) = ρ(0, ·)w(·) ,

as a function which solves the first equation in the sense of distribution and such that ρw
has ρ(0, ·)w(·) as weak trace at 0. It can be easily checked that this is equivalent to the usual
notion of solution in the sense of distributions, i.e. for every ϕ ∈ C∞

c (R × Rn) we have∫
R+×Rn

w(t, y)
[
ρ(t, y)∂tϕ(t, y) + g(t, y) · ∇xϕ(t, y)

]
dy dt =

∫
Rn

ρ(0, x)w(x)ϕ(0, x) dx .

It turns out that this weak trace property is not sufficient for some of our arguments as this
notion of trace is, in general, not stable under left composition. In all the cases treated here
we could overcome this issue by using Theorem 3.3 of [3], where the author proved strong L1

continuity in t for solutions of transport equations with BD coefficients. However we prefer
to give a more elementary argument which uses suitable extensions of ρ, g, and u to negative
times.

Proposition 2.10 below is a direct consequence of DiPerna–Lions theory of renormalized
solutions. Its proof is based on a classical inequality for transport equations with finite speed
of propagation. This inequality is stated independently in Lemma 2.11 and for the reader’s
convenience we report a proof of it.

Proposition 2.10. Let ρ, g ∈ L∞ ∩BVloc(R
+ ×Rn) be such that ∂tρ + divxg = 0, ρ(0, ·) ∈

BVloc, and |g| ≤ cρ for some constant c. Assume u1, u2 are bounded weak solutions of⎧⎨
⎩

∂t(ρui) + divx(gui) = 0

ρui(0, ·) = ρ(0, ·)ui(·) .
(9)

If ρ(0, ·)u1 = ρ(0, ·)u2(x), then ρu1 = ρu2.

Lemma 2.11. Let z ∈ L∞([0, T ] ×Rn) and m ∈ L∞([0, T ] ×Rn,Rn) be such that

• ∂tz + divxm ≤ 0;
• t → z(t, ·) is weakly continuous in L1

loc;
• |m| ≤ Cz.
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Then, for every τ ∈ [0, T ], x0 ∈ Rn and R > 0, we have∫
BR(x0)

z(τ, x) dx ≤
∫

BR+Cτ (x0)

z(0, x) dx . (10)

Proof. Without loss of generality we assume x0 = 0. Let χε ∈ C∞(R+) be such that

χε = 1 on [0, 1] , χε = 0 on [1 + ε, +∞[ , and χ′
ε ≤ 0 .

Define the test function ϕ(t, x) := χε

(
|x|

R+C(τ−t)

)
. Note that ϕ is nonnegative and belongs to

C∞([0, τ ] ×Rn). Since t → z(t, ·) is weakly continuous in L1
loc, we can test ∂tz + divxm = 0

with ϕ(t, x)1[0,τ ](t). Indeed let µ be the measure ∂tz + divxm and let 0 < τ1 < τ2 < τ .
Consider a standard family of nonnegative mollifiers ξδ ∈ C∞(R) and set ζδ := 1[τ1,τ2] ∗ ξδ.
Testing ∂tz + divxm = µ with ϕ(t, x)ζδ(t) we get∫

z(s, y)ϕ(s, y)
[
ξδ(τ2 − s) − ξδ(τ1 − s)

]
ds dy =

∫
ζδ
[
z ∂tϕ + m · ∇xϕ

]
+

∫
ζδϕdµ . (11)

Note that
∫

ζδdµ ≤ 0. Moreover, by the weak continuity of t → z(t, ·), the integrals∫
z(s, y)ϕ(s, y)ξδ(τi − s) ds dy converge to

∫
ϕ(τi, x)z(τi, x) dx as δ ↓ 0. Hence, in the limit

we get∫
[τ1,τ2]×Rn

[
z ∂tϕ + m · ∇xϕ

] ≥
∫

Rn

ϕ(τ2, x)z(τ2, x) dx −
∫

Rn

ϕ(τ1, x)z(τ1, x) dx .

Then, letting τ2 ↑ τ and τ1 ↓ 0 we get∫
[0,τ ]×Rn

[
z ∂tϕ + m · ∇xϕ

] ≥
∫

Rn

ϕ(τ, x)z(τ, x) dx −
∫

Rn

ϕ(0, x)z(0, x) dx . (12)

We compute z(s, y)∂tϕ(s, y) + m(s, y) · ∇xϕ(s, y) as

χ′
ε

( |y|
R + C(τ − s)

)[
C|y|z(s, y)

(R + C(τ − s))2
+

y · m(s, x)

|y|(R + C(τ − s))

]
. (13)

Letting α := |y|/((R + C(τ − s)), the expression in (13) becomes

χ′
ε(α)

R + C(τ − s)

[
Czα + m · y

|y|
]

.

For α ≤ 1 we have χ′
ε(α) = 0, whereas for α ≥ 1 we have χ′

ε(α) ≤ 0 and Czα ≥ |m|. Thus
we conclude that the integrand of the left hand side of (12) is nonpositive. Hence∫

Rn

χε

( |x|
R

)
z(τ, y) dx ≤

∫
Rn

χε

( |x|
R + Cτ

)
dy .

Letting ε ↓ 0 we get (10).

Proof of Proposition 2.10. By linearity, it is sufficient to prove that, if u is a bounded weak
solution of (9) and u(·)ρ(0, ·) ≡ 0, then ρu = 0. We extend (ρ, g) to the whole R+ × Rn by
setting

a(t, x) :=

{
ρ(0, x) for t < 0
ρ(t, x) for t ≥ 0

b(t, x) :=

{
0 for t < 0
g(t, x) for t ≥ 0 .
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Clearly a, b ∈ BVloc(R×Rn) and ∂ta+divxb = 0. Now extend u to negative times by setting
u(t, x) = u(x). Then we have ∂t(au) + divx(bu) = 0. Applying Lemma 2.8, if we denote by
v the square of |u|, we have⎧⎨

⎩
∂t(av) + divx(bv) = 0 on R × Rn

v = 0 on {t < 0}.
(14)

Thanks to Remark 2.9, the map t → a(t, ·)v(t, ·) is weakly continuous in L1
loc, and hence

av(0, ·) = 0. We can apply Lemma 2.11 with z = ρv and m = bv. We conclude that z is
identically 0. This implies that ρu = 0 on {t > 0}, which is the desired conclusion.

3. Proof of Theorem 2.6

3.1. Existence. Fix u ∈ L∞(Rn) with ρ := |u| ∈ BVloc. Set

θ(x) :=

{
u(x)/|ρ|(x) when |ρ|(x) > 0
(1, 0, . . . , 0) otherwise.

Let ρ be the entropy solution of the scalar law (2) with initial data ρ as strong trace. It
follows from Theorem 2.2 that ρ ∈ BVloc. Consider the Cauchy problem for the transport
equation ⎧⎨

⎩
∂t(ρθ) + divx(f(ρ)ρθ) = 0

ρθ(0, ·) = ρ(0, ·)θ(·) .
(15)

Let us approximate ρ, f(ρ)ρ with a sequence of uniformly bounded and smooth functions
ρj , gj such that:

ρj → ρ, ρj(0, ·) → ρ(0, ·), and gj → f(ρ)ρ strongly in L1
loc; (16)

∂tρ
j + divxg

j = 0; (17)

ρj ≥ j−1 . (18)

Let us solve the Cauchy problem⎧⎨
⎩

∂t(ρ
jθj) + divx(g

jθj) = 0

ρjθj(0, ·) = ρ(0, ·)θ(·) .
(19)

This can be done with the method of characteristics. Indeed set f j := gj/ρj and solve the
ODE ⎧⎪⎨

⎪⎩
d

dt
Φj(t, x) = f j(t, Φj(t, x))

Φj(0, x) = x .

Since f j is smooth there exists a unique smooth Φj and for each t the map Φj(t, ·) : Rn → Rn

is invertible. Denoting by Ψj(t, ·) its inverse, θj(t, x) is given by θ(Ψj(t, x)).
Clearly we get ‖θj‖∞ = 1. Thus, up to subsequences, we can assume that θj converges to

a bounded θ weakly∗ in L∞. Hence, by (16) ρjθj → ρθ and gjθj → f(ρ)ρθ in the sense of
distributions, from which we conclude that θ is a bounded weak solution of (15).
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As in Proposition 2.10, we extend the vector field (ρ, f(ρ)ρ) to the whole R × Rn by
setting

a(t, x) :=

{
ρ(0, x) for t < 0
ρ(t, x) for t ≥ 0

b(t, x) :=

{
0 for t < 0
ρ(t, x)f(ρ(t, x)) for t ≥ 0 .

Then we extend θ to negative times by setting θ(t, x) = θ(x) for t < 0. Thus ∂t(aθ) +
divx(bθ) = 0 on the whole R+ × Rn. Lemma 2.8 implies that θ is a renormalized solution.
Thus |θ|2 satisfies ∂t(a|θ|2)+divx(b|θ|2) = 0 in the sense of distributions. Note that |θ(t, x)|2
is identically 1 on {t < 0}. Thus, |θ|2 is a weak solution of⎧⎨

⎩
∂t(ρ|θ|2) + divx(f(ρ)ρ|θ|2) = 0

ρ|θ|2(0, ·) = ρ(0, ·) .
(20)

Since the function identically equal to 1 is a weak solution of the same Cauchy problem,
Proposition 2.10 implies that ρ|θ|2 = ρ on R × Rn.

3.2. Uniqueness. If u1 and u2 are two renormalized entropy solutions of (1), then |u1| =
|u2| because of Theorem 2.2. Let ρ := |u1| = |u2| and define

θi(t, x) :=

{
ui(t, x)/ρ(t, x) when ρ(t, x) �= 0
0 when ρ(t, x) = 0,

θ(x) =

{
u(x)/|u|(x) when |u|(x) �= 0
0 when |u|(x) = 0.

Thus θi solve the transport problem⎧⎨
⎩

∂t(ρθi) + divx(ρf(ρ)θi) = 0

ρθi(0, ·) = ρ(0, ·)θ(·) .
(21)

Hence, thanks to Proposition 2.10, u1 = ρθ1 = ρθ2 = u2.

3.3. Stability. Let u, u, uj, uj be as in the statement of the Theorem. Recall that ρj := |uj|
is the entropy solution of the scalar law⎧⎨

⎩
∂tρ

j + divx(f(ρj)ρj) = 0

ρj(0, ·) = |uj|(·) ,

Hence Theorem 2.2 and condition (b) imply that ‖ρj‖BV (]0,T [×Ω) ≤ C(T, Ω) < ∞ for every
T > 0 and for every bounded open set Ω ⊂ Rn. Hence the sequence |ρj | is strongly
precompact in L1

loc. Since ρ is the unique entropy solution of⎧⎨
⎩

∂tρ + divx(f(ρ)ρ) = 0

ρ(0, ·) = |u|(·) ,

we conclude that ρj → ρ strongly in L1
loc.

Set θj := uj/ρj where ρj �= 0 and θj := 0 everywhere else. Define θ
j

analogously. Take

a subsequence j(l) such that the θj(l)’s and the θ
j(l)

’s converge weakly∗ in L∞ to bounded
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functions θ∞ and θ
∞

. Recall that ρj(l) → ρ strongly in L1
loc(R

+ × Rn) and that ρj(l)(0, ·) =
|uj(l)(·)| → |u(·)| = ρ(0, ·) strongly in L1

loc(R
n). Hence, we can pass to the limit in the

problems ⎧⎨
⎩

∂t(ρ
j(l)θj(l)) + divx(f(ρj(l))ρj(l)θj(l)) = 0

ρj(l)θj(l)(0, ·) = ρj(l)(0, ·)θj(l)
(·) ,

and conclude that θ∞ solves⎧⎨
⎩

∂t(ρθ∞) + divx(f(ρ)ρθ∞) = 0

ρθ∞(0, ·) = ρ(0, ·)θ∞(·) .

Set θ := u/|u| where ρ �= 0 and θ := 0 everywhere else, and define θ in an analogous way.
Then θ solves ⎧⎨

⎩
∂t(ρθ) + divx(f(ρ)ρθ) = 0

ρθ(0, ·) = ρ(0, ·)θ(·) ,

Thanks to assumption (c), we have ρ(0, ·)θ∞(·) = ρ(0, ·)θ(·). Hence we can apply Propo-
sition 2.10 to conclude that ρ(t, x)θ∞(t, x) = ρ(t, x)θ(t, x) for almost every (t, x). Hence,
uj(l) converges weakly∗ to u. Since |uj(l)| → |u| strongly in L1

loc, we conclude that uj(l) → u
strongly in L1

loc.
The argument above shows that from every subsequence {uj(l)} ⊂ {uj} we can extract

a further subsequence which converges strongly in L1
loc to u. This implies that the whole

sequence {uj} converges to u.

4. Bressan’s conjecture

In this section we show that a suitable renormalization property is closely related to a
conjecture recently made by Bressan on the compactness of Lagrangian flows. We also
indicate some cases when the compactness is known.

Conjecture 4.1. [Bressan [4]] Let f j : R+ × Rn → Rn be a sequence of smooth maps and
define Φj : R+ × Rn → Rn by⎧⎪⎨

⎪⎩
d

dt
Φj(t, x) = f j(t, Φj(t, x))

Φj(0, x) = x .

Denote by J j(t, x) the Jacobian determinants of ∇xΦ
j(t, x). Assume that

‖f j‖∞ + ‖∇t,xf
j‖L1 ≤ C and C−1 ≤ J j ≤ C ,

for some constant C. Then Φj is strongly precompact in L1
loc.

Remark 4.2. Let Ψj(t, ·) be the inverse of Φj(t, ·) and let ρj(t, x) := 1/J j(t, Ψj(t, x)). Note
that ∂tρ

j + divx(f
jρj) = 0 and that, thanks to our assumptions, C ≥ ρj ≥ C−1. We can

assume that, up to subsequences, ρj converges to a bounded function ρ weakly∗ in L∞.
Moreover, again up to subsequences, we can assume that f j converges strongly in L1 to a
BV map f . This gives that ∂tρ + divx(ρf) = 0.
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In view of DiPerna–Lions theory, the following seems closely related to Conjecture 4.1:

Conjecture 4.3. Let f ∈ L∞ ∩ BVloc(R ×Rn) and let ρ ∈ L∞(R × Rn) be such that

ρ ≥ c > 0 and ∂tρ + divx(ρf) = 0 .

Then every bounded weak solution w of ∂t(ρw)+divx(ρfw) = 0 is a renormalized solution.

Indeed we will prove

Proposition 4.4. Conjecture 4.3 implies Conjecture 4.1.

Remark 4.5 (Absolutely continuous divergence). Note that the results of [1] give a positive
answer to Conjecture 4.3 when divxf is absolutely continuous. Indeed fix w : R×Rn → Rk

as in Conjecture 4.3 and consider the vector–valued map v := (ρ, ρw). Note that ∂tv +
divx(vf) = 0. In view of point (3) of Remark 3.5 of [1], v is a renormalized solution, which
in this case means that

∂t(H(v)) + divx(fH(v)) =

(
k+1∑
j=1

vj
∂H

∂yj

(v) − H(v)

)
divxf for all H ∈ C1(Rk+1). (22)

Let ζ : Rk+1 → Rk be a smooth map such that ζ(y) = (y2/y1, . . . , yk/y1) on y1 ≥ C−1. For
every h ∈ C1(Rk) consider the map H(y) := y1h(ζ(y)) and not that

H(v) = ρh(w) and

k+1∑
j=1

vj
∂H

∂yj
(v) − H(v) = 0 .

Thus from (22) we get ∂t(ρh(w)) + divx(ρh(w)f) = 0.
Concerning Conjecture 4.1, we know from Theorem 6.5 of [1] that it holds provided the

f j’s converge to an f whose divergence is absolutely continuous and with negative part in
L∞. The proof in [1] actually uses only the lower bound on J j and not the upper bound.

Note that Proposition 4.4 yields a proof of Conjecture 4.1 under the only assumption that
the divergence of f is absolutely continuous.

Before coming to the proof of Proposition 4.4 we need two lemmas. Up to subsequences,
we assume that ρj → ρ weakly∗ in L∞ and that f j → f strongly in L1

loc. Thus ρ satisfies the
transport equation

∂tρ + divx(ρf) = 0 ,

and, by Remark 2.9, the map t → ρ(t, ·) is weakly continuous in L1
loc. Arguing as in

Remark 2.9, it is easy to see that for every test function ϕ ∈ C∞
c (Rn) the functions

t → ∫
ϕ(x)ρj(t, x) dx are equicontinuous and thus they converge uniformly to the map

t → ∫
ϕ(x)ρ(t, x)dx. Since ρj(0, x) = 1, we conclude that

ρ(t, ·) → 1 weakly∗ in L∞ for t ↓ 0. (23)

In view of this, w ∈ L∞ is a weak solution of⎧⎨
⎩

∂t(ρw) + divx(ρfw) = 0

ρw(0, ·) = ρ(0, ·)w(·)
(24)
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if for every ϕ ∈ C∞
c (R × Rn) we have∫

R+×Rn

ρ(t, y)w(t, y)
[
∂tϕ(t, y) + f(t, y) · ∇xϕ(t, y)

]
dy dt =

∫
Rn

ρ(0, x)w(x)ϕ(0, x) dx .

Lemma 4.6. Let ρj and f j be as in Remark 4.2 and assume that ρj → ρ weakly∗ in L∞

and f j → f strongly in L1
loc. Assume that Conjecture 4.3 holds. If w : R+ × Rn → Rk is

a bounded weak solution of (24), then for every h ∈ C1(Rk) the function h(w) is a weak
solution of ⎧⎨

⎩
∂t(ρh(w)) + divx(ρfh(w)) = 0

ρh(w(0, ·)) = ρ(0, ·)h(w(·))
(25)

Lemma 4.7. Let ρj and f j be as in Remark 4.2 and assume that ρj → ρ weakly∗ in L∞

and f j → f strongly in L1
loc. If w ∈ L∞ and Conjecture 4.3 holds, then there exists a unique

weak solution of (24). Moreover, if wj are the solutions of⎧⎨
⎩

∂t(ρ
jwj) + divx(ρ

jf jwj) = 0

ρwj(0, ·) = ρ(0, ·)w(·) ,
(26)

then wj → w strongly in L1
loc.

Proof of Lemma 4.6. Conjecture 4.3 implies that

∂t(ρh(w)) + divx(ρfh(w)) = 0

in the sense of distributions. Thus, in order to prove the lemma we have to ensure that h(w)
satisfies the right boundary conditions.

As in the proof of Lemma 2.10, we extend the field ρ and f to maps a and b defined on
the whole R × Rn by setting

a(t, x) :=

{
1 for t < 0
ρ(t, x) for t ≥ 0

b(t, x) :=

{
0 for t < 0
f(t, x) for t ≥ 0 .

Clearly b ∈ BVloc(R × Rn). Moreover, thanks to (23), it is clear that ∂ta + divx(ab) = 0.
Extend w to negative times by setting

w(t, x) := w(x) for t < 0.

Then ∂t(aw)+divx(baw) = 0 on the whole R×Rn. Applying Conjecture 4.3 to the field (a, b)
we get that ∂t(ah(w)) + divx(abh(w)) = 0 on the whole R×Rn. Since h(w(t, x)) = h(w(x))
for t < 0, clearly h(w) is a weak solution of (26).

Proof of Lemma 4.7. For the uniqueness we repeat the same proof of Lemma 2.10. First of
all, by linearity it is sufficient to prove the lemma when w = 0. Then we set v := |w|2 and
by Lemma 4.6 we get that v is a weak solution of⎧⎨

⎩
∂t(ρv) + divx(ρfv) = 0

ρv(0, ·) = 0 .
(27)
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Thanks to Remark 2.9, the map t → ρ(t, ·)v(t, ·) is weakly continuous in L1
loc. Thus we can

apply Lemma 2.11 to z = ρv and h = ρfv. We conclude that ρv = 0 and, since ρ > 0, we
get v = 0.

We now pass to the second part of the lemma. Let us fix wj as in the statement. By
possibly extracting a subsequence, assume that ρjwj converge, weakly∗ in L∞, to a function
v. Set w := v/ρ. Since f j → f strongly in L1

loc, it follows easily that w is a weak solution of
(24). Since ρj and f j are smooth, for every h ∈ C1 we have⎧⎨

⎩
∂t(ρ

jh(wj)) + divx(ρfh(w)) = 0

ρh(w(0, ·)) = ρ(0, ·)w(·) .
(28)

As above, we can assume that, up to subsequences, ρjh(wj) converge to a function z, weakly∗

in L∞. Setting z̃ = z/ρ, we find that z̃ solves⎧⎨
⎩

∂t(ρz̃) + divx(ρf z̃) = 0

ρz̃(0, ·) = ρ(0, ·)h(w(·)) .
(29)

Thanks to Lemma 4.6, h(wj) solves the same transport problem. Thus, by the first part of
the lemma, we have that z̃ = h(w). Hence for every such h, ρjh(wj) converges (weakly∗ in
L∞) to ρh(w).

Fix a bounded set Ω ⊂ R+ × Rn. Then∫
Ω

ρj|wj − w|2 =

∫
R+×Rn

1Ωρj |wj|2 +

∫
R+×Rn

1Ωρj|w|2 − 2

∫
R+×Rn

1Ωρjwj · w .

Since ρj ∗−⇀ρ, ρjwj ∗−⇀ρw, and ρj|wj|2 ∗−⇀ρ|w|2, we get that
∫
Ω

ρj |wj − w|2 ↓ 0. Since
ρj ≥ C−1, we conclude that

∫
Ω
|wj − w|2 ↓ 0.

Proof of Proposition 4.4. Let f j and Φj be as in Conjecture 4.1 and define Ψj as in Remark
4.2. Without loosing our generality we assume that f j → f strongly in L1

loc. Fix T > 0 and
consider the ODE ⎧⎪⎨

⎪⎩
d

dt
Λj(t, x) = f j(t, Λ(t, x))

Λj(T, x) = x .

Note that Λj(t, ·) = Φj(t, Ψj(T, ·)). Thus, if we denote by J̃(t, ·) the Jacobian of Λj(t, ·),
we get that 0 ≤ C−2 ≤ J̃(t, ·) ≤ C2. Denote by Γj(t, ·) the inverse of Λj(t, ·) and
set ρ̃j(t, x) := 1/J̃(t, Γj(t, x)). Moreover, for every w ∈ L∞(Rn,Rn) define the function
wj(t, x) := w(Γj(t, x)). Clearly we have⎧⎨

⎩
∂t(ρ̃

jwj) + divx(ρ̃
jf jwj) = 0

ρjwj(x, T ) = w(x) .

We claim that the ρ̃j ’s have a unique weak∗ limit. Indeed, assume that ρ̃ and ρ̂ are weak∗

limits of two convergent subsequences of ρ̃j ’s. Then ∂tρ̃
j +divz(fρ̃) = 0 and ∂tρ̂

j +divz(fρ̂) =
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0. Moreover, thanks to the discussion preceding (23), both ρ̃ and ρ̂ have weak trace equal
to 1 at t = T . Thus, if we set v := ρ̂/ρ̃ we have⎧⎨

⎩
∂t(ρ̃v) + divx(ρ̃vf) = 0

ρ̃v(0, ·) = 1 .

Since the 1 is a weak solution of the same Cauchy problem, by Lemma 4.7 we have that
w = 1, and hence ρ̃ = ρ̂.

Note that there exists a constant C such that |Γj(t, x) − x| ≤ C(T − t) for every t, x and
j. Fix r > 0 and choose R > 0 so large that R − CT > r. Let w be the vector valued map
x → x1BR(0)(x). Thus, for every t < T and every |x| < r, wj(t, x) is equal to the vector
Γj(t, x). Thanks to Lemma 4.7, wj converges strongly in L1

loc to a unique w. Hence, by the
arbitrariness of r we conclude that Γj converges to a unique Γ strongly in L1

loc.
For each x, Γj(·, x) is a Lipschitz curve, with Lipschitz constant uniformly bounded. Thus

we infer that, for a.e. x, Γj(·, x) converges uniformly to the curve Γ(·, x) on [0, T ]. Hence,
we conclude that, after possibly changing Γ on a set of measure 0, for every t ≥ 0 the maps
Γj(t, ·) converge to Γ(t, ·) in L1

loc(R
n).

Since Γj(0, ·) = Φj(T, ·) we conclude that for every T there exists a Φ(T, ·) such that
Φj(T, ·) converges to Φ(T, ·) in L1

loc(R
n). Since Φj is locally uniformly bounded, we conclude

that Φj converges to Φ strongly in L1
loc(R

+ ×Rn).
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François Bouchut, Département de mathématiques et applications, ENS, 45, rue d’Ulm,

F-75230 Paris cedex 05, France

E-mail address: Francois.Bouchut@ens.fr

Camillo De Lellis, Max–Planck Institute for Mathematics in the Sciences, Inselstr. 22,

D-04103 Leipzig, Germany

E-mail address: delellis@mis.mpg.de


