## Max-Planck-Institut für Mathematik <br> in den Naturwissenschaften Leipzig

## On the regularity of critical points of polyconvex functionals

by

László Székelyhidi


# On the regularity of critical points of polyconvex functionals 

László Székelyhidi, Jr.


#### Abstract

In this paper we are concerned with the question of regularity of critical points for functionals of the type $$
I[u]=\int_{\Omega} F(D u) \mathrm{d} x
$$

We construct a smooth, strongly polyconvex $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$, and Lipschitzian weak solutions $u: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ to the corresponding EulerLagrange system, which are nowhere $C^{1}$. Moreover we show that $F$ can be chosen in a way that these irregular weak solutions are weak local minimisers.


## 1 Introduction

Let $\Omega \subset \mathbb{R}^{2}$ be the unit ball. We study critical points of the functional

$$
I[u]=\int_{\Omega} F(D u) \mathrm{d} x
$$

where $u: \Omega \rightarrow \mathbb{R}^{2}$ and $F: \mathbb{R}^{2 \times 2} \mapsto \mathbb{R}$ is a smooth function with bounded second derivatives. The associated Euler-Lagrange equations can be written as

$$
\begin{equation*}
\operatorname{div} D F(D u)=0 \tag{1}
\end{equation*}
$$

In [MŠ03] S. Müller and V. Šverák constructed an example of a strongly quasiconvex $F$ so that the corresponding $2 \times 2$ system (1) admits weak solutions that are Lipschitz but not $C^{1}$ in any open subset of $\Omega$. Their method is based on a modification of M. Gromov's convex integration [Nas54, Kui55, Gro86] combined with ideas originating from L. Tartar's programme of compensated compactness [Tar79]. A function $F: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is strongly quasiconvex if for some $\gamma>0$ the inequality

$$
\int_{\mathbb{T}^{n}} F(X+D \eta)-F(X) \mathrm{d} x \geq \gamma \int_{\mathbb{T}^{n}}|D \eta|^{2} \mathrm{~d} x
$$

holds for all $X \in \mathbb{R}^{m \times n}$ and all periodic Lipschitz mappings $\eta: \mathbb{T}^{n} \rightarrow \mathbb{R}^{m}$. Due to a well known result of L. C. Evans [Eva86], global minimisers of the functional
$I[u]$, assuming $F$ is strongly quasiconvex, are smooth outside a closed subset of $\Omega$ of Lebesgue measure zero. This result was extended by J. Kristensen and A. Taheri [KT01] to the case of strong local minimisers (local with respect to variations in $W^{1, p}$ with $\left.p<\infty\right)$. Kristensen and Taheri also show that the counterexample of Müller and Šverák can be extended to weak local minimisers (where one admits only variations small in $W^{1, \infty}$ ), so that weak local minimisers of strongly quasiconvex functionals can be nowhere $C^{1}$.

In this paper we extend the aforementioned result by proving the analogue for strongly polyconvex integrands:
THEOREM 1. Let $\Omega$ be the unit ball in $\mathbb{R}^{2}$. There exists a smooth, strongly polyconvex function $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ with bounded second derivatives, such that the corresponding $2 \times 2$ elliptic system

$$
\operatorname{div} D F(D u)=0
$$

admits weak solutions $u: \Omega \rightarrow \mathbb{R}^{2}$, which are Lipschitz but not $C^{1}$ in any open subset of $\Omega$. Moreover $F$ can be chosen so that these weak solutions are weak local minimisers of the corresponding functional $I[u]=\int_{\Omega} F(D u) d x$.

A function is said to be polyconvex if it is a convex function of the minors. More precisely $F: \mathbb{R}^{2 \times 2} \mapsto \mathbb{R}$ is said to be strongly polyconvex if there exists a convex function $G: \mathbb{R}^{5} \mapsto \mathbb{R}$ and $\epsilon>0$ so that

$$
F(X)=\epsilon|X|^{2}+G(X, \operatorname{det} X) .
$$

Polyconvexity is a commonly used structural assumption in mathematical models of elasticity [Bal77, BJ87, CK88]. It is strictly stronger then quasiconvexity. We also remark that if we strengthen the structural assumption by assuming that $F$ is uniformly convex, weak solutions to the $2 \times 2$ system (1) are smooth due to a classical result of Morrey [Mor66].

We follow the strategy of S. Müller and V. Šverák. It should be pointed out that a somewhat similar approach has already been pursued by V. Scheffer in his thesis [Sch74] in 1974, which unfortunately never appeared in a journal. He constructed $W^{1,1}$ solutions to an equation of the type (1), albeit with $F$ only satisfying the strong Legendre-Hadamard condition.

We show in Section 3 that under the hypothesis that there exists a $T_{N}$ configuration in a certain set of matrices arising from the PDE (see (4)) and assuming a certain non-degeneracy (condition (C)), Lipschitz weak solutions can be constructed to the PDE that are nowhere $C^{1}$. The construction (Proposition $2)$ is the same as that appearing in [MŠ03], we give the proof for completeness.

The main difficulty is then finding a function $F$ which satisfies the structural requirement of polyconvexity and still allows for the construction to be carried out. In Section 4 we show how this difficulty can be overcome by essentially reducing the problem to linear programming. Finally, in Section 5 we show how the necessary non-degeneracy in the construction can be achieved in a general situation.

## $2 T_{N}$ configurations

As pointed out in [MŠ03], whether or not weak solutions to the PDE (1) can be constructed via convex integration (resulting in nowhere $C^{1}$ solutions) depends mainly on geometrical-combinatorial properties of the mapping $X \rightarrow D F(X)$. In order to explain this in detail, in this section we recall the relevant definitions and results regarding rank-one convexity. A function $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is rank-one convex if $f$ is convex along each rank-one line. The rank-one convex hull of a set of matrices is defined by separation with rank-one convex functions, as follows. For a compact set $K \subset \mathbb{R}^{m \times n}$ we define

$$
K^{r c}:=\left\{X \in \mathbb{R}^{m \times n}: f(X) \leq \sup _{K} f \quad \forall f: \mathbb{R}^{m \times n} \mapsto \mathbb{R} \quad \text { rank-one convex }\right\}
$$

and for general sets

$$
E^{r c}:=\bigcup_{K \subset E \text { compact }} K^{r c} .
$$

The dual objects to rank-one convex functions are a subclass of probability measures supported on $\mathbb{R}^{m \times n}$ called laminates (see [Ped93]). That is, a probability measure $\nu$ on the space of $m \times n$ matrices is a laminate if

$$
\langle\nu, f\rangle \geq f(\bar{\nu}) \quad \text { for all rank-one convex } f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}
$$

where $\bar{\nu}$ denotes the barycenter of the measure $\nu$. The set of barycenters of laminates with support in a fixed compact set $K$ is exactly the rank-one convex hull $K^{r c}$.

It is of fundamental importance, in view of applications to elliptic PDEs, that the rank-one convex hull of a set $K$ can be nontrivial (i.e. strictly larger than $K$ ) even if $K$ contains no rank-one connections, that is, even if $\operatorname{rank}(X-Y)>1$ for any two distinct $X, Y \in K$. This fact has been observed independently by a number of authors in different contexts (e.g. [Sch74, AH86, CT93, Tar93, NM91]), and can be illustrated on an example consisting of four diagonal matrices.

$$
X_{1}=\left(\begin{array}{cc}
3 & 0 \\
0 & -1
\end{array}\right), \quad X_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right), \quad X_{3}=\left(\begin{array}{cc}
-3 & 0 \\
0 & 1
\end{array}\right), \quad X_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & -3
\end{array}\right) .
$$

In fact this set of matrices played a crucial role in the construction in [MŠ03]. The important property is the following cyclic structure:
Definition 1 ( $T_{N}$ Configuration).
An ordered set of $N \geq 4$ matrices $\left\{X_{i}\right\}_{i=1}^{N} \subset \mathbb{R}^{m \times n}$ without rank-one connections is said form a $T_{N}$ configuration if there exist matrices $P, C_{i} \in \mathbb{R}^{m \times n}$ and real numbers $\kappa_{i}>1$ such that

$$
\begin{align*}
X_{1} & =P+\kappa_{1} C_{1} \\
X_{2} & =P+C_{1}+\kappa_{2} C_{2}  \tag{2}\\
\quad & \\
X_{N} & =P+C_{1}+\ldots+C_{N-1}+\kappa_{N} C_{N}
\end{align*}
$$

and moreover $\operatorname{rank}\left(C_{i}\right)=1$ and $\sum_{i=1}^{N} C_{i}=0$.
For example a $T_{5}$ configuration can be represented by the diagram below. We emphasise that $T_{N}$ configurations need not be planar.


Figure 1: Schematic representation of a $T_{5}$

The following result is folklore and is included only for completeness.
Lemma 1. Let $\left\{X_{1}, \ldots, X_{N}\right\}$ be a $T_{N}$ configuration, and for $i=1 \ldots N$ let $P_{i}=P+C_{1}+\cdots+C_{i-1}$ (so that $P_{1}=P$ ). Then

$$
\left\{P_{1}, \ldots, P_{N}\right\} \subset\left\{X_{1}, \ldots, X_{N}\right\}^{r c}
$$

In particular for each $k=1, \ldots, N$ there exist numbers $\nu_{i}^{(k)} \in(0,1)$ so that the probability measures

$$
\nu^{(k)}=\sum_{i=1}^{N} \nu_{i}^{(k)} \delta_{X_{i}}
$$

are laminates with barycenter $\bar{\nu}^{(k)}=P_{k}$.

It is well known that $T_{N}$ configurations form locally a manifold in the space of ordered $N$-tuples of matrices. In the $2 \times 2$ case this manifold has the same dimension as the ambient space $\left(\mathbb{R}^{2 \times 2}\right)^{N}$, in other words $T_{N}$ configurations are stable with respect to small perturbations. In higher dimensions this is no longer true, but using the implicit function theorem together with an easy dimension counting, one can find the right dimension for manifolds formed by $T_{N}$ configurations. For the case $N=4$ this has been done in [MŠ03] (in Section $4.2)$ for $\mathbb{R}^{4 \times 2}$ and in [Kir03] (Proposition 4.26) for $\mathbb{R}^{2 \times 2}$. Here we essentially repeat the proof to record the necessary result for general $N \geq 4$ in $\mathbb{R}^{4 \times 2}$.

Lemma 2. (Stability of $T_{N}$ in $\mathbb{R}^{4 \times 2}$ ) Suppose the ordered set of matrices

$$
\left(X_{1}^{0}, \ldots, X_{N}^{0}\right) \in\left(\mathbb{R}^{4 \times 2}\right)^{N}
$$

is a $T_{N}$ configuration. Then locally around $\left(X_{1}^{0}, \ldots, X_{N}^{0}\right)$ there exists a smooth manifold $\mathcal{M}_{N} \subset\left(\mathbb{R}^{4 \times 2}\right)^{N}$ of dimension $6 N$ such that all $N$-tuples

$$
\left(X_{1}, \ldots, X_{N}\right) \in \mathcal{M}_{N}
$$

are $T_{N}$-configurations.
Proof. Suppose $\left(P^{0}, C_{i}^{0}, \kappa_{i}^{0}\right)$ is the parametrisation of $\left\{X_{i}^{0}\right\}$ corresponding to (2), in other words ( $P^{0}, C_{i}^{0}, \kappa_{i}^{0}$ ) is a solution to the equations (2) with LHS given by $\left\{X_{i}^{0}\right\}$. We show that the set of $\left(P, C_{i}, \kappa_{i}\right)$ nearby satisfying $\operatorname{rank} C_{i}=1$ and $\sum_{i} C_{i}=0$ is a manifold of dimension $6 N$, using the implicit function theorem.

Write $C_{i}^{0}=a_{i}^{0} \otimes b_{i}^{0}$ for $a_{i}^{0} \in \mathbb{R}^{4}, b_{i}^{0} \in \mathbb{R}^{2}$, and $p=\left(P, a_{i}, b_{i}, \kappa_{i}\right)$. Consider the map

$$
\Phi:\left(\mathbb{R}^{4} \times \mathbb{R}^{2}\right)^{N} \rightarrow \mathbb{R}^{4 \times 2}, \quad \Phi\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{N}, b_{N}\right)\right)=\sum_{i=1}^{N} a_{i} \otimes b_{i}
$$

The derivative at $\left(a_{i}^{0}, b_{i}^{0}\right)$ is given by

$$
D \Phi\left(a^{0}, b^{0}\right)[a, b]=\sum_{i=1}^{N}\left(a_{i} \otimes b_{i}^{0}+a_{i}^{0} \otimes b_{i}\right) .
$$

Since $\operatorname{rank}\left(C_{1}^{0}-C_{2}^{0}\right)=2$, we see that $\left\{b_{1}^{0}, b_{2}^{0}\right\}$ is a basis for $\mathbb{R}^{2}$. Hence $D \Phi\left(a^{0}, b^{0}\right)$ is surjective and thus full rank 8. So $\Phi^{-1}(0)$ is locally a $(6 N-8)$-dimensional manifold in $\left(\mathbb{R}^{4} \times \mathbb{R}^{2}\right)^{N}$, invariant under $\left(a_{i}, b_{i}\right) \mapsto\left(\lambda_{i} a_{i}, \frac{1}{\lambda_{i}} b_{i}\right)$. Hence the image of $\left(a_{i}, b_{i}\right) \mapsto\left(a_{i} \otimes b_{i}\right)$ restricted to $\Phi^{-1}(0)$ is locally a $(5 N-8)$ dimensional manifold. This, together with the parameters $P$ and $\kappa_{i}$ gives the required $6 N$ dimensional local manifold.
Q.E.D.

## 3 Solutions by Convex Integration

Following [Šve95] we can rewrite the $2 \times 2$ system

$$
\begin{equation*}
\operatorname{div} D F(D u)=0 \tag{3}
\end{equation*}
$$

as a first order differential inclusion. Namely, we note that in two dimensions the divergence-free field $D F(D u)$ is a rotated curl-free field,

$$
\operatorname{curl} D F(D u) J=0, \text { where } J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Since the domain $\Omega$ is simply connected, there exists a potential $\tilde{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that $D F(D u) J=D \tilde{u}$. Thus with $w=\binom{u}{\tilde{u}}$ we have that (3) is equivalent to the inclusion

$$
\begin{equation*}
D w(x) \in K, \quad \text { with } K=\left\{\binom{X}{D F(X) J}: X \in \mathbb{R}^{2 \times 2}\right\} . \tag{4}
\end{equation*}
$$

Note that $K$ is by the assumptions a smooth 4-dimensional manifold in $\mathbb{R}^{4 \times 2}$. To emphasize the dependence of $K$ on the function $F$ we will occasionally also write $K_{F}$. If $F$ satisfies the strong Legendre-Hadamard condition, then $K_{F}$ is elliptic in the sense that the tangent space at any point contains no rank-one lines. Indeed, the tangent space at a point is given by

$$
T_{X_{0}} K=\left\{\binom{X}{D^{2} F\left(X_{0}\right) X J}: X \in \mathbb{R}^{2 \times 2}\right\}
$$

therefore $T_{X_{0}} K$ contains rank-one matrices if and only if there exists $a, b, n \in \mathbb{R}^{2}$ and $X_{0} \in \mathbb{R}^{2 \times 2}$ such that

$$
D^{2} F\left(X_{0}\right)(a \otimes n) J=b \otimes n
$$

Using that $(a \otimes n) J=a \otimes n^{\perp}$ we get from the strong Legendre-Hadamard condition

$$
0<\left\langle D^{2} F\left(X_{0}\right) a \otimes n^{\perp}, a \otimes n^{\perp}\right\rangle=\left\langle b \otimes n, a \otimes n^{\perp}\right\rangle=0
$$

a contradiction. In fact, by an observation of J. M. Ball in [Bal80] more is true: there are no rank-one connections in $K$. The building block is the following result from [MŠ03]:

## Proposition 1.

Let $U \subset \mathbb{R}^{m \times n}$ be open and bounded, and let $A \in U^{r c}$. Then for any $\delta>0$ there exists a piecewise affine Lipschitz map $w: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\begin{align*}
D w(x) & \in U \quad \text { in } \Omega \text { a.e., } \\
w(x) & =A x \tag{5}
\end{align*} \quad \text { on } \partial \Omega, ~ 子 \quad \text { in } \Omega .
$$

Moreover if $A$ is the barycenter of a laminate $\nu$ supported on a finite subset of $U$, with $\nu=\sum \nu_{i} \delta_{Z_{i}}$, then for each $\epsilon>0$ we can choose $w$ in addition so that

$$
\begin{equation*}
\left|\left\{x \in \Omega: \operatorname{dist}\left(D w(x), Z_{i}\right)<\epsilon\right\}\right|=\nu_{i}|\Omega| . \tag{6}
\end{equation*}
$$

The basic philosophy is to find enough $T_{N}$ configurations in $K$ so that they "generate" open sets and use Proposition 1 iteratively. To do this, it suffices in general to find just one $T_{N}$ configuration and combine it with a transversality
argument, which yields a submanifold of $T_{N}$ configurations in $K$. To explain this, recall Lemma 2 which says that locally around an ordered $N$-tuple

$$
\left(X_{1}^{0}, \ldots, X_{N}^{0}\right) \in\left(\mathbb{R}^{4 \times 2}\right)^{N}
$$

which is a $T_{N}$-configuration, there exists a smooth manifold of (ordered) $N$ tuples, $\mathcal{M}_{N}$, consisting of $T_{N}$ configurations. Moreover $\operatorname{dim} \mathcal{M}_{N}=6 N$. Let

$$
\mathcal{K}_{F}=K_{F} \times \cdots \times K_{F}
$$

be the $N$-fold Cartesian product of the manifold $K_{F}$, so that $\mathcal{K}_{F}$ is a $4 N$ dimensional smooth manifold in $\left(\mathbb{R}^{4 \times 2}\right)^{N}$.
Define the maps $\pi_{k}, \phi_{k}: \mathcal{M}_{N} \rightarrow \mathbb{R}^{4 \times 2}$ as

$$
\begin{equation*}
\pi_{k}\left(Z_{1}, \ldots, Z_{N}\right)=P_{k} \quad \text { and } \phi_{k}\left(Z_{1}, \ldots, Z_{N}\right)=Z_{k} \tag{7}
\end{equation*}
$$

for $k=1, \ldots, N$, where $P_{k}$ is as in Lemma 1 .
Let us recall the basic facts about transversality (a possible reference is [GP74]): suppose two smooth manifolds $\mathcal{M}$ and $\mathcal{K}$ embedded in $\mathbb{R}^{d}$ intersect at a point $z$. The intersection is said to be transversal if the tangent spaces at the point $z$ satisfy

$$
\begin{equation*}
T_{z} \mathcal{M}+T_{z} \mathcal{K}=\mathbb{R}^{d} \tag{8}
\end{equation*}
$$

A direct consequence of the implicit function theorem is that if $\mathcal{M}$ and $\mathcal{K}$ intersect transversely at $z$, then locally the intersection $\mathcal{M} \cap \mathcal{K}$ is a smooth manifold. Furthermore $\operatorname{dim} \mathcal{M} \cap \mathcal{K}=\operatorname{dim} \mathcal{M}+\operatorname{dim} \mathcal{K}-d$.

Therefore in our case if $\mathcal{M}_{N}$ and $\mathcal{K}_{F}$ intersect transversely then the intersection is a manifold of dimension $2 N$. As $N \geq 4$, we can expect that generically the map $\pi_{k}$ restricted to $\mathcal{M}_{N} \cap \mathcal{K}_{F}$ is a submersion. That is, the image under $\pi_{k}$ of the intersection (which by Lemma 1 is contained in the rank-one convex hull of $K_{F}$ ) is an open set. Now we formally define the necessary condition for this genericity:

Definition 2 (Condition (C)).
Suppose $F \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$ is such that $K_{F}$ contains a $T_{N}$ configuration $\left\{Z_{i}\right\}$ and $\mathcal{M}_{N}$ is the manifold of $T_{N}$ configurations given by Lemma 2. If $\mathcal{M}_{N}$ and $\mathcal{K}_{F}$ intersect transversely, and if for each $k=1, \ldots, N$ the map

$$
\pi_{k}:\left(Z_{1}, \ldots, Z_{N}\right) \mapsto P_{k}
$$

is a local submersion on $\mathcal{M}_{N} \cap \mathcal{K}_{F}$ then $F$ is said to satisfy condition (C) at $\left\{Z_{i}\right\}$.

After these preliminary considerations, we are ready for the main construction which appears in [MŠ03]:

Proposition 2.
Suppose $F \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$ is such that the associated manifold $K$ given by (4) contains a $T_{N}$ configuration $\left\{Z_{1}^{0}, \ldots, Z_{N}^{0}\right\}$ and suppose $F$ satisfies condition ( $C$ ) at $\left\{Z_{i}^{0}\right\}$. Let $P_{0} \in\left\{Z_{1}^{0}, \ldots, Z_{N}^{0}\right\}^{r c}$. Then for any $\delta>0$ there exists a Lipschitz map $w: \Omega \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ with the following properties:

1. $D w(x) \in K \cap\left(\bigcup_{k=1}^{N} B_{\delta}\left(Z_{k}^{0}\right)\right)$ a.e. in $\Omega$,
2. In particular $u=\left(w_{1}, w_{2}\right)$ is a weak solution to (3),
3. $w(x)=P_{0} x$ on $\partial \Omega$, and $\left|w(x)-P_{0} x\right|<\delta$ in $\Omega$,
4. Dw has essential oscillation of order 1 in any subdomain of $\Omega$, so that $w$ is nowhere $C^{1}$.

Proof. We will denote the manifold of $T_{N}$ configurations given by Lemma 2 near $z_{0}=\left(Z_{1}^{0}, \ldots, Z_{N}^{0}\right)$ by $\mathcal{M}$ (i.e. dropping the subscript $\left.N\right)$.

The aim is to define a sequence of approximate solutions $w^{(i)}$ using Proposition 1. To this end we need to define a sequence of open sets $U_{i} \subset \mathbb{R}^{4 \times 2}$ such that $U_{i} \subset U_{i+1}^{\mathrm{rc}}$ and $U_{i} \rightarrow K_{F}$ in the sense that if $Z_{i} \in U_{i}$ with $Z_{i} \rightarrow Z$ then $Z \in K_{F}$. In Gromov's original terminology such a sequence of sets is called an in-approximation. To define these open sets we use the maps $\pi_{k}$ and $\phi_{k}$ (see (7)), since condition (C) guarantees that the image of $\pi_{k}$ is an open set. To move from these open sets towards $K$ we take a convex combination of $\pi_{k}$ and $\phi_{k}$.

By our assumptions $D \pi_{k}$ restricted to the tangent space $T_{z_{0}}(\mathcal{M} \cap \mathcal{K})$ has full rank, and so for all but finitely many values of $\lambda$ the linear map

$$
\begin{equation*}
(1-\lambda) D \pi_{k}+\lambda D \phi_{k} \tag{9}
\end{equation*}
$$

has full rank. Let $\lambda_{i} \in(0,1)$ be an increasing sequence with $\lambda_{i} \rightarrow 1$ so that the maps in (9) have full rank for all $i$ and $k$. Let

$$
\Phi_{i}^{k} \stackrel{\text { def }}{=}\left(1-\lambda_{i}\right) \pi_{k}+\lambda_{i} \phi_{k}
$$

Then $\Phi_{i}^{k}: \mathcal{M} \cap \mathcal{K} \rightarrow \mathbb{R}^{4 \times 2}$ are local submersions. In order to ensure that in addition $U_{i} \subset U_{i+1}^{\mathrm{rc}}$, we choose an increasing sequence of relatively open sets

$$
\mathcal{O}_{i-1} \subset \mathcal{O}_{i} \subset \mathcal{M} \cap \mathcal{K} \cap\left(B_{\delta}\left(Z_{1}^{0}\right) \times \cdots \times B_{\delta}\left(Z_{N}^{0}\right)\right)
$$

and let $U_{i, k}=\Phi_{i}^{k}\left(\mathcal{O}_{i}\right), U_{i}=\bigcup_{k=1}^{N} U_{i, k}$. By adjusting the sequence $\lambda_{i}$ if necessary, we may assume that $P_{0} \in U_{1}^{r c}$.

In order to apply Proposition 1, we pick laminates in the following way. Let $Z \in U_{i}$, say $Z \in U_{i, 1}$. By our construction, there exists $\left(Z_{1}, \ldots, Z_{N}\right) \in \mathcal{O}_{i}$ forming a $T_{N}$ such that $Z$ is contained in the segment $\left[P_{1}, Z_{1}\right]$.

In Figure 2, solid lines show the original $T_{N}$ contained in $K$, and dashed lines the perturbed $T_{N}$ with $Z \in\left[P_{1}, Z_{1}\right]$. As $\left(Z_{1}, \ldots, Z_{N}\right) \in \mathcal{O}_{i+1}$ also, there exist new points $\tilde{Z}_{k} \in U_{i+1, k}$ on the segments $\left[P_{k}, Z_{k}\right]$. But then, since $\tilde{Z}_{k}$ themselves form a $T_{N}$ with $\pi_{k}\left(\tilde{Z}_{1}, \ldots, \tilde{Z}_{N}\right)=P_{k}$, there exist coefficients $\nu_{i} \in(0,1)$ such that the probability measure

$$
\nu=\sum_{k=1}^{N} \nu_{k} \delta_{\tilde{Z}_{k}}
$$

is a laminate with barycenter $P_{1}$. Consequently

$$
\mu \stackrel{\text { def }}{=} \frac{\lambda_{i}}{\lambda_{i+1}} \delta_{\tilde{Z}_{1}}+\left(1-\frac{\lambda_{i}}{\lambda_{i+1}}\right) \nu
$$

is a laminate supported in $U_{i+1}$ with barycenter $Z$. Moreover

$$
\begin{equation*}
\mu\left(U_{i+1,1}\right)>\frac{\lambda_{i}}{\lambda_{i+1}} \tag{10}
\end{equation*}
$$



Figure 2: Original and perturbed $T_{5}$ 's

For any subdomain $\tilde{\Omega} \subset \Omega$ Proposition 1 now gives a function $w: \tilde{\Omega} \rightarrow \mathbb{R}^{4}$ with the following properties:
(i) $w(x)=Z x$ on $\partial \tilde{\Omega}$, and $D w(x) \in U_{i+1}$ in $\tilde{\Omega}$,
(ii) $|w(x)-Z x|<2^{-(i+1)} \delta$ in $\tilde{\Omega}$,
(iii) $\left|\left\{x \in \tilde{\Omega}: D w(x) \in U_{i+1,1}\right\}\right|>\frac{\lambda_{i}}{\lambda_{i+1}}|\tilde{\Omega}|$,
(iv) $\int_{\tilde{\Omega}}|D w-Z| \mathrm{d} x \leq C\left(\lambda_{i+1}-\lambda_{i}\right)|\tilde{\Omega}|$.

Indeed, (i) and (ii) follow directly from Proposition 1 and since $U_{i}$ are open sets, and (iii) follows from the estimate (10) together with (6). To prove (iv)
note that by (iii) the gradient $D w$ takes values near $\tilde{Z}_{1}$ in a large portion of the domain $\tilde{\Omega}$, and $\left|Z-\tilde{Z}_{1}\right|=\left(\lambda_{i+1}-\lambda_{i}\right)\left|P_{1}-Z_{1}\right|$. Hence

$$
\begin{aligned}
\int_{\tilde{\Omega}}|D w-Z| \mathrm{d} x & =\int_{\left\{D w \in U_{i+1,1}\right\}}|D w-Z| \mathrm{d} x+\int_{\left\{D w \notin U_{i+1,1}\right\}}|D w-Z| \mathrm{d} x \\
& \leq C|\tilde{\Omega}|\left(\lambda_{i+1}-\lambda_{i}\right)+C|\tilde{\Omega}|\left(1-\frac{\lambda_{i}}{\lambda_{i+1}}\right) \\
& \leq C\left(1+\frac{1}{\lambda_{1}}\right)|\tilde{\Omega}|\left(\lambda_{i+1}-\lambda_{i}\right)
\end{aligned}
$$

We are now ready to define a sequence of functions on $\Omega$ inductively in the following way. Let $w^{(0)}(x) \equiv P_{0} x$. To obtain $w^{(i+1)}$ from $w^{(i)}$, decompose $\Omega$ into a union of pairwise disjoint open sets of diameter no more than $\frac{1}{i}$,

$$
\left|\Omega \backslash \bigcup_{\alpha} \Omega_{\alpha}^{i}\right|=0,
$$

so that $w^{(i)}$ is affine in each open set. In each $\Omega_{\alpha}^{i}$ we can apply the above construction and obtain $w^{(i+1)}$ by replacing the affine function with the newly constructed one.

That our sequence $w^{(i)}$ converges uniformly and in $W^{1,1}$ to some limit $w$ follows from (ii) and (iv). Moreover, $w$ is Lipschitz with $w(x)=P_{0} x$ on $\partial \Omega$, $\left|w(x)-P_{0} x\right|<\delta$ in $\Omega$ and

$$
D w(x) \in K \cap\left(\bigcup_{k=1}^{N} B_{\delta}\left(Z_{k}^{0}\right)\right) \quad \text { a.e. in } \Omega .
$$

To show that $D w$ has essential oscillation of order 1 in any open set, take an open subset $\tilde{\Omega} \subset \Omega$. For large enough $i_{0}$ there exists $\alpha$ such that $\Omega_{\alpha}^{i_{0}} \subset \tilde{\Omega}$. Now the way we obtain $w^{\left(i_{0}+1\right)}$ from $w^{\left(i_{0}\right)}$ means that there exist $\epsilon_{k}>0$ (depending on $i_{0}$ as well) so that for each $k=1, \ldots, N$

$$
\left|\left\{x \in \Omega_{\alpha}^{i_{0}}: D w^{\left(i_{0}+1\right)}(x) \in U_{i_{0}+1, k}\right\}\right|>\epsilon_{k}\left|\Omega_{\alpha}^{i_{0}}\right|
$$

But then, from (iii) follows that for each $i>i_{0}$ and each $k$

$$
\left|\left\{x \in \Omega_{\alpha}^{i_{0}}: D w^{(i)}(x) \in U_{i, k}\right\}\right|>\frac{\lambda_{i-1}}{\lambda_{i}} \frac{\lambda_{i-2}}{\lambda_{i-1}} \ldots \frac{\lambda_{i_{0}}}{\lambda_{i_{0}+1}} \epsilon_{k}\left|\Omega_{\alpha}^{i_{0}}\right|=\frac{\lambda_{i_{0}}}{\lambda_{i}} \epsilon_{k}\left|\Omega_{\alpha}^{i_{0}}\right|,
$$

and passing to the limit gives

$$
\left|\left\{x \in \Omega_{\alpha}^{i_{0}}: D w(x) \in B_{\delta}\left(Z_{k}^{0}\right)\right\}\right| \geq \lambda_{i_{0}} \epsilon_{k}\left|\Omega_{\alpha}^{i_{0}}\right|
$$

for all $k=1, \ldots, N$. This proves that

$$
\left|\left\{x \in \tilde{\Omega}: D w(x) \in B_{\delta}\left(Z_{k}^{0}\right)\right\}\right|>0
$$

for any open $\tilde{\Omega} \subset \Omega$ and thus $D w$ has non-vanishing essential oscillation in any open set. Therefore it is nowhere $C^{1}$.
Q.E.D.

Following a suggestion of J. Kristensen, we immediately obtain the corollary below:
Corollary 1. Assume, as in Proposition 2, that $F \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$, that $K_{F}$ contains a $T_{N}$ configuration $\left\{Z_{1}^{0}, \ldots, Z_{N}^{0}\right\}$ with $Z_{k}^{0}=\binom{X_{k}^{0}}{Y_{k}^{0}}, F$ satisfies condition (C) at $\left\{Z_{i}^{0}\right\}$, and in addition that $D^{2} F\left(X_{k}^{0}\right)$ is positive definite for each $k$.

Then for sufficiently small $\delta>0$ the map $w$ constructed in Proposition 2 is such that $u=\left(w_{1}, w_{2}\right)$ is a weak local minimiser of

$$
\int_{\Omega} F(D u(x)) d x .
$$

In the paper [MŠ03] Müller and Šverák constructed a strongly quasiconvex function $F$ for which $K_{F}$ contains a $T_{4}$ configuration. Then they explicitly calculated the tangent space to $\mathcal{M}_{4}$ at the point of intersection with $\mathcal{K}_{F_{0}}$ to prove that a suitable perturbation can move into the non-degenerate situation (C). In Section 5 we will show that (C) can be achieved in a general situation, for any $T_{N}$ configuration. In view of this, and the fact that small enough perturbations of strongly polyconvex functions remain strongly polyconvex, it is sufficient to exhibit one $T_{N}$ configuration for one specific strongly polyconvex function to prove Theorem 1. We will do this in the next section, with $N=5$.

## 4 Polyconvex examples

Instead of fixing a specific strongly polyconvex function and looking for $T_{5}$ 's in the corresponding set $K_{F}$, we look for a specific $T_{5}$ which lies in $K_{F}$ for some strongly polyconvex function $F$. The difference is computational: for the former one has to solve 15 nonlinear equations in 25 variables, whereas the latter can be reduced to linear programming.
LEmma 3. There exists a smooth, strongly polyconvex function $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ and a $T_{5}$-configuration $\left\{Z_{i}\right\} \subset \mathbb{R}^{4 \times 2}$ such that $\left\{Z_{i}\right\} \subset K_{F}$. Moreover $D^{2} F\left(X_{i}\right)$ is positive definite for each $i$, where $Z_{i}=\binom{X_{i}}{Y_{i}}$.
Proof. By the definition of the set $K_{F}$, a $T_{N}$ configuration $\left\{Z_{i}\right\}=\left\{\binom{X_{i}}{Y_{i}}\right\}$ is contained in $K_{F}$ exactly if

$$
\begin{equation*}
D F\left(X_{i}\right) J=Y_{i} . \tag{11}
\end{equation*}
$$

Recall that $F: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}$ is strongly polyconvex if there exists a convex function $G: \mathbb{R}^{5} \rightarrow \mathbb{R}$ and $\epsilon>0$ such that $F(X)=\frac{\epsilon}{2}|X|^{2}+G(X, \operatorname{det} X)$.

Therefore there exists a strongly polyconvex function $F$ for which $Z_{i} \in K_{F}$ for all $i=1, \ldots, N$ if and only if there exists $\epsilon>0$ and a convex function $G$ satisfying

$$
\begin{equation*}
\partial_{X} G\left(\tilde{X}_{i}\right)+\partial_{d} G\left(\tilde{X}_{i}\right) \operatorname{cof} X_{i}=-Y_{i} J-\epsilon X_{i} \quad \text { for } i=1, \ldots, N . \tag{12}
\end{equation*}
$$

Here $\partial_{d}$ means derivative with respect to the determinant term, and for $X \in$ $\mathbb{R}^{2 \times 2}$ we write $\tilde{X}=(X, \operatorname{det} X) \in \mathbb{R}^{5}$. Suppose we are given real numbers $c_{i}$ and vectors $B_{i}, \tilde{X}_{i} \in \mathbb{R}^{5}$ for $i=1 \ldots n$. It is well known that there exists a (smooth) convex function $G$ with the property that $G\left(\tilde{X}_{i}\right)=c_{i}$ and $D G\left(\tilde{X}_{i}\right)=B_{i}$ if the data satisfies the system of $n(n-1)$ inequalities

$$
\begin{equation*}
c_{j}>c_{i}+\left\langle B_{i}, \tilde{X}_{j}-\tilde{X}_{i}\right\rangle_{\mathbb{R}^{5}} \quad \text { for all } i \neq j \tag{13}
\end{equation*}
$$

Indeed, let $G_{0}(\tilde{X})=\max _{i}\left(c_{i}+\left\langle B_{i}, \tilde{X}-\tilde{X}_{i}\right\rangle\right)$. Take a smooth mollifier $\phi$ on $\mathbb{R}^{5}$ supported in a small ball around the origin and satisfying $\int \phi(\tilde{Y}) \mathrm{d} \tilde{Y}=1$ and $\int \tilde{Y} \phi(\tilde{Y}) \mathrm{d} \tilde{Y}=0$. Since the inequalities (13) are strict, taking the support of $\phi$ sufficiently small we ensure that in a neighbourhood of each $\tilde{X}_{i}$

$$
\begin{aligned}
\phi * G_{0}(\tilde{X}) & =\int\left(c_{i}+\left\langle B_{i},(\tilde{X}-\tilde{Y})-\tilde{X}_{i}\right\rangle\right) \phi(\tilde{Y}) \mathrm{d} \tilde{Y} \\
& =c_{i}+\left\langle B_{i}, \tilde{X}-\tilde{X}_{i}\right\rangle=G_{0}(\tilde{X})
\end{aligned}
$$

Therefore $G=\phi * G_{0}$ gives the required smooth and convex function.
Substituting (12) into (13) gives

$$
\begin{aligned}
c_{j} & >c_{i}+\left\langle B_{i}, \tilde{X}_{j}-\tilde{X}_{i}\right\rangle_{\mathbb{R}^{5}} \\
& =c_{i}+\left\langle\partial_{X} G\left(\tilde{X}_{i}\right), X_{j}-X_{i}\right\rangle+\partial_{d} G\left(\tilde{X}_{i}\right)\left(\operatorname{det} X_{j}-\operatorname{det} X_{i}\right) \\
& =c_{i}-\left\langle Y_{i} J+\epsilon X_{i}+\partial_{d} G\left(\tilde{X}_{i}\right) \operatorname{cof} X_{i}, X_{j}-X_{i}\right\rangle+\partial_{d} G\left(\tilde{X}_{i}\right)\left(\operatorname{det} X_{j}-\operatorname{det} X_{i}\right)
\end{aligned}
$$

Writing $d_{i}=\partial_{d} G\left(\tilde{X}_{i}\right)$ we see that a convex function $G$ satisfying (12) exists if there exists real numbers $c_{i}, d_{i}$ satisfying the system

$$
\begin{equation*}
c_{i}-c_{j}+d_{i} \operatorname{det}\left(X_{i}-X_{j}\right)+\left\langle X_{i}-X_{j}, Y_{i} J\right\rangle<-\epsilon\left\langle X_{i}, X_{i}-X_{j}\right\rangle \tag{14}
\end{equation*}
$$

In particular if

$$
\begin{equation*}
c_{i}-c_{j}+d_{i} \operatorname{det}\left(X_{i}-X_{j}\right)+\left\langle X_{i}-X_{j}, Y_{i} J\right\rangle<0 \tag{15}
\end{equation*}
$$

for all $i \neq j$, then we can choose $\epsilon>0$ so that (14) is also satisfied. We conclude the proof by presenting an explicit example at the end of this section of a $T_{5}$ configuration, for which the system (15) is feasible.

In order to achieve that $D^{2} F\left(X_{i}\right)$ is positive definite, we modify $G_{0}$ slightly. Namely, let

$$
\Psi(X)= \begin{cases}\gamma|X|^{2} & \text { if }|X|<\delta  \tag{16}\\ \gamma \delta|X| & \text { if }|X| \geq \delta\end{cases}
$$

where $\gamma, \delta>0$ are to be determined later. Let

$$
G_{0}(\tilde{X})=\max _{i}\left(c_{i}+\left\langle B_{i}, \tilde{X}-\tilde{X}_{i}\right\rangle+\Psi\left(X-X_{i}\right)\right)
$$

and $G=\phi * G_{0}$ as before. Since $G_{0}$ is a pointwise maximum of convex functions (in $\tilde{X}$ ), it is convex, and so $G$ is also convex. Since $\Psi(X) \leq \delta \gamma|X|$, for any given $\gamma>0$ there exists $\delta>0$ so that

$$
c_{j}>c_{i}+\left\langle B_{i}, \tilde{X}_{j}-\tilde{X}_{i}\right\rangle_{\mathbb{R}^{5}}+\Psi\left(X_{j}-X_{i}\right)
$$

for all $i, j$. Therefore in a neighbourhood of $\tilde{X}_{i}$

$$
G(\tilde{X})=c_{i}+\left\langle B_{i}, \tilde{X}-\tilde{X}_{i}\right\rangle+\phi * \Psi\left(X-X_{i}\right)
$$

hence in a neighbourhood of $X_{i}$

$$
F(X)=\frac{\epsilon}{2}|X|^{2}+c_{i}-\left\langle Y_{i} J+\epsilon X_{i}, X-X_{i}\right\rangle+d_{i} \operatorname{det}\left(X-X_{i}\right)+\phi * \Psi\left(X-X_{i}\right)
$$

Thus

$$
D^{2} F\left(X_{i}\right)[Z, Z]=-d_{i} \operatorname{det} Z+(\gamma+\epsilon)|Z|^{2}
$$

so that $D^{2} F\left(X_{i}\right)$ is positive definite if $\gamma>\max d_{i}$. This finishes the proof of the lemma.
Q.E.D.

For $N=4$ the system (15) does not admit solutions for any $T_{4}$, as shown in [KMŠ03] (Proposition 9). For $N=5$ however we can find solutions by essentially fixing the "base" configuration $\left\{X_{i}\right\}$ and treating the $Y_{i}$ 's as variables. The simple observation is that in this way the $Y_{i}$ appear in (15) linearly. From the numerical point of view the easiest is to consider the parametrisation (2) with the rank-one pentagon given by $C_{i}=\binom{a_{i} \otimes n_{i}}{b_{i} \otimes n_{i}}$. If we fix $a_{i}, n_{i}, \kappa_{i}$, then the $b_{i}$ are an additional 10 variables in (15) subject to the constraint $\sum_{i} b_{i} \otimes n_{i}=0$. In this way we obtain a system of 20 linear inequalities in 16 variables. So the corresponding adjoint system should have a reasonably small kernel, meaning that the set of obstructions to (15) is small. To check whether a linear system of inequalities has solutions we used the simplex algorithm in Maple V. After a few tries for the parameters $\left(\kappa_{i}, a_{i}, n_{i}\right)$ one can obtain a soluble linear system and a solution.

## Example 1.

$$
\begin{gathered}
Z_{1}=\left(\begin{array}{cc}
2 & 2 \\
-2 & -2 \\
20 & 20 \\
14 & 14
\end{array}\right), \quad Z_{2}=\left(\begin{array}{cc}
3 & 5 \\
-5 & -9 \\
0 & -10 \\
3 & -1
\end{array}\right), \quad Z_{3}=\left(\begin{array}{cc}
4 & 3 \\
-9 & -5 \\
-41 & 0 \\
-21 & 3
\end{array}\right) \\
Z_{4}=\left(\begin{array}{cc}
-3 & -3 \\
8 & 9 \\
54 & 72 \\
30 & 41
\end{array}\right), \quad Z_{5}=\left(\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-18 & -36 \\
-11 & -22
\end{array}\right) .
\end{gathered}
$$

The corresponding rank-one pentagon is

$$
\begin{gathered}
C_{1}=\left(\begin{array}{cc}
1 & 1 \\
-1 & -1 \\
10 & 10 \\
7 & 7
\end{array}\right), \quad C_{2}=\left(\begin{array}{cc}
1 & 2 \\
-2 & -4 \\
-5 & 10 \\
-2 & -4
\end{array}\right), \quad C_{3}=\left(\begin{array}{cc}
1 & 0 \\
-3 & 0 \\
-23 & 0 \\
-13 & 0
\end{array}\right), \\
C_{4}=\left(\begin{array}{cc}
-3 & -3 \\
7 & 7 \\
36 & 36 \\
19 & 19
\end{array}\right), \quad C_{5}=\left(\begin{array}{cc}
0 & 0 \\
-1 & -2 \\
-18 & -36 \\
-11 & -22
\end{array}\right),
\end{gathered}
$$

and $P=0, \kappa_{1}=\cdots=\kappa_{5}=2$.
One can check that plugging this $T_{5}$ into (15) gives a feasible linear system of inequalities (with $\mathrm{RHS}=10^{-2}$ ).

## 5 Stable embedding of $T_{N}$

The purpose of this section is to prove that if for a function $F_{0}$ there is a $T_{N}$ configuration contained in $K_{F_{0}}$, then for certain small perturbations $F$ of $F_{0}$ the same $T_{N}$ configuration is contained in $K_{F}$ in a stable way (i.e. condition (C) holds). The requirement that $K_{F}$ contains the same $T_{N}$ means that we are not dealing with any generic perturbation of $F_{0}$. Thus we need to carefully analyse the structure of the tangent space $T \mathcal{M}_{N}$. On the other hand, once $F$ is such that $\mathcal{K}_{F}$ and $\mathcal{M}_{N}$ intersect transversely, any small perturbation of $F$ leads to $F^{\prime}$ with $K_{F^{\prime}}$ still containing some (possibly different) $T_{N}$ configuration.
Theorem 2. Suppose $F_{0} \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$ such that $K_{F_{0}}$ contains a $T_{N}$ configuration. Then for any $\delta>0$ there exists $F \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$ with $\sup \left|D^{2} F-D^{2} F_{0}\right|<\delta$ and such that $K_{F}$ contains the same $T_{N}$ configuration and moreover $F$ satisfies the non-degeneracy condition ( $C$ ).
Proof. Let the $T_{N}$ configuration be $\left\{\binom{X_{i}}{Y_{i}}: i=1, \ldots, N\right\}$. Following [MŠ03] we will prove that

$$
\begin{equation*}
F(X)=F_{0}(X)+\delta \sum_{k=1}^{N} H_{k}\left(X-X_{k}\right) \tag{17}
\end{equation*}
$$

gives the required perturbation for suitable $H_{k} \in C^{2}\left(\mathbb{R}^{2 \times 2}\right)$ compactly supported in a neighbourhood of the origin with $D H_{k}(0)=0$ and $D^{2} H_{k}(0)=A_{k}$.

Condition (C) requires that the tangent space to $\mathcal{K}_{F}=\left(K_{F}\right)^{\times N}$ at the "point" $z=\left(Z_{1}, \ldots, Z_{N}\right) \in\left(\mathbb{R}^{4 \times 2}\right)^{\times N}$ satisfies

$$
\begin{align*}
T_{z} \mathcal{K}_{F}+T_{z} \mathcal{M}_{N} & =\left(\mathbb{R}^{4 \times 2}\right)^{\times N}, \\
\operatorname{dim}\left(\left.\operatorname{im} D \pi_{k}\right|_{T_{z} \mathcal{K}_{F}}\right) & =8 \text { for } k=1, \ldots, N . \tag{18}
\end{align*}
$$

As $\operatorname{dim} \mathcal{K}_{F}=4 N$ and $\operatorname{dim} \mathcal{M}_{N}=6 N$, we have that $\operatorname{dim}\left(T_{z} \mathcal{M}_{N} \cap T_{z} \mathcal{K}_{F}\right) \geq 2 N$ and hence $\operatorname{dim}\left(\operatorname{ker} D \pi_{k} \cap T_{z} \mathcal{K}_{F}\right) \geq 2 N-8$, with equality corresponding to transversal intersection. Thus (18) is equivalent to

$$
\operatorname{dim}\left(\operatorname{ker} D \pi_{k} \cap T_{z} \mathcal{K}_{F}\right)=2 N-8
$$

that is,

$$
\begin{equation*}
T_{z} \mathcal{K}_{F}+\operatorname{ker} D \pi_{k}=\left(\mathbb{R}^{4 \times 2}\right)^{\times N} \tag{19}
\end{equation*}
$$

Given any symmetric linear map $A_{i}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}, i=1, \ldots, N$, we can choose $H_{i}$ in (17) so that the tangent space to $\mathcal{K}_{F}$ is given by

$$
T_{z} \mathcal{K}_{F}=V_{1} \times \cdots \times V_{N}
$$

where

$$
\begin{equation*}
V_{i}=\left\{\binom{Y}{A_{i}[Y]}: Y \in \mathbb{R}^{2 \times 2}\right\} . \tag{20}
\end{equation*}
$$

Let us say that a property $\mathbf{P}$ holds for generic $\left(V_{1}, \ldots, V_{N}\right)$ if whenever $A_{i}^{0}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ are symmetric linear maps, then there exist symmetric linear maps $A_{i}$ in any neighbourhood of the $A_{i}^{0}$ so that the $N$-tuple formed from the corresponding subspaces $V_{i}$ satisfies the property $\mathbf{P}$.

If there is a choice of $\left(V_{1}, \ldots, V_{N}\right)$ for which (19) holds for some $k$, then the set of such choices is generic. Hence, in order to prove that there is a choice of $\left(V_{1}, \ldots, V_{N}\right)$ for which (19) holds for all $k$, it suffices to prove this for $k=1$.

Suppressing the subscript we write

$$
\begin{equation*}
\pi\left(Z_{1}, \ldots, Z_{N}\right)=P_{1} \tag{21}
\end{equation*}
$$

We will show that ker $D \pi$ contains a $4 N$-dimensional subspace $L$ such that for generic $V_{i}$ as above we have

$$
\begin{equation*}
L \cap\left(V_{1} \times \cdots \times V_{N}\right)=\{0\} . \tag{22}
\end{equation*}
$$

Since $\operatorname{dim}\left(V_{1} \times \cdots \times V_{N}\right)=4 N$, this shows that

$$
L+\left(V_{1} \times \cdots \times V_{N}\right)=\left(\mathbb{R}^{4 \times 2}\right)^{\times N}
$$

and this will finish the proof of Theorem 2 . To construct $L$ we derive a necessary and sufficient condition for (22) in Lemma 4 below. Finally, in Lemma 5 we prove that ker $D \pi$ contains a subspace $L$ satisfying the conditions in Lemma 4.
Q.E.D.

In the following we make the identification $\mathbb{R}^{4 \times 2} \cong \mathbb{R}^{8}$. To construct the subspace $L$, let us introduce the following notation: For any $k \geq 1$ and integers $1 \leq i_{1}<\cdots<i_{k} \leq N$, let $p_{i_{1} \ldots i_{k}}: \mathbb{R}^{8 N} \rightarrow \mathbb{R}^{8 N}$ be the orthogonal projection onto the subspace which is the Cartesian product of $k\{0\}$ 's and $N-k \mathbb{R}^{8}$ 's with the $\{0\}$ 's at the $i_{1}, \ldots, i_{k}$ 's places. So for example

$$
\operatorname{im} p_{1}=\{0\} \times \mathbb{R}^{8} \times \cdots \times \mathbb{R}^{8} \text { and } \operatorname{im} p_{12}=\{0\} \times\{0\} \times \mathbb{R}^{8} \times \cdots \times \mathbb{R}^{8}
$$

The main issue is the following: If for example $L$ is a $4 N$ (or less) dimensional subspace of $\mathbb{R}^{8 N}$, such that its intersection with $\mathbb{R}^{8} \times\{0\} \times \cdots \times\{0\}$ is at least 5 -dimensional, then it will nontrivially intersect any subspace of the form $V_{1} \times \cdots \times V_{N}$ (with $\operatorname{dim} V_{i}=4$ ). Similarly if $L$ has at least 9-dimensional intersection with $\mathbb{R}^{8} \times \mathbb{R}^{8} \times\{0\} \times \cdots \times\{0\}$, and so on. On the other hand suppose that for any $1 \leq i_{1}<\cdots<i_{k} \leq N$, the intersection $L \cap \operatorname{im} p_{i_{1} \ldots i_{k}}$ is at most $4(N-k)$-dimensional. We claim that in this case there exist symmetric $A_{i}: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ for which $L \cap\left(V_{1} \times \cdots \times V_{N}\right)=\{0\}$. More precisely the following holds (here we identify $\left.\mathcal{L}_{\text {sym }}\left(\mathbb{R}^{2 \times 2}, \mathbb{R}^{2 \times 2}\right) \cong \mathbb{R}_{\text {sym }}^{4 \times 4}\right)$ :
Lemma 4. Suppose $L \subset \mathbb{R}^{8 N}$ is a subspace such that $\operatorname{dim} L \leq 4 N$ and with the property that for any $1 \leq k \leq N$ and $1 \leq i_{1}<\cdots<i_{k} \leq N$ we have

$$
\operatorname{dim}\left(L \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right) \leq 4(N-k) .
$$

Then the set of $\left(V_{1}, \ldots, V_{N}\right)$ for which

$$
\begin{equation*}
L \cap\left(V_{1} \times \cdots \times V_{N}\right)=\{0\} \tag{23}
\end{equation*}
$$

is generic, i.e. whenever $A_{i}^{0} \in \mathbb{R}_{\text {sym }}^{4 \times 4}$, there exist $A_{i} \in \mathbb{R}_{\text {sym }}^{4 \times 4}$ in any neighbourhood of $A_{i}^{0}$ so that the corresponding subspaces $V_{i}$ (as in (20)) satisfy (23).

We will now show that ker $D \pi$ contains a subspace of the above type.
Lemma 5. Let $\left(Z_{1}^{0}, \ldots, Z_{N}^{0}\right) \in\left(\mathbb{R}^{4 \times 2}\right)^{N}$ be a non-degenerate $T_{N}$ configuration with no rank-one connections, let $\mathcal{M}_{N}$ be the local manifold given in Lemma 2, and let $\pi\left(Z_{1}, \ldots, Z_{N}\right)=P_{1}$ as in (21).

Then $\operatorname{ker} D \pi$ contains a $4 N$-dimensional subspace $L$ with the property that $\operatorname{dim}\left(L \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right) \leq 4(N-k)$ for any $k \geq 1$ and $1 \leq i_{1}<\cdots<i_{k} \leq N$.

Proof of Lemma 5. From (the proof of) Lemma 2 we know that ker $D \pi$ is a $(6 N-8)$-dimensional vector space given by $N$-tuples $\left(Z_{1}, \ldots Z_{N}\right)$ of the form

$$
Z_{i}=\sum_{j=1}^{i-1}\left(a_{j}^{0} \otimes b_{j}+a_{j} \otimes b_{j}^{0}\right)+\nu_{i}^{0} a_{i}^{0} \otimes b_{i}+\nu_{i}^{0} a_{i} \otimes b_{i}^{0}+\nu_{i} a_{i}^{0} \otimes b_{i}^{0}
$$

where the parameters $\left(a_{i}, b_{i}, \nu_{i}\right)$ satisfy $\sum_{i=1}^{N}\left(a_{i} \otimes b_{i}^{0}+a_{i}^{0} \otimes b_{i}\right)=0$ (and by convention $\sum_{j=1}^{0}:=0$ ).

It suffices to prove that

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{ker} D \pi \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right) \leq(6 N-8)-4 k, \tag{24}
\end{equation*}
$$

since generic $4 N$-dimensional subspaces $L$ of $\operatorname{ker} D \pi$ intersect $\operatorname{im} p_{i_{1} \ldots i_{k}}$ transversely, in which case

$$
\begin{aligned}
\operatorname{dim}\left(L \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right) & =\operatorname{dim} L+\operatorname{dim}\left(\operatorname{ker} D \pi \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right)-\operatorname{dim} \operatorname{ker} D \pi \\
& \leq 4 N+((6 N-8)-4 k)-(6 N-8) \\
& =4(N-k) .
\end{aligned}
$$

Then we can choose a $4 N$-dimensional subspace which intersects im $p_{i_{1} \ldots i_{k}}$ transversely for all $k \geq 1$ and $1 \leq i_{1}<\cdots<i_{k} \leq N$.

Let $R_{i}=\left\{\left(a_{i}^{0} \otimes b_{i}+a_{i} \otimes b_{i}^{0}\right): a_{i} \in \mathbb{R}^{4}, b_{i} \in \mathbb{R}^{2}\right\}$. Since the $T_{N}$ configuration is assumed to contain no rank-one connections, $\left\{b_{i}^{0}, b_{i+1}^{0}\right\}$ and $\left\{a_{i}^{0}, a_{i+1}^{0}\right\}$ are linearly independent and so $R_{i}+R_{i+1}=\mathbb{R}^{4 \times 2}$. Moreover $\operatorname{dim} R_{i}=5$ for all $i$. Let us write ker $D \pi=R \oplus C$, where

$$
\begin{aligned}
C & =\left(\left\langle a_{1}^{0} \otimes b_{1}^{0}\right\rangle\right) \times \cdots \times\left(\left\langle a_{N}^{0} \otimes b_{N}^{0}\right\rangle\right) \\
R & =\left\{\left(Y_{1}, \ldots, Y_{N}\right): Y_{j}=\sum_{i=1}^{j-1} X_{i}+\nu_{j}^{0} X_{j} \text { where } X_{i} \in R_{i}, \sum_{i=1}^{N} X_{i}=0\right\}
\end{aligned}
$$

Now $R \cap \operatorname{im} p_{i_{1} \ldots i_{k}}$ is precisely the solution space of the following system of $k+1$ (matrix) equations in the unknowns $\left(X_{1}, \ldots, X_{N}\right) \in R_{1} \times \cdots \times R_{N}$ :

$$
\begin{aligned}
X_{1}+\cdots+X_{i_{1}-1}+\nu_{i_{1}}^{0} X_{i_{1}} & =0 \\
\left(1-\nu_{i_{1}}^{0}\right) X_{i_{1}}+X_{i_{1}+1}+\cdots+X_{i_{2}-1}+\nu_{i_{2}}^{0} X_{i_{2}} & =0 \\
\left(1-\nu_{i_{2}}^{0}\right) X_{i_{2}}+X_{i_{2}+1}+\cdots+X_{i_{3}-1}+\nu_{i_{3}}^{0} X_{i_{3}} & =0 \\
\vdots & \\
\left(1-\nu_{i_{k-1}}^{0}\right) X_{i_{k-1}}+X_{i_{k-1}+1}+\cdots+X_{i_{k}-1}+\nu_{i_{k}}^{0} X_{i_{k}} & =0 \\
\left(1-\nu_{i_{k}}^{0}\right) X_{i_{k}}+X_{i_{k}+1}+\cdots+X_{N} & =0 .
\end{aligned}
$$

Note that $\nu_{i}^{0}>1$. If $k \leq N-2$, then at least one equation contains two consecutive $X_{i}$ 's which are not in the previous equations. Then this equation has rank 8 (since $\operatorname{dim}\left(R_{i}+R_{i+1}\right)=8$ ), and all the others at least rank 5 independently (since $\operatorname{dim} R_{i}=5$ ). Thus the total rank is at least $5 k+8$, and so we deduce

$$
\operatorname{dim}\left(R \cap \operatorname{im} p_{i_{1} \ldots i_{k}}\right) \leq 5 N-(5 k+8)
$$

which in turn implies (24).
If $k=N-1$, then the above system has rank $5 N$, hence

$$
R \cap \operatorname{im} p_{i_{1} \ldots i_{N-1}}=\{0\} .
$$

But then ker $D \pi \cap \operatorname{im} p_{i_{1} \ldots i_{N-1}}$ is at most $N$-dimensional, and since $N \geq 4$,

$$
\operatorname{dim}\left(\operatorname{ker} D \pi \cap \operatorname{im} p_{i_{1} \ldots i_{N-1}}\right) \leq N \leq 2 N-4=(6 N-8)-4(N-1)
$$

This finishes the proof of (24) and hence the proof of Lemma 5.

## Proof of Lemma 4.

The proof is by induction on $N$. Suppose first of all $N=1$. Let $L \subset \mathbb{R}^{8}$ be a subspace with $\operatorname{dim} L \leq 4$. We need to prove that for a generic set of $A_{1} \in \mathbb{R}_{\mathrm{sym}}^{4 \times 4}$ the corresponding subspace $V_{1}$ satisfies $L \cap V_{1}=\{0\}$. For this we may assume
that $\operatorname{dim} L=4$. Consider the matrix representation of a basis of $V_{1}+L$ in block form:

$$
\left(\begin{array}{cc}
I & B \\
A_{1} & C
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
A_{1} & I
\end{array}\right)\left(\begin{array}{cc}
I & B \\
0 & C-A_{1} B
\end{array}\right)
$$

where $B, C \in \mathbb{R}^{4 \times 4}$, and $\binom{B}{C}$ (corresponding to $L$ ) has rank 4 .
We show that $C-A_{1} B$ is nonsingular for generic $A_{1} \in \mathbb{R}_{\text {sym }}^{4 \times 4}$. We know that ker $B \cap \operatorname{ker} C=\{0\}$, since otherwise $\operatorname{dim} L<4$. Choose a subspace $W$ of $\mathbb{R}^{4}$ such that

$$
W \cap \operatorname{im} C=\{0\} \text { and } W^{\perp} \cap B(\operatorname{ker} C)=\{0\} .
$$

This is possible since $\operatorname{dim} B(\operatorname{ker} C)=\operatorname{dim} \operatorname{ker} C=4-\operatorname{dimim} C$, hence both requirements are satisfied for a generic subspace $W$ with $\operatorname{dim} W=4-\operatorname{dim} \operatorname{im} C$. Then let $A_{1}$ be the orthogonal projection onto $W$ (which is symmetric). Now suppose $v \in \operatorname{ker} A_{1} B \cap \operatorname{ker} C$. Then $B v \in B(\operatorname{ker} C) \cap W^{\perp}$ and hence $B v=0$, $v \in \operatorname{ker} B \cap \operatorname{ker} C$, so finally $v=0$. Thus $\operatorname{ker} C \cap \operatorname{ker} A_{1} B=0$, and moreover $\operatorname{im} C \cap \operatorname{im} A_{1} B \subset \operatorname{im} C \cap W=0$. This implies that $C-A_{1} B$ is nonsingular. But this means that

$$
A_{1} \mapsto \operatorname{det}\left(C-A_{1} B\right)
$$

which is a (fourth-order) polynomial in $A_{1} \in \mathbb{R}_{\text {sym }}^{4 \times 4}$, is not identically zero. Hence the set of $A_{1}$ for which $C-A_{1} B$ is nonsingular is generic. We are finished with the proof for $N=1$.

In order to prove the induction step, let us first consider the case $N=2$ for clarity. Let $L \subset \mathbb{R}^{8} \times \mathbb{R}^{8}$ such that $\operatorname{dim} L \leq 8$,

$$
\begin{equation*}
\operatorname{dim} L \cap\left(\mathbb{R}^{8} \times\{0\}\right) \leq 4, \text { and } \operatorname{dim} L \cap\left(\{0\} \times \mathbb{R}^{8}\right) \leq 4 \tag{25}
\end{equation*}
$$

Let $p_{1}: L \rightarrow\{0\} \times \mathbb{R}^{8}$ and $p_{2}: L \rightarrow \mathbb{R}^{8} \times\{0\}$ be the orthogonal projections restricted to $L$.

We first claim that the set of $A_{1}$ for which $V_{1} \times\{0\} \subset \mathbb{R}^{8} \times \mathbb{R}^{8}$ is transversal to $\operatorname{im} p_{2}$ and $\operatorname{ker} p_{1}$ is generic. Indeed, if $\operatorname{dim} \operatorname{im} p_{2} \leq 4$ then we may apply the case $N=1$ directly (with $\tilde{L}=\operatorname{im} p_{2}$ now considered as a subspace of $\mathbb{R}^{8}$ ), and if $\operatorname{dim} \operatorname{im} p_{2}>4$, then we may take any 4-dimensional subspace $\tilde{L} \subset \operatorname{im} p_{2}$ and apply the step $N=1$ with this $\tilde{L}$. Thus we deduce that the set of $A_{1}$ for which $V_{1} \times\{0\}$ is transversal to $\operatorname{im} p_{2}$ is generic. Applying the same argument to $\operatorname{ker} p_{1}$ and noting that the intersection of two generic sets is generic, we deduce our claim.

Secondly, we claim that for $V_{1}$ as above we have
(i) $\operatorname{dim}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) \leq 4$
(ii) $L \cap\left(V_{1} \times\{0\}\right)=\{0\}$.

The second assertion follows directly, since from the assumption (25) we have $\operatorname{dim} \operatorname{ker} p_{1} \leq 4$ and thus transversality of the intersection $\operatorname{ker} p_{1} \cap\left(V_{1} \times\{0\}\right)$ implies

$$
\operatorname{ker} L \cap\left(V_{1} \times\{0\}\right)=\operatorname{ker} p_{1} \cap\left(V_{1} \times\{0\}\right)=\{0\} .
$$

For the first assertion note that

$$
\begin{aligned}
\operatorname{dim}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) & =\operatorname{dim} p_{2}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right)+\operatorname{dim}\left(\operatorname{ker} p_{2} \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) \\
& \leq \operatorname{dim}\left(\left(V_{1} \times\{0\}\right) \cap \operatorname{im} p_{2}\right)+\operatorname{dim} \operatorname{ker} p_{2} .
\end{aligned}
$$

If $\operatorname{dim} \operatorname{im} p_{2} \geq 4$, then transversality implies $\left(V_{1} \times\{0\}\right) \cap \operatorname{im} p_{2}=\{0\}$ and the assertion follows from $\operatorname{dim} \operatorname{ker} p_{2} \leq 4$.

If $\operatorname{dimim} p_{2}>4$, then transversality implies $\left(V_{1} \times\{0\}\right)+\operatorname{im} p_{2}=\mathbb{R}^{8} \times\{0\}$ and hence

$$
\begin{aligned}
\operatorname{dim}\left(V_{1} \cap \operatorname{im} p_{2}\right)+\operatorname{dim} \operatorname{ker} p_{2} & =\operatorname{dim} V_{1}+\operatorname{dim} \operatorname{im} p_{2}-8+\operatorname{dim} \operatorname{ker} p_{2} \\
& \leq \operatorname{dim} L-4 \leq 4
\end{aligned}
$$

Finally, observe that from (i) we have

$$
\operatorname{dim}\left(p_{1}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right)\right) \leq \operatorname{dim}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) \leq 4
$$

and so again, by using the case $N=1$, generic $A_{2} \in \mathbb{R}_{\mathrm{sym}}^{4 \times 4}$ gives $V_{2}$ satisfying

$$
\begin{equation*}
p_{1}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) \cap\left(\{0\} \times V_{2}\right)=\{0\} . \tag{26}
\end{equation*}
$$

Let $v=\left(v_{1}, v_{2}\right) \in L \cap\left(V_{1} \times V_{2}\right)$. Then in particular

$$
\left(0, v_{2}\right) \in p_{1}\left(L \cap\left(V_{1} \times \mathbb{R}^{8}\right)\right) \cap\left(\{0\} \times V_{2}\right),
$$

so $v_{2}=0$, and hence $v_{1}=0$ by (ii). Thus $L \cap\left(V_{1} \times V_{2}\right)=\{0\}$, and this proves our statement for $N=2$.

For general $N$ the argument is the same. For any $k \geq 0$ let $W$ be a ( $8 k$ dimensional) subspace of $\mathbb{R}^{8(N-1)}$ which is the product of $k \mathbb{R}^{8}$ 's and ( $N-k-1$ ) $\{0\}$ 's. Then by an analogous argument to above, we see that for generic choice of $A_{1}$ we have

$$
\operatorname{dim} L \cap\left(V_{1} \times W\right) \leq 4 k
$$

Then we can choose $A_{1}$ so that it satisfies this for all $W$ of this form (since there is a finite number of conditions on $A_{1}$, and each is satisfied by "most" $A_{1}$ 's). In this way $V_{1}$ satisfies the analogue of (i) and (ii).

Let $L^{\prime}$ be the orthogonal projection of $L \cap\left(V_{1} \times \mathbb{R}^{8(N-1)}\right)$ onto $\{0\} \times \mathbb{R}^{8(N-1)}$. Then $L^{\prime}$ satisfies the conditions for $N-1$, and so for generic $A_{2}, \ldots A_{N}$ we have the analogue of (26):

$$
L^{\prime} \cap\left(\{0\} \times V_{2} \times \cdots \times V_{N}\right)=\{0\},
$$

and thus $L \cap\left(V_{1} \times \cdots \times V_{N}\right)=\{0\}$ as above.

## Acknowledgements

I would like to express my thanks to my PhD supervisor Stefan Müller and Vladimír Šverák for introducing me to the problem, to Bernd Kirchheim for checking many details, and to Jan Kristensen for his suggestion regarding weak local minimisers.

## References

[AH86] Robert J. Aumann and Sergiu Hart. Bi-convexity and bi-martingales. Israel J. Math., 54:159-180, 1986.
[Bal77] John M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. In Nonlinear analysis and mechanics: HeriotWatt Symposium (Edinburgh, 1976), Vol. I, pages 187-241. Res. Notes in Math., No. 17. Pitman, London, 1977.
[Bal80] John M. Ball. Strict convexity, strong ellipticity, and regularity in the calculus of variations. Math. Proc. Cambridge Philos. Soc., 87:501513, 1980.
[BJ87] John M. Ball and Richard D. James. Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal., 100:13-52, 1987.
[CK88] Michel Chipot and David Kinderlehrer. Equilibrium configurations of crystals. Arch. Rational Mech. Anal., 103:237-277, 1988.
[CT93] Enrico Casadio Tarabusi. An algebraic characterization of quasiconvex functions. Ricerche Mat., 42:11-24, 1993.
[DM97] Bernard Dacorogna and Paolo Marcellini. General existence theorems for Hamilton-Jacobi equations in the scalar and vectorial cases. Acta Math., 178:1-37, 1997.
[Eva86] Lawrence C. Evans. Quasiconvexity and partial regularity in the calculus of variations. Arch. Rational Mech. Anal., 95:227-252, 1986.
[GP74] Victor Guillemin and Alan Pollack. Differential topology. PrenticeHall Inc., Englewood Cliffs, N.J., 1974.
[Gro86] Mikhael Gromov. Partial differential relations, volume 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin, 1986.
[Kir03] Bernd Kirchheim. Rigidity and Geometry of microstructures. Habilitation thesis, University of Leipzig, 2003.
[KMŠ03] Bernd Kirchheim, Stefan Müller, and Vladimir Šverák. Studying nonlinear PDE by geometry in matrix space. In Stefan Hildebrandt and Hermann Karcher, editors, Gemetric analysis and Nonlinear partial differential equations, pages 347-395. Springer-Verlag, 2003.
[KT01] Jan Kristensen and Ali Taheri. Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Preprint, MPIMIS, 2001.
[Kui55] Nicolaas H. Kuiper. On $C^{1}$-isometric imbeddings. Nederl. Akad. Wetensch. Proc. Ser. A., 58:545-556, 1955.
[Mor52] Charles B. Morrey, Jr. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math., 2:25-53, 1952.
[Mor66] Charles B. Morrey, Jr. Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966.
[Mos01] Roger Moser. Vanishing mean oscillation and regularity in the calculus of variations. Preprint, MPI-MIS, 2001.
[MŠ03] Stefan Müller and Vladimir Šverák. Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. (2), 157(3):715-742, 2003.
[Nas54] John Nash. $C^{1}$ isometric imbeddings. Ann. of Math. (2), 60:383-396, 1954.
[NM91] Vincenzo Nesi and Graeme W. Milton. Polycrystalline configurations that maximize electrical resistivity. J. Mech. Phys. Solids, 39:525-542, 1991.
[Ped93] Pablo Pedregal. Laminates and microstructure. European J. Appl. Math., 4:121-149, 1993.
[Roc70] R. Tyrrell Rockafellar. Convex analysis. Princeton Mathematical Series, No. 28. Princeton University Press, Princeton, N.J., 1970.
[Sch74] Vladimir Scheffer. Regularity and irregularity of solutions to nonlinear second order elliptic systems and inequalities. Dissertation, Princeton University, 1974.
[Šve95] Vladimír Šverák. Lower-semicontinuity of variational integrals and compensated compactness. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pages 11531158, Basel, 1995. Birkhäuser.
[Tar79] Luc Tartar. Compensated compactness and applications to partial differential equations. In Nonlinear analysis and mechanics: HeriotWatt Symposium, Vol. IV, volume 39 of Res. Notes in Math., pages 136-212. Pitman, Boston, Mass., 1979.
[Tar93] Luc Tartar. Some remarks on separately convex functions. In Microstructure and phase transition, volume 54 of IMA Vol. Math. Appl., pages 191-204. Springer, New York, 1993.

LÁszLó SzÉkELYHidi<br>Max-Planck-Institute for Mathematics in the Sciences<br>Inselstr. 22-26, Leipzig 04103, Germany.<br>szekelyh@mis.mpg.de

