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Rank-One Convex Hulls in R2*2

Laszlé Székelyhidi, Jr.

Abstract

We study the rank-one convex hull of compact sets K C R**?. We
show that if K contains no two matrices whose difference has rank one,
and if K contains no four matrices forming a T4 configuration, then the
rank-one convex hull K" is equal to K. Furthermore, we give a simple
numerical criterion for testing for T4 configurations.

1 Introduction

A function f : R™*™ — R is said to be rank-one convex if f is convex along rank-
one directions, in other words if ¢t — f(A + tB) is a convex function whenever
rank B = 1. The rank-one convex hull of a compact set K C R™*™ is defined
by separation with rank-one convex functions as

K¢ :={XeR™": f(X)<supf Vf:R™"™ — R rank-one convex}.
K

Rank-one convexity is important in the theory of partial differential equations
and in the calculus of variations. In particular the rank-one convex hull is an
inner approximation of the quasiconvex hull. There are a number of papers deal-
ing with this connection, for example [Mor52],[Sve92],[Miil99a] and the surveys
[Bal87] and [Miil99b)].

In this paper we concentrate on the following question: under what condi-
tions is K¢ = K (i.e. when is the rank-one convex hull trivial)? An imme-
diate necessary condition is that K contains no rank-one connections (that is,
rank (A — B) > 1 for any two distinct A, B € K). That this condition is in fact
not sufficient for triviality of the hull has been known for some time ([Sch74],
[AHS6], [CT93|, [Tar93], [NM91]), and can be demonstrated on an example
consisting of four diagonal matrices (see Example 1 in Section 2).

A natural way of reformulating our question is to look for nontrivial inclusion-
minimal configurations. Here and in what follows, a set K C R™*" is nontrivial
inclusion-minimal (with respect to rank-one convexity) if K¢ # K but K=K
for any proper subset KCK.

Nontrivial inclusion-minimal sets are well understood in the case of separate
convezity in R?. This is a special case of rank-one convexity, arising when we
identify the subspace of diagonal matrices in R¥*? with R? (so that the rank-
one cone consists of the coordinate directions in RY). Separate convexity has



been treated in [Tar93] by L. Tartar and in [Mat01] and [MP98] by J. Matousek
and P. Plecha¢. The main feature is that different directions in the rank-one
cone are linearly independent. The consequence is that the structure of separate
convex hulls depends only on the ordering of the coordinates of the points in K.
This makes the combinatorial aspect very transparent. For the case of separate
convexity in R? (which corresponds to diagonal matrices in R?*2), L. Tartar
observed (Remark 10 in [Tar93]) that any nontrivial (finite) set K C R? with
no rank-one connections necessarily contains a Ty configuration.

A related issue is the following: For usual convexity in R¢, Carathéodory’s
theorem says that if K C R? and # € K (the usual convex hull), then there
exists at most (d+1) points x1,...,x441 € K such that x lies in the convex hull
of {z1,...,x441}. We say that the Carathéodory number for usual convexity in
R? is (d 4+ 1). Matousek and Plech4¢ proved in [MP98] that the Carathéodory
number for separate convexity in R? is 5. In [Mat01] Matousek gave examples
(essentially Ty configurations) in R? of nontrivial inclusion-minimal sets for
separate convexity of arbitrary cardinality. Consequently separate convexity
in R? for d > 3 has no finite Carathéodory number. Since separate convexity
also arises when restricting rank-one convexity to appropriate subspaces, e.g.
to <§ 2 z>, the same assertion holds also for rank-one convexity in R™*"
if max{m,n} > 3. Furthermore, J. Kolaf showed (see [Kol03]) that there is no
finite Carathéodory number for rank-one convexity in R?*2. These results can
be summarised in the table below:

Inclusion-minimal Carathéodory
configurations number
Separate convexity T, [Tar93] 5 [MP9S]
in R?
Separajce cognvexity Tn,N >4 [Mat0l] 50 [Mat01]
in R
Rank-one convexit
N Y ? 0 [Kol03]

In this paper we fill the gap in the table with the following theorem:

THEOREM 1. Let K C R**2 be a compact set with no rank-one connections, and
suppose that K is nontrivial, i.e. K" # K. Then K contains a Ty configuration.

In particular the only nontrivial inclusion-minimal configurations in R2*?
are the Ty configurations. The underlying reason (which also made separate
convexity in R? special) is that the rank-one cone has codimension 1. The
significance of this observation is highlighted in the following result, which is
standard in the literature (see for example [KMS03]):

LEMMA 1. Let K C R?>*2 be a compact set, and suppose that Xo ¢ K and
det(X — Xo) > 0 for all X € K. Then (K U{Xy})"*= K" U{Xo}.



An immediate consequence of this is that if K C R?*2 consists of three
matrices (and no rank-one connections), then K" = K. Indeed, from the three
(nonzero) numbers d;; = det(X; — X;), 1 < i < j < 3 at least two have to
have the same sign, say di2,di3 > 0, so we may employ Lemma 1 twice (first
with K = {X5, X3}) to end up with the required result (see also [Ped93] and
[M1il99b]).

The paper is organised as follows. In Section 2 we will introduce Ty con-
figurations, which serve as the primary examples of finite sets with no rank-one
connections and a nontrivial hull. In Section 3 we give a classification of four-
point sets in terms of the rank-one convex hulls. The proof is based on the
algebraic considerations of Section 2. Then we set out to prove Theorem 1 in
three stages: First we restrict to finite sets in Section 4, where we prove that the
absence of Ty configurations implies a certain sign-separation. The main separa-
tion argument for the rank-one convex hull is in Section 5, and ultimately relies
on an elementary geometric analysis of how translated copies of the rank-one
cone intersect (Lemma 5 and 6). Finally we deal with general compact sets in
Section 6.

2 Ty configurations

DEFINITION 1 (T CONFIGURATION). An ordered set of N > 4 matrices { X;}., C
R™>*™ without rank-one connections is said form a TN configuration if there ex-
ist matrices P,C; € R™*™ and real numbers k; > 1 such that

X1 =P+ r1Ch
Xo =P+ C1 + k(s (1)

Xn=P+Ci+...+Cn_1+ rnCh,

and moreover rank (C;) = 1 and vazl C; =0.

The following result, which justifies our interest such configurations, is well
known, we include it here purely for completeness:

LEMMA 2. Let {Xy,...,Xn} be a T configuration, and for i = 1...N let
P,=P+Ci+- -+ Ci_1 (so that P, = P). Then the segments [P;, X;] are
contained in the rank-one convex hull {X1,..., Xn}"C.

It is not obvious from the definition of T configurations how one can find
the C;’s from given X;, when such C; exist, and when k; > 1. In this section we
give an algebraic criterion which can easily be used in the 2 x 2 case for finding

P; for a given ordered set of matrices {X1,..., Xn}.
We will use the following notation: for A € Rg,élN such that A;; = 0 for all



¢ and for p € R write

0 a2 1.3 a1,N
a 0 a e.a
def | HO1,2 2,3 2,N
A= : : o e (2)
pai N paz N pHaz N ... 0

PROPOSITION 1. Let {X;} C R?*? and let A = (det(X; — X;)). Then {X;} is
a TN configuration if and only if there exist positive numbers \; > 0 and p > 1
such that AP\ = 0.

PROOF. Let

A\ P HAL
)\2 )\2 M)‘Q

5(1) = A3 §(2) =Cy A3 §(3) =c3 A3
AN AN AN
where ¢; are normalising constants so that fj(-i) =leg 1=, M)

Suppose A\ = 0. Then we claim
(A€@Y); =0 and €@ . A¢®D =0 for i=1,...,N. (3)

Indeed, the first set of equalities follows from the definition of the £(9’s, and for
the second set we have (using that A is symmetric, zero on the diagonal and
taking ¢; = 1 without loss of generality):

2
W AW =23 " N\ ja; = ——\- AFX =0,
¢ A¢ ; i = T
€@ Ae® = (€W 4+ M(p = Der) - A(E™Y + Mi(p — Der)
=W AeD L ox (u—1eg - AW + X2 (u — 1)%e; - Aey
=0

g A = (€D L AN (= Den—1) - ATV + Ay (= Den-1)
= ¢WN=D . ge(N=1)

=0.

Now it is easy to check that if P; =3~ §J@Xj, then (3) is equivalent to

n
P=Y¢e"detX; and det(X;—P)=0 fori=1,...,N.  (4)

j=1



Indeed, writing P = ), X, we have

1
det P = - Z &&j (X, cof X;)
,J

1
= 5 Z&fj(det X; +det Xj — det(Xi — XJ)) (5)
2,3
- 1
= &det X; — 5648,
1=1

and in the same way, since P — X, = Y7 &(X; — Xi),
1
det(P — Xy) = 5 D && ((Xi = Xp), cof (X — X))
4,7

= % D &g (det(X; — Xy) + det(X; — Xy) — det(X; — X)) (6)

,J
1
- (Af)k - 55 - AG.
Moreover, P; and P;4; lie on the same rank-one line connecting them to Xj:

Py =viPi+ (1 - vi)X; = Xi +vi(P; — X;)
Ci+1

where v; =
Ci

with the convention that éN+1) = ¢() (and hence peyy1 = c1).
Now if 4 > 1 then 0 < v; < 1 and so P41 lies between P; and X, so the

rank-one N-gon given by P; is the required one. Moreover k; = _11/7 in the
definition, so that

1

,i_fﬂ>‘1+"'+ﬂ)‘i+>‘i+1+"'+>‘N
' (b= 1A '

Conversely, if K = {X;} are in Ty, then labelling the corners of the n-gon
P; it is clear that these corners lie in the convex hull of K and have a convex
(barycentric) representation £ of the form as above. Q.E.D.

REMARK 1. It follows from the proof of the Proposition that the probability

measures
N

u® =3 eMox, (7)

i=1

are laminates, with barycenter i®) = P;. In fact, we see from the equivalence
of (3) and (4) that for N probability measures of the special form (7), they are
laminates if and only if they commute with the determinant.



EXAMPLE 1. The first example is standard in the literature for demonstrating
that a set can have a nontrivial rank-one convex hull even if there are no rank-
one connections. Let K = {Xy,..., X4}, where

30 10 -3 0 -1 0
e (o 8) ee(on) om0 ) xe (V)

These matrices can be represented in the plane, as in Figure 1. The shaded area
together with the four segments shows the rank-one convexr hull of K.

Xo

X3

X1

X4

Figure 1: Ty configuration in the diagonal plane

EXAMPLE 2. The second example shows that four-point sets can produce six Ty ’s
at the same time, one corresponding to each ordering. This example is taken

from B. Kirchheim [Kir03]. In the plots we represent 2 X 2 symmetric matrices
in R3 with the identification (x,y, z) = o y x> and the hyperboloid is

the set {det = —1}. Let

X = V32 Xy = V32
(2 ) x= (Y )

Y z =

() (0



Figure 2: Maple plot showing six different T}’s

EXAMPLE 3. The limiting case pn — 17 in Proposition 1 corresponds to a de-
generate configuration with nontrivial rank-one convex hull, that appeared in the
work of B. Kirchheim whilst studying rank-one extreme points ([Kir03] Exam-
ple 4.18), and in [NM91] in a slightly different context. In the original defini-
tion this limit corresponds to fizing the rank-one matrices C; := r;C;, defining
kS = € 'k, Cf = €C; and letting € — 0. This scaling fizes the length of the
segments [Pf, X£| whilst shrinking the N-gon down to the point P. Then

Pf— P and Xf — X2:=P+C; for alli.

1

In particular, since Zivzl K 1Cy = 0, by writing 51-(0) =K, we see that
N
* 0
,ngk) * ‘LL(O) — ng )5X7,(0)
i=1

and so by definition the measure (9 is a laminate. Notice that the only condi-
tion on the support of u®) is that rank (C;) = 0 and 0 € {C1,...,Cn}°°.



3 Four-point sets

In contrast to the diagonal case, in the full space R2*2 not all T4 configurations
(in the sense of definition 1) are similar copies of each other. In fact there are
two distinct types of Ty (and a degenerate case, see Example 3), as we shall
see. In order to prove that these are the only inclusion-minimal configurations,
we need to obtain simple criteria for when a four-point set is a 7y. Thus in
this section we consider four-point sets K = { X1, X2, X3, X4} with no rank-one
connections.

In view of Lemma 1 and the observation following it, a necessary condition
for K™ # K is that det(X; — X,) changes sign for any fixed j as i varies.
Thus, by possibly renumbering the matrices and multiplying by a matrix of
determinant -1 we have one of the following sign-configurations: (dashed lines
denote negative determinant and solid lines positive determinant)

Figure 3: Possible sign-configurations

THEOREM 2. Suppose K = {X; :i = 1,...,4} C R?**? contains no rank-one
connections, with signs as in (A) or (B).

1. If the signs are as in (A), then exactly one ordering is in Ty.
2. If the signs are as in (B), then exactly one of the following three holds.

(i) There ezists P € K with det(X; — P) > 0 and then K™ is trivial.
(ii) There exists P € K with det(X; — P) =0 and then

K™ ={Y : det(Y — P) = 0} N K.
(i1i) There exists P € K with det(X; — P) < 0 and then each ordering
is wmn Ty.

REMARK 2. The theorem shows that there are exactly two combinatorially dif-
ferent types of Ty configurations. The classical Ty in Ezample 1 is type (A),
whereas Example 2 is type (B). Example 3 shows how case 2. (ii) arises. The
formula for the rank-one convex hull in case 2.(ii) is taken from [Kir03] (p.



84) and is included only for completeness (to show that in this case the hull is
nontrivial).

The triviality of the hull if det(X; — P) > 0 will follow in a more general
setting from Theorem 4, here we will just prove that in case some ordering is
not a Ty, then there exists P € K with det(X; — P) > 0 (c.f. Lemma 6).

ProOOF. We split the proof into two parts according to whether the signs are
as in (A) or (B).

Case (A)

Consider the matrix A = (d;;) where d;; = det(X; — X;). From Proposition
1 we know that K (for the ordering (X7, X2, X3, X4)) is a Ty if and only if there
exists p > 1 and A; > 0 with A*\ = 0. Recall that A" denotes the matrix
obtained by multiplying the entries in A below the diagonal by p, as in (2).

So for the existence of a Ty we first require the existence of p > 1 satisfying
det A¥ = 0. Now det A" is a cubic polynomial with a trivial root pu = 0.
Furthermore, note that p=1(A*)T = 14(“71)7 So nonzero roots come in pairs
pipe = 1. Let p(u) = p~t det A*. Then p(0) = —ab, and

p(1) =det A= a? +b% + ¢® — 2ab — 2ac — 2be, (8)

where a = d12d34, b= d14d23, Cc = d13d24.

Because the signs of d;; are as in (A), a,b > 0, ¢ < 0, p(0) = —ab < 0, and so
p(1) =det A = (a — b)? + ¢ — 2ac — 2bc > 0. Therefore a root p > 1 of p exists.
Now consider permutations of (X7,..., X4): each corresponds to a permutation
of (a,b,c) and since p(1) > 0 for each by symmetry, the only permutations
admitting a root p, > 1 are the ones leaving ¢ invariant (otherwise p(0) > 0).
Hence only the orderings (1,2,3,4) and (1,4, 3,2) can be in T}.

Suppose now that A*X = 0 for some p > 1 and A € R*. We need to analyse
the sign of \;. Firstly, A\; # 0 for all 7, because the principal 3 x 3 minors are
all nonzero: e.g.

0 dia  dis
wdig 0 dos
pdiz  pdaz 0

= pu(p + 1)diadaszdis. 9)

As a first tool we note that for a 2 x 2 matrix M with signs <J_r +),
{z: Mz >0}n{z:2z>0}#0if and only if det M > 0,

10
{x:Mz>0}N{x:2 <0} +#0if and only if det M < 0. (10)

This is elementary and best illustrated by the following diagram, where we write
u= Me; and v = Mesy:



v
v
u
u
det M <0 det M >0
By assumption A* has signs
0o + + -
+ 0 - -
+ - 0 +
- - + 0

Suppose without loss of generality that Ay > 0. Then we need to eliminate the
possibility of A\; < 0 for some ¢ > 1. By considering an appropriate row of the
matrix, we see that the only possibilities for the signs of \; are (+,—,+,—) or
(+,+,+,+) (for example (4, +, +, —) is ruled out by the first row).

Suppose the signs alternate as in the first possibility. Now A in particular
satisfies the equations

Az _ =l (diz dia) (A2
HAL diz \pdaz  dzs ) \As)’
A\ _ Ll fdia das HAL
Y dog \d1a 3y Az )

Then (10) yields d12d34 - ,ud14d23 > (0 and pd12d34 - d14d23 < 0, ie.

(11)

a b

1< <,

b’ a
which is a contradiction. Hence all entries of A must be positive, and so
(X1,X2,X3,X4) is a Ty. In a similar fashion, if instead we had that di3 <
0, d24 > 0 (corresponding to (1,4, 3,2) together with a sign-change), we would
get the same contradiction when assuming all \; are positive. To summarize, in
case (A) exactly one ordering of the matrices { X1, ..., X4} is a Ty configuration.

Case (B)

Now assume the signs of det(X; — X;) are as in (B). To arrive at the clas-
sification in part 2. of the theorem (see also Remark 2), we need to do three
things:

a) show that there exists P € K for which det(X; — P) has the same sign for
all 7 (so that at least one of (i), (ii) or (iii) occurs),

10



b) show that at most one of the cases (i), (ii), (iii) can occur,

c¢) show that if { X, X2, X3, X4} do not form a T} for some ordering, then there
exists P € K with det(X; — P) > 0 for all 4.

For a) consider the convex hull of {X7, X4, Y} where Y is such that
det(X; —Y)>0,det(Xs —Y) >0

(and remember that det(X; — X4) < 0). The convex hull is a (non-degenerate)
triangle as shown in Figure 4 a) below.

Xy Xy X
7 3
Q1 ‘
Y
X1 Xl
Q4 Y Xo
a) b)

Figure 4: The convex hull of { X7, X2, X3, X4}

Since det(Xy — X7) < 0 and det(Y — X;) > 0, there exists a unique Q1 on the
segment [X4, Y] with det(Q1—X;) = 0. Uniqueness follows because det(Q —X1)
restricted to the line going through X4 and Y is a quadratic polynomial which
is positive at Xy and negative at Y. Similarly there exists a unique @4 on
the segment [X7,Y] with det(Q4 — X4) = 0. The (unique) intersection of the
segments [X1, Q1] and [Xy4, Q4], call it Z, lies in the interior of the triangle, and
in any neighbourhood of Z there exists Z; and Z5 such that

det(Z; — X;) <0 and det(Zy; — X;) >0 fori=1,4.

Furthermore this unique point Z depends continuously on Y. In particular,
taking Y =Y; = t X2 + (1 — ¢) X3 we obtain a continuous, compact curve

I={Z:tel0,1]} c K*®

such that det(X; — Z) = det(Xy — Z) = 0 on T' (see Figure 4 b) above). Of
course if K°° is planar, the curve degenerates to a point. Consider the sets

C;={Z el : det(X; — Z) > 0}

for ¢+ = 2,3. Suppose I' = C3 U C3. Since C; is open and I' is connected,
necessarily Co N C5 is nonempty. But then in a neighbourhood of Cy N C5 there
exists P € K with det(X; — P) > 0 for all 5. Otherwise, if "\ (Cz U C3) is
not empty, then it has either nonempty interior (relative to I'), or 9Cs N 9C} is
nonempty. In the former case there exists P € K with det(X; — P) < 0 for all

11



i (by a similar argument to before), and in the latter case there exists P € K<
with det(X; — P) = 0 for all 1.

Let P € K, so that P = Zle x;X; for some x >0, ). x; = 1. From the
proof of Proposition 1 we get

1
det(Xi - P) = (AI)IL - 5.% - Az,

Suppose det(X; — P) > 0 for all ¢. Then summing over ¢ gives %:c - Ax > 0,
and hence Az > 0. Similarly if det(X; — P) < 0 for all ¢ then Az < 0, and
if det(X; — P) = 0 then Az = 0. But since A is symmetric, at most one of
these three cases can occur. Indeed, if x,y > 0 with Az > 0 and Ay < 0, then
0<y-Ax=ux-Ay <0 and since (Az); > 0 for all 4, necessarily y = 0.
Summarizing the above: for any ¢ € {<, >, =}

there exists P € K with det(X; — P) ¢ 0 for all 4
if and only if (12)
there exists x € R* with z; > 0, (Az); ¢ 0 for all 4.

Let a = diadss,b = dysdes,c = dyszdoy as before, and let us assume that
(X1, X2, X3,X4) do not form a T configuration (the argument for all other or-
derings is the same). By the assumption on the signs of d;; we have a, b, ¢ > 0.
From Proposition 1 we deduce that either there exists no p > 1 with det A* = 0,
or there exists such a 4 > 1 and then the corresponding A € ker A* has coordi-
nates with mixed signs.

Recall from (8) that if 4 > 1 with det A* = 0 does not exist, then p does not
vanish in (0,1). As p(0) = —ab < 0, we deduce that p(1) = det A < 0. Suppose
b > a + ¢ and observe that

b—a—c b+a—c b—a+c 1
T = T = T3 = Ta =
! 2iadys 0 —2diadas’ 0 —2dyzdas’
gives
—det A

Az)y = (Az)z = (Ax)3 =0, (Az)s = ————.
( $)1 ( $)2 ( $)3 0’( I)4 —2d12d13d23

(remember that doz < 0 and dya, d13 > 0). By symmetry we can get similar
x’s where (Ax); > 0 for ¢ = 1,2, 3 respectively. Summing up gives x € R* with
x; > 0 and (Az); > 0 for each 1.

On the other hand, if b < a + ¢ then

x1 = —da3, T2 = d13, 3 = d12, T4 = 0
yields
(Ax)l = 2d12d13, (A$)2 =0, (A$)3 =0, (A$)4 =a+c—0b,

and again by symmetry we can obtain z’s with (Az); > 0 for i = 2, 3, 4 respec-
tively, so that again by summing we obtain z € R* with x; > 0 and (Ax); > 0.

12



We conclude using (12) and using that at most one of the cases in (12) can occur,
that if det A < 0 (or if b < a+c¢) then there exists P € K with det(X; —P) > 0
for all ¢ (or det(X; — P) = 0 for all 7).

Finally suppose that there exists 4 > 1 and A € R* with A*)\ = 0, and
suppose that A has mixed signs. As in (9) we see that \; # 0 for each i.
Furthermore we may assume that A; > 0. Observe that A* has signs

0 + + -
+ 0 - +
+ - 0 +
- 4+ + 0

As before in case (A), we can eliminate possibilities for the signs of A; by con-
sidering the appropriate row of the matrix. The only remaining are

(+a ) +a 7) or (+7 +7 ] 7)

In the first case the first identity in (11) together with (10) implies that a > pb.
In particular a > b. In the second case similarly to (11) we have

A2\ _ =l fdiz dig) (A3

PAL diz \d2z daa) \Aa)’
and then (10) implies ¢ > b. Therefore in both cases we get b < a + ¢ using
which the solution above gives z € R* with z; > 0 and (Az); > 0. In view of

(12) this finishes the proof of ¢), and hence the proof of the theorem.
Q.E.D.

4 Finite sets

THEOREM 3. Let K = {X;} be a finite set of 2 X 2 matrices with no rank-one
connections. If K™ # K, then K contains four matrices which form a (possibly
degenerate) T}.

Instead of giving the proof directly, we split it up into a graph-theoretical
part in this section and a separation argument in the next section. Arguing by
contradiction we assume that K is a finite set with no rank-one connections and
a nontrivial rank-one convex hull but doesn’t contain a 7 configuration. Then
we may assume without loss of generality that K is inclusion-minimal (otherwise
we can remove points until the remaining set is nontrivial inclusion-minimal).

We use part 1. of Theorem 2 to show (in Lemma 4 below) that if K contains
no Ty of type (A) (recall Figure 3), then it must have a decomposition K =
K7 UKy where det(X —Y) >0 for all X € K;,Y € K. Then in Section 5 we
use part 2. of Theorem 2 to show that if K has such a decomposition and it
doesn’t contain a Ty of type (B) then the rc-hull separates: K™ = K¢ U K3°,
and this will contradict the inclusion-minimality.

13



A set K of N matrices gives rise to an N-point complete graph G where
all edges are labelled either & or & depending whether det(X; — X;) for the
corresponding matrices is positive or negative. The assumption on inclusion
minimality implies that for each X; there exists X;, and X, such that det(X,; —
X)) < 0 and det(X; — X;,) > 0 (see Lemma 1). In the corresponding graph
this means at each vertex there are both @ and & edges.

LEMMA 3. If G is an N-point graph with each edge & or &, and at each vertex
there are both & and © edges, then there exist 4 points P,Q, R,S in G where
the edges alternate, i.e. PQ and RS are © and QR, SP are &.

PROOF. Assume there exists a point P such that there is only one © edge at
P, all others are @& (or other way round). Suppose the & edge is PQ. Now at
@ there must be at least one & edge, say QR. Going on, at R there must be a
© edge, say RS. Now S # P since R # @ (by assumption the only & edge at
P is PQ), and SP must be & by the same reason (since S # Q). Hence we are
done (see Figure 5 a) below).

If there doesn’t exist a point P with only one © edge (or only one @ edge),
then at all points there is at least two & and two & edges. So G’ = G\ {P} (for
any P) satisfies the assumptions of the claim. Hence we are done by induction.

Q.E.D.

A 4-tuple P, Q, R, S with alternating signs as in Lemma 3 looks (up to swap-
ping @ and ©) like either (A) or (B) in Figure 3. We know from Theorem 2
that (A) is necessarily a Ty. Now we show that if G does not contain (A) then
it “separates” as a graph.

Q

\

a) b)

Figure 5: Alternating signs and a &-path from @ to R

LEMMA 4. Suppose in addition that G does not contain (A). Then G = G1 UG5
where G; are nonempty and whenever Py € G1 and Py € o, then the edge Py Py
is @ (up to swapping ® and O©).

PRrROOF. As in the previous claim, take away points from G until there is a
point P with only one & edge, PQ. Call the new graph G’. As before, there
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exist edges S, R so that SP, SQ, RP, RQ are all & (upto swapping signs in the
whole graph). Now suppose there exists a © path from @ to R and take the
shortest such: @, Q1,Q2,...,Qk, R (shortest in the sense that k < k' for any
other path Q, @7, ..., Q},, R). See Figure 5 b) above. Then in particular QQ2 is
@, otherwise our path could be shortened. By assumptions on P also P@Q; and
PQy are ®. Now k > 1 and so (regardless of whether Q2 = R or not) we can
consider the square P, Q1,Q2, @, which looks like (A). This is a contradiction,
so there is no ©-path from @ to R. Then G’ = |J; G where G| consists of the
points reachable from @ with a ©-path, and G’ consists of the points reachable
from R with a ©&-path and G, ... are possible other “©-connected” components.
To finish we need to add the points back that we removed at the start.
Adding back in the same order we see that at each step the new point X has
both & and & edges to the existing graph. We claim that after each step there
are at least two ©-connected components. If not, then at some step the point
X that we add will be &-connected to all components G;. Of course X needs to
be @-connected to at least one G, say to G}. Then G} = Hy U Hy where XY is
e forall Y € Hy and @ for all Y € Hs. By assumption H;, Hs are nonempty.
Moreover, since G} is ©-connected, there exists Py € Hy, P» € Hs such that
PP, is ©. Take Q € G such that X@Q is © and consider Q, Py, Po, X. Tt is

easy to see that this has signs as in (A), contradicting our assumption.
Q.E.D.

Let us say that two compact sets K7 and K> are sign-separated if
det(X —Y) > 0 whenever X € K7, Y € Kb.

Lemma 4 shows that if K is a finite set with no rank-one connections and no
Ty's of type (A), then K can be decomposed into K7 U K5 so that K; and K»
are sign-separated.

In the next section we show that such sets have separate rank-one convex
hulls, i.e. (K7 U K3)™ = K}°U K5¢ unless K7 U K5 contains a Ty “connecting”
the hulls. That will complete the proof of Theorem 3.

5 Separation

Let us introduce conformal-anticonformal coordinates on R?*? in the following
way: For each X € R?*? there exists a unique z,w € R? such that

x - (* +wp w2 — 22

wo + 22 zZ1 — W
so that with considerable abuse of notation we write R2%2 = C x C. Here C
denotes conformal matrices, and C denotes anticonformal matrices and both are

identified with R2. The norm | -| is the Euclidean norm on R2. Then for each
matrix X = (x+,27), det X = |2F|?> — [27|?, so that

det X >0 if and only if 2| > |27 |. (13)
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We will also use the Euclidean inner-product on 2 x 2 matrices, defined as

(X,Y) % trace (XTY). (14)

THEOREM 4. Suppose K C R**? such that K = K, U Ky where K1 and Ko are
disjoint compact sets that are sign-separated in the sense that

det(X —Y) > 0 whenever X € K1,Y € Ko.

If for any X1,X5 € Ky and Y1,Y2 € Ko the four-point set {X1, X2,Y1,Ya} is
not a Ty, then there exists a continuous curve I' : S* — R2*2 with the following
properties

(i) det(X —T'(t)) >0 for allt € S* and all X € K.
(i) The projection v of T onto the conformal plane is a Jordan curve.

(iii) If K; is the projection of K; onto the conformal plane, then Ki and Ko
lie in different components.

In particular K™ = K{°U Kj°.
The main ingredient in the proof is Helly’s theorem on compact convex sets
in R (see for example [DGK63]):

HELLY’S THEOREM. Let {C4} be a collection of compact, conver sets in R?
and suppose that for any aq, ..., aq4+1 the intersection

Coy NN Cay,,

is nonempty. Then the whole intersection (), Co is nonempty.

In conformal-anticonformal coordinates, since K7 and Ko are sign-separated,
lot —yT| > o7 —y | forall X € K1, Y € Ko. (15)

With projc denoting the projection onto the conformal plane C, let K, =
projc K1 and Ko = projcKs. In particular from (15) we have Ky N Ko = (). Let

S:={Z:det(X —Z) >0 for all X € K}. (16)

Suppose we fix z € C and look for w € C such that Z := (z,w) satisfies Z € S.
By definition Z = (z,w) is in S if |[w — 27| < |z — 2| for all X € K, in other
words

w € Byt _)(z7) for any X € K.

Hence

projcS ={z € C: ﬂ Byt (x7) # 0}. (17)

XeK
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Note that for any X € K1, Y € Ko and 2z ¢ {27,y } we have

B|x+—z|(x_)mB\y+—z\(y_) 7é (Z)a (18)

since |z7 —y~| < |zt —yT| < |zt — 2|+ |yt — 2|

In view of Helly’s theorem we study the intersection of any three balls. Note
that Helly’s theorem is not directly applicable to an infinite family of open balls,
but we will deal with this later. For any X1, X2, X3 € K we define

B(X1, X2, X3) ¥ {zeC: ﬂBll i@ =0}, (19)

Let us say that £ C R? is a solid ellipse if £ is a (possibly empty) closed convex
set whose boundary is an ellipse.

LEMMA 5. Under the assumptions of Theorem /j the sets E(X1, X2, X3) as in
(19) satisfy

(1) E(Xy, X2, X3) is closed and bounded for any X; € K
(2) o, 25,25 € B(X1, X2, X3) for any X; € K
(3) For any X1, X2, X3 € Ky andY € Ky we have y© ¢ E(X1, X2, X3)

(4) Suppose X(Z) X(l) (l) € K such that X( RN X; forj=1,2,3 as i — oo.

Then for all z € C for which there exists z; € E(Xl(i), XQ(i), Xéi)) with z; — z
we have z € E(X7, X2, X3).

(5) For any X1, X2, X5 € K there exists a solid ellipse £ C C such that

E(Xl,XQ,Xg) 5U{£L’1,l‘2, }

(6) If X1,X5 € K1 and X3 € Ko, then there exists § > 0 such that
z ¢ E(X1, X2, X3) whenever 0 < |z —x3| <6,
moreover

(i) if det(X1 — X2) <0, then x, 23 €&,
(i) if det(X; — X2) > 0, then BE(X1, Xo, X3) = {z], 25,27 }.

Proor. The first and second statements follow directly from the definition.
Part (3) follows from (15). For part (4) suppose that z ¢ FE(X;, X5, X3). By
definition this means .

ﬂ -z (@) # 0

But then the intersection remains nonempty for small perturbations of the three
balls, and in particular z; ¢ E(Xl(l), XQ(Z), X(Z)) for sufficiently large 3.
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To prove (5) let us assume that E(X1, Xo, X3) # {2],25,25}. For z ¢
E(X1, X2, X3) the intersection ), B, +_,(x;) is nonempty, and

Z diamﬂB‘ﬁ_z‘(Ii—)
i

is continuous. Hence if z is on the boundary of F(X7, X2, X3) (and z is different

from :Ef, :E;, :c;r), then the corresponding three circles

Ci={weC:|w—z|=|z—af|}

need to intersect in a single point w, which lies in the convex hull of {z| , 25 , x5 }.
We prove that the set of points z with this property, i.e. the set

{z € C: there exists w € C with |w — ;| = [z — ]| for i = 1,2,3}  (20)
is an ellipse. Notice that this set is exactly the projection onto C of
{PeR**?: det(X;, — P)=0fori=1,2,3}.
Consider the equations
lw—ay [P~ |z —af > =0,
lw— a5 |z — 23> =0, (21)
w— a2~ |z —aF ]2 = 0.
Subtracting the ith from the jth equation gives
2w (wy =) =2z (o] —al) + 2P = 217 = |27 17 + |25 %
In this way we obtain three linear equations for w in terms of z:
Vij - w = a5 - 2+ by for 1 <4 < j < 3. (22)

Suppose that v12 and 13 are parallel (or one of them is zero). Then
{z1,25,x5 } is contained in a line. Suppose for definiteness that the order-
ing of the points on the line is such that z; € [z],25]. Then the three balls
Bt (x;) have an empty intersection if and only if B, .+ (xf)ﬂBlZ_x;‘ (x3)
is empty. The necessary and sufficient condition for this is that the sum of the
radii is less then the distance of the centers, i.e.

2 =2 |+ |z —2f| < |2y — 23], (23)

But equality in (23) gives the equation of an ellipse with focal points :cf and
Jr
T .
Now suppose r15 and vq3 are not parallel. Then we can solve the first two
equations in (22) for w, as an affine function of z, say, w = I(z). Substituting
back into the first equation in (21) gives a quadratic equation for z:

(z) — 25 |* = |2 — af[* = 0. (24)
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The way we obtained (22) implies that if z satisfies (24), then w = [(z) also
satisfies the other two equations in (21). This proves that (24) is the equation
defining the set (20). Since (24) is quadratic and since F (X1, X», X3) (and
hence (20)) is bounded, (20) is an ellipse.

It remains to prove (6). Firstly note that from (15) there exists § > 0 such
that

T3 — x| +0<|vd —al| forj=1,2
3 j 3 J

and hence

whenever 0 < |z — 27| < 6.
Suppose det(X; — X3) < 0. As in (23),

{zeC: |z—af|+|z—af| <|2] —z5|} CE

But since |z — 23| < |27 — 25|, the set of such z is a nonempty solid ellipse,
sozf,zy €€E.

Finally assume that det(X; — X3) > 0. Suppose the solid ellipse € given
by part (5) is nonempty. Consider the triangle T = {x], 23, 25}, If 2 € £
and z is outside the triangle T', then we can move z towards 7T in a direction
perpendicular to a line separating 7' from z whilst remaining in E(X7, X2, X3),
since along such a direction all three distances |z — x| decrease. So we may
assume that ENT # (). But from (25) we also know that 7'\ € is nonempty. Hence
there exists z € TN JE. But for each z € 9E there exists w € {x], x5, x5 }°
such that |z — 2| = |w — 27| for i = 1,2,3. Since |2} — ac;r| > |zy — ;]
the angle between (2 — ) and (2 — x;r) needs to be greater than the angle
between (w —z;") and (w —z; ). This gives a contradiction, since z and w both
lie inside the triangles and so the sum of the three angles equals in both cases
2m. Therefore £ is empty.

Q.E.D.

Now we will make use of the assumption that for any X;, Xo € K; and
Y1,Ys € Ky the set {X1, X2,Y7, Y2} is not a Ty configuration.

LEMMA 6. Suppose X1, Xo,Y1,Ys € R?*2 such that det(X; — Y;) > 0, and
suppose that there exists P € {X1, Xo,Y1,Y2}¢° such that

det(X; — P) > 0 and det(Y; — P) > 0 for all i, j.
Then E(X1, X2,Y1) N E(X1,Y1,Ys) C {of, 23,y vs }.
PrOOF. If det(X; — X3) > 0, then Lemma 5 part (6) implies that

E(X1, X2, Y1) = {z], 23,y }.
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So let us assume that det(X; — X2) < 0 and det(Y; — Y2) < 0. In this case we
know from Lemma 5 that

E(X15X27Y1) = 51 ) {yf} and E(X17Y17Yé) = 82 ) {xf})

where & and & are two nonempty solid ellipses containing =}, 23 and y;, y5
respectively. If they intersect, then F (X1, Xo,Y1)UFE(X1,Y1,Y3) is a connected
set. We claim that this is not possible.

Consider the subspace L spanned by

{Xo - X1, W — X1, Y2 — X3}
If there exists nonzero R € L+ with det R > 0, then let ) = cof R. Since then
(cof Q,X; — P)=(R,X; — P) =0,
we have that
det(X; — (P +1tQ)) = det(X; — P) + t*det Q > det(X; — P) > 0
and similarly with Y;. Thus the line P + tQ is contained in the set
{Z e R**?: det(X; — Z) > 0, det(V; — Z) > 0 for i = 1,2}.

Since det@ > 0, the projection onto C is a (non-degenerate) line [ that is
contained in E(X1, Xo,Y7) U E(X1,Y1,Y2)¢ (the union of the complements).

Since P € {X1, X5,Y1, Y5}, the points :Uf, x; and yf‘, y;' cannot all lie on the
same side of [. But then E (X3, Xo,Y1) U E(X1,Y1,Ys) cannot be connected.

Now suppose R € L+ with det R < 0, i.e. (Z,R) = 0 for all Z € L. Let
= 0 1
J = (1 0). Then
(JRYZ,J)=—(Z,R)=0 forall Zec L.

That is, Xi = jRTXi and 171 = jRTYi lie in an affine space L orthogonal to J.
In particular the projections Z; and g; lie in a line [ C C. Consider the set

Cs={PcL:det(X;—P)=2¢fori=1,2},
where § > 0 is such that 0 < ¢ < det(X; —Y}) for all ¢,5. In coordinates
P = (2,%@), and P € C; if and only if @ € [ and |2 — ]| = |@ — & | + J for
i = 1,2. This implies that w € [Z],Z, |, and hence Z satisfies
|z —af|+ |2 — 33| = |#] — 25|+ 26.

Thus projcég and hence C; is an ellipse, with :ch and :Tc; contained in the interior
of projcCs.
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Suppose that there exists P € Cs so that det(Y; — P) < 0. Since 7, €1, we
may assume that w € [g;, 2] ]. But then

" — & < g7 — 2| + |2 - 7|
<|gy —wl+[w—27[+6
=gy — @ |+6
< g — &1,

which is a contradiction. We deduce therefore that det(Y; — P) > 0 for all
P e (Cs and ¢ = 1,2 and thus gjf and g;r lie outside the ellipse projcCs.
Transforming back, let Cs = R~7J~'Cs. Then

det(X; — P) > 0 and det(Y; — P) >0

for all P € Cs and © = 1,2. In particular the projection proj-Cs cannot intersect
E(X1,X2,Y1)UE(Xy,Y1,Y2).To see that projCs is also an ellipse with " and
ac;|r lying inside, connect the identity matrix and R~TJ-! with a continuous
path lying in the set {Q € R?*? : det @ > 0}. If, say, 2] is not contained in
the interior of the convex hull of proj:Cs, then there exists a matrix ) with
det Q@ > 0 such that (QX)] € projcQCs. But that means that there exists
P € Cs so that QP — QX is anticonformal. This however cannot be, since
det(QP — QX1) = det Qdet(P — X;1) > 0.

Q.E.D.

Lemma 6 motivates the following definition: Suppose {a;}, {b;} are two
families of open balls in the plane with the property that whenever (a;Na;)Nby, =
0, then a; N (br, N b;) and a; N (by N b;) are nonempty (and same with a and b
swapped). Let us then say that these two families satisfy the T,-property.

Then lemma 6 implies that if K7 U K5 contain no Ty, then for any z € C
the corresponding balls a; = B|xj—z|(xi_)’ b; = B‘y+ (y; ) for X; € Ky and

=

2|

Y; € K satisfy the Ty-property.

LEMMA 7. Suppose {a;}, {b;} are two families of open balls in the plane with
the Ty-property. Then for any ci,co € {a;} U {b;} the sets a1 Naz Nec1 and
b1 Nba N ey cannot be both empty.

PrOOF. We split the proof into cases depending on which family of balls ¢; and
co belong to.

(1) a1 NazNbs and by Nbe Nay

Suppose that both sets are empty. Applying the Ty-property, the following
sets are nonempty: (a1 N bs) N ba, (a1 Nbs) N by, (az Nbsg) N by, (az Nbs) N b,
(a1 NMaz) Nba, (a1 Naz) Nby. In particular the picture is as shown in Figure 6,
with ¢ being the bounded component of R? \ (a; U ag U b3).
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Figure 6: Intersection of three balls

Now since by intersects all of (a1 Nag), (a1Nbs), (a2Nbs), it contains c. Similarly
¢ C by. But then (b1 N by) contains the convex hull of ¢, hence intersects ay.

(2) a1 NazNas and by Nba Nbs

Suppose again both sets are empty. Suppose in addition by NbsNa; = (). By
part (1) by and by both have a nonempty intersection with a; Na; (for all i, j),
and if ¢ is the bounded component of R? \ (a1 UazUas), we see that ¢ C by Nba.
But then (by Nb2) Nay cannot be empty. So in fact b; N b; N ay is nonempty
(for all 4,4, k). Let ¢ be the bounded component of R? \ (b; U by U b3). Then
¢ C a1 NasNasg, a contradiction.

(3) alﬂagﬂbg and blmbgﬂag

If both sets are empty, then by part (1) a; and ag intersect all (b; Nb;), and
by and b intersect all (a; Na;). In particular if ¢ is as in the picture above, then
¢ C by and ¢ C by. Moreover by part (2) we may assume a;NasNag # 0. Suppose
now that azN (a1 Nbg) = 0. Then azN(b;Nb;) # 0 for all 7, j, which contradicts
our assumptions. Hence ag N (a; Nbs) # 0, and similarly az N (a2 Nb3) # 0. But

then ¢ C a3 and in particular az Nb; N by # 0, a contradiction.
Q.E.D.

Proof of Theorem 4.

Suppose for a moment that z € C such that for any X, X2, X3 € K the inter-

section ﬂ;:1 BI@’**ZI (z; ) is nonempty. We claim that then the whole family of
J

balls ot

B<= {B‘z+,z|(l‘7) : X €K}
has a nonempty intersection. This would be a direct consequence of Helly’s
theorem once we can pass from open to closed balls. For this we employ com-
pactness of K. Firstly, z ¢ K1 U K, otherwise one of the balls would be empty,
so there exists 79 > 0 so that r > r¢ for all B,(z) € B. Furthermore, for each
triple B, (x;) € B, j =1,2,3, there exists € > 0 such that

3
ﬂ Byy—e(x;) # 0. (26)
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Suppose that there is no lower bound for € > 0 as the triple varies. Then there
exists BY), Béz),Béz) € B with the property that

1

; .

3
diam ﬂ Bj(-l) <
j=1
But then for appropriate subsequences B](-i) — B; € B (in the sense that the

radii and the centers converge), and in the limit ﬂ?zl B; = (). This contradicts
our initial assumption. Hence there exists € > 0 so that (26) holds for all triples
By, (1), Bry(22), Bry(x3) € B. Then we apply Helly’s theorem to the family of
closed balls

{B|x+_z|_€(I_) X € K},

and thus finish the proof of the claim that (5. B is nonempty.

Our assumption that X7, Xs € K7 and Y7,Y5 € K5 do not form a T, implies
(by Theorem 2) that there exists P € {X1, X2, Y7, Y2}°° with

det(X; — P) > 0 and det(Y; — P) > 0 for i =1,2.
Thus, Lemma 6 together with Lemma 7 implies that
E(X1,X2,21) N E(Y1,Y2, Z) C {af, 23,91 ,y3 2 2 } (27)
for any X; € K1, Y; € Ko and Z; € K1 U Ks. Let

& = ( U E(Xl,XQ,Z)) \ Koy

X1,X0€6K1,Z€eK

& = ( U E(Yl,Yg,Z)) \ K.

Yl,YQEKQ, ZeK

(Recall that K; = projcK;). By (27) above £& N & = (). From Lemma 5 we
deduce that & and & are compact sets and (17) combined with the argument
above concerning the use of Helly’s theorem implies that

projeS = C\ (&1 U &), (28)
where, as in (16),
S:={Z:det(X —Z) >0 for all X € K}.

But then we can find a smooth curve y € C separating K; and K, and lying
in projS. For each point z € v there exists w € C such that Z = (z,w) € S.
In addition we can choose w = w(z) so that it varies continuously with z. But
then T'(¢) := (y(¢), w(y(t))) satisfies the required conditions.

To see that K™ = K{°U K3° we may apply the so-called Structure Theorem
([Ped93],[MP98],[Kir03]), since v x C defines a hypersurface disconnecting K*.
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Alternatively we can consider the function f : R2*2 — R defined by

F(x) = { SWver(—det(X —¥)) i X €U U
"\ supyer(—det (X —Y)) if X € Uy UUs.

Here Uy and Uj are the two components of {X : det(X —Y) >0 for all Y € '},
and Uz = R?*2\ (U;UU,). Since all rank-one lines in R?*? lie entirely in U; UU3
or Uy U Us and since f is rank-one convex (locally polyconvex) in both these
regions, f is globally rank-one convex. Moreover f < 0 in U; and f = 0 in Us.

Suppose now that v € M"(K), and without loss of generality assume that
the barycenter v € Us (it is clear that K¢ C Uy U Us). Then f(7) = 0, and by
the definition of laminates

0=f@) <wf).

This implies that supp v C Us.

6 Compact sets

PROPOSITION 2. Suppose K C R?*2 is compact with no rank-one connections.
If K contains no Ty configuration of type (A), then (upto changing signs) either

det(X —Y) >0 for all X, Y € K with X £Y,
or K admits a decomposition of the following type:
K =K; UKo,

where K1 and Ky are both nonempty, disjoint compact sets, and det(X —Y) >0
forall X e K1,Y € K.

PrROOF. We study the ©-, and ®-connectedness of K. We call the set ©-
connected if for any X,Y € K there exists X1, Xo,..., Xy € K such that

det(X — X1) < 0, det(X; — X3) <0, ..., det(Xy —Y) < 0.

In fact we can always assume that if such a path exists, then it has at most
length 2 (that is, Xo = Y'). Indeed, let us assume a S-path between X and
Y exists, and take the shortest such path. If the shortest path has length 3 at
least, then we have the following sign assertions:

1. det(X — X1) < 0, det(X; — X3) < 0, det(Xs — X3) < 0,
2. det(X — X3) > 0, det(X — X3) > 0, det(X; — X3) > 0.

But this is exactly the sign-configuration (A) which cannot exist by assumption.
This proves our first claim.
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Secondly, for any X € K, the set

CCo(X) def {Y € K : there exists a S-path from X to Y}

is compact. This is clear since if Y; € K are &-connected to X, then there exist
X; € K with det(X; — X) < 0 and det(Y; — X;) < 0 (with equality if and only if
the matrices are equal), and for appropriate subsequences Y; — Y and X; — P
with Y, P € K satisfying

det(X — P) <0 and det(P —Y) <0.

Thus Y is also ©-connected to X.
On the other hand, if Xy € K such that there exists Yy € K with

det(Xo — YO) <0,

then CCg(X)p) is also open (relative to K): for if Y € CCgs(Xo) \ {Xo0}, then
either det(Xo — YY) < 0, or there exists P € K such that det(Xo — P) < 0 and
det(P—Y) < 0. Then there exists an € > 0 such that for any Y € B,(Y") we have
det(Y — Xg) < 0 in the first case, or det(Y — P) < 0 in the second case. This
means that B.(Y)NK C CCg(Xp). Furthermore, as det(Yy — Xo) < 0, there is
a neighbourhood B.(Xy) of X such that det(X — Yp) < 0 for all X € B.(X)).
Hence BE(Xo) NK C CC@(XQ)

Assume now, for the moment, that K contains a matrix X with the property
that det(X — Xo) > 0 for all X € K\ {Xo}. If det(X —Y) > Oforall X,Y € K
with X # Y, then we are done. Otherwise fix Y € K for which there exists
Y1 € K with det(Yy — Y1) < 0. By the above, CCg(Yp) is both closed and open
in K, and X ¢ CCgs(Yp). But then

K1 = CCs(Ypy) and Ky = K \ CCs(Yp)

give the required nontrivial decomposition.
Finally consider the general case. For any n take an %-net Xq,..., XN, with
N = N,,. In other words for any Y € K there exists ¢ < IV such that

Y — X3 < %
We can apply the considerations of Section 4 to get a decomposition
{X1,..., XN} =K' UK}
where K7 and K2 are nonempty, and there exists ¢, > 0 such that
det(X; — X;) > ¢, for X; € K7, X; € K. (29)

Now suppose that there is no lower bound for ¢, > 0 as we let n — oo (in a
way that {X1,...,Xn,} C{X1,...,Xn,,,}). Then there exist

X, € K1Y, € K} with det(X,, = Y,,) =¢, — 0.
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In particular, since K contains no rank-one connections, X,, Y, — P € K. We
claim that det(P — X) > 0 for all X € K\ {P}. If there exists Q € K with
det(P — Q) < 0, then for some § > 0 we have

det(Py — Q1) < 0 whenever |P — Py, |Q — Q1| < é. (30)

Take n sufficiently large so that n > 3 and |X,, — P|,|Y, — P| < 4. Then there
exists a matrix X; in the t-net for which |X; — Q| < §. Furthermore either
det(X; — X,,) > 0 or det(X; —Y,,) > 0 (depending on whether X; is in K} or
K, see (29)). But that gives a contradiction with (30) and thus proves that if
¢n — 0, then there exists P € K with det(P — X) > 0 for all X € K \ {P}.
In this case the previous claim yields a sign-decomposition. In the case where
cn > ¢ > 0, we automatically get the decomposition K; and Ko, obtained as
the limits of K" and K%. This concludes the proof. Q.E.D.

We recall the following result from Sverdk [Sve93):

LEMMA 8. Let K be a bounded Borel measurable subset of R?>*2 with no rank-
one connections. If det(X —Y) > 0 for any distinct X,Y € K, then MP(K)
is trivial, i.e. contains Dirac masses only. In particular KP¢ and hence K¢ is
trivial.

Now we are ready to prove the main result of this chapter:

Proof of Theorem 1. Suppose X € K"\ K, and consider all compact subsets
K of K such that X € K™, If

KDODKiDKyD...

is a decreasing sequence of compact sets such that X € K¢ for all 4, then
Ko = (); K; is a nonempty compact subset of K. Suppose that X ¢ KS.
Then there exists f : R2*? - R rank-one convex such that f = 0 on K., and
f(X) = 1. But since f is in particular continuous (in fact Lipschitz), there exists
1o such that f < % on K; for i > ip (otherwise K; N {f > %} is a decreasing
chain of nonempty compact sets, and so Koo N {f > %} cannot be empty).

But then g = max{0, f — %} is a rank-one convex function such that g =0
on K; (for i > ip) and g(X) > 0, and this contradicts the assumption that
X €K/ SoX e K'S.

But then Zorn’s Lemma can be applied to give a minimal set Ky C K,
i.e. Ky satisfies

1. X € Kj°\ Ko,
2. if Ky C Ky is compact with X € K¢, then K; = K.

If Ko does not contain a Ty configuration, then Proposition 2 implies that either
det(X —Y) > 0 for all distinct X,Y € Ky, or Ky = K1 UK> is a nontrivial sign-
separation as described in Proposition 2. In the former case Lemma 8 gives a
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contradiction, and in the latter case we use Theorem 4 to get K¢ = K{°UK35°.
Then either X € K{°¢ or X € K3°. In both cases we contradict the minimality

of KQ.

Q.E.D.
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