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Abstract: We show that noncommutative gauge theories with arbitrary compact gauge
group defined by means of the Seiberg-Witten map have the same one-loop anomalies
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1. Introduction

It is a well known fact that not all relevant gauge groups in particle physics are con-
sistent with the Moyal product of noncommutative field theory. An example of this is
provided by the Moyal product Aµ(x) � Aν(x) of two SU(N) Lie algebra valued gauge
fields Aµ(x) and Aν(x) . It is clear that such product does not lie in the SU(N) Lie
algebra but in a representation of its enveloping algebra, so Aµ(x) can not be regarded
as a truly noncommutative SU(N) gauge field. This makes it difficult to formulate, even
classically, noncommutative extensions of some physically relevant gauge theories like e.g.
the standard model. A way to circumvent this problem is to build noncommutative gauge
and matter fields from ordinary ones by means of the Seiberg-Witten map [1]. Using this
approach, classical noncommutative gauge theories have been constructed for arbitrary
compact groups [2, 3, 4, 5] and noncommutative gauge theories with SU(5) and SO(10)
gauge groups have been constructed in ref. [13]. Furthermore, a noncommutative standard
model has been formulated in ref. [6] and some of its phenomenological consequences have
been explored in a number of papers [7, 8, 9, 10, 11, 12]. Many of these noncommutative
gauge theories, among them the noncommutative standard model, involve chiral fermions,
so the corresponding classical gauge symmetry may be broken by quantum corrections. In
other words, an anomaly may occur and the resulting quantum theory may then become
inconsistent. To study the consistency of quantum noncommutative gauge theories defined
by means of the Seiberg-Witten map, it is therefore necessary to study whether new types
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of anomalies occur –i.e. anomalies which do not appear in ordinary commutative spacetime
and hence that may require additional anomaly cancellation conditions.

In refs. [14, 15, 16] it has been shown that for Yang-Mills type gauge theories with
arbitrary semisimple gauge groups the only nontrivial solution to the anomaly consistency
condition is the usual Bardeen anomaly, regardless of whether or not the theory is Lorentz
invariant or renormalizable by power counting. This result readily applies to gauge non-
commutative field theories constructed by means of the Witten-Seiberg map, since, as far
as these matters are concerned, the presence of a noncommutative matrix parameter θµν

with mass dimension −2 only precludes Lorentz invariance and power-counting renormal-
izability. Thus, for noncommutative gauge theories with semisimple gauge groups, there
are no θµν-dependent anomalies and any θµν-dependent breaking of the BRS identity, be-
ing cohomologically trivial, can be set to zero by adding appropriate counterterms to the
effective action. Note that the addition of these θµν-dependent counterterms to the effec-
tive action makes sense within the framework of effective field theory, but this agrees with
the observation that noncommutative field theories defined by means of the Seiberg-Witten
map should be considered as effective field theories [13, 17]. All the above implies that no
anomalous θµν-dependent terms should occur in the Green functions of noncommutative
theories with semisimple gauge groups, a fact that has been proved to hold true at order
one in θµν for the three-point function of the gauge field and a simple gauge group by
explicit computation of the appropriate Feynman diagrams [18].

The situation is very different if the gauge group is not semisimple. In this case, the
consistency condition for gauge anomalies has other nontrivial solutions besides Bardeen’s
anomaly. In particular, in four dimensions and if the gauge group is G × U(1)Y , with G

a semisimple gauge group, the additional nontrivial solutions are of the form

∫
d4x c Iinv[fµν , Gµν ] . (1.1)

Here matter fields have been integrated out, c is the U(1)Y ghost field and Iinv[fµν , Gµν ]
is a gauge invariant function of the U(1)Y field strength fµν , the G field strength Gµν

and their covariant derivatives. Note that there are infinitely many candidate anomalies
of this type since neither power counting nor Lorentz invariance are available to reduce
the number of invariants Iinv[fµν , Gµν ] . Furthermore, when the gauge group contains
more than one abelian factor, there are additional candidate anomalies of yet another type
[14, 15, 16]. The purpose of this paper is to investigate whether anomalies of these types
occur in noncommutative gauge theories with nonsemisimple gauge groups defined through
the Seiberg-Witten map. This is not a trivial question and has far reaching implications.
Indeed, did solutions of type (1.1) occur in perturbation theory, the corresponding quantum
gauge theory would be anomalous, the anomaly being θµν-dependent. To remove the
resulting anomaly and render the quantum theory consistent, one would then have to
impose constraints on the fermions hypercharges. A conspicuous instance of a model with
such a gauge group for which this point should be cleared is the noncommutative standard
model [6].
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In this paper we will prove that, for a noncommutative field theory with arbitrary
compact gauge group defined by means of the Seiberg-Witten map, the only anomaly that
occurs at one loop (hence, to all orders in perturbation theory, if one assumes the exis-
tence of a nonrenormalization theorem for the anomaly) is the usual Bardeen anomaly.
The paper is organized as follows. In Section 2 we fix the notation, define the chiral BRS
transformations and use the Seiberg-Witten map to classically define the noncommutative
model. Section 3 uses dimensional regularization to explicitly compute the εµ1µ2µ3µ4 part
of the renormalized effective action. This yields a complicated power series in the noncom-
mutativity parameter θµν , of which the term of order zero is the usual Bardeen anomaly
of commutative field theory. In Section 4 we show that all terms in this series of order one
or higher in θµν are cohomologically trivial with respect to the chiral BRS operator and
find the counterterm that removes them from the renormalized effective action. Section
5 contains our conclusions. We postpone to two appendices some very technical points of
our arguments. Let us emphasize that in this paper we will only discuss gauge anomalies
–see refs. [19, 20] for related work on the rigid axial anomaly.

2. The model, notation and conventions

Let us consider a compact nonsemisimple gauge group G = G1×· · ·×GN , with Gi a simple
compact group if i = 1, . . . , s and an abelian group if i = s+1, . . . , N . We may assume
without loss of generality that the abelian factors come with irreducible representations,
which of course are one-dimensional. Let us denote by ψi1···is a Dirac field on ordinary
Minkowski spacetime carrying an arbitrary unitary irreducible representation of the Lie
algebra of G . Since the abelian factors come with one-dimensional representations, the
indices in the Dirac field ψi1···is correspond to the simple factors. From now on we will
collectively denote the “simple” indices (i1 · · · is) by the multi-index I . The corresponding
vector potential vµ on Minkowski spacetime in the representation of the Lie algebra carried
by ψI will have the following decomposition in terms of the gauge fields ak

µ and al
µ

associated to the factors of the group G

vµ =
s∑

k=1

gk (ak
µ)a (T k)a +

N∑
l=s+1

gl a
l
µ T

l .

Here gk and gl are the coupling constants and {(T k)a, T l} , with a = 1, . . . ,dimGk for
every k = 1, . . . , s and l = s + 1, . . . , N , stand for the generators of the G Lie algebra
in the unitary irreducible representation under consideration. As usual, a sum over a is
understood. The matrix elements IJ of these generators are always of the form

(T k)aIJ = δi1j1 · · · (T k)aikjk
· · · δisjs

T l
IJ = δi1j1 · · · δisjsY

l ,

where (T k)aikjk
are the matrix elements of the generator (T k)a of the Lie algebra of the

factor Gk in some given irreducible representation. Given any two generators (T k)aIJ and
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(T k′
)a

′
IJ as above we define the trace operation Tr as

Tr (T k)a (T k′
)a

′
= (T k)aIJ (T k′

)a
′

JI

= δi1j1 · · · (T k)aikjk
· · · δisjsδj1i1 · · · (T k′

)a
′

jk′ ik′ · · · δjsis .

The ghost field λ associated to vµ , also in the representation furnished by ψI , is

λ =
s∑

k=1

gk (λk)a (T k)a +
N∑

l=s+1

gl λ
l T l ,

with (λk)a and λl being the ghost fields for the factors in G . Now we consider the theory
that arises from chirally coupling, say left-handedly, the fermion field ψI to the gauge field
vµ . The fermionic part of the corresponding classical action reads

Sfermion =
∫
d4x ψ̄I iD̂(v)IJ ψJ , (2.1)

with ψ̄I = ψ†
Iγ

0 and

D̂(v)IJ ψJ = δIJ ∂/ψJ + v/IJ P−ψJ .

Here P− is the left-handed chiral projector, given by

P± =
1
2

(1 ± γ5) γ5 = −iγ0γ1γ2γ3 ,

the gamma matrices γµ being defined by {γµ, γν} = 2ηµν and the convention for the
Minkowski metric ηµν being ηµν = diag (+,−,−,−) . This action is invariant under the
chiral BRS transformations

svµ = ∂µλ+ [vµ, λ] sψ = −λP−ψ sψ̄ = ψ̄λP+ sλ = −λλ . (2.2)

As usual, the BRS operator s commutes with ∂µ , satisfies the anti-Leibniz rule and is
nilpotent, i.e. s2 = 0 .

To construct the noncommutative extension of the ordinary gauge theory defined by
the classical action Sfermion, we use the formalism developed in refs. [2, 3, 4, 5]. To
this end, we first define the noncommutative gauge field Vµ , the noncommutative spinor
field ΨI and the noncommutative ghost field Λ in terms of their ordinary counterparts
vµ , ψI and λ by using the Seiberg-Witten map [1]. This is done as follows. The fields
Vµ = Vµ [v; θ] , ΨI = ΨI [ψ, v; θ] and Λ = Λ [λ, v; θ] are formal power series in θµν , with
coefficients depending on the ordinary fields and their derivatives, that take values in the
representation of the enveloping algebra of the Lie algebra of the group G furnished by
the ordinary Dirac field ψI and solve the Seiberg-Witten equations

s�Vµ = sVµ s�Ψ = sΨ s�Λ = sΛ (2.3)

subject to the boundary conditions

Vµ [v; θ=0] = vµ ΨI [v, ψ; θ=0] = ψI Λ [λ, v; θ=0] = λ . (2.4)
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In eq. (2.3) s is the ordinary BRS operator of eq. (2.2), while s� denotes the noncom-
mutative BRS chiral operator, whose action on the noncommutative fields is given by

s�Vµ = ∂µΛ + [Vµ,Λ]� s�Ψ = −Λ � P−Ψ s�Λ = −Λ � Λ . (2.5)

The commutator [f, g]� stands for

[f, g]� = f � g − g � f ,

with f � g the Moyal product of functions on Minkowski spacetime, defined for arbitrary
f and g by

(f � g)(x) =
∫

d4p

(2π)4

∫
d4q

(2π)4
e−i(p+q)x e−

i
2

θαβpαqβ f̃(p) q̃(q) ,

f̃(p) and g̃(q) being the Fourier transforms of f and g . For the noncommutative field
ΨI we further demand it to be linear in ψI , so that

ΨαI =
(
δIJ δαβ +M [v, ∂, γ, γ5; θ]αβ IJ

)
ψβJ , (2.6)

where α and β are Dirac indices. Note that, in accordance with the boundary condition
for ΨI [ψ, v; θ] , the differential operator M [v, ∂, γ, γ5; θ]αβ IJ vanishes at θ = 0 . Taking
Ψi linear in ψI , as in eq. (2.6), is always possible [21] and is the natural choice within the
framework of noncommutative geometry [17]. Once the noncommutative fields have been
defined, one considers the following noncommutative classical action

Sfermion
nc =

∫
d4x Ψ̄I � iD̂(V )IJΨJ , (2.7)

where Ψ̄I = Ψ̄†
Iγ

0 and

D̂(V )IJΨJ = δIJ∂/ΨJ + V/IJ � P−ΨJ .

We stress that the noncommutative fields are functions of ordinary fields as given by the
Seiberg-Witten map and hence the noncommutative action is also a functional of these.
Furthermore, the noncommutative action Sfermion

nc is invariant under the ordinary chiral
BRS transformations in eq. (2.2) since, by definition of the Seiberg-Witten map,

sSfermion
nc = s�S

fermion
nc

and, by construction,

s�S
fermion
nc = 0 .

The effective action Γ[v; θ] of the noncommutative theory is formally defined by

Γ[v; θ] = −i lnZ[v; θ]

Z[v; θ] = N
∫

[dψ̄] [dψ] exp
(
i Sfermion

nc

)
,

(2.8)
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with N a normalization constant chosen so that Z[v=0; θ] = 1 , i.e.

N−1 =
∫

[dψ̄] [dψ] exp
(∫

d4x ψ̄ i∂/ψ

)
,

and [dψ̄] [dψ] the measure for ordinary fermion fields. Also formally, the invariance of
Sfermion

nc under s leads to the invariance of Γ[v; θ] under ordinary gauge transformations
of vµ . The problem is that all this is formal since defining the effective action requires
renormalization. The question that should really be addressed is whether it is possible to
define a renormalized effective action Γren[v; θ] invariant under s . Were this the case, the
theory would be anomaly free. In this paper we provide an answer in the negative and
show that the anomaly has the same form as for the ordinary, i.e. commutative theory.

3. Form of the noncommutative anomaly

In this section we use dimensional regularization to define a renormalized effective action
Γren[v; θ] and find a closed expression for the anomaly sΓren[v; θ] in terms of the non-
commutative fields Vµ and Λ . To dimensionally regularize the theory, we consider the
action

Sreg
nc =

∫
d2ωx Ψ̄I � i

(
δIJ ∂/ΨJ + γ̄µVµ IJ � P−ΨJ

)
, (3.1)

first introduced in the context of noncommutative gauge theories in ref. [18] for U(N)
theories and theories with simple groups. Here we use dimensional regularization á la
Breitenlohner and Maison [22]. We will use the notation in that reference, in which 4-
dimensional objects are denoted with bars (ḡµ

µ = 4) and evanescent or (2ω−4)-dimensional
quantities are denoted with hats (ĝµ

µ = 2ω − 4) . The dimensionally regularized partition
function Zreg[v; θ] is defined as the sum of the dimensionally regularized Feynman diagrams
generated by the path integral

Zreg[v; θ] = N
∫

[dψ̄] [dψ] exp
(
i Sreg

nc

)
. (3.2)

In the regularized partition function we perform the change of variables ψβJ , ψ̄βJ →
ΨαI , Ψ̄αI , with

ΨαI =
(
δIJ δαβ +M [v, ∂, γ, γ5; θ]αβ IJ

)
ψβJ

Ψ̄αI =
(
δIJ δαβ + M̄ [v, ∂, γ, γ5; θ]αβ IJ

)
ψ̄βJ

[dψ̄] [dψ] = det
(
I + M̄

)
det

(
I +M

)
[dΨ̄] [dΨ] ,

(3.3)

where the determinants are defined by their diagrammatic expansion in dimensional regu-
larization in powers of θ . Now, in dimensional regularization we have

det
(
I +M

)
= det

(
I + M̄

)
= 1 . (3.4)
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To see this, take e. g. the determinant det
(
I +M

)
and write it as the partition function

det
(
I +M

)
=

∫
[dψ̄] [dψ] eiS[M ]

of a fermion theory with classical action

S[M ] =
∫
d2ωx ψ̄

(
I +M

)
ψ .

The propagator of such a theory is the identity and the interaction vertices come from the
operator M [v, ∂, γ, γ5; θ] , so the Feynman integrals that enter the diagrammatic expansion
of det

(
I +M

)
are of the form

∫
d2ωq

(2π)2ω
qµ1 · · · qµn .

Since this integral vanishes in dimensional regularization, eq. (3.4) holds and the change
of variables (3.3) gives for the path integral in (3.2)

Zreg[v; θ] = N
∫

[dΨ̄] [dΨ] exp
(
iSreg

nc [Ψ̄,Ψ, Vµ]
)
. (3.5)

Hence Zreg[v; θ] is a functional of Vµ , and so is the regularized effective action

Γreg[v; θ] = −i lnZ[v; θ]reg = Γreg[V ] . (3.6)

In other words, the regularized effective action depends on vµ through Vµ .
Eq. (3.6) for Γreg[V ] is to be understood in a diagrammatic sense as the generating

functional of 1PI Green functions for the field Vµ . That is to say,

iΓreg[V ] =
∞∑

n=1

1
n!

∫
d2ωx1 . . .

∫
d2ωxn Vµ1I1J1(x1) . . . VµnInJn(xn) Γµ1...µn

I1J1...InJn
(x1, . . . , xn) ,

(3.7)

with

Γµ1...µn

I1J1 ... InJn
(x1, . . . , xn) = 〈J µ1

I1J1
(x1) . . .J µn

InJn
(xn)〉conn

0
(3.8)

and

J µi

IiJi
(xi) = (ΨβiJi

� Ψ̄αiIi)(xi) (γ̄µiγ5)αiβi
. (3.9)

Here the symbol 〈O〉conn
0 stands for the connected component of the correlation function

〈O〉0 defined by

〈O〉0 =
∫

[dΨ̄] [dΨ] O exp
(
i

∫
d2ωx Ψ̄I∂/ΨI

)
. (3.10)
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Note that eqs. (3.8) and (3.10) define Γµ1...µn

I1J1...InJn
(x1, . . . , xn) as the result of applying

Wick’s theorem to J µ1

I1J1
(x1) . . .J µn

InJn
(xn) with regard to the contraction

〈ΨβJ(y) Ψ̄αI(x)〉0 = δJI

∫
d2ωq

(2π)2ω
e−iq(y−x) iq/βα

q2 + i0+
. (3.11)

It is not difficult to see that in eq. (3.8) there are (n− 1)! different contractions and that,
upon combination with the V ′s in eq. (3.7), they all yield the same contribution. The
regularized effective action then takes the form

iΓreg[V ] = −
∞∑

n=1

(−1)n

n

∫
d2ωx1 . . .

∫
d2ωxn Tr [Vµ1(x1) . . . Vµn(xn)] Γµ1...µn(x1, . . . , xn) ,

(3.12)

where

Tr
[
Vµ1(x1) . . . Vµn(xn)

]
= Vµ1I1I2(x1) Vµ2I2I3(x2) . . . Vµn−1In−1In(xn−1) Vµn InI1(xn) ,

the 1PI Green function Γµ1...µn(x1, . . . , xn) reads

Γµ1...µn(x1, . . . , xn) = in
∫ n∏

i=1

d2ωpi

(2π)2ω
(2π)2ωδ(p1 + . . .+ pn) e

i
nP

i=1
pixi

e
− i

2

P

1≤i<j<n

θαβpiαpjβ

×
∫

d2ωq

(2π)2ω

tr
[
(q/+ p/1) γ̄µ1P− q/γ̄µ2 P− (q/− p/2) . . .

(
q/− ∑n−1

i=2 p/i
)
γ̄µn P−

]
(q + p1)2 q2 (q − p2)2 · · · (q −

∑n−1
i=2 pi)2

(3.13)

and the symbol tr denotes trace over Dirac matrices. For completeness we present very
briefly an alternative derivation of (3.12). Integrating over [dΨ̄] and [dΨ] in eq. (3.5) and
using eq. (3.6), we obtain

iΓreg[V ] = Tr ln
[
1 + (∂/)−1γ̄µVµP−�

]
= −

n∑
n=1

(−1)n

n
Tr

[
(∂/)−1γ̄µVµP−�

]n
, (3.14)

where Tr is to be interpreted as
∫
d2ωx for the continuous indices of the operator on which

Tr acts and (∂/)−1 has matrix elements 〈y|(∂/)−1|x〉 given by the right-hand-side of eq.
(3.11). Clearly the right-hand side of eq. (3.14) has a neat diagrammatic representation
which readily leads to eq. (3.12).

We stress the fact that the noncommutative field Vµ(x) in eqs. (3.12) and (3.14) is
a mere spectator in the sense that these equations hold whatever the algebra on which
Vµ(x) takes values be, provided the operation Tr make sense. Eqs. (3.12) and (3.14)
are thus valid for noncommutative U(N), simple, semisimple and non-semisimple gauge
groups. One then expects that for nonsemisimple gauge groups a renormalized effective
action Γren[V ] can be defined so that the noncommutative gauge anomaly has the same
form as for noncommutative U(N) group, i.e. such that

s�Γren[V ] = A� , (3.15)
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with

A� = − i

24π2

∫
d4x εµ1µ2µ3µ4 Tr Λ � ∂µ1

(
Vµ2 � ∂µ3Vµ4 +

1
2
Vµ2 � Vµ3 � Vµ4

)
. (3.16)

In the remainder of the section we prove that is indeed so.
To demonstrate eqs. (3.15) and (3.16) we proceed as follows. Since the integral over

d2ωq in eq. (3.12) does not involve any nonplanar factor eiqαθαβpiβ , the effective action in
eq. (3.12) is given by a sum over dimensionally regularized planar diagrams. Hence, the
Quantum action principle [22] holds for this effective action and the following equation is
valid

s�Γreg[V ] = ∆̂ · Γreg[V ] . (3.17)

Here ∆̂·Γreg[V ] is the insertion in Γreg[V ] of the evanescent operator ∆̂ defined by

∆̂ = s�S
reg
nc =

∫
d2ωx

[
Ψ̄I � ΛIJ � i∂̂/P+ΨJ − Ψ̄I � i∂̂/ (ΛIJ � P−ΨJ)

]
.

Substituting this in eq. (3.17), we obtain for its right-hand side

∆̂ · Γreg[V ] = −
∞∑

n=1

(−1)n
∫
d2ωx

∫
d2ωx1 . . .

∫
d2ωxn

×Tr
[
Λ(x)Vµ1(x1) . . . Vµn(xn)

]
Γµ1...µn(x, x1, . . . , xn | ∆̂) ,

(3.18)

where

Γµ1...µn(x, x1, . . . , xn | ∆̂) = in+1

∫
d2ωp

(2π)2ω

∫ n∏
i=1

d2ωpi

(2π)2ω
e
i
(
px+

nP

i=1
pixi

)

× e
− i

2

P

1≤i<j<n
θαβpiαpjβ

(2π)2ω δ(p + p1 + · · · pn) Γµ1...µn(p, p1, . . . , pn | ∆̂) ,

(3.19)

and the 1PI Green function Γµ1...µn(p, p1, . . . , pn | ∆̂) with the insertion reads

Γµ1...µn(p, p1, . . . , pn | ∆̂) =
∫

d2ωq

(2π)2ω

1

q2 (q − p1)2 (q − p1 − p2)2 . . . (q − ∑n
i=1 pi)

2

× tr
[̂
q/P+ − (̂

q/−
n∑

i=1

p̂/i
)
P−

]
q/γ̄µ1P− (q/− p/1) γ̄µ2 P− (q/− p/1 − p/2) . . . γ̄µnP−

(
q/−

n∑
i=1

p/i
)
.

(3.20)

As before, tr denotes trace over Dirac matrices. For n ≥ 5 the integral in eq. (3.20) is
UV finite by power counting at 2ω = 4 . Hence,

Γµ1...µn(p, p1, . . . , pn | ∆̂) = O(ε) n ≥ 5 , (3.21)

where ε = ω − 2 . As concerns n ≤ 4 , using the results in Appendix A, it is straightfor-
ward to compute the contribution Γµ1...µn

eps (p, p1, . . . , pn | ∆̂) to Γµ1...µn(p, p1, . . . , pn | ∆̂)
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involving εµ1µ2µ3µ4 . After some calculations, we obtain

Γµ1
eps(p, p1 | ∆̂) = 0

Γµ1µ2
eps (p, p1, p2 | ∆̂) =

1
24π2

ερµ1σµ2 p1ρ p2σ +O(ε)

Γµ1µ2µ3
eps (p, p1, p2, p3 | ∆̂) = −1

2
1

24π2
ερµ1µ2µ3 (p1 + p2 + p3)ρ +O(ε)

Γµ1µ2µ3µ4
eps (p, p1, p2, p3, p4 | ∆̂) = O(ε) .

(3.22)

Substituting eqs. (3.21) and (3.22) in eq. (3.19), and the result so obtained in eq. (3.18),
we have that the contribution to the right-hand side of eq. (3.17) which contains εµ1µ2µ3µ4

reads

∆̂ · Γreg[V ]
∣∣∣∣
eps

= Areg
� , (3.23)

where

Areg
� = − i

24π2

∫
d2ωx εµ1µ2µ3µ4 TrΛ � ∂µ1

(
Vµ2 � ∂µ3Vµ4 +

1
2
Vµ2 � Vµ3 � Vµ4

)
+O(ε) .

Hence, if Γreg
eps[V ] denotes the contribution to the regularized effective action Γreg[V ] in-

volving εµ1µ2µ3µ4 , eqs. (3.17) and (3.23) imply

s�Γreg
eps[V ] = ∆̂ · Γreg[V ]

∣∣∣∣
eps

= Areg
� . (3.24)

It is not difficult to show that the pole part of Γreg[V ] at ε = 0 does not depend on
εµ1µ2µ3µ4 . This, together with the observation that any vector-like contribution to the
regularized effective action –i.e not involving εµ1µ2µ3µ4 – can be regularized in a gauge
invariant way within the framework of dimensional regularization, implies that it is always
possible to define a renormalized effective action

Γren[V ] = Γren
vec−like[V ] + Γren

eps[V ]

such that

s�Γren
vec−like[V ] = 0

and

s�Γren
eps[V ] = lim

ε→0
Areg)

� = A� ,

with A� as in eq. (3.16). Hence eqs. (3.15) and (3.16) follow.
Using finally that s�Vµ = sVµ and that Vµ is a function of vµ and θµν we conclude

that

sΓren[v; θ] = A� . (3.25)
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This equation gives a simple expression for the anomaly if written in terms of the noncom-
mutative fields Vµ and λ . In fact, ABardeen

nc in eq. (3.16) is nothing but the noncommu-
tative counterpart of Bardeen’s ordinary anomaly. However, in terms of the fields vµ and
λ , the anomaly is a complicated power series in θµν with coefficients depending on such
fields. The first term of such series is the standard Bardeen anomaly ABardeen of ordinary
spacetime,

A� = ABardeen +O(θ) (3.26)

ABardeen = A�

∣∣
θ=0

= − i

24π2

∫
d4x εµ1µ2µ3µ4 Tr λ∂µ1

(
vµ2∂µ3vµ4 +

1
2
vµ2vµ3vµ4

)
. (3.27)

4. BRS triviality of θ-dependent contributions

The functional A� in eqs. (3.15) and (3.16) has been found by explicitly computing to
all orders in θµν the εµ1µ2µ3µ4 part of the one-loop radiative corrections to all the 1PI
Green functions of the field Vµ . As is well known, only radiative corrections which are
cohomologically nontrivial with respect to the ordinary chiral BRS operator s , that is to
say, that can not be written as the s of something, yield a true anomalous contribution.
To find the true anomaly, we must therefore identify in A� the cohomologically nontrivial
contributions with respect to s . This we do next.

If in sections 2 and 3 we take as noncommutativity matrix tθµν, with t a real param-
eter, we end up with a noncommutative BRS chiral operator s

(tθ)
� and an anomaly A(tθ)

�
whose expressions are obtained from those in sections 2 and 3 by replacing θµν with tθµν.
Note that the dependence on t of s(tθ)

� is only through the Moyal product, which now is
with respect to tθµν, but that no explicit t -dependence is introduced (see ref. [21]). In
Appendix B we prove that the logarithmic differential with respect to t of A(tθ)

� is s
(tθ)
�

trivial, or in other words, that there exists a functional B[V (tθ), tθ] such that

t
d

dt
A(tθ)

� = s
(tθ)
� B [

V (tθ), tθ
]
. (4.1)

Let us remark that we use the logarithmic derivative t d
dt
, and not the ordinary derivative

d
dt

as in refs. [23, 21], to be able to write everything in terms of the noncommutativity
matrix tθµν and to avoid having to use both θµν and tθµν . Integrating eq. (4.1) over
t from 0 to 1 and using that –by definition of the Seiberg-Witten map– s

(tθ)
� V

(tθ)
µ =

sV
(tθ)
µ [v, tθ] , we have

∫ 1

0
dt

dA(tθ)
�

dt
=

∫ 1

0

dt

t
s
(tθ)
� B[

V (tθ), tθ
]

=
∫ 1

0

dt

t
sB[

V (tθ)[v, tθ], tθ
]
.

Recalling now that A(tθ)
� = A� if t = 1 and A(tθ)

� = ABardeen if t = 0 , and noting that
the ordinary BRS chiral operator s does not depend on t , we obtain

A� = ABardeen − s

∫ 1

0

dt

t
B�[V (tθ)[v, tθ], tθ] . (4.2)
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Hence the functional A� found in section 3 consists of two contributions: the standard
Bardeen anomaly ABardeen of commutative spacetime, and a contribution –given by the
second term in eq. (4.2)– which is cohomologically trivial with respect to the ordinary
chiral BRS operator s . Comparing with eq. (3.26), we conclude that all contributions to
A� of order one or higher in θµν are cohomologically trivial, hence harmless, since they
can be absorbed by adding finite counterterms to the renormalized effective action. Indeed,
consider a new renormalized effective action Γ′′ ren[v; θ] defined by

Γ′ ren[v; θ] = Γren[v; θ] −
∫ 1

0

dt

t
B[
V (tθ)[v, tθ], tθ

]
. (4.3)

According to our discussion above, it follows that

sΓ′ ren[v; θ] = ABardeen .

We thus conclude that the anomaly is θµν -independent and has Bardeen’s form.

5. Conclusion

In this paper we have calculated the chiral one-loop anomaly in 4-dimensional noncommuta-
tive gauge theories with arbitrary compact gauge group defined through the Seiberg-Witten
map. Our main result is that for all these theories the chiral anomaly is the same as for their
commutative counterparts. Hence any noncommutative chiral gauge theory of this type
is anomaly free to one-loop order if, and only if, its ordinary counterpart is. This implies
in particular that the anomaly cancellation conditions for the noncommutative standard
model [6] and the noncommutative SU(5) and SO(10) models [13] are the same as for
the ordinary ones [27]. We would like to emphasize that we have not found anomaly candi-
dates but actually computed the anomaly, since we have calculated the relevant Feynman
diagrams that produce the anomaly.

There is one key ingredient in our proof, namely that counterterms with mass di-
mension greater than four should be allowed in the renormalized effective action. This is
necessary to cancel radiative corrections which, on the one hand, do not satisfy the equation
sΓren = 0 but, on the other, are cohomologically trivial with respect to s . This indicates
that the proper framework for these theories is the effective field theory formalism, a pro-
posal that has already been made by a number of authors [13, 17, 18]. If one insists on
power-counting renormalizability, then the “safe” representations and the safe “groups” of
ordinary gauge theories [24] are totally unsafe for noncommutative gauge theories, since
they lead to anomalous theories [18].

Acknowledgments
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A. Appendix: Useful integrals

To obtain the εµ1µ2µ3µ4 contribution to the n-point functions Γµ1...µn(p, p1, . . . , pn | ∆̂)
with one evanescent insertion ∆̂ given in eqs. (3.22) the following integrals are needed:∫

d2ωq

(2π)2ω

q̂2

q2 (q − q1)2 (q − p2)2
= −1

2
i

16π2
+O(ε)

∫
d2ωq

(2π)2ω

q̂2 q̄µ
q2 (q − q1)2 (q − q2)2

= −1
6

i

16π2
(q̄1 + q̄2)µ +O(ε)

∫
d2ωq

(2π)2ω

q̂2 q̄µ1 q̄µ2

q2 (q − q1)2 (q − q2)2 (q − q3)2
= − 1

12
i

16π2
ḡµ1µ2 +O(ε)

∫
d2ωq

(2π)2ω

q̂2 q̄µ1 q̄µ2 q̄µ3

q2 (q − q1)2 (q − q2)2 (q − q3)2
=

= − 1
48

i

16π2

3∑
i=1

(ḡµ1µ2 q̄iµ3 + ḡµ1µ3 q̄iµ2 + ḡµ2µ3 q̄iµ1) +O(ε)

∫
d2ωq

(2π)2ω

q̂2 q̄2 q̄µ1 q̄µ2

q2 (q − q1)2 (q − q2)2 (q − q3)2 (q − q4)2
= − 1

16
i

16π2
ḡµ1µ2 +O(ε) .

Here ε = ω − 2 .

B. Appendix: Proof of eq. (4.1)

In what follows we will use ωαβ for tθαβ , denote the Moyal product with respect to ωαβ

by � and write a small circle ◦ for the logarithmic differential with respect to t , i.e.

ωαβ = tθαβ � = �ω

◦
F = t

dF
dt

. (B.1)

The functional A(tθ)
� , which in this notation we write as A� , has a piece of order zero in

ωαβ given by ABardeen in eq. (3.27) and a piece that collects all the higher order terms

in ωαβ and which precisely gives the contributions to
◦
A� . We want to prove eq. (4.1),

which now takes the form
◦
A� = s�B . (B.2)

Using

f
◦
� g =

1
2
ωαβ ∂αf � ∂βg (B.3)

and [23]

◦
V µ = − i

4
ωαβ {Vα , Fβµ + ∂βVµ}�

◦
Λ =

i

4
ωαβ {∂αΛ, Vβ}� , (B.4)
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the functional
◦
A� can be expanded as a sum

◦
A� =

◦
A�,3 +

◦
A�,4 +

◦
A�,5 +

◦
A�,6 , (B.5)

where
◦
A�,n collects all contributions in

◦
A� of degree n in the fields Λ and Vµ (see below

for their explicit expressions). In turn, the noncommutative chiral BRS operator s� can
be written as the sum

s� = s�,0 + s�,1 (B.6)

of two operators s�,0 and s�,1 whose action on the fields Λ and Vµ is given by

s�,0Vµ = ∂µΛ s�,0Λ = 0 (B.7)

s�,1Vµ = [Vµ,Λ]� s�,1Λ = −Λ � Λ . (B.8)

These two operators satisfy

s2�,0 = 0 s�,0 s�,1 + s�,1 s�,0 = 0

and have the important property that s�,0 preserves the degree in the fields and s�,1

increases it by one. From eqs. (B.5) and (B.6) it follows that to prove eq. (B.2) it is
sufficient to take for B an expansion

B = B3 + B4 + B5 + B6

in the number of fields and show that

◦
A�,3 = s�,0B3 (B.9)

◦
A�,4 − s�,1B3 = s�,0B4 (B.10)
◦
A�,5 − s�,1B4 = s�,0B5 (B.11)
◦
A�,6 − s�,1B5 = s�,0B6 (B.12)

s�,1B6 = 0 . (B.13)

Hence, to prove (B.2) all we have to do is finding functionals B3, B4, B5 and B6 satisfying
the ladder equations. To do this it is convenient to use differential forms, so let us write
eqs. (B.7) and (B.8) in terms of differential forms. Recalling that V = Vµdx

µ and using
{dxµ, s�,0} = {dxµ, s�,1} = {Λ, dxµ} = 0 , we have

s�,0V = − dΛ s�,0Λ = 0 (B.14)

s�,1V = −{V,Λ}� s�,1Λ = −Λ � Λ . (B.15)
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B.1 Computation of B3 and B4

Taking the logarithmic differential with respect to t of A� and using eqs. (B.3) and (B.4),
it is straightforward to see that

◦
A�,3 = − i

24π2

∫
i

2
ωαβ Tr ∂αΛ � ∂βdV � dV .

It is clear that

B3 = − i

24π2

∫
i

2
ωαβ Tr [xVα � ∂βdV � dV − (1 − x)Vα � dV � ∂βdV ] , (B.16)

with x an arbitrary parameter, solves eq. (B.9). Indeed, acting with s�,0 on B3 , inte-
grating by parts the derivative ∂β in the second term in eq. (B.16) and neglecting the

integral of a divergence, we recover
◦
A�,3 . Note that eq. (B.16) provides a one-parameter

family of solutions for B3 . Furthermore, to B3 we can also add a term∫
ωαβ Tr ∂αVβ � dV � dV

with arbitrary coefficient, since s�,0 acting on it vanishes.

Let us move now on to eq. (B.10). We first calculate
◦
A�,4 and s�,1B3 . Acting with

t d
dt

on A� , noting eqs. (B.3) and (B.4), retaining terms of order four in the fields, using
the cyclic property of the trace Tr and of the integral of a Moyal product of functions to
push the ghost field Λ to the far left, and integrating by parts whatever partial and/or
exterior derivatives act on Λ , we obtain after some lengthy algebra that

◦
A�,4 = − i

24π2

∫
i

4
ωαβ Tr Λ �

[
Vα � dV � ∂βdV − Vα � ∂βdV � dV + V � ∂αV � ∂βdV

− V � ∂αdV � ∂βV − ∂αVβ � dV � dV − dV � dV � ∂αVβ − 2 ∂αV � dVβ � dV

+ 2 dVα � dVβ � dV − 2 dVα � ∂βV � dV − 2 dV � ∂aV � dVβ + 2 dV � dVα � dVβ

− 2 dV � dVα � ∂βV + dV � ∂αV � ∂βV − ∂αV � ∂βV � dV − ∂αV � dV � ∂βV

− ∂αdV � dV � Vβ + 2 ∂αdV � Vβ � dV + dV � ∂αdV � Vβ − 2 dV � Vα � ∂βdV

+ ∂αdV � ∂βV � V − ∂αV � ∂βdV � V + ∂αdV � V � ∂βV + ∂αV � V � ∂βdV
]

Proceeding similarly for s�,1B3 , and taking for simplicity x = 1 , we have

s�,1B3 =
i

24π2

∫
i

2
ωαβ Tr Λ �

[
Vα � ∂βdV � dV + V � dVα � ∂βdV

+ V � dV � ∂αdVβ + V � ∂αdV � dVα + dVα � ∂βdV � V

+ dV � ∂αdVβ � V + ∂αdV � dV � Vβ + ∂αdV � dVβ � V
]

To simplify these expressions we introduce the notation

Ai = − i

24π2

∫
i

4
ωαβ Tr Λ � ai

αβ ,
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a1
αβ dV � ∂αV � ∂βV a14

αβ ∂αV � dV � dVβ a27
αβ V � dVα � ∂βdV

a2
αβ ∂αV � dV � ∂βV a15

αβ ∂αV � dVβ � dV a28
αβ ∂αdV � dVβ � V

a3
αβ ∂αV � ∂βV � dV a16

αβ dV � dVα � ∂βV a29
αβ dVα � ∂βdV � V

a4
αβ ∂αdV � V � ∂βV a17

αβ dVα � dV � ∂βV a30
αβ dVα � V � ∂βdV

a5
αβ V � ∂αdV � ∂βV a18

αβ dVα � ∂βV � dV a31
αβ ∂αdVβ � dV � V

a6
αβ V � ∂αV � ∂βdV a19

αβ ∂αdV � dV � Vβ a32
αβ dV � ∂αdVβ � V

a7
αβ ∂αdV � ∂βV � V a20

αβ dV � ∂αdV � Vβ a33
αβ dV � V � ∂αdVβ

a8
αβ ∂αV � ∂βdV � V a21

αβ dV � Vα � ∂βdV a34
αβ ∂αdVβ � V � dV

a9
αβ ∂αV � V � ∂βdV a22

αβ ∂αdV � Vβ � dV a35
αβ V � ∂αdVβ � dV

a10
αβ dV � dV � ∂αVβ a23

αβ Vα � ∂βdV � dV a36
αβ V � dV � ∂αdVβ

a11
αβ dV � ∂αVβ � dV a24

αβ Vα � dV � ∂βdV a37
αβ dV � dVα � dVβ

a12
αβ ∂αVβ � dV � dV a25

αβ ∂αdV � V � dVβ a38
αβ dVα � dV � dVβ

a13
αβ dV � ∂αV � dVβ a26

αβ V � ∂αdV � dVβ a39
αβ dVα � dVβ � dV

Table 1: All 4-forms with three derivatives and three gauge fields.

with ai
αβ as in Table 1. Note that ωαβai

αβ is a 4-form with one explicit ωαβ , three explicit
derivatives and three noncommutative gauge fields. By “explicit” here we mean ω ′s and
∂ ′s that are not hidden in the �-product. In Table 1 we have listed all such forms that

can be constructed. With this notation
◦
A�,4 − s�,1B reads

◦
A�,4 − s�,1B = A1 −A2 +A3 +A4 −A5 +A6 +A7 −A8 +A9 −A10 −A12

− 2A13 − 2A15 − 2A16 − 2A18 +A19 +A20 − 2A21 + 2A22 +A23 (B.17)

+A24 + 2A26 + 2A27 + 2A28 + 2A29 + 2A32 + 2A36 + 2A37 + 2A39 .

Now, not all the 4-forms wαβai
αβ in Table 1 are linearly independent. To see this,

consider e.g. the 5-form Ωβ = ωαβ∂αV � dV � dV and act on it with the inner contraction

iβ ≡ i∂β
=

∂

∂(dxβ)
.

Being a 5-form in four dimensions, Ωβ is identically zero, and so is iβ acting on it. Hence

0 = iβ (ωαβ ∂αV � dV � dV )

= ωαβ
[
∂αVβ � dV � dV − ∂αV � (∂βV − dVβ) � dV − ∂αV � dV � (∂βV − dVβ)

]
= ωαβ

(
a12

αβ − a3
αβ + a15

αβ − a2
αβ + a14

αβ

)
,
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which implies the relation

A12 −A3 +A15 −A2 +A14 = 0 .

This suggests that, to generate all the linear relations among the functionals Ai, it is
enough to act with iβ on all the 5-forms Ωβ with one explicit ωαβ , three explicit deriva-
tives and three noncommutative gauge fields. In listing the forms Ωβ , two restrictions
should be observed. The first one is that it is only necessary to consider 5-forms Ωβ with
at most two explicit derivatives acting on the same field, since in Table 1 there is no ai

αβ

with more than two explicit derivatives on the same gauge field. The second one is that
whenever two explicit derivatives act on the same gauge field, they should not be both
exterior derivatives. The reason for this is that 5-forms Ωβ containing an explicit d2 do
not provide, upon acting on them with iβ , any relation among the ωαβai

αβ . Indeed, since
iβd

2 = ∂βd − d∂β , the action of iβ on a 5-form containing an explicit d2 yields a linear
combination

iβ (5−form with d2)β = 4−forms with d2 + 4−form with ∂βd− d∂β

of 4-forms each of which is identically zero. There are twelve different forms Ωα that can
be constructed satisfying these restrictions on the derivatives, namely Ωβ = ωαβ ãα , with
ãα given by

∂αV � dV � dV dVα � dV � dV ∂αdV � dV � V ∂αdV � V � dV

dV � ∂αV � dV dV � dVα � dV dV � ∂αdV � V V � ∂αdV � dV

dV � dV � ∂αV dV � dV � dVα dV � V � ∂αdV V � dV � ∂αdV .

If we act with iβ on these twelve 5-forms, we obtain the linear relations

A2 +A3 −A12 −A14 −A15 = 0 A7 +A19 −A28 −A31 = 0

A1 +A3 −A11 −A13 −A18 = 0 A8 −A20 −A29 +A32 = 0

A1 +A2 −A10 −A16 −A17 = 0 A9 +A21 −A30 −A33 = 0

A12 +A17 +A18 −A38 −A39 = 0 A4 −A22 −A25 +A34 = 0

A11 +A15 +A16 −A37 −A39 = 0 A5 +A23 −A26 −A35 = 0

A10 +A13 +A14 −A37 −A38 = 0 A6 −A24 −A27 +A36 = 0 .

Solving this system of equations for Ai (i = 1, . . . , 12) and substituting the solution in

eq. (B.17), we write
◦
A�,4 − s�,1B3 in terms of the functionals Ai (i = 13, . . . , 39) , the

result being
◦
A�,4 − s�,1B3 = A13 +A14 − 4A15 − 4A16 +A17 +A18 − 3A21 + 3A22

+ 2A23 + 2A24 +A25 +A26 + 3A27 + 3A28 +A29 +A30 (B.18)

+A31 + 3A32 +A33 −A34 −A35 +A36 + 2A37 − 3A38 + 2A39 .

We have thus obtained the left-hand side of eq. (B.10) in terms of linearly independent
functionals Ai (i = 13, . . . , 39) , each of which has one explicit ωαβ and three explicit
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b1αβ Vα � Vβ � dV � dV b6αβ ∂αVβ � V � dV � V

b2αβ dVα � Vβ � dV � V b7αβ ∂αVβ � dV � V � V

b3αβ dV � dVα � V � Vβ b8αβ Vα � dV � ∂βV � V

b4αβ dVα � Vβ � V � dV b9αβ Vα � ∂βV � V � dV

b5αβ ∂αVβ � V � V � dV b10αβ V � dV � ∂αV � Vβ

Table 2: All 4-forms with two derivatives and four gauge fields.

derivatives and has degree three in the noncommutative gauge field. It then follows that,
for eq. (B.10) to have a solution, B4 on the right-hand side must be a linear combination
of functionals

Br = − i

24π2

∫
i

4
ωαβ Tr brαβ , (B.19)

with brαβ a 4-form of order two in explicit derivatives and four in the noncommutative
gauge field. With some patience, it can be seen that there are forty such functionals Br

whose s�,0 variation is not zero. Thirty of them can be written as linear combinations of
the functionals Br whose brαβ are collected in Table 2. To illustrate that this is indeed
so, let us consider as an example

B = − i

24π2

∫
i

4
ωαβ Tr bαβ bαβ = V � Vα � ∂βV � dV .

Clearly, this bαβ in not in Table 2. However, using that
(a) both Tr and the integral of a Moyal product of functions are cyclic,
(b) that ∂α = {iα, d} , and
(c) that iβ(dV ) � dV � V � Vα = −dV � iβ(dV � V � Vα),

and integrating by parts and neglecting total derivatives, we have

B
(a,b)
=

i

24π2

∫
i

4
ωαβ Tr (iβd+ diβ)V � dV � V � Vα

(c,d)
= − i

24π2

∫
i

4
ωαβ Tr [ dV � iβ (dV � V � Vα) + iβV � d (dV � V � Vα) ]

(a)
= − i

24π2

∫
i

4
ωαβ Tr ( b8αβ + b3αβ + b2αβ )

= B8 +B3 +B2 .

Similarly, any other functional B whose bαβ is not in Table 2 can be expressed as a linear
combination of functionals Br with brαβ in Table 2. It then follows that it is enough to
write for B4

B4 =
10∑

r=1

cr B
r . (B.20)
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To solve eq. (B.10) we need the s�,0 variation of B4 . Acting with s�,0 on (B.20) and
writing the result in terms of the linearly independent functionals Ai , corresponding to
i = 13, . . . , 39 , we obtain

s�,0B4 = (−c1 − c2 + c5 + c6 + 2c9) A13

+ (−c1 − c4 + c5 + c6 + c8 + 3c9) A14

+ (−2c3 − c5 + c7 + c8 + c10) (A15 +A16)

+ (c1 − 2c2 − c4 − c6 − c7 + 2c8 − c9 + c10) A17

+ (c1 − c2 − 2c4 − c6 − c7 + c8 + c10)A18

+ (c1 + c8 − c9) (A19 +A20)

+ (c3 − c8) (−A21 +A22 +A27 +A28)

+ (c1 − c2 − c4) A23

+ (c1 − c2 − c4 + c8 + c10) A24

− c2 (A25 +A29)

+ (−c4 + c9 + c10) (A26 +A30)

+ (c2 + c7 − c8) A31

+ (c3 + c5)A32

+ (c2 − c6 − c9) A33

+ (c4 + c6 + c10)A34

+ (c3 − c7 − c8 − c10)A35

+ (c4 − c5 − c9) A36

+ (c1 + c3 − c4 − c6 − c7 − c9) A37

+ (c2 − c3 + c4 − c5 + c7 − c9) A38

+ (−c1 + c34 + c4 + c5 + c6 + c8 − c9 + c10) A39 . (B.21)

Substituting now eqs. (B.18) and (B.21) in eq. (B.10) and equating the coefficients of
Ai (i = 13, . . . , 39) on both sides, we obtain a system of 21 equations with unknowns
c1, . . . , c10. Its solution is

c1 = y + z c2 = −1 c3 = 3 − z c4 = −1 + y + z c5 = z

c6 = −y c7 = 2 − z c8 = −z c9 = y c10 = z ,

where y and z are arbitrary parameters. This provides a two-parameter family of func-
tionals B4 for which eq. (B.10) holds. Note that if we take y = z = 0 , then B4 only has
four terms.

B.2 Calculation of B5 and B6

One may proceed analogously as for B4 and explicitly compute B5 and B6 . Here, instead,
we present an alternative method which uses cohomological techniques. To apply them we
shall employ the approach of ref. [23] which introduces gauge fields vA

µ and ghost fields

– 19 –



λA not only for the Lie algebra g of the gauge group G but also for the whole enveloping
algebra U = {TA} = {Tā, Ti} in which Vµ and Λ take values. Here the index ā runs
over the elements of g , so that in the notation of section 2 one has {Tā} = {(T k)a, T l} ,
while the index i runs over the complementary elements of U . As shown in ref. [23],
the standard Seiberg-Witten map can be extended to include U -valued fields vµ and λ

satisfying

svA
µ = ∂µλ

A + fBC
A vB

µ λ
C (B.22)

sλA =
1
2
λBλCfCB

A , (B.23)

with fAB
C the structure constants of the Lie algebra U , given by [TA, TB ] = fAB

CTC .
Of course, g being a subalgebra of U means fāb̄

i = 0 and implies that the BRS transfor-
mations above are subject to the truncation conditions

svA
µ

∣∣∣
vi

µ=λi=0
=

{
∂µλ

ā + fb̄c̄
ā vb̄

µλ
c̄ if A = ā

fb̄c̄
i vb̄

µλ
c̄ = 0 if A = i

(B.24)

sλA
∣∣∣
vi

µ=λi=0
=

{
1
2 λ

b̄λc̄ fb̄c̄
ā if A = ā

1
2 λ

b̄λc̄ fc̄b̄
i = 0 if A = i .

(B.25)

The extended Seiberg-Witten map is defined by demanding

s�V
A
µ = sV A

µ s�ΛA = sΛA , (B.26)

subject to the usual boundary conditions and with s� defined by

s�V
A
µ = ∂µΛA + fBC

A V B
µ ΛC s�ΛA =

1
2

ΛBΛC fCB
A . (B.27)

By setting in it all fields vi
µ and λi to zero, the standard Seiberg-Witten map is recovered.

Furthermore, the truncation conditions imply that all formulas that hold for U -valued fields
vA
µ and λA will also hold for g-valued fields vā

µ and λā , and in particular eq. (B.2) that we
want to prove. The idea is then to demonstrate eq. (B.2) for the extended Seiberg-Witten
map.

We start from the fact that A� satisfies the anomaly consistency condition s�A� = 0
which follows from eq. (B.2) because of s2� = 0 . In terms of the commutative fields

vA
µ and λA , one has sA� = 0 . This implies s

◦
A� = 0 since s commutes with the

logarithmic derivative with respect to t . Using (B.26) again, one concludes s�

◦
A� = 0

– 20 –



which decomposes into

s�,0

◦
A�,3 = 0 (B.28)

s�,0

◦
A�,4 + s�,1

◦
A�,3 = 0 (B.29)

s�,0

◦
A�,5 + s�,1

◦
A�,4 = 0 (B.30)

s�,0

◦
A�,6 + s�,1

◦
A�,5 = 0 (B.31)

s�,1

◦
A�,6 = 0 . (B.32)

In the previous subsection we have shown by explicit computation that (B.28) and (B.29)

imply
◦
A�,3 = s�,0B3 and

◦
A�,4 = s�,0B4 + s�,1B3 . We shall now show by cohomological

means that the remaining equations imply
◦
A�,5 = s�,0B5 + s�,1B4 ,

◦
A�,6 = s�,0B6 + s�,1B5

and s�,1B6 = 0 , which will complete the proof of equations (B.9) to (B.13).
To that end we first derive a result on the cohomology of s�,0 in the space F� of

integrated �-polynomials in the fields V A
µ , ΛA and their derivatives. An element of this

space is a linear combination, with coefficients that may depend on ωαβ , of terms of the
form ∫

d4x a1 � a2 � . . . � an,

with n finite and each ai one of our basic variables ( V A
µ , ΛA and their derivatives),

ai ∈ {V A
µ ,Λ

A, ∂µV
A
ν , ∂µΛA, ∂µ∂νV

A
ρ , ∂µ∂νΛA, . . . } .

It is obvious why this cohomology is relevant to the present case. Using the result
◦
A�,4 =

s�,0B4 + s�,1B3 from Subappendix B.1 in eq. (B.30) and noting that s2�,1 = 0 , we obtain

s�,0(
◦
A�,5 − s�,1B4) = 0 , with

◦
A�,5 − s�,1B4 obviously in F� . Our aim is to show that this

implies
◦
A�,5 − s�,1B4 = s�,0B5 for some B5 ∈ F� , or in other words that

◦
A�,5 − s�,1B4 is

trivial in the s�,0-cohomology in F� . Assume that we have shown this. Inserting the result

in (B.31) and proceeding similarly yields s�,0(
◦
A�,6 − s�,1B5) = 0 . Again, we want to show

that
◦
A�,6−s�,1B5 = s�,0B6 for some B6 ∈ F� and thus that

◦
A�,6−s�,1B5 is also trivial in

the s�,0-cohomology in F� . Note that (B.9) and (B.10) actually express analogous results,

namely the triviality of
◦
A�,3 and

◦
A�,4−s�,1B3 in the same cohomology. However, as it will

become clear below, they cannot be proved by means of the result on the cohomology for
S�,0 in F� that we derive in the sequel and therefore have to be shown by other methods.

To examine the s�,0-cohomology in F� we adapt methods developed in ref. [28] for the
computation of the cohomology of s0 . We first derive a result on the s�,0-cohomology in
the space P� of non-integrated �-polynomials. For that purpose we introduce the following
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variables u� , v� and wi :

{u�} = {V A
µ , ∂(µV

A
ν) , . . . , ∂(µ1

. . . ∂µk
V A

µk+1), . . . } (B.33)

{v�} = {s�,0u
�} = {∂µΛA, ∂(µ∂ν)Λ

A, . . . , ∂(µ1
. . . ∂µk+1)Λ

A, . . . } (B.34)

{wi} = {ΛA, ∂[µV
A
ν] , . . . , ∂µ1 . . . ∂µk

∂[µV
A
ν] , . . . } . (B.35)

Evidently every �-polynomial in the fields V A
µ , ΛA and their derivatives can be expressed

as a �-polynomial in the variables u� , v� , wi and vice versa1. On non-integrated �-
monomials in u� , v� , wi we define the operation � through

� (â1 � â2 � . . . � ân) =

=
1
n

(
u� ∂â1

∂v�

)
� â2 � . . . � ân

+
1
n

n−1∑
i=2

(−)|â1|+|â2|+...+|âi−1|â1 � . . . � âi−1 �
(
u� ∂âi

∂v�

)
� âi+1 � . . . � ân

+
1
n

(−)|â1|+|â2|+...+|ân−1|â1 � â2 � . . . � ân−1 �
(
u� ∂ân

∂v�

)
,

where âi is any of the variables u� , v� , wi ,

âi ∈ {u�, v�, wi} ,
and |âi| is the Grassmann parity of âi , which is 0 for V A

µ and its derivatives, and 1 for the
ΛA and its derivatives. Extending the definition of � by linearity from �-monomials to
�-polynomials, we have that the anticommutator of s�,0 and � evaluated on an arbitrary
�-polynomial p�(u, v,w) ∈ P� gives the difference

{s�,0, �} p�(u, v,w) = p�(u, v,w) − p�(0, 0, w) , (B.36)

where p�(0, 0, w) denotes the �-polynomial that arises from p�(u, v,w) by setting to zero
all u� and v� before evaluating the star-products –for example, for p� = V A

µ � V B
ν one

has p�(0, 0, w) = 0 . Applying now eq. (B.36) to an s�,0 -closed �-polynomial, i.e. to a p�

satisfying s�,0p� = 0 , and using that all wi are s�,0 -closed, we obtain

s�,0 p�(u, v,w) = 0 ⇔ p�(u, v,w) = p�(0, 0, w) + s�,0 � p�(u, v,w) . (B.37)

In particular, an s�,0-closed �-polynomial p�(u, v,w) with p�(0, 0, w) = 0 is the s�,0-
variation of the star-polynomial � p�(u, v,w) .

Result (B.37) cannot be used directly for our purposes since it applies only to �-
polynomials but not to integrated �-polynomials, which is what we had initially. This
makes a difference because, by definition, an integrated �-polynomial is s�,0-closed when
the s�,0-transformation of its integrand is a total divergence:

s�,0 f� = 0 with f� =
∫
d4x p� ⇔ s�,0 p� = ∂µω

µ for some ωµ .

1The set of w ’s is actually overcomplete because the w ’s are not all linearly independent owing to the

identities ∂[µ∂νVρ] = 0 and their derivatives. However this does not matter to our arguments.
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Since � does not commute with ∂µ we cannot directly apply the result above to this case.
To escape this problem we consider the variational derivatives of the equation s�,0 f� = 0
with respect to V A

µ and ΛA . This yields

s�,0 f� = 0 , f� ∈ F� ⇒ s�,0
δf�

δV A
µ

= 0 , s�,0
δf�

δΛA
+ ∂µ

δf�

δV A
µ

= 0 . (B.38)

It can be readily checked that the variational derivative of any element f� ∈ F� with
respect to V A

µ or ΛA is a �-polynomial in P� . Suppose now that δf�/δV
A
µ vanishes at

u� = v� = 0 in the sense explained above. Using the first equation in (B.38) and eq. (B.37)
we then conclude that δf�/δV

A
µ is the s�,0-variation of � (δf�/δV

A
µ ) :[

δf�

δV A
µ

]
(0, 0, w) = 0 ⇒ δf�

δV A
µ

= s�,0 �
δf�

δV A
µ

.

Using this in the second equation in (B.38) we obtain

s�,0

(
δf�

δΛA
+ ∂µ �

δf�

δV A
µ

)
= 0. (B.39)

Applying (B.37) once again we conclude that the term in parentheses is s�,0 �(. . . ) provided
it vanishes at u� = v� = 0 in the sense above. Note that here �(. . . ) has ghost number
gh(f�) − 2 , with gh(f�) the ghost number of f� and gh(V ) = 0 and gh(Λ) = 1 . Since
�-polynomials p�(u, v,w) have non-negative ghost numbers, �(. . . ) vanishes when f� has
ghost number 1, which is the case we are interested in. We thus conclude that[

δf�

δΛA
+ ∂µ �

δf�

δV A
µ

]
(0, 0, w) = 0 , gh(f�) = 1 ⇒ δf�

δΛA
= −∂µ �

δf�

δV A
µ

. (B.40)

Finally we reconstruct f� from its variational derivatives, neglecting integrated diver-
gences, using the general formula

f�[V,Λ] =
∫
d4x

∫ 1

0

dτ

τ

(
V A

µ �
δf�

δV A
µ

+ ΛA �
δf�

δΛA

)
[τV, τΛ] , (B.41)

valid for every functional f� . Using eqs. (B.39) and (B.40) in (B.41) we obtain

f�[V,Λ] =
∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � s�,0 �
δf�

δV A
µ

− ΛA � ∂µ �
δf�

δV A
µ

)
[τV, τΛ]

=
∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � s�,0 �
δf�

δV A
µ

+ (s�,0V
A
µ ) � �

δf�

δV A
µ

)
[τV, τΛ]

= s�,0

∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � �
δf�

δV A
µ

)
[τV, τΛ] ,

where we have used integration by parts and s�,0V
A
µ = ∂µΛA . We have thus shown that

s�,0f� = 0 , gh(f�) = 1 ,
[
δf�

δV A
µ

]
(0, 0, w) =

[
δf�

δΛA
+ ∂µ �

δf�

δV A
µ

]
(0, 0, w) = 0

⇒ f� = s�,0

∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � �
δf�

δV A
µ

)
[τV, τΛ] ,

(B.42)
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which is the result for the s�,0-cohomology in F� we will use to prove eqs. (B.30)-(B.32).

Consider now
◦
A�,5 − s�,1B4 . It is an s�,0-closed integrated �-polynomial with ghost

number 1 whose integrand is order 5 in the fields V A
µ and ΛA , has mass dimension 4 –recall

that dim(Vµ) = dim(∂µ) = 1 , dim(Λ) = 0 , dim(ωαβ) = −2 – and contains one explicit
ωαβ . It follows that the integrand is a linear combination of �-monomials ωαβa1 � . . . �a5 ,
where it can be assumed that one of the ai is an undifferentiated Λ (for one can remove
all derivatives from Λ using integrations by parts, if necessary) while the remaining ai

′s
are either of type {V, V, ∂V, ∂V } or {V, V, V, ∂∂V } . It is easy to verify that this in turn
implies

[
δ(

◦
A�,5 − s�,1B4)

δV A
µ

]
(0, 0, w) = 0 (B.43)

[
δ(

◦
A�,5 − s�,1B4)

δΛA
+ ∂µ �

δ(
◦
A�,5 − s�,1B4)

δV A
µ

]
(0, 0, w) = 0 . (B.44)

Eq. (B.42) can then be used and yields
◦
A�,5 − s�,1B4 = s�,0B5 , with

B5 =
∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � �
δ(

◦
A�,5 − s�,1B4)

δV A
µ

)
[τV, τΛ] .

This proves eq. (B.11) for U -valued fields, hence for g-valued fields, as we wanted to show.

The functional
◦
A�,6 − s�,1B5 can be treated analogously. Its integrand is order 6 in the

fields, has mass dimension 4, ghost number 1 and one explicit ωαβ . It is thus a linear
combination of �-monomials ωαβa1 � . . . � a6 , where it can be assumed that the set of ai

has the structure {Λ, V, V, V, V, ∂V } . This makes it obvious that
◦
A�,6 − s�,1B5 satisfies

[
δ(

◦
A�,6 − s�,1B5)

δV A
µ

]
(0, 0, w) = 0 (B.45)

[
δ(

◦
A�,6 − s�,1B5)

δΛA
+ ∂µ �

δ(
◦
A�,6 − s�,1B5)

δV A
µ

]
(0, 0, w) = 0 . (B.46)

Eq. (B.42) then implies
◦
A�,6 − s�,1B5 = s�,0B6 , with

B6 =
∫
d4x

∫ 1

0

dτ

τ

(
V A

µ � �
δ(

◦
A�,6 − s�,1B5)

δV A
µ

)
[τV, τΛ] ,

which proves eq. (B.12). Finally we have to show that eq. (B.13) holds. This is very
easy. The integrand of B6 is a �-polynomial of order 6 in the fields, has mass dimension
4, ghost number 0 and one explicit ωαβ . It is thus a linear combination of �-monomials
ωαβa1 � . . . � a6 , where all ai are undifferentiated V ′s . Furthermore, by construction, it
can be written as a trace Tr . The latter implies already s�,1B6 = 0 , since

s�,1 Tr
(
Vµ1 � . . . � Vµ6

)
= Tr

[
Vµ1 � . . . � Vµ6 ,Λ

]
�
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is a divergence.

We close by remarking that eq. (B.42) cannot be used to prove that
◦
A�,3 and

◦
A�,4 −

s�,1B3 are trivial in the s�,0-cohomology in F� because the δ
δV A

µ
and δ

δΛA +∂µ�
δ

δV A
µ

acting

on them do not vanish at u� = v� = 0 in the sense explained above, contrary to what

happens for
◦
A�,5 − s�,1B4 and

◦
A�,6 − s�,1B5 –see eqs. (B.43), (B.44), (B.45) and (B.46).
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