
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Panel Clustering Techniques and

Hierarchical Matrices for BEM and

FEM

by

Wolfgang Hackbusch

Preprint no.: 71 2003

Panel Clustering Techniques and Hierarchical Matrices for BEM

and FEM∗

Wolfgang Hackbusch
Max-Planck-Institut Mathematik in den Naturwissenschaften

Inselstr. 22–26
D-04103 Leipzig, Germany

wh@mis.mpg.de

Abstract

The panel clustering method and the hierarchical matrix technique described here are important
tools for the efficient treatment of fully populated matrices which arise from boundary element (BEM)
problems and elliptic FEM problems.

Keywords. Panel clustering, hierarchical matrices, BEM, fully populated matrices, fast multiplication,
efficient matrix operations

1 Introduction

The main background of the so-called ‘panel clustering technique’ is the efficient numerical treatment of
integral equations. Therefore, we first remind the reader to the boundary element method and the respective
integral equations (see §1.2). The discrete problem is described by a fully populated n × n matrix. The
naive approach requires a storage of the size n2 and the standard matrix-vector multiplication needs O(n2)
arithmetical operations. In order to realise the advantages of BEM compared with FEM, it is essential to
reduce the order O(n2) of the cost to almost O(n).

The panel clustering technique described in Section 2 allows to reduce the storage and matrix-vector costs
from O(n2) to O(n logq n). The reduction of the memory is in particular important for 3D applications,
when O(n logq n) data can easily be stored, while O(n2) exceeds the memory bounds. The reduction of the
cost for the matrix-vector multiplication is important as well, since this is the essential operation in usual
iterative methods for solving the system of linear equations. The essential ingredients of the panel clustering
technique are (i) the far field expansion (§2.1) and (ii) the panel cluster tree (§2.2). The section is concluded
by hints concerning implementational details (§2.7).

Section 3 presents a second variant of the panel clustering technique. This variant of the panel clustering
technique can be generalised to the technique of hierarchical matrices (H-matrices), which is described in
Section 4. Again, the H-matrix structure can be used to represent fully populated matrices. This technique
allows not only the matrix-vector multiplication, but also matrix operations like matrix-plus-matrix, matrix-
times-matrix and even matrix-inversion.

1.1 Notations

We have already used the Landau symbol O(f(n)), which means that the quantity is bounded by C ∗f(n) as
n → ∞ for some positive constant C. For an index set I, the set R

I denotes the set of (real) vectors a = (ai)i∈I

indexed by means of I. Similarly, the notation R
I×J is used for the set of matrices A = (ai,j)i∈I,j∈J .

∗To appear as Chapter 20 of Vol. I in Erwin Stein, René de Borst, and Thomas J.R. Hughes (eds.): Encyclopedia of
Computational Mechanics. Wiley, Chichester

1

item explanation reference

A,B, . . . matrices of size n × n (1.11)
b block, vertex of T2 §3.1.1
bj BEM basis function (1.10)
d spatial dimension of R

d (1.1)
diam, dist diameter and distance of clusters (2.5), (3.1)
I index set for the matrix entries §4.1
Im index set in the representation of κ̃ (2.2)
J ι

τ , J ι
τ (bj) far field coefficients §2.4.3

K integral operator (1.4)
n problem dimension, matrix size (1.10), §4.1
P set of panels (boundary elements) §1.2.3
s(x,y) fundamental solution §1.2.1
t triangle (panel) t ∈ P §1.2.3
S, S2, SI , SI×I(τ) set of sons §2.2, §3.1.1, §4.2
T, T2, TI , TI×I cluster tree, tree of blocks, block cluster tree §2.2, §3.1.1, §4.2
u coefficient vector from R

n (1.10)
Vh boundary element space §1.2.3
x,y, z points in R

d (1.2)
zτ centre of cluster τ §2.7.2
Γ surface contained in R

d §1.2.2
η parameter in admissibility condition (2.5), (3.1)
κ(x,y) kernel of integral operator (1.4)
κ̃(x,y), κb(x,y) far field approximation of κ (2.2), (3.3)
ξ, ξi collocation point §1.2.3
τ (also τ ′, σ, σ′) cluster, vertex of the tree T §2.2
Φι, Φι

τ expansion functions (2.2)∫
Γ

. . . dΓx surface integration (1.4)
#S cardinality of the set S, i.e., number of elements

1.2 The Boundary Element Method (BEM)

1.2.1 The Problem to be Solved

There are several important applications where an elliptic boundary value problem with vanishing source
term is to be solved,

Lu = 0 in Ω ⊂ R
d. (1.1)

Here, Ω may be a bounded or unbounded domain. Since L is assumed to have constant coefficients, the
fundamental solution s(x,y) is known explicitly. It satisfies Lxs(x,y) = δ(x − y), where Lx = L is applied
to the x-argument and δ is the Dirac function. In the case of Lu = f �= 0, a further integral over Ω appears
which can be treated efficiently by means of the hierarchical matrices from Section 4. Examples for L and
s are the Laplace problem,

L = ∆, s(x,y) =
{ 1

2π log |x − y| for d = 2 (i.e., x,y ∈ R
2),

1
4π|x−y| for d = 3 (i.e., x,y ∈ R

3), (1.2)

the Helmholtz problem L = ∆ + a2, s(x,y) = exp(ia|x−y|)
4π|x−y| , and the Lamé equation (d = 3)

µ∆u + (λ + µ)∇div u = 0, (1.3)

S(x,y) =
λ + 3µ

8π (λ + 2µ)

{
1

|x − y| I +
λ + µ

λ + 3µ

(x − y) (x − y)�

|x − y|3
}

.

In the latter example, the fundamental solution S(x,y) is matrix-valued. In all examples, |x − y| is the
standard Euclidean norm of the vector x − y ∈ R

d.

2

1.2.2 Formulation by an Integral Equation

The advantage of the following integral equation formulation is the fact that the domain of integration is the
boundary Γ = ∂Ω. Thus the spatial dimension is reduced by one. This advantage is even more essential, if
Ω is an unbounded exterior domain.

There are several integral formulations based on integral operators K of the form

(Kf) (x) :=
∫

Γ

κ(x,y)f(y)dΓy , (1.4)

where κ(x,y) is s(x,y) or some derivative with respect to x or y. We give two examples.

Single-Layer Potential for a Dirichlet Problem Let the integral operator be defined by κ = s with s

from (1.2), i.e., (Kf) (x) = 1
4π

∫
Γ

f(y)
|x−y|dΓy in the 3D case. Then Φ(x) := (Kf) (x) is defined for all x ∈ R

d

and satisfies ∆Φ = 0 in R
d\Γ. In order to enforce the Dirichlet value

Φ = g on Γ, (1.5)

the function f has to satisfy the integral equation

Kf = g for all x ∈ Γ, i.e.,
∫

Γ

f(y)
|x − y|dΓy = 4πg(x) for all x ∈ Γ. (1.6)

Therefore, one has to solve (a discrete version of) Kf = g. For the resulting solution f, the potential Φ = Kf
fulfils (1.1) as well as (1.5) and can be evaluated at any point of interest.

Direct Method In (1.6) one has to solve for the unknown function f, which (indirectly) yields the solution
of the Laplace problem after evaluation of Φ = Kf. A direct approach is

1
2
u(x) = g(x) +

∫
Γ

κ(x,y)u(y)dΓy with κ :=
∂s

∂ny
, g(x) :=

∫
Γ

s(x,y)φ(y)dΓy , (1.7)

which yields the Dirichlet boundary values u(x), x ∈ Γ, of the interior domain with Neumann data φ. s(x,y)
is the fundamental solution from (1.2). κ(x,y) is called double-layer kernel. The left equation in (1.7) holds
for almost all x ∈ Γ, but must be corrected by a factor corresponding to the spherical angle of an edge or
corner of the surface (cf. [13]). This is important for the discretisation by collocation, but does not matter
in the case of the Galerkin discretisation.

1.2.3 Discretisation by BEM

In the following, we assume the more interesting case of d = 3, i.e., Γ is a two-dimensional surface.

Triangulation of the Surface To begin with, assume that the surface can be represented by a union
of planar triangles: Γ =

⋃
t∈P t, where the triangulation P is the set of these (closed) triangles. Usually

the triangulation is required to be conforming in the sense that the intersection of two different triangles is
allowed to be either empty, a node or an edge. Each t ∈ P can be produced by an affine map ηt from the
unit triangle tunit (vertices at (0, 0) , (0, 1) , (1, 0)) onto t, i.e., ηt(tunit) = t. In the following we shall assume
this simple case (of course, quadrilaterals instead of triangles are possible as well).

Alternatively, the true surface can be approximated by curved triangles, i.e., Γ is replaced by⋃
t∈P ηt(tunit), where ηt is a more involved map producing a curved triangle.

In the BEM context the triangles are often called panels.
Since the panels are assumed to be closed, two different panels may overlap by their boundaries. We

say that two subsets s′, s′′ ⊂ Γ are weakly disjoint, if area(s′ ∩ s′′) = 0. This covers the case of (completely)
disjoint sets as well as the case when the boundaries overlap (but not the interior parts).

3

Boundary Element Space The simplest boundary element is the piecewise constant one, i.e., the bound-
ary element space Vh consists of functions being piecewise constant on each triangle t ∈ P . In the case of
(continuous and) piecewise linear elements, the functions from Vh are (continuous and) piecewise affine on
each triangle t ∈ P . In the case of curved triangles, the piecewise affine functions on tunit are mapped by
ηt onto ηt(tunit). Furthermore, one can consider spaces Vh of continuous or discontinuous functions which
coincide with higher order polynomials on t ∈ P .

Galerkin Discretisation The Galerkin discretisation of λu + Ku = φ with respect to the boundary
element space Vh and K from (1.4) reads

Find uh ∈ Vh such that (1.8)

λ

∫
Γ

uh(x)v(x)dΓx +
∫

Γ

∫
Γ

κ(x,y)uh(y)v(x)dΓxdΓy =
∫

Γ

φ(x)v(x)dΓx for all v ∈ Vh.

Collocation Discretisation Since (1.8) involves a double integration, often the collocation is preferred
although the numerical statements about collocation are weaker. For this purpose, one defines a set Ξ =
{ξi : i = 1, . . . , n} of collocation points ξi, where n = dimVh. For instance, in the case of piecewise constant
elements, ξ ∈ Ξ should be chosen as centroid of each t ∈ P . Then the collocation discretisation of λu+Ku = φ
reads

Find uh ∈ Vh such that λuh(ξ) +
∫

Γ

κ(ξ,y)uh(y)dΓy = φ(ξ) for all ξ ∈ Ξ. (1.9)

Matrix Formulation Let B = {b1, . . . , bn} be a basis of Vh. For instance, for piecewise constant elements,
bi is 1 on the ith triangle and 0 on each other t ∈ P . In this case, we may use t ∈ P as index instead of
i = 1, . . . , n, i.e., the basis is B = {bt : t ∈ P}.

In the case of discontinuous and piecewise linear elements, we have three basis functions per triangle:
B = {bt,k : t ∈ P , k = 1, 2, 3}, while for continuous and piecewise linear elements, each basis function bi is
associated with a vertex xi of the triangulation.

Each uh ∈ Vh is represented by

uh =
n∑

j=1

ujbj, (1.10)

where u = (ui)i=1,...,n abbreviates the coefficient vector.
Then the solution of the collocation problem (1.9) is characterised by

λAu + Bu = f , (1.11)

where the matrices A,B and the vector f are given by

A =
(
bj(ξi)

)j=1,...,n

i=1,...,n
, B =

(∫
Γ

κ(ξi,y)bj(y)dΓy

)j=1,...,n

i=1,...,n

, f =
(
φ(ξi)

)
i=1,...,n

. (1.12)

The Galerkin solution is given by (1.10) and (1.11) with

A =
(∫

Γ

bj(x)bi(x)dΓx

)j=1,...,n

i=1,...,n

, (1.13)

B =
(∫

Γ

∫
Γ

κ(x,y)bj(y)bi(x)dΓxdΓy

)j=1,...,n

i=1,...,n

, f =
(∫

Γ

φ(x)bi(x)dΓx

)
i=1,...,n

.

In the case of (1.12), A = I holds, provided that bj is the Lagrange function. In any case, A is a sparse
matrix which causes no problems. Differently, B is usually a fully populated matrix. Standard representation
needs a storage of n2 for all entries. The panel clustering method will reduce this size to O(n logq n), i.e.,
the storage will be almost linear in the dimension n. The same improvement holds for the cost of the
matrix-vector multiplication.

For further details about integral equations and boundary elements see [13].

4

2 The Panel Clustering Method (First Version)

The panel clustering method was introduced in the mid-eighties (cf. [17]). The multipole method, which
started at the same time (cf. [11]), is similar with the difference that it is more designed for point charges and
requires an operator-dependent construction for the expansion functions. Quite another, but theoretically
related approach is the matrix compression, which can be applied in the case of a proper wavelet discretisation
(cf. [6])

The first version, which we present now, corresponds to the collocation equation (1.11), more precisely to
the performance of the matrix-vector multiplication by B, i.e., u 	→ Bu. We recall that the ith component
of Bu reads

(Bu)i =
n∑

j=1

uj

∫
Γ

κ(ξi,y)bj(y)dΓy (2.1)

(see (1.12)). For the fast evaluation of this term, we have to introduce the far field expansion (§2.1) and the
panel cluster tree (§2.2).

2.1 Far Field Expansion

Consider one of the collocation points x = ξi and approximate the kernel κ(x,y) in a subset τ ⊂ Γ\{x} by
a finite expansion of the form

κ̃(x,y) =
∑
ι∈Im

κτ
ι (x)Φι(y), (2.2)

where Φι(y) for ι ∈ Im are functions independent of x. Im is an index set whose size is indicated by m (see
(2.3) below). The upper index τ denotes a subset of Γ in which κ̃(x, ·) should be a good approximation of
κ(x, ·).

In the simplest case, κ̃(x, ·) is the Taylor expansion around the centre of τ up to degree m − 1. In
this case the index set Im equals the set {ι ∈ N

d
0 : ι1 + . . . + ιd ≤ m − 1} of multi-indices, where d is the

spatial dimension. In order to make the functions Φι(y) independent of τ, we may choose the monomials
Φι(y) = yι = yι1

1 × . . . × yιd

d (expansion around zero). In the case discussed above, the number of indices of
Im is bounded by (2.3) with CI = 1:

#Im ≤ CI md. (2.3)

Further details about the approximation of κ by (2.2) will follow in §2.7.2.

2.2 Cluster Tree

Assembling several neighbouring triangles (panels) t ∈ P , we can form clusters. The union of neighbouring
clusters yield even larger clusters. This process can be continued until the complete surface Γ is obtained
as largest cluster. As in Figure 2.1, the clusters may have an irregular geometric shape (they may even be
unconnected). For later purpose it is favourable if clusters are rather compact, i.e., area(c)/ diam(c)2 should
be large.

Figure 2.1: Clustering of four triangles

One may consider this process also from the opposite point of view (domain decomposition). The surface
Γ is divided into smaller parts (clusters), which are divided further until only the panels remain as the trivial
clusters. For a construction based on this approach see §2.7.1.

5

The process of clustering (or repeated domain decomposition) is represented by the cluster tree T . In the
following definition, P is the set of panels and we denote the set of unions of panels by S = {⋃t∈P ′ t : P ′ ⊂ P}.
All panels t ∈ P belong to S, but also Γ =

⋃
t∈P t ∈ S.

Definition 2.1 (a) All vertices of T belong to S. (b) Γ ∈ T is the root of T. (c) The leaves of T are the
panels from P . (d) If τ ∈ T is no leaf, there is a set S(τ) with at least two sons, which are weakly disjoint
(cf. §1.2.3). Furthermore, S(τ) satisfies

τ =
⋃

τ ′∈T
τ ′. (2.4)

Usually, S(τ) consists of exactly two sons, so that T becomes a binary tree.

Remark 2.2 The the number of clusters τ ∈ T is at most #T ≤ 2#P − 1 = 2n − 1. The upper bound
#T = 2n − 1 holds for a binary tree.

2.3 Admissible Clusters and Admissible Coverings

For the integration of κ(x,y)u(y) over a cluster τ (cf. (2.1)) we shall use the expansion κ̃(x,y) from (2.2)
instead of κ. This requires the following condition on x and τ .

We call τ ∈ T to be an admissible cluster with respect to some control point x ∈ R
d if

diam(τ) ≤ η dist(x, τ). (2.5)

The parameter η > 0 will be chosen later (η will turn out to be constant independent of the panel size h).
From inequality (2.5) we see: The larger the distance between x and the cluster, the larger the cluster may
be.

A set of clusters C = {τ1, . . . , τs} ⊂ T is called a covering (of Γ) if the clusters are weakly disjoint and
satisfy

Γ =
⋃s

j=1
τj . (2.6)

There are two trivial coverings: C = {Γ} is the coarsest one. The finest is C = P . In the first case the
cluster is as large as possible (but the number of cluster is minimum), in the second case the clusters are as
small as possible (but their number is maximum).

In the following, we are looking for a covering which (from the computational point of view) should
consist of a small number of clusters and which, on the other hand, should be admissible. This leads us to
the following definition.

Definition 2.3 We call C = {τ1, . . . , τσ} ⊂ T an admissible covering (of Γ) with respect to x if it is a
covering satisfying (2.6) and

either τj ∈ P or τj is admissible with respect to x. (2.7)

Remark 2.4 (a) If x ∈ Γ, there is no covering (2.6) of Γ consisting of admissible clusters only. (b)
Condition (2.7) states that non-admissible clusters are panels.

The number of clusters in C should be as small as possible. The optimum is discussed in

Proposition 2.5 For each x ∈ R
d there is a unique admissible covering C(x) with respect to x with minimum

number nC(x) := #C(x) of clusters. C(x) is called the minimum admissible covering with respect to x.

The minimum admissible covering C(x) with respect to x can easily be computed by

C := ∅; Divide(Γ, C); comment the result is C = C(x); (2.8a)

where Divide is the recursive procedure

procedure Divide(τ, C); comment τ ∈ T is a cluster, C is a subset of T ;
begin if τ is admissible with respect to x then C := C ∪ {τ}

else if τ ∈ P then C := C ∪ {τ}
else for all τ ′ ∈ S(τ) do Divide(τ ′, C)

end;

(2.8b)

6

2.4 Algorithm for the Matrix-Vector Multiplication

2.4.1 Partition into Near and Far Field

Instead of computing the matrix entries, we compute the far field coefficients in Phase I. In Phase II we
evaluate an approximation of Kuh at x ∈ R

d (e.g., at x = ξi ∈ Ξ). Repeating (2.1), we recall that the
desired result of the matrix-vector multiplication v = Bu is

vi =
n∑

j=1

uj

∫
Γ

κ(ξi,y)bj(y)dΓy . (2.9)

Let C(ξi) be the minimum admissible covering determined in (2.8b). We split C(ξi) into a near field and
a far field part defined by

Cnear(ξi) := {τ ∈ C(ξi) : τ is not admissible},
Cfar(ξi) := {τ ∈ C(ξi) : τ is admissible}.

All τ ∈ Cnear(ξi) are panels (cf. Remark 2.4b). The integral in (2.9) can be written as∫
Γ

. . . =
∑

τ∈Cnear(ξi)

∫
τ

. . . +
∑

τ∈Cfar(ξi)

∫
τ

. . . .

This induces an analogous splitting of vi from (2.9) into

vi = vnear
i + vfar

i .

The part vfar
i will be approximated by ṽfar

i in §2.4.3. Note that the splitting depends on i. Another i′ yields
another collocation point ξi′ and another splitting into Cnear(ξi′) and Cfar(ξi′).

2.4.2 Near Field Part

The near field part of vi is computed exactly (or with sufficiently accurate quadrature):

vnear
i =

∑
t∈Cnear(ξi)

∑
j

uj

∫
t

κ(ξi,y)bj(y)dΓy . (2.10)

Since the support of the basis functions bj is small, there is only a constant number of indices j such that a
panel t ∈ Cnear(ξi) intersects with supp(bj). Hence the sum

∑
j has only O(1) terms. The number of panels

in Cnear(ξi) turns out to be bounded by O(log n).

2.4.3 Far Field Part

Replacing the exact kernel κ in the definition of vfar
i by κ̃(x,y) from (2.2), we obtain

ṽfar
i :=

∑
τ∈Cfar(ξi)

∑
j uj

∫
τ
κ̃(ξi,y)bj(y)dΓy

=
∑

τ∈Cfar(ξi)

∑
j uj

∫
τ

∑
ι∈Im

κτ
ι (ξi)Φι(y)bj(y)dΓy .

Summation and integration can be interchanged:

ṽfar
i =

∑
τ∈Cfar(ξi)

∑
ι∈Im

κτ
ι (ξi)

∑
j

uj

∫
τ

Φι(y)bj(y)dΓy . (2.11)

The following integrals are called far field coefficients,

J ι
τ (bj) :=

∫
τ

Φι(y)bj(y)dΓy (ι ∈ Im, τ ∈ T, 1 ≤ j ≤ n). (2.12)

Of particular interest are the far field coefficients corresponding to panels. These are the only ones to be
evaluated in the first phase:

J ι
t (bj) :=

∫
t

Φι(y)bj(y)dΓy (ι ∈ Im, t ∈ P , 1 ≤ j ≤ n). (2.13)

7

Remark 2.6 (a) The coefficients J ι
t (bj) are independent of the special vector u in the matrix-vector multi-

plication v = Bu. (b) There is only a fixed number of panels t intersecting with the support of bj; otherwise,
J ι

t (bj) = 0. The number of non-zero coefficients J ι
t (bj) is O(n #Im).

As soon as the far field coefficients (2.13) are computed, the quantities

J ι
t :=

∑
j

ujJ
ι
t (bj) (ι ∈ Im, t ∈ P) (2.14)

can be summed up by O(n #Im) additions. For τ ∈ T \P , we exploit the tree structure:

J ι
τ =

∑
τ ′∈S(τ)

J ι
τ ′ for τ ∈ T \P . (2.15)

The coefficients J ι
τ represent the sum

J ι
τ =

∑
j

ujJ
ι
τ (bj) =

∫
τ

Φι(y)
∑

j

ujbj(y) dΓy .

Hence the quantities ṽfar
i can be computed from the simple sum

ṽfar
i =

∑
τ∈Cfar(ξi)

∑
ι∈Im

κτ
ι (ξi) J ι

τ (2.16)

(see (2.11)). Since the number of clusters τ ∈ Cfar(ξi) is expected to be much smaller than the number n of
all panels, the representation (2.16) should be advantageous.

2.5 The Additional Quadrature Error

The replacement of vfar
i by ṽfar

i can be regarded as an additional quadrature error. The error of the expansion
(2.2) depends on the order m and the cluster containing y. The exact requirements on κ̃ are as follows.

Assumption 2.7 Let η0 ∈ (0, 1) and a ball B ⊂ R
d be given. There are constants C1, C2 such that for all

0 < η < η0 < 1 and m ∈ N there are expansions κ̃ of the form (2.2) satisfying

|κ(x,y) − κ̃(x,y)| ≤ C1(C2η)m|κ(x,y)| for all y ∈ B and diamB ≤ η dist (x, B) . (2.17)

Inequality (2.17) provides an estimation of the relative error of κ̃. The proof of (2.17) in [18] uses a
Taylor expansion κ̃ with respect to y for standard examples and determines the values of C1,C2,η0. The
estimation in (2.17) by κ(x,y) on the right-hand side makes for instance sense for positive kernels like
κ(x,y) = 1

4π|x−y| . In §2.7.3 it will become obvious that (2.17) can also be obtained for the double-layer
kernel (see (1.7)) although its sign changes.

By (2.17) the error is of order O(ηm). In order to make the error equal to the consistency error O(hκ)
(h: panel size), we choose η in (2.5) by

η = η(n) := O((n−κ/(d−1))1/m) < η0, κ < m. (2.18)

Then O(hm) equals O(hκ). Since in (2.20) m will be chosen as O(log n), the quantity η becomes independent
of h.

2.6 Complexity of the Algorithm

2.6.1 Choice of Parameters

The complexity of the algorithm depends mainly on the number nC(x) of clusters in the minimum admissible
covering C(x). Under natural conditions described in [18], where also details of the proofs can be found,
there is a constant CC with

nC(x) ≤ nC(η, n) := CC(1
η)d−1 log(2 + ηd−1#P) for all x ∈ R

d (2.19)

8

with η from (2.5). The logarithmic factor can even be omitted if x /∈ Γ.
Inserting (2.18) into (2.19) and using #P = O(n), we obtain the following estimate for the number nC(x)

of clusters in C(x):

nC(x) ≤ nC(η, n) = C′
Cnκ/m log(2 + Cdn

1−κ/m) for all x ∈ R
d.

The optimal choice of the expansion order m turns out to be

m :=
⌊

κ

d+1 log n
⌋

(
x� := largest integer i with i ≤ x). (2.20)

Then nκ/m (and η) is a constant and we obtain the estimate

nC(x) ≤ C log n. (2.21)

Therefore, we have to deal with only O(log n) clusters instead of n panels.

2.6.2 Operation Count

While Phase I has to be performed only once for initialisation, Phase II has to be repeated for every matrix-
vector multiplication.

Phase I (a) Algorithm (2.8a,b) (computing the minimum admissible covering C(x)) requires O(nC(x))
operations per point x. Because of (2.21) and since there are n different collocation points x = ξi, the total
amount of work in this part is O(n log n).

(b) The computation of vnear
i in (2.10) needs O(log n) evaluations of integrals of the form∫

t
κ(ξi,y)bj(y)dΓy per index i, therefore in total O(n log n) evaluations.
(c) The far field coefficients J ι

t (bj) (t ∈ P , ι ∈ Im) can be computed by O(n logd n) operations (cf. (2.3),
(2.20)) and require O(n logd n) evaluations (or approximations) of integrals of the form

∫
t
Φι(y)bj(y)dΓy .

(d) The number of coefficients κτ
ι (ξi) to be evaluated for τ ∈ Cfar(ξi), ι ∈ Im, 1 ≤ i ≤ n equals

O(n logd+1 n).
Phase II (a) The far field coefficients J ι

τ for the nontrivial clusters τ ∈ T \P and all indices ι ∈ Im can
be summed up in O(n#Im) = O(n logd n) additions (see (2.15)).

(b) The final summation in (2.16) requires only O(n logd+1 n) additions.

Theorem 2.8 (a) The data computed in Phase I and the quantities from Phase II require a storage of size
O(n logd+1 n) data. (b) Each matrix-vector multiplication u 	→ Bu can be approximated up to an error of
size O(hκ) by O(n logd+1 n) operations.

Concerning the storage in Phase I, we remark that only the coverings C(ξi), the non-zero integrals∫
t κ(ξi,y)bj(y)dΓy from (2.10), the expansion coefficients κτ

ι (ξi), and the far field coefficients J ι
t (bj) are to

be stored.
The costs for Phase I can be further reduced if several panels are geometrically similar.

2.7 Some Implementational Details

2.7.1 Construction of the Cluster Tree

In the following, we describe the construction of the cluster tree T by means of bounding boxes. This method
is in particular suited for elements in a domain Ω ⊂ R

d. The application to surfaces will be discussed at the
end of this section.

Associate every element t with its centroid denoted by zt with the coordinates zt,k (k = 1, . . . , d). Let Z
be the set of these points. The smallest bounding box Q ⊂ R

d containing all zt is given by

Q = [a1, b1] × . . . × [ad, bd] , where ak := min{zk : z ∈ Z}, bk := max{zk : z ∈ Z}. (2.22)

Choose k ∈ {1, . . . , d} such that the side length bk − ak is maximum and divide Q into

QI = [a1, b1] × . . . × [
ak, ak + bk−ak

2

)× . . . × [ad, bd] ,

QII = [a1, b1] × . . . × [
ak + bk−ak

2 , bk

]× . . . × [ad, bd] .

9

This gives rise to a partition of Z into Z ′ := Z ∩ QI and Z ′′ := Z ∩ QII . The procedure can be repeated
recursively: Determine the bounding box Q′ of Z ′ (it may be smaller than QI !) and split Q′ into Q′,I

and Q′,II and accordingly Z ′. The recursion stops when the resulting subset of Z contains only one point.
Obviously, the construction produces a binary tree TZ starting with the root Z. Any vertex of TZ is a subset
Z∗ of Z. Since each z ∈ Z∗ corresponds to exactly one panel t = tz ∈ P , the union

⋃
z∈Z∗ tz describes a

cluster. In this way, the tree TZ can be transferred into the desired cluster tree.
Figure 2.2 shows the bisection process in the two-dimensional case.

Figure 2.2: The bounding box to the left containing the points zt is divided into two parts in z1-direction.
In the second step, the new bounding boxes are divided in z2-direction

For BEM, a modification is of interest. As soon as the corresponding cluster is close to some (tangent) hy-
perplane, the coordinates of the bounding box can be rotated so that d−1 coordinates are in the hyperplane,
while the dth coordinate is the normal direction.

2.7.2 Far Field Expansion by Polynomial Interpolation

In (2.2), κ̃(x,y) =
∑

ι∈Im
κτ

ι (x)Φι(y) describes the approximation of κ(x,y) in the cluster τ for a fixed
collocation point x. Let dm = #Im denote the dimension of polynomials of total degree m − 1. Choose
dm interpolation points ζτ

i and let κ̃(x,y) be the polynomial interpolating κ(x,y). It has the representa-
tion

∑dm

i=1 κ(x, ζτ
i)Lτ

i (y), where Lτ
i (y) denotes the Lagrange polynomials with the property Lτ

i (ζτ
j) = δij

(Kronecker symbol). Expanding Li into monomials, one obtains the desired representation (2.2).
Concerning the choice of interpolation points, one is not restricted to the cluster τ ⊂ Γ ⊂ R

d. Instead one
can first define suitable quadrature points ζi in the unit cube C = [−1/2, 1/2]d. Given a cluster τ with centre
zτ , consider the cube Cτ := zτ +diam(τ)C and use the corresponding quadrature points ζτ

i = zτ +diam(τ)ζi.
The interpolation polynomial converges to the Taylor polynomial if all interpolation points ζτ

i tend to the
centre zτ .

The latter approach requires that κ(x, ·) is defined on Cτ . This holds, e.g., for kernels from §1.2.1, but
not for kernels involving normal derivatives as the double layer kernel, since the normal derivative is defined
on Γ only. The remedy is given in the next subsection.

2.7.3 Far Field Expansion for Kernels with Normal Derivatives

The double layer kernel for the Laplace problem is ∂
∂ny

1
4π|x−y| = 1

4π
〈x−y,n(y)〉

|x−y|2 (cf. (1.7)). One possibility is

to approximate 1/ |x − y|2 by an expression of the form
∑

ι κ∗
ι (x)Φι(y). Then 1

4π
〈x−y,n(y)〉

|x−y|2 is approximated

by
∑d

j=1

∑
ι {xjκ

∗
ι (x)} {nj(y)Φι(y)} −∑

ι κ∗
ι (x) {〈y,n(y)〉Φι(y)} and the latter expression is again of the

form (2.2). Note that nonsmooth surfaces yielding nonsmooth normal directions n(y) cause no difficulty.
Furthermore, the relative error estimate (2.17) can be shown (the error becomes zero if 1

4π
〈x−y,n(y)〉

|x−y|2 = 0
due to x − y⊥n(y)).

The disadvantage of the described approach is the fact that the number of terms is multiplied by the
factor 4. This can be avoided by approximating 1

4π|x−y| by
∑

ι κι(x)Φ∗
ι (y) and forming its normal derivative:∑

ι κι(x) ∂
∂ny

Φ∗
ι (y), which gives (2.2) with Φι(y) := ∂

∂ny
Φ∗

ι (y).
The latter approach is in particular helpful when the Lamé equation is treated. Note that

(∂
∂xi

∂
∂xj

|x − y|)i,j=1,...,3 = 1
|x−y|I − (x−y)(x−y)�

|x−y|3 ; hence, the expansion of the scalar function |x − y|
has to be differentiated.

10

2.8 Modification: Approximations with Basis Transforms

In κ̃(x,y) =
∑

ι∈Im
κτ

ι (x)Φι(y) (cf. (2.2)) we required Φι(y) to be independent of τ. This fact was used in
(2.15): The quadrature results of J ι

τ ′(bj) =
∫

τ ′ Φι(y)bj(y)dΓy for the sons τ ′ ∈ S(τ) could be used to get
J ι

τ (bj) =
∫

τ Φι(y)bj(y)dΓy as their sum.
However, a global basis {Φι(y) : ι ∈ Im} has numerical disadvantages. Considering, e.g., polynomials,

one likes to have locally defined bases {Φι
τ (y) : ι ∈ Im} for each cluster τ ∈ T. Since these different bases

span the same spaces, there are transformations of the form

Φι
τ (y) =

∑
λ∈Im

ωι,λ
τ,τ ′Φλ

τ ′(y) for τ ∈ T and τ ′ ∈ S(τ). (2.23)

We redefine
J ι

τ (bj) :=
∫

τ

Φι
τ (y)bj(y)dΓy (2.24)

using the τ -dependent basis {Φι
τ (y) : ι ∈ Im} . The computation starts at the leaves (panels): J ι

t (bj) is com-
puted for all t ∈ P . Due to (2.23), we have J ι

τ (bj) =
∑

τ ′∈S(τ)

∑
λ∈Im

ωι,λ
τ,τ ′Jλ

τ ′(bj) instead of (2.12). We
store only J ι

t (bj) for t ∈ P and compute for a given vector u the quantities J ι
t =

∑
j ujJ

ι
t (bj) as in (2.14).

However, the formula for J ι
τ =

∑
j ujJ

ι
τ (bj) has now to use (2.24) and reads

J ι
τ =

∑
τ ′∈S(τ)

∑
λ∈Im

ωι,λ
τ,τ ′J

λ
τ ′

instead of (2.15). These J ι
τ can now be used in (2.16) to obtain ṽfar

i .

Concerning the coefficients ωι,λ
τ,τ ′, we return to the basis of Lagrange functions Lτ

i introduced in §2.7.2. In
that case, ωι,λ

τ,τ ′ = Lτ ′
λ (ζτ

ι) involves nothing than the evaluation of the τ ′-basis functions at the interpolation
points associated to τ.

Another obvious basis are the monomials (y − zτ)ι centred around a midpoint zτ of the cluster τ. In this
case, (2.23) describes the re-expansion of polynomials centred at zτ ′ around the new centre zτ .

3 The Panel Clustering Method (Second Version)

The previous version of the panel clustering method is completely row-oriented. For each row index i,
we compute the component vi of v = Bu by means of a covering C(ξi) which may change with i. As a
consequence, the kernel κ(x,y) = κ(ξi,y) is a function of y only and (2.2) describes an expansion with
respect to y.

In the following, we try to determine a version in which the x- and y-directions are equally treated. This
is in particular more appropriate for the Galerkin discretisation (1.8).

The tree T from §2.2 was introduced to describe decompositions of Γ. Now we consider the product Γ×Γ
and determine a corresponding (second) tree T2 in §3.1.1. The vertices of T2 are products τ × σ ⊂ Γ × Γ
of clusters τ, σ ∈ T. The kernel κ(x,y) will be approximated by a special separable expansion (3.3) for
(x,y) ∈ τ × σ.

3.1 The Tree T2 of Products of Clusters

3.1.1 Definition

Let the cluster tree T be defined as in §2.2. The second tree T2 is constructed from T as follows. We use
the symbol b for the vertices of T2. While S(τ) denotes the set of sons of τ ∈ T, the sons of b ∈ T2 form the
set S2(b).

Definition 3.1 (a) T2 is a subset of T ×T, i.e., each vertex of T2 is a product τ ×σ of two clusters τ, σ ∈ T.
(b) Γ×Γ ∈ T2 is the root of the tree. (c) It remains to construct the set S2(b) of sons of any b = τ ×σ ∈ T2 :

S2(b) :=

⎧⎪⎪⎨⎪⎪⎩
{τ ′ × σ′ : σ′ ∈ S(σ), τ ′ ∈ S(τ)} if neither σ nor τ are leaves of T2,
{τ × σ′ : σ′ ∈ S(σ)} if τ is a leaf of T2 but not σ,
{τ ′ × σ : τ ′ ∈ S(τ)} if σ is a leaf of T2 but not τ ,
∅ if τ and σ are leaves of T2.

11

The last case, S2(b) = ∅ is equivalent to saying that b is a leaf in T2. Note that (b) defines a first vertex
in T2, while by (c) one gets recursively new vertices belonging to T2. In this way, T2 is completely defined
by T. In particular, only the tree structure of T has to be stored.

Remark 3.2 The tree T2 has the same properties as T in (2.4): For any b ∈ T2 being not a leaf, the sons
b′ ∈ S2(b) are weakly disjoint and b =

⋃
b′∈S2(b)

b′. The leaves of T2 are of the form τ×σ with panels τ, σ ∈ P .

3.1.2 Admissibility, Covering C2

Let η > 0 be the same parameter as in (2.5). A product b = τ × σ ∈ T2 is called admissible if

max{diam(τ), diam(σ)} ≤ η dist(τ, σ). (3.1)

As in Definition 2.3 we define a covering of Γ × Γ.

Definition 3.3 (a) A covering C2 ⊂ T2 is a subset with pairwise weakly disjoint b ∈ C2 such that
⋃

b∈C2
b =

Γ × Γ. (b) An admissible covering C2 is a covering such that all b ∈ C2 are either admissible or a leaf.

Again we are looking for a minimum admissible covering C2, which is obtained by (3.2a) using Divide2
from (3.2b),

C2 := ∅; Divide2(Γ× Γ, C2); (3.2a)

procedure Divide2(b, C2); comment b ∈ T2, C2 ⊂ T2;
begin if b is admissible then C2 := C2 ∪ {b}

else if b is a leaf of T2 then C2 := C2 ∪ {b}
else for all b′ ∈ S2(b) do Divide2(b′, C2)

end;

(3.2b)

In the following, C2 denotes the minimum admissible covering obtained by (3.2a-b).

3.2 Kernel Expansion

We split C2 into a far field Cfar
2 := {b ∈ C2 : b is admissible} and near field Cnear

2 := {b ∈ C2 : b is not
admissible}. In the latter case, b is a leaf of T2. Due to the admissibility condition (3.1), the kernel function
κ(x,y) allows an expansion with respect to x ∈ τ and y ∈ σ, when b ∈ Cfar

2 . For this purpose, we introduce
a basis {Φν

τ : ν ∈ Im} for each cluster τ ∈ T, which is applied with respect to x and y.
Given b = τ × σ ∈ Cfar

2 , we approximate κ(x,y) by an expression κb(x,y) of the form

κb(x,y) :=
∑

ν∈Im

∑
µ∈Im

κb
ν,µΦν

τ (x)Φµ
σ(y) for (x,y) ∈ b = τ × σ ∈ Cfar

2 . (3.3)

An example of such an expression is the Taylor expansion with respect to (x,y) around the centres
(zτ , zσ) of τ and σ. Then Φν

τ (x) is the monomial (x − zτ)ν
, where ν ∈ Im belongs to the same set of

multi-indices as for the Taylor expansion in §2.1.
The coefficients κb

ν,µ in (3.3) form a dm × dm matrix Kb =
(
κb

ν,µ

)
ν,µ∈Im

, where dm := #Im.

3.3 Matrix-Vector Multiplication for the Galerkin Discretisation

We recall the Galerkin discretisation (1.8) and the matrix formulation (1.13) involving the matrix B. The
ith component of v = Bu is

vi =
n∑

j=1

uj

∫
Γ

∫
Γ

κ(x,y)bj(y)bi(x)dΓxdΓy.

The covering C2 allows to replace the integration over Γ × Γ by the sum of integrals over b ∈ C2,

vi =
∑

b=τ×σ∈C2

n∑
j=1

uj

∫
τ

∫
σ

κ(x,y)bj(y)bi(x)dΓxdΓy.

12

If b = τ×σ ∈ Cnear
2 , the expression remains unchanged and yields the near field part vnear

i . For b = τ×σ ∈ Cfar
2 ,

we replace κ(x,y) by κb(x,y) from (3.3),

vfar
i =

∑
b=τ×σ∈Cfar

2

n∑
j=1

uj

∫
τ

∫
σ

∑
ν∈Im

∑
µ∈Im

κb
ν,µΦν

τ (x)Φµ
σ(y)

︸ ︷︷ ︸
=κb(x,y)

bj(y)bi(x)dΓxdΓy

=
∑

b=τ×σ∈Cfar
2

n∑
j=1

uj

∑
ν∈Im

∑
µ∈Im

κb
ν,µ

⎛⎝∫
τ

Φν
τ (x)bi(x)dΓx

⎞⎠⎛⎝∫
σ

Φµ
σ(y)bj(y)dΓy

⎞⎠
=

∑
b=τ×σ∈Cfar

2

n∑
j=1

uj

∑
ν∈Im

∑
µ∈Im

κb
ν,µ Jν

τ (bi)Jµ
σ (bj) =

∑
b=τ×σ∈Cfar

2

∑
ν∈Im

∑
µ∈Im

κb
ν,µ Jν

τ (bi)Jµ
σ

with quantities Jµ
σ (bj) and Jµ

σ already defined in §2.8.

4 Hierarchical Matrices

The panel clustering method was element-oriented and enabled a fast matrix-vector multiplication. The
present method is index-oriented and supports all matrix operations, i.e., additionally an approximate ad-
dition, multiplication and inversion of matrices are possible.

The technique of hierarchical matrices (H-matrices) applies not only to full BEM matrices, but also to
the fully populated inverse stiffness matrices of FEM problems.

Again the construction is based on trees which are similar to those from §3. However, the panels are
replaced by the indices, i.e., by the degrees of freedom. This will lead to a block-structured matrix, where
all subblocks are filled with low-rank matrices.

The use of low-rank matrices for subblocks was already proposed by [19], however, the construction of
the efficient block-structure was missing.

4.1 Index Set I

We consider square matrices A = (aij)i,j∈I , where the indices i, j run through the index set I of size
n := #I. We shall not use an explicit naming of the indices by I = {1, . . . , n}, since this might lead to the
wrong impression that the indices must have a special ordering. The technique of H-matrices can easily be
extended to rectangular matrices B = (bi,j)i∈I,j∈J , where I and J are different index sets.

For the following construction we need to know some geometric information about the indices. The
simplest case is given by point data:

Assumption 4.1 Each index i ∈ I is associated with a ‘nodal point’ ξi ∈ R
d.

In this case, we use the following obvious definitions for the diameter of a subset I ′ ⊂ I and for the
distance of two subsets I ′, I ′′ ⊂ I :

diam (I ′) := max
{∣∣ξi − ξj

∣∣ : i, j ∈ I ′
}

,

dist (I ′, I ′′) := min
{∣∣ξi − ξj

∣∣ : i ∈ I ′, j ∈ I ′′
}

,
(4.1a)

where |·| denotes the Euclidean norm in R
d.

Although this information is sufficient for the practical application, precise statements (and proofs) about
the FEM (or BEM) Galerkin method require the following support information:

Assumption 4.2 Each index i ∈ I is associated with the support Xi := supp(bi) ⊂ R
d of the finite element

basis function bi. For subsets I ′, I ′′ ⊂ I we define

X(I ′) :=
⋃

i∈I′ Xi,

diam(I ′) := max {|x − y| : x,y ∈ X(I ′)} ,

dist (I ′, I ′′) := min {|x − y| : x ∈ X(I ′), y ∈ X(I ′′)} .

(4.1b)

13

4.2 Cluster Tree TI for H-Matrices

The following tree TI is constructed as the panel cluster tree T from Definition 2.1, but the panels t ∈ P are
replaced by indices i ∈ I.

Definition 4.3 The cluster tree TI consisting of subsets of I is structured as follows.
(a) I ∈ TI is the root of TI .
(b) The leaves of TI are given by the one-element sets {i} for all i ∈ I.
(c) If τ ∈ TI is no leaf, there exist disjoint sons τ1, . . . , τk ∈ TI (k = k(τ) > 1) with τ = τ1 ∪ . . . ∪ τk.

We denote the set of sons by SI(τ). Usually, binary trees (k = 2) are appropriate.

Remark 4.4 (a) The fact that the leaves of TI contain exactly one element is assumed in order to simplify
the considerations. In practice, one fixes a number Cleaf (e.g., Cleaf = 32) and deletes all τ ′ ∈ SI(τ) with
#τ ≤ Cleaf , i.e., in the reduced tree the leaves are characterised by #τ ≤ Cleaf . Definition 4.3 corresponds
to Cleaf = 1.

(b) The construction from §2.7.1 can be used as well to build TI . The centres zt from §2.7.1 (cf. Fig-
ure 2.2) are to be replaced by the points ξi from Assumption 4.1.

4.3 Block Cluster Tree TI×I

The entries aij of a matrix A ∈ R
I×I are indexed by pairs (i, j) ∈ I × I. Accordingly, the block cluster

tree TI×I contains subsets of I × I. Given the tree TI , the block cluster tree TI×I is constructed similarly
to §3.1.1. The vertices (blocks) of TI×I are denoted by b, the sons of b form the set SI×I(b). For a matrix
A ∈ R

I×I and a block b ∈ TI×I , the corresponding submatrix is denoted by

A|b := (ai,j)(i,j)∈b . (4.2)

Definition 4.5 (a) The vertices of TI×I are products b = τ × σ of two clusters τ, σ ∈ TI .
(b) I × I ∈ TI×I is the root of the tree.
(c) The set of sons of b = τ × σ ∈ TI×I is defined by

SI×I(b) := {τ ′ × σ′ : τ ′ ∈ S(τ), σ′ ∈ S(σ)}.

Note that SI×I(b) = ∅ if either S(τ) or S(σ) are the empty set. Hence, the leaves of SI×I(b) are those
b = τ × σ where either τ or σ are leaves of TI .

4.4 Admissibility Condition

Next, we need an admissibility condition that allows us to check if a block b is of appropriate size. We recall
that diam(σ) and dist(τ, σ) (τ, σ ∈ TI) are defined by (4.1a or b).

Definition 4.6 Let η > 0 be a fixed parameter. The block b = τ × σ ∈ TI×I is called admissible, if either b
is a leaf or

min{diam(τ), diam(σ)} ≤ η dist(τ, σ). (4.3)

Note that in (4.3) the minimum of the diameters appears, while the panel clustering in (3.1) needs the
maximum.

The simplest way to check the admissibility condition (4.3), is to apply (4.3) to the bounding boxes Qσ

and Qτ from (2.22). The condition min{diam(Qσ), diam(Qτ)} ≤ 2η dist(Qσ, Qτ) which is easy to verify,
implies (4.3).

14

4.5 Admissible Block Partitioning

The first step in the construction of H-matrices is the block partitioning (see, e.g., Figure 4.1). The par-
titioning called P is a covering in the sense that all blocks b ∈ P are disjoint and

⋃
b∈P b = I × I. The

partitioning is admissible if all b ∈ P are admissible is the sense of Definition 4.6. Again, we are looking for
a minimum admissible partitioning for which #P is as small as possible. It can be determined as in (2.8a,b)
or (3.2a,b). We apply (4.4a) with DivideP from (4.4b),

P := ∅; DivideP (I × I, P); (4.4a)

procedure DivideP (b, P); comment b ∈ TI×I , P ⊂ TI×I ;
begin if b is admissible then P := P ∪ {b}

else if b is a leaf of TI×I then P := P ∪ {b}
else for all b′ ∈ SI×I(b) do DivideP (b′, P)

end;

(4.4b)

Next, we give an example of such an minimum admissible partitioning which corresponds to a discreti-
sation of the integral operator

∫ 1

0
log |x − y| f(y)dy, where d = 1 is the spatial dimension. Consider the

piecewise constant boundary elements which give rise to the supports

Xi := [(i − 1)h, ih] for i ∈ I := {1, . . . , n} and h := 1/n, where n = 2p

(cf. (4.1b)). The cluster tree TI is the binary tree obtained by a uniform halving: The resulting clusters
form the tree TI = {τ �

i : 0 ≤ � ≤ p, 1 ≤ i ≤ 2�}, where

τ �
i =

{
(i − 1) ∗ 2p−� + 1, (i − 1) ∗ 2p−� + 2, . . . , i ∗ 2p−�

}
. (4.5)

Note that τ0
1 = I is the root, while τp

i = {i} are the leaves. Further, we choose η = 1 in (4.3). Then
the resulting block partitioning is shown in Figure 4.1. Under natural conditions, the number of blocks is
#P = O(n).

Figure 4.1: Partitioning for a 1D example

4.6 H-Matrices and Rk-Matrices

Definition 4.7 (H-matrix) Given a cluster tree TI for an index set I, let the related minimum admissible
partitioning be denoted by P. Further, let k ∈ N be a given integer. Then the set H(k, P) consists of all
matrices M ∈ R

I×I with
rank(M|b) ≤ k for all b ∈ P.

Any rectangular matrix C ∈ R
b (b = τ × σ) with rank(C) ≤ k gives rise to the following equivalent

representations
C =

∑k
i=1aib�

i ∈ R
b with vectors ai ∈ R

σ, bi ∈ R
τ ,

C = AB� with A ∈ R
τ×k, B ∈ R

σ×k,
(4.6)

15

where the matrices A = [a1, . . . ,ak], B = [b1, . . . ,bk] are composed by the vectors ai,bi. The vectors in
(4.6) may be linearly dependent, since rank(M) < k is not excluded. Throughout this section the bound k
on the rank is assumed to be much smaller than the dimension n.

Definition 4.8 (Rk-matrix) Matrices represented in the form (4.6) are called Rk-matrices.

Remark 4.9 (a) Rk-matrices require a storage of size 2k (#σ + #τ) .
(b) Multiplication of an Rk-matrix C = AB� with a vector requires k scalar products and vector additions:

Cv =
∑k

i=1 αiai with αi := 〈bi,v〉 . The cost is 2k (#τ + #σ) .

(c) Multiplication of two Rk-matrices R = AB� ∈ R
b,S = CD� ∈ R

b′ with b = τ × σ, b′ = σ × σ′ leads
to the Rk-matrix T = ED� ∈ R

τ×σ′
with E = A ∗ Z, where Z = B�C is of size k × k. The operation cost

is 2k2 (#τ + #σ) .
(d) The product MR for an arbitrary matrix M ∈ R

b and an Rk-matrix R ∈ R
b′ is again an Rk-matrix

of the form (4.6) with a′
i := Mai.

According to Remark 4.4, the leaves of TI may be characterised by #τ ≤ Cleaf . Then all submatrices M|b
of an H-matrix M are represented as Rk-matrices except for the case when b = τ × σ with #σ, #τ ≤ Cleaf ,
where a (usual) full matrix is preferable.

Remark 4.10 Under rather general assumptions on the tree TI and on the geometric data ξi or Xi (cf.
§4.1), the storage requirements for any M ∈ H(k, P) are O(nk log(n)) (cf. [14], [15]).

The constant in the estimate O(nk log(n)) from Remark 4.10 is determined by a sparsity constant Csp

of the partitioning P (see [9]).

4.7 Hierarchical Format for BEM and FEM Matrices

So far, the set H(k, P) of matrices is defined. It is still to be shown that matrices of this format are able to
approximate well those matrices which we want to represent.

4.7.1 BEM Matrices

The second version of the panel clustering method is already quite close to the present form. In the
former case, the data associated to a block b = τ × σ ∈ T2 (notation in the sense of §3.1.1) describe
the part

∫
τ

∫
σ κ(x,y)bi(x)u(y)dxdy with κ approximated by κ̃. In the special case u = bj (i.e., u is

the jth unit vector) this integral becomes
∫

τ

∫
σ

κ(x,y)bi(x)bj(y)dxdy. Now, we want to represent aij =∫
Γ

∫
Γ κ(x,y)bi(x)bj(y)dxdy which, in general, is different from the previous result, since the supports Xi, Xj

of bi, bj are not necessarily contained in τ and σ. Due to the admissibility of the block b = τ×σ ∈ P (notation
in the sense of §4.2), κ(x,y) is approximated by

κ̃(x,y) =
k∑

ι=1

Ψι(x)Φι(y) for all x ∈ X(τ),y ∈ X(σ) (4.7)

(cf. (2.2)). Inserting one term of (4.7) into
∫
Γ

∫
Γ

. . . bi(x)bj(y)dxdy for (i, j) ∈ b, we obtain αi ∗ βj , where
αi :=

∫
Γ Ψι(x)bi(x)dx and βj =

∫
Γ Φι(y)bj(y)dy. These components form the vectors aι = (αi)i∈τ and

bι = (βj)j∈σ . Hence,

∫
Γ

∫
Γ

κ̃(x,y)bi(x)bj(y)dxdy =
k∑

ι=1

aιb�
ι for (i, j) ∈ b

shows that the approximation of κ in X(τ) × X(σ) by κ̃ containing k terms is equivalent to having an
Rk-submatrix A|b with rank (A|b) ≤ k. In the case of (admissible) blocks b ∈ P , which do not satisfy (4.3),
b = {(i, j)} is of size 1 × 1 (cf. Definition 4.6), so that aij can be defined by the exact entry.

16

Remark 4.11 (a) Let A ∈ R
I×I be the exact BEM matrix. The existence of a (well approximating) H-

matrix Ã ∈ H(k, P) follows from a sufficiently accurate expansion (4.7) with k terms for all ‘far-field blocks’
b ∈ P satisfying (4.3).

(b) The BEM kernels (mathematically more precisely: asymptotically smooth kernels, cf. [15]) allow an
approximation up to an error of O(η

d−1√k) by k terms (η is the factor in (4.3)).

Concerning the construction of Ã ∈ H(k, P) one can follow the pattern of panel clustering (see, e.g., [5]
and [4]). Interestingly, there is another approach (called “adaptive cross approximation” (ACA)) by [1], [3],
which only makes use of the procedure (i, j) 	→ ∫

Γ

∫
Γ κ(x,y)bi(x)bj(y)dxdy (this mapping is evaluated only

for a few index pairs (i, j) ∈ I × I).

4.7.2 FEM Matrices

Since FEM matrices are sparse, we have the following trivial statement.

Remark 4.12 Let (4.1b) be used to define the admissible partitioning P. Then, for any k ≥ 1, a FEM
stiffness matrix belongs to H(k, P).

The reason is that A|b = O for all blocks b satisfying (4.3), since (4.3) implies that the supports of the
basis functions bi, bj ((i, j) ∈ b) are disjoint. Remark 4.12 expresses that fact that A can be considered as
H-matrix. Therefore, we can immediately apply the matrix operations described below. In particular, the
inverse matrix can be determined approximately. The latter task requires that A−1 has a good approximation
B ∈ H(k, P). This property is the subject of the next theorem.

Theorem 4.13 Let Lu = −∑d
ν,µ=1 ∂µ(cν,µ∂νu) be a uniformly elliptic differential operator whose coeffi-

cients are allowed to be extremely non-smooth: cij ∈ L∞(Ω). Let A be a FEM stiffness matrix for this
boundary value problem. Then there are approximants Bk ∈ H(k, P) so that Bk converges exponentially to
A−1 (details in [2]).

4.8 Matrix Operations

In the following, we describe the matrix operations which can be performed using H-matrices. Except the
matrix-vector multiplication, the operations are approximate ones, but the accuracy can be controlled by
means of the rank parameter k. Concerning further details and cost estimates, we refer to [9].

4.8.1 Matrix-Vector Multiplication

The matrix-vector product y 	→ y + Mx is performed by the call MV M(M, I × I,x,y) of

procedure MV M(M, b,x,y); comment b = τ × σ ∈ TI×I , M ∈ R
I×I , x,y ∈ R

I ;
begin if SI×I(b) �= ∅ then for b′ ∈ SI×I(b) do MV M(M, b′,x,y)

else y|τ := y|τ + M|b x|σ
end;

(4.8)

The third line of (4.8) uses the matrix-vector multiplication of an Rk-matrix with a vector (see Remark 4.9b).
The overall arithmetical cost is O(nk log n).

4.8.2 Matrix-Matrix Addition, Truncation

For M′,M′′ ∈ H(k, P), the exact sum M := M′ + M′′ is obtained by summing M′|b + M′′|b over all blocks
b ∈ P. The problem is, however, that usually M′|b + M′′|b has rank 2k, so that a fill-in occurs and M is
no longer in the set H(k, P). Therefore, a truncation of M|b = M′|b + M′′|b back to an Rk-matrix M̃|b is
applied.

Concerning the truncation, we recall the optimal approximation of a general (rectangular) matrix M ∈
R

τ×σ by an Rk-matrix M̃. Optimality holds with respect to the spectral norm (‖A‖ = max{|Ax| / |x| :
x �= 0} =

√
λmax, where λmax is the maximum eigenvalue of AA�) and the Frobenius norm (‖A‖F =

(
∑

i,j a2
i,j)

1/2).

17

Algorithm 4.14 (a) Calculate the singular value decomposition M = UΣV� of M, i.e., U,V are unitary
matrices, while Σ = diag(σ1, . . .) is a diagonal rectangular matrix containing the singular values σ1 ≥ σ2 ≥
. . . .

(b) Set Ũ := [U1, . . . ,Uk] (first k columns of U), Σ̃ := diag(σ1, . . . , σk) (first (largest) k singular values),
Ṽ := [V1, . . . ,Vk] (first k columns of V).

(c) Set Ã := ŨΣ̃ ∈ R
τ×k and B̃ := Ṽ ∈ R

σ×k in (4.6). Then M̃ = ÃB̃
�

is the best Rk-matrix
approximation of M.

We call M̃ a truncation of M to the set of Rk-matrices. The costs are in general O((#τ + #σ)3)
operations. In our application, the sum M := M′ + M′′ has rank K ≤ 2k. Here we can apply a cheaper
singular value decomposition.

Algorithm 4.15 Let M = AB� be an RK-matrix with A, B ∈ R
τ×K and K > k.

(a) Calculate a truncated QR-decomposition A = QARA of A, i.e., QA ∈ R
τ×K, Q�

AQA = I, and
RA ∈ R

K×K upper triangular matrix.
(b) Calculate a truncated QR-decomposition B = QBRB of B, QB ∈ R

σ×K , RB ∈ R
K×K .

(c) Calculate a singular value decomposition UΣV� of the K × K matrix RAR�
B.

(d) Set Ũ, Σ̃,, Ṽ as in Algorithm 4.14b.

(e) Set Ã := QAŨΣ̃ ∈ R
τ×k and B̃ := QBṼ ∈ R

σ×k. Then, M̃ = ÃB̃
�

is the best Rk-matrix approxi-
mation of M.

The truncation from above costs O(K2(#τ + #σ) + K3) arithmetical operations.
The exact addition M′,M′′ ∈ H(k, P) 	→ M := M′ + M′′ ∈ H(2k, P) together with the truncation

M ∈ H(2k, P) 	→ M̃ ∈ H(k, P) is denoted by the formatted addition

M′⊕M′′. (4.9)

Similarly, the formatted subtraction � is defined. The complexity of ⊕ and � is O(nk2 log n).

4.8.3 Matrix-Matrix Multiplication

Let X,Y ∈ H (k, P). Under the assumption that TI is a binary tree, both matrices are substructured by

X =
[

X11 X12

X21 X22

]
, Y =

[
Y11 Y12

Y21 Y22

]
, and the product is

XY =
[

X11Y11 + X12Y21 X11Y12 + X12Y22

X21Y11 + X22Y21 X21Y12 + X22Y22

]
.

The most costly subproducts are X11Y11 and X22Y22, since these submatrices have the finest partitioning,
whereas X12, Y21, X21, Y12 have a coarser format. Performing the products recursively and adding according
to §4.8.2, we obtain an approximate multiplication X � Y. Its costs are O(nk2 log2 n) (cf. [14]). A detailed
algorithm can be found in [9] and [4].

4.8.4 Inversion

Let A ∈ H (k, P). Under the assumption that TI is a binary tree, we have as above that A =
[

A11 A12

A21 A22

]
.

The inverse of a 2×2 block-matrix can be computed by the block-Gauss elimination (see [14]) if the principal
submatrices are invertible:

A−1 =
[

A−1
11 + A−1

11 A12S−1A21A−1
11 −A−1

11 A12S−1

−S−1A21A−1
11 S−1

]
with
S = A22 − A21A−1

11 A12.
(4.10)

Applying a recursive procedure Inv, compute Inv(A11) as approximation of A−1
11 , invert S̃ := A22 �

A21�Inv (A11)�A12 and perform the remaining operations in (4.10) by means of ⊕ and �. Again, the
precise algorithm is in [4].

The complexity for the computation of the formatted inverse is O(nk2 log2 n) (cf. [14], [8], [9]).

18

4.9 Examples

4.9.1 BEM Case

To demonstrate the advantage of the H-matrix approach, we consider the simple example of the discretisation
of the single layer potential on the unit circle using a Galerkin method with piecewise constant basis functions.
The logarithmic kernel function is approximated by the interpolatory approach from §2.7.2 (interpolation at
Chebyshev points).

n 1 2 3 4 5
1024 3.5710-2 2.1610-3 2.5010-4 7.8810-6 2.6710-6
2048 3.5810-2 2.1910-3 2.5110-4 7.8610-6 2.6910-6
4096 3.5910-2 2.2010-3 2.5110-4 7.8710-6 2.6810-6
8192 3.5910-2 2.2010-3 2.5210-4 7.7610-6 2.6710-6

16384 3.5910-2 2.2110-3 2.5310-4 7.8710-6 2.6810-6

Table 4.1: Approximation error for the single layer potential

The first column of Table 4.1 contains the number of degrees of freedom (n = #I), the following columns
give the relative error ‖A− Ã‖/‖A‖ (spectral norm). We observe that the error is bounded independently
of the discretisation level and that it decreases very quickly when the interpolation order is increased.

n 1 2 3 4 5
1024 0.01 0.02 0.01 0.01 0.03
2048 0.02 0.04 0.03 0.05 0.07
4096 0.05 0.11 0.09 0.12 0.17
8192 0.12 0.24 0.19 0.26 0.39

16384 0.27 0.53 0.41 0.56 0.83
32768 0.57 1.15 0.90 1.23 1.90
65536 1.18 2.44 1.96 2.73 4.14

131072 2.45 5.18 4.30 5.89 8.98
262144 5.15 11.32 9.14 12.95 19.78
524288 10.68 23.81 19.62 28.02 43.57

Table 4.2: Time [sec] required for the matrix-vector multiplication (single layer potential)

n 1 2 3 4 5
1024 0.61 0.93 1.76 3.11 5.60
2048 1.25 2.03 3.85 7.04 12.94
4096 2.56 4.29 8.41 15.82 29.65
8192 5.25 9.16 18.10 35.31 66.27

16384 10.75 19.30 39.32 77.47 146.65
32768 22.15 40.83 85.16 169.16 324.36
65536 45.79 87.32 185.85 368.46 702.63

131072 92.64 180.73 387.63 788.06 1511.66
262144 189.15 378.20 854.75 1775.85 3413.45
524288 388.96 795.84 1743.66 3596.77 6950.55

Table 4.3: Time [sec] required for building the H-matrix (single layer potential)

The time (SUN Enterprise 6000 using 248 MHz UltraSPARC II) required for matrix vector multiplications
is given in Table 4.2. We can see that the complexity grows almost linearly in the number of degrees of
freedom and rather slowly with respect to the interpolation order.

Finally, we consider the time required for building the H-matrix representation of the discretised integral
operator (see Table 4.3). The integral of the Lagrange polynomials is computed by using an exact Gauss
quadrature formula, while the integral of the kernel function is computed analytically. Once more we observe

19

k n=4096 16384 65536 262144
1 2.4 8.9 2.6+1 4.7+1
2 5.7-1 3.2 1.2+1 2.7+1
3 9.2-2 5.2-1 2.4 1.0+1
4 2.0-2 9.9-2 4.4-1 1.91
5 2.3-3 9.2-3 4.0-2 1.7-1
6 6.4-4 3.7-3 1.8-2 8.4-2
7 1.4-4 6.9-4 2.9-3 1.2-2
8 7.8-5 3.9-4 1.8-3 7.7-3
9 8.5-6 4.6-5 2.1-4 9.4-4
15 6.8-9 3.3-8 1.3-7 5.2-7
20 1.7-12 1.3-10 5.3-10 2.5-9

k n=6664 13568 27384 55024 110312
1 9.6-2 9.9-2 7.9-2 1.1-1 9.4-2
2 1.3-2 1.1-2 1.7-2 1.9-2 1.6-2
3 3.9-3 4.4-3 1.7-3 4.5-3 4.7-3
4 8.6-5 4.7-4 1.7-4 5.0-4 5.1-4
5 8.9-6 3.6-5 7.6-6 4.9-5 5.0-5
6 2.1-8 9.8-7 1.2-6 1.3-6 1.4-6
7 3.1-10 5.0-7 1.9-10 5.8-7 5.9-7
8 1.4-12 4.2-10 2.1-11 2.5-10 2.8-10
9 1.0-14 2.4-13 2.1-14 2.7-13 2.8-13

Table 4.4: Relative error ‖I − A Ã−1‖ in the spectral norm for the (formatted) inverse on a uniform grid
(left) and on the boundary concentrated mesh (right).

an almost linear growth of the complexity with respect to the number of degrees of freedom and a slow growth
with respect to the interpolation order. Note that even on the specified rather slow processor, the boundary
element matrix for more than half a million degrees of freedom can be approximated with an error < 0.03%
in less than half an hour.

4.9.2 FEM Case, Inverse Stiffness Matrix

We give a short summary of numerical tests from [9] and consider first the Poisson equation −∆u = f on
the unit square Ω = [0, 1]2 with zero boundary condition u = 0 on Γ = ∂Ω. The approximate inverse Ã−1 is
computed for different local ranks k. The left part of Table 4.4 shows the relative error ‖I−A Ã−1‖ in the
spectral norm for the (formatted) inverse on a uniform grid.

Next we show that the uniformity of the grid and the simple shape of the square do not play any role.
The grid from Figure 4.2 is strongly graded towards the boundary (“boundary concentrated mesh”). For the
details of the geometrically balanced cluster tree we refer to [9]. The complexity of the inversion is reduced
as compared to the uniform case while the accuracy is enhanced (see right part of Table 4.4). This resembles
the fact that the grid mainly degenerates to a lower dimensional structure (the boundary).

Figure 4.2: The boundary concentrated mesh

Finally, we give examples showing that the performance is not deteriorated by rough coefficients. Consider
the differential equation

− div (σ(x, y)∇u(x, y)) = f(x, y) in Ω = [0, 1]2, (4.11)
u = 0 on Γ = ∂Ω,

Let Ω1 ⊂ Ω be the wall-like domain from Figure 4.3. Let La be the differential operator in (4.11) with

20

20

40

60

20

40

60

0

250

500

750

1000

20

40

60

0

250

50

7

Figure 4.3: Subdomain Ω1 of Ω = [0, 1]2

n = 2304 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6
Storage (MB) 10.2 18.9 27.6 36.2
∆ 4.110-03 5.910-04 1.110-05 1.210-06
L103 6.910-03 9.810-04 1.610-05 2.110-06
L106 6.910-03 9.810-04 1.610-05 1.710-06

n = 6400
Storage (MB) 40.0 75.9 111.6 147.5 183.1 218.8
∆ 3.510-03 6.510-04 8.810-06 2.110-06 4.210-07 8.310-09
L103 5.510-03 1.010-03 1.210-05 3.210-06 5.510-08 1.310-08
L106 5.610-03 1.010-03 1.210-05 3.110-07 4.710-08 9.110-09

n = 14400
Storage (MB) 123.4 235.7 349.6 462.0 575.9 688.2
∆ 3.210-03 5.910-04 8.910-06 2.310-06 5.510-08 1.510-08
L103 4.910-03 8.810-04 1.210-05 3.310-06 7.310-08 1.910-08
L106 5.010-03 8.810-04 1.010-05 3.210-06 6.710-08 9.110-09

Table 4.5: Frobenius norm ‖A−1 − Ã−1‖ of the best approximation to A−1 using the local rank k

σ(x, y) =
{

a, (x, y) ∈ Ω1

1, (x, y) ∈ Ω\Ω1

}
. Note that L1 = −∆. Table 4.5 shows the relative accuracy measured for

different problem sizes n in Frobenius norm when approximating the inverse of the respective FEM matrix
by an H-matrix with local rank k. The results demonstrate that the error ‖A−1 − Ã−1‖ depends on the
jump a very weakly.

4.10 H2-Matrices and Other Variants of H-Matrices

4.10.1 Variable Rank, Recompression

We may replace the integer k in Definition 4.7 by a function k(b). Then, the matrix M has to fulfil
rank (M|b) ≤ k(b) for all b ∈ P. A possible non-constant choice is k(b) := α ∗ l(b), where l(·) is defined
by induction: l(b) = 1 for leaves b ∈ TI×I and l(b) = 1 + min{l(b′) : b′ ∈ SI×I(b)}. In this case, k(b) varies
between 1 and log2 n. The low ranks correspond to the (many) small blocks, whereas large ranks occur for
the few large blocks. As a result, cost estimates by O(nks logq n) for fixed k may turn into the optimal order
O(n) for appropriate variable rank.

Given an H-matrix M with a certain (variable or constant) local rank, it might happen that the block
matrices M|b can be reduced to lower rank with almost the same accuracy. The standard tool is a singular
value decomposition of M|b. If some of the k(b) singular values σ1 ≥ . . . ≥ σk(b) are sufficiently small, these
contributions can be omitted resulting in a smaller local rank k(b).

21

4.10.2 Uniform H-Matrices

Consider b = τ × σ ∈ TI×I . The submatrix M|b belongs to R
τ×σ. A special subspace of R

τ×σ is the tensor
product space Vb ⊗Wb = {vw� : v ∈ Vb,w ∈ Wb} of Vb ∈ R

τ and Wb ∈ R
σ. Note that T ∈ Vb ⊗Wb implies

rankT ≤ min {dim Vb, dim Wb} . Hence, we may replace the condition rank (M|b) ≤ k by M|b ∈ Vb⊗Wb with
spaces Vb, Wb of dimension ≤ k. The resulting subset of H-matrices is called the set of uniform H-matrices.

For the representation of submatrices M|b, one uses corresponding bases {v1, . . . ,vdim Vb
} and

{w1, . . . ,wdim Wb
} of Vb, Wb and defines Vb := [v1, . . . ,vdim Vb

] , Wb = [w1, . . . ,wdim Wb
] . Then,

M|b = VbSbW�
b , where the matrix Sb of size dim Vb × dim Wb contains the specific data of M|b which are

to be stored.

4.10.3 H2-Matrices

The previous class of uniform H-matrices uses different spaces Vb, Wb for every b = τ×σ ∈ P. Now, we require
that Vb depends only on τ, while Wb depends only on σ. Hence, we may start from a family V = (Vτ)τ∈TI

of spaces Vτ ⊂ R
τ and require M|b ∈ Vτ ⊗ Vσ for all b = τ × σ ∈ P.

The second, characteristic requirement is the consistency condition

Vτ |τ ′ ⊆ Vτ ′ for all τ ∈ TI and τ ′ ∈ S(τ), (4.12)

i.e., v|τ ′ ∈ Vτ ′ for all v ∈ Vτ . Let Vτ and Vτ ′ the corresponding bases. Due to (4.12), there is a matrix Bτ ′,τ
such that Vτ |τ ′ = Vτ ′Bτ ′,τ . Thanks to Definition 4.3c, Vτ can be obtained from {Vτ ′ ,Bτ ′,τ : τ ′ ∈ S(τ)}.
Hence, the bases Vτ need not be stored, instead the transformation matrices Bτ ′,τ are stored. This is an
advantage, since their size is kτ ′ × kτ with kτ := dimVτ ≤ k independent of the size of the blocks b ∈ P.

For details about H2-matrices, we refer to [5], [16]. The latter paper considers, e.g., the combination of
the H2-matrix structure with variable dimensions kτ . In [4], the example from §4.9.1 is computed also by
means of the H2-matrix technique and numbers corresponding to Tables 4.1-4.3 are given. They show that
a slightly reduced accuracy is obtained with considerably less work.

4.11 Applications

We mention three different fields for the application of H-matrices.

4.11.1 Direct Use

In the case of a BEM matrix A, the storage of the n2 matrix entries must be avoided. Then the approximation
of A by an H-matrix Ã ∈ H(k, P) reduces the storage requirements to almost O(n). Since in this case, Ã must
carry all information about the BEM problem, the rank k must be chosen high enough (e.g., k = O(log n))
in order to maintain the accuracy. Second, the matrix-vector multiplication can be performed with almost
linear cost.

For the solution of the system of linear equations Ax = b one has two options: (a) Use an iterative
scheme which is based on the matrix-vector multiplication (cg-type methods, multi-grid). (b) Compute the
approximate inverse Ã−1 (see §4.8.4).

The computation of operators like Steklov operators (Neumann-to-Dirichlet or Dirichlet-to-Neumann
map) needs to perform the matrix-matrix multiplication � from §4.8.3.

4.11.2 Rough Inverse

In the FEM case, the problem data are given by the sparse stiffness matrix A. The approximate inverse
Ã−1 must be accurate enough, if x̃ := Ã−1b should be a good approximation of the solution x. However,
there is no need to have Ã−1 very accurate. Instead, one can use Ã−1 as ’preconditioner’: The iteration

xm+1 := xm − Ã−1 (Axm − b)

can be applied to improve x0 := Ã−1b. The convergence rate is given by the spectral radius of I − Ã−1A
(cf. [12]). An upper bound of the spectral radius is the norm ‖I − Ã−1A‖ which should be < 1. For the
elliptic example, this norm is given in Table 4.4.

22

4.11.3 Matrix-Valued Problems

There are further problem, where the usual matrix-vector approach is insufficient, since one is interested
in matrices instead of vectors. We give some examples, which can be solved by means of the H-matrix
technique.

Matrix Exponential Function Matrix functions like the matrix exponential can be computed effectively
by use of the Dunford-Cauchy representation

exp(A) =
1

2πi

∫
Γ

exp(z)(zI− A)−1dz, (4.13)

where Γ is a curve in the complex plane containing the spectrum of A in its interior. Approximation of the
integral by a quadrature rule (zν : quadrature points) leads to

expH(A) =
N∑

ν=−N

e−tzν aν(zνI − A)−1. (4.14)

Since the integration error decreases exponentially with respect to N, one may choose N = O(log3/2 1
ε) to

obtain an integration error ε. The resolvents (zνI−A)−1 are computed due to §4.8.4. For further details we
refer to [7].

Lyapunov Equation There are linear equations for matrices. An example is the Lyapunov equation
AX + XB + C = O for the unknown matrix X, while A,B,C are given. One possible solution uses the

representation X =
∞∫
0

etACetBdt, provided that the eigenvalues of A,B have negative real parts. Since the

dependence of expH(A) on t in (4.14) is expressed by the scalar factor e−tzν , one can replace etA, etB by
expH(A) and expH(B) and perform the integration exactly (cf. [7, Section 4.2]).

Riccati Equation For optimal control problems, the (nonlinear) Riccati equation

A�X + XA − XFX + G = O (A,F,G given matrices, X to be determined)

is of interest. In [10] the direct representation of X by means of the matrix-valued sign function is applied.
Its iterative computation requires again the inversion, which is provided by the H-matrix technique.

References

[1] Bebendorf M. Approximation of boundary element matrices. Numer. Math. 2000; 86:565–589.

[2] Bebendorf M and Hackbusch W. Existence of H-matrix approximants to the inverse FE-matrix of elliptic
operators with L∞-coefficients. Numer. Math. 2003; 95 :1-28.

[3] Bebendorf M and Rjasanov S. Adaptive low-rank approximation of collocation matrices, Computing 2003;
70:1-24

[4] Börm S, Grasedyck L and Hackbusch W. Introduction to hierarchical matrices with applications. Eng.
Anal. Bound. Elem., 2003; 27:405–422.

[5] Börm S and Hackbusch W. H2-matrix approximation of integral operators by interpolation, Apl. Numer.
Math. 2002; 43:129-143.

[6] Dahmen W, Prössdorf S and Schneider R. Wavelet approximation methods for pseudodifferential equa-
tions II: Matrix compression and fast solution. Adv. Comput. Math. 1993; 1:259-335.

[7] Gavrilyuk I, Hackbusch W and Khoromskij BN. H-matrix approximation for the operator exponential
with applications. Numer. Math. 2002; 92:83-111.

23

[8] Grasedyck L. Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis. Universität Kiel, 2001.

[9] Grasedyck L and Hackbusch W. Construction and arithmetics of H-matrices, Computing 2003; 71 (to
appear).

[10] Grasedyck L, Hackbusch W and Khoromskij BN. Solution of large scale algebraic matrix Riccati equa-
tions by use of hierarchical matrices. Computing 2003; 70:121-165

[11] Greengard L and Rokhlin V. A new version of the fast multipole method for the Laplace equation in
three dimensions. Acta Numerica 1997; 6:229-269.

[12] Hackbusch W. Iterative Solution of Large Sparse Systems. Springer: New York, 1994 — 2nd German
edition: Iterative Lösung großer schwachbesetzter Gleichungssysteme. Teubner: Stuttgart, 1993.

[13] Hackbusch W. Integral Equations. Theory and Numerical Treatment. ISNM 128. Birkhäuser: Basel,
1995 — 2nd German edition: Integralgleichungen. Theorie und Numerik. Teubner: Stuttgart, 1997.

[14] Hackbusch W. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices,
Computing 1999; 62:89–108.

[15] Hackbusch W and Khoromskij BN. A sparse matrix arithmetic based on H-matrices. Part II: Application
to multi-dimensional problems, Computing 2000; 64:21–47.

[16] Hackbusch W, Khoromskij BN and Sauter S. On H2-matrices. In Lectures on Applied Mathematics,
Bungartz H, Hoppe R and Zenger C (eds). Springer: Heidelberg, 2000; 9–29.

[17] Hackbusch W and Nowak ZP. O cloznosti metoda panelej. In Vycislitel’nye prozessy i sistemy, Marchuk
GI (ed). Nauka: Moscow, 1988; 233–244 (conference in Moscow, September 1986).

[18] Hackbusch W and Nowak ZP. On the fast matrix multiplication in the boundary element method by
panel clustering, Numer. Math. 1989; 54:463–491.

[19] Tyrtyshnikov E. Mosaic-skeleton approximation, Calcolo 1996; 33:47–57.

24

