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1 Introduction

The influence that boundary conditions have on different spectral functions
is an active field of research. In quantum field theory, spectral functions
of particular interest are the zeta function and the heat kernel. Their de-
pendence on the boundary condition is well understood for a large variety
of boundary conditions (for a recent review see [1]). However, for some
boundary conditions an understanding of elementary properties of spectral
functions is still lacking. This is the case for generalized (or chiral) local bag
boundary conditions [2, 3].

These boundary conditions involve an angle θ, which is a substitute for
introducing small quark masses to drive the breaking of chiral symmetry
[3, 4, 5]. The influence the parameter θ has on various correlators was ana-
lyzed in detail in [3] for the two dimensional Euclidian ball. In reference [6],
the heat kernel and the eta function were analyzed in the two dimensional
cylinder. The situation of an arbitrary dimensional ball was considered in
[7]. The results found in the above articles suggest that general properties
of spectral functions, like the pole structure of the associated zeta func-
tion and the form of the asymptotic expansion of the heat kernel, are the
properties resulting from strongly elliptic local boundary conditions. For
the generalized bag boundary conditions considered here, this property has
not been proven. In fact, strong ellipticity is not clear at all because, for
θ �= 0, the boundary conditions are of mixed oblique type [7] and, under
certain circumstances, oblique boundary conditions are not strongly elliptic
[8, 9]. However, after introducing some basic notation and properties of the
boundary conditions, we will prove in Sections 3 and 4 that generalized bag
boundary conditions are indeed strongly elliptic boundary conditions. Based
on this observation, in future investigations one might envisage a determi-
nation of heat kernel coefficients for these boundary conditions. In recent
years, a conglomerate of methods has been proven to be very effective in
the determination of this asymptotics [1]. Among the methods are special
case considerations, which form the basis of the second half of our paper.
In particular, we will determine the local heat kernel and the zeta function
on cylindrical product manifolds. Results are given in terms of boundary
data, much in the way it is possible for spectral boundary conditions [10].
The Conclusions will summarize the main results and describe their possible
future applications.
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2 Basic properties of chiral bag boundary condi-
tions

In this section, we will establish some notations for the problem at hand,
i.e., the Euclidean Dirac operator acting on spinors satisfying local (chiral
bag) boundary conditions [3].

Let m = 2m̄ be even and let P = iγj∇j be an operator of Dirac type on
a compact oriented Riemannian manifold of dimension m. Let V denote the
spinor space; dim(V ) = 2m̄. An explicit representation of the γ-matrices
is provided in Appendix A. They are self-adjoint and satisfy the Clifford
anti-commutation relation (A.1). Near the boundary, let em be the inward
unit normal and let γm be the projection of the γ-matrix on the inward
unit normal. In addition let γ̃ be the generalization of ‘γ5’ to arbitrary even
dimension, γ̃ = (−i)m̄γ1...γm.

We set

χ = iγ̃eθγ̃γm

and use the relation γiγ̃ + γ̃γi = 0 to compute

χ2 = −γ̃eθγ̃γmγ̃e
θγ̃γm = γ̃eθγ̃ γ̃e−θγ̃γmγm = 1.

We define
Π± :=

1
2
(1 ± χ)

and have
Π2

± = Π± and Π−Π+ = Π+Π− = 0.

Note that these two projectors are not self-adjoint (except for the par-
ticular case θ = 0). Rather, calling their respective adjoints Π�− and Π�

+,
one has Π�± := 1

2(1 ± iγ̃e−θγ̃γm), and the following equations hold

Π�
+Π+ = cosh (θγ̃) exp (−θγ̃)Π+ = Π�

+ cosh (θγ̃) exp (−θγ̃)
Π�−Π+ = sinh (θγ̃) exp (−θγ̃)Π+ = Π�− sinh (θγ̃) exp (−θγ̃)
Π�−Π− = cosh (θγ̃) exp (−θγ̃)Π− = Π�− cosh (θγ̃) exp (−θγ̃)
Π�

+Π− = sinh (θγ̃) exp (−θγ̃)Π− = Π�
+ sinh (θγ̃) exp (−θγ̃) .

We use Π− to define boundary conditions for P . Similarly, we shall let
B := Π− ⊕ Π−P define the associated boundary condition for P 2.

In the following two sections, we will show that (P,Π−) and (P 2,B)
define strongly elliptic boundary conditions and, as a result, we can assume
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standard results on the meromorphic structure of eta and zeta-invariants
hold [11]. Otherwise stated, we will prove statements (1) and (2) of the
following Theorem

Theorem 2.1
(1) (P,Π−) is strongly elliptic with respect to C − R+ − R−.
(2) (P 2,B) is strongly elliptic with respect to C− R+.
(3) (P,Π−) is self-adjoint.
(4) (P 2,B) is self-adjoint.

Statements (3) and (4) are well known to hold [3] and so we concentrate on
statements (1) and (2).

3 Ellipticity of the first order boundary value prob-

lem

Proof of (1): We use Lemma 1.11.2 (a) of [11] to prove assertion (1). Note
that the special case θ = 0 defines standard mixed boundary conditions
and the theorem is known to hold for this case. Let x = (y1, ..., ym−1, xm)
be coordinates near the boundary where xm is the geodesic distance to
the boundary and where y = (y1, ..., ym−1) are coordinates on ∂M . Let
ξady

a ∈ T ∗(∂M).
Following [11] we define

q̃(ξ, λ) = −iγm

(∑
a<m

γaξa − λ

)
for (ξ, λ) �= (�0, 0) and λ �∈ R− {0}.

We then have q̃(ξ, λ)2 = (|ξ|2 −λ2)1. As (|ξ|2 −λ2) �∈ iR, we may let V q̃
± be

the span of the eigenvectors of q̃(ξ, λ) with positive/negative real parts. We
let

W := Kernel(Π−) = Range(Π+).

Using Lemma 1.11.2 (a) of [11], we prove assertion (1) by verifying that Π−
is an isomorphism from V q̃

−(ξ, λ) to W = Range(Π−). This is equivalent to
showing

V q̃
−(ξ, λ) ∩W = {0}. (3.1)

We change variables slightly setting λ = −iµ where µ �∈ iR − {0} and
(ξ, µ) �= (�0, 0). We then have

q̃(ξ, µ) = −iγm

∑
a<m

γaξa + µγm and q̃(ξ, µ)2 = (|ξ|2 + µ2)1.
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The next step in the proof is to reduce the problem to a collection of effective
two-dimensional ones. We make use of the properties of the γ-matrices. First
note that the elements

τ1 := iγ2γ3, ..., τm̄−1 := iγm−2γm−1,

mutually commute and, in addition, they commute with γ1 and γm. Thus,
for j, k = 1, ..., m̄ − 1, we have

τjτk = τkτj, τ2
j = 1,

τjγ1 = γ1τj, τjγm = γmτj.

So we can choose a set of simultaneous eigenvectors of τj with eigenvalues
ρj = ±1. We denote by �ρ = (ρ1, ..., ρm̄−1) the collection of simultaneous
eigenvalues of τj and we define the associated simultaneous eigenspaces by

V�ρ = {v ∈ V : τiv = ρiv}.

The vector space V�ρ is preserved by γ1, γm and γ̃. We use this fact to
decompose V�ρ into its chiral parts,

V�ρ = V +
�ρ ⊕ V −

�ρ where V ±
�ρ = {v ∈ V�ρ : γ̃v = ±v}.

Let V +
�ρ = span{v�ρ}. Then since γmγ̃ = −γ̃γm we have

V�ρ = span{v�ρ, γmv�ρ}.

The vector spaces V�ρ provide the decomposition

V =
⊕

�ρ

V�ρ, dimV�ρ = 2,

and the problem completely decouples into two-dimensional spaces.
On V�ρ one easily computes, using the definition ε(�ρ) = ρ1 × ...× ρm̄−1,

γ1 = ε(�ρ)
(

0 i
−i 0

)
, γm =

(
0 1
1 0

)
, γ̃ =

(
1 0
0 −1

)
,

thus reproducing the two-dimensional Pauli-matrices up to the standard sign
ambiguity.

We note that the kernel of Π− is determined by the eigenvectors of χ.
Thus to establish (3.1) we shall need explicit representations of χ and q̃(ξ, µ)
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acting on V�ρ. To calculate q̃(ξ, µ) it is possible to choose coordinates such
that ξ2 = ... = ξm−1 = 0. It is then easy to see that

χ = i

(
0 eθ

−e−θ 0

)
, q̃(ξ, µ) =

(
ε(ρ)ξ1 µ
µ −ε(ρ)ξ1

)
.

The eigenvectors of χ follow,

χ

(
�

−ie−θ

)
= �

(
�

−ie−θ

)
,

and we compute

q̃(ξ, µ)
(

�

−ie−θ

)
=
(
ε(�ρ)�ξ1 − iµe−θ

µ�+ iε(�ρ)ξ1e−θ

)

where � = ±1. Assertion (1) holds if these are not multiples of each other,
that is if

det
(
ε(�ρ)�ξ1 − iµe−θ �
µ�+ iε(�ρ)ξ1e−θ −ie−θ

)
= −2iε(�ρ)�ξ1e−θ − µ

(
1 + e−2θ

)
�= 0.

Since the first term is purely imaginary and µ �∈ iR−{0} this proves assertion
(1).

In fact, to prove what we announced (i.e., that Π− is an isomorphism
from V q̃

−(ξ, λ) to W = Range(Π−)), it is enough to consider only � = +1.
But since V q̃

−(−ξ,−λ) = V q̃
+(ξ, λ), considering ρ = ±1 gives the same condi-

tion.
Although assertion (2) follows from assertion (1) and Lemma 1.11.2 (b)

in [11], we prefer to give a second proof showing that the boundary opera-
tor B involves tangential derivatives. This makes apparent that the chiral
boundary conditions are non-standard boundary conditions.

4 Ellipticity of the second order boundary prob-

lem

When considering spectral properties of the square of the operator of Dirac
type, P 2 = (iγj∇j)2, the boundary condition imposed through B is

Π−ψ |∂M = 0, (4.1)
Π−γj∇jψ |∂M = 0. (4.2)
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The second boundary condition (4.2) can be rewritten as an oblique bound-
ary condition involving tangential derivatives. To this end note

γmΠ∓ = Π�
±γm,

γaΠ∓ = Π�
∓γa,

with the tangential γ-matrices γa, where a = 1, ...,m − 1. This allows the
boundary condition (4.2) to be written as

0 = Π−(−iγj∇j)ψ |∂M = iγmΠ−(−iγj∇j)ψ |∂M

= γmΠ−(γm∇m + γa∇a)ψ |∂M = (Π�
+∇m + γmγaΠ�

−∇a)ψ |∂M

= (Π�
+∇m + γmγaΠ�

−∇a)(Π− + Π+)ψ |∂M , (4.3)

where ∇m is the interior normal derivative. The boundary condition con-
tains tangential derivatives and the conditions imposed through B could
thus be termed of mixed oblique type.

Proof of (2): To study the ellipticity of the boundary value problem,
we introduce the “partial” leading symbol of P 2

σL(y, xm, ω,−i∂m, λ) = −∂2
m + ω2 − λ

and the graded symbol, σg, of B

σg =
(

Π− 0
−γaωaΠ�− iγmΠ�

+

)
.

Strong ellipticity requires that the problem

σL(y, xm, ω,−i∂m, λ)Ψ(y, xm, ω, λ) = 0 (4.4)

with

Ψ →r→∞ 0 (4.5)

and

σg

(
Ψ
∂mΨ

)⌋
r=0

=
(

Π−α
iγmΠ�

+∂mα

)⌋
r=0

(4.6)

has an unique solution.
Now, the solutions to (4.4) and (4.5) are

Ψ(xm, ω, λ) = Ψ0 exp(−Λxm) ,

7



where Λ = +
√
ω2 − λ. Note that �(Λ) > 0 for λ ∈ C− R+.

The condition (4.6), when applied to them, reads(
Π− 0

−γaωaΠ�− iγmΠ�
+

)(
Ψ0

−ΛΨ0

)
=
(

Π−α
−iγmΠ�

+Λα

)
.

This gives a system of two equations. After multiplying the second one by
iγm, and using Ψ0 = Π−Ψ0 + Π+Ψ0, one obtains

Π−Ψ0 = Π−α , (4.7)

and (−iγm(γaωa)Π�
−Π+ + ΛΠ�

+Π+

)
Ψ0 =

ΛΠ�
+α− (−iγm(γaωa)Π�

−Π− + ΛΠ�
+Π−

)
Ψ0 . (4.8)

We use (2.1) and substitute (4.7) into (4.8) to see

exp (−θγ̃) [−iγm(γaωa) sinh (θγ̃) + Λ cosh (θγ̃)]Π+Ψ0 =

ΛΠ�
+α− [−iγm(γaωa) cosh (θγ̃) + Λ sinh (θγ̃)] exp (−θγ̃)Π−α .

So, the problem has an unique solution if the matrix

M = −iγm(γaωa) sinh (θγ̃) + Λ cosh (θγ̃) = A sinh (θ) + Λ cosh (θγ̃)

is nonsingular, where we introduced A = −iγ̃γmγaωa.
But A� = A; so, it is diagonalizable. Moreover, A2 =

(∑
a ω

2
a

)
1. As a

consequence, A has eigenvalues ±√∑a ω
2
a, except in two dimensions, where

A is proportional to the identity. Then, the determinant of M can be evalu-
ated in the basis of eigenvectors of A, and in all cases, detM can be seen to
vanish if λ =

P
a ω2

a

cosh2 θ
. For λ = 0, the determinant can only vanish if ωa = 0.

Otherwise, it can only happen for λ ∈ R+, which proves strong ellipticity
in C− R+, and any even dimension. This completes the proof of Theorem
2.1. 	
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5 Heat kernel in an infinite cylinder

In what follows, we present the heat kernel for (P 2,B) in an infinite cylinder
M = R+ ×N of any even dimension. By cylinder we mean that the metric
is of the type ds2 = dx2

m + ds2N , where ds2N is the metric of the closed
boundary N .

In order to determine the heat kernel, it is useful to note that the chiral
bag boundary conditions in equations (4.1) and (4.2) are equivalent, for each
eigenvalue of the tangential part B of the operator P , to Dirichlet boundary
conditions on part of the fibre, and Robin (modified Neumann) on the rest.

In fact, let’s first notice that the operators P+ = Π+Π�
+

cosh2 θ
and P− = Π�

−Π−
cosh2 θ

are self-adjoint projectors, and they satisfy P+ + P− = 1 splitting V into
two complementary subspaces.

Let ξ = xm−x′
m, and η = xm+x

′
m and as before, let y = (y1, y2, ..., ym−1)

be the coordinates on the boundary and x = (y, xm). If we call φω(y)
the eigenspinors of the operator B = γ̃γmγa∂a (with a = 1, 2, ...,m − 1)
corresponding to the eigenvalue ω, normalized such that∑

ω

φ�
ω(y)φω(y

′
) = δm−1(y − y

′
)

with δm−1 the Dirac delta function, and∫
∂M

dy φ�
ω(y)φω(y) = 1 ,

we can expand ψ(y, xm) =
∑

ω fω(xm)φω(y). If ψ = P+ψ, then the condition
(4.1) is identically satisfied, and only (4.3) must be imposed at the boundary
which, for each ω, reduces to

cosh θe−θγ̃ (∂m + ω tanh θ) fω = 0 .

Since the factor to the left of the parenthesis is invertible, this is nothing
but a Robin boundary condition.

In the subspace ψ = P−ψ, the boundary condition (4.1) reduces to

cosh θeθγ̃fω = 0 ,

while (4.3) requires
ωfω = 0 .

Thus, in this subspace, both boundary conditions are nothing but homoge-
neous Dirichlet ones.
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As a consequence, the complete heat kernel can be written as a Dirichlet
heat kernel on P−V and a Robin heat kernel on P+V . For the convenience
of the reader we make the single ingredients explicit [12] and write

K(t;x, x′) = K(t;x, x′)(P− + P+)

=
1√
4πt

∑
ω

φ�
ω(y

′
)φω(y)e−ω2t

(
e

−ξ2

4t − e
−η2

4t

)
P−

+
1√
4πt

∑
ω

φ�
ω(y

′
)φω(y)e−ω2t

{(
e

−ξ2

4t + e
−η2

4t

)

+2
√
πt ω tanh θeω

2t tanh2 θ−ωη tanh θerfc[uω(η, t)]
}
P+

=
1√
4πt

∑
ω

φ�
ω(y

′
)φω(y)e−ω2t

{(
e

−ξ2

4t − e
−η2

4t

)
1 (5.1)

+
2Π+Π�

+

cosh2(θ)

[
1 +

√
(πt)ω tanh θeuω(η,t)2erfc[uω(η, t)]

]
e

−η2

4t

}

where uω(η, t) = η√
4t

−√
tω tanh(θ), and

erfc(x) =
2√
π

∫ ∞

x
dξe−ξ2

is the complementary error function. Note that (5.1) is a direct generaliza-
tion of the heat kernel given in [6] for the two-dimensional case, which, in
turn, coincides with the Fourier transform of equation (101) in [4] for an
antiperiodic boundary fiber.

6 Meromorphic properties of the zeta function

Let us now analyze the boundary contributions to the global zeta function
related to (5.1). We first note that global quantities are necessarily divergent
due to the non-compact nature of our manifold M = R+×N . This is not a
severe problem because the result (5.1) allows us to identify easily the bulk
term leading to a divergent contribution when integrated. In particular, it
is the first term in (5.1) that represents the heat kernel on the manifold
R×N . In the following, without changing the notation, we will first ignore
this term and this will allow us to determine the boundary contributions to
the global zeta function. Alternatively, as we will show afterwards, one can
introduce a localizing function of compact support in (5.1) such that the
trace gives a finite result.
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Let us consider the trace of (5.1) ignoring the first term. It is convenient
to perform the Dirac trace (tr) first. Since

tr

(
2Π+Π�

+

cosh2(θ)

)
= 2m̃ ,

the trace of the ’boundary’ heat kernel reduces to

TrK(t;x, x) =
2m̃

2

∑
ω

ω tanh θe−ω2t

×
∫ ∞

0
dxm erfc[uω(2xm, t)]e

−x2
m

t
+u2

ω(2xm, t) ,

where the second and third term in (5.1) have cancelled each other. Now,
using that

−1
2

∂

∂xm

[
e−x2

m/t+u2
ω(2xm,t)erfc [uω(2xm, t)]

]
=

e−x2
m/t

[
1√
πt

+ ω tanh θ eu
2
ω(2xm,t)erfc [uω(2xm, t)]

]
,

we get

TrK(t;x, x) =
2m̃

4

∑
ω

e−ω2t
[
eu

2
ω(0,t)erfc [uω(0, t)] − 1

]
=

2m̃

4

∑
ω

[
e

−ω2t
cosh2 θ

[
1 + erf(ω

√
t tanh θ)

]
− e−ω2t

]
.

Here we used erf(x) = −erf(−x) = 1 − erfc(x).
Now, we can Mellin transform this trace, to obtain the ’boundary’ zeta

function of the square of the Dirac operator in the infinite cylinder

ζ(s, P 2) =
2m̃

4Γ(s)

∑
ω

∫ ∞

0
dt ts−1

[
e

−ω2t
cosh2 θ − e−ω2t

]

+
2m̃

4Γ(s)

∑
ω

∫ ∞

0
dt ts−1e

−ω2t
cosh2 θ erf(ω

√
t tanh θ)

= ζ1(s, P 2) + ζ2(s, P 2) . (6.1)

The first contribution can be readily seen to be

ζ1(s, P 2) =
1
4
(
cosh2s θ − 1

)
ζ(s,B2) , (6.2)
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where B is the operator defined in Section 5.
As for the second contribution to (6.1), it is given by

ζ2(s, P 2) =
2m̃

4Γ(s)

∑
ω

∫ ∞

0
dt ts−1e

−ω2t
cosh2 θ

2√
π

∫ (ω
√

t tanh θ)

0
dξe−ξ2

.

After changing variables according to y = ξ cosh θ√
tω

, and interchanging
integrals, one finally gets

ζ2(s, P 2) =
2m̃Γ

(
s+ 1

2

)
4Γ(s)

cosh2s θ
∑
ω

sign(ω)
(
ω2
)−s

× 2√
π

∫ sinh θ

0
dy
(
1 + y2

)−s− 1
2

=
Γ
(
s+ 1

2

)
4Γ(s)

cosh2s θη(2s,B)
2√
π

∫ sinh θ

0
dy
(
1 + y2

)−s− 1
2

=
1

2
√
π

Γ
(
s+ 1

2

)
Γ(s)

sinh θ cosh2s θη(2s,B)

× 2F1

(
1
2
,
1
2

+ s,
3
2
;− sinh2 θ

)
. (6.3)

The structure of the zeta function is similar to the structure found for spec-
tral boundary conditions, see e.g. [10]. In particular, the analysis of the
zeta function on M has been reduced to the analysis of the zeta and eta
function on N .

As already commented, from (6.2) and (6.3) one can determine the po-
sitions of the poles and corresponding residues for the zeta function in any
cylindrical product manifold, in terms of the meromorphic structure of the
zeta and eta functions of the boundary operator. For the rightmost poles,
explicit results can be given in terms of the geometry of the boundary N .
For example, for s = (m− 1)/2 we see that

Res ζ1

(
m− 1

2
, P 2

)
=

1
4
(
coshm−1 θ − 1

)
Res ζ

(
m− 1

2
, B2

)

=
1
4
(
coshm−1 θ − 1

) (4π)−(m−1)/2

Γ
(

m−1
2

) 2m Vol(N ).

Because ζ2 does not contribute, given η(2s,B) is regular at s = (m − 1)/2
[11], this equals Res ζ(s, P ) and is the result expected from the calculation
on the ball [13]. For θ = 0 the residue disappears as is known to happen
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for the standard local bag boundary conditions [11]. Further results can
be obtained by using Theorem 4.4.1 of [11]. Given we considered the case
without ’potential’, it is immediate that

Res ζ
(
m− 2

2
, P 2

)
= 0.

Also, for the particular case of s = 0, the fact that ζ(s,B2) and η(2s,B) are
regular at s = 0 shows that ζ(0, P 2) = ζ(0, P ) = 0.

Given the local heat kernel (5.1), a local version of the results of this
section is easily obtained. To this end, we use a localizing function with
compact support near the boundary, such that its normal derivatives at the
boundary vanish,

∂n

∂xn
m

f(y, xm)
∣∣∣∣
xm=0

= 0, n ∈ IN.

Furthermore, we let P̃ 2 denote the operator P 2 on the double R × N of
R+ × N , and we extend the localizing function as an even function to the
double. We use the notation f = f(y, xm), fN = f(y, xm = 0) and f̃
for f on the double. Introducing the local versions ζ(f̃ , s, P̃ 2), ζ(f, s, P 2),
ζ(fN , s,B2) and η(fN , 2s,B) of the zeta functions and the eta function,
(5.1) and previous calculations show that the following theorem holds:

Theorem 6.1

Γ(s)ζ(f, s, P 2) = Γ(s)
{

1
2
ζ(f̃ , s, P̃ 2)

+
1
4
(
cosh2s θ − 1

)
ζ(fN , s,B2) (6.4)

+
1

2
√
π

Γ(s+ 1/2)
Γ(s)

sinh θ cosh2s θ 2F1

(
1
2
,
1
2

+ s,
3
2
,− sinh2 θ

)
η(fN , 2s,B)

}
+h(s)

where h(s) is an entire function.

This result parallels Theorem 2.1 in [10] for spectral boundary conditions.

7 Conclusions

In this article we have considered the influence of generalized bag boundary
conditions on the heat kernel and the zeta function. In order to guarantee
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certain structural properties we have first shown the strong ellipticity of the
boundary conditions. Work by Seeley [14, 15] then shows the standard heat
kernel expansion holds and so the zeta function can have only simple poles
at s = m/2, (m− 1)/2, ..., 1/2, and s = −(2l+1)/2, l ∈ IN. This is the main
result of this paper.

Based on the strong ellipticity one might envisage the determination of
the leading heat kernel coefficients for generalized bag boundary conditions
as they are needed for the calculation of effective actions in gauge theories in
Euclidean bags [3]. Special case calculations can serve to restrict the general
form that coefficients can have, cylindrical manifolds providing a valuable
example. Here, for P = iγj∇j, we have expressed the heat kernel and the
zeta function of the associated second order operator on M = R+ × N
in terms of the boundary data on N . In fact, this result, under certain
restrictions, can be straightforwardly generalized to P = iγj∇j−φ. In order
that a separation of variables as presented succeeds we need ∂xmφ = 0 and
{γm, φ} = {γ̃, φ} = 0. If this is satisfied, equations (6.2) and (6.3) remain
valid, once the operator B incorporates the potential, B = γ̃γm(γa∇a −
iφ). We have thus a particular case involving a potential and Riemannian
curvature and various restrictions on heat kernel coefficients will follow.

A Appendix: γ-matrices

Let m = 2m̄ be the dimension of a Riemannian manifold. We denote by
γ

(m)
j , j = 1, ...,m, the self-adjoint γ-matrices projected along some m-bein

system. These are defined inductively by

γ
(m)
j =

(
0 iγ

(m−2)
j

−iγ(m−2)
j 0

)
, j = 1, ...,m − 1,

γ(m)
m =

(
0 1
1 0

)
, γ(m+1)

m =
(

1 0
0 −1

)
,

starting from the Pauli matrices

γ
(2)
1 =

(
0 i
−i 0

)
, γ

(2)
2 =

(
0 1
1 0

)
, γ

(3)
3 =

(
1 0
0 −1

)
.

The γ-matrices satisfy the Clifford anti-commutation formula

γ
(m)
j γ

(m)
k + γ

(m)
k γ

(m)
l = 2δkl. (A.1)
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In the main body of the paper we will simplify the notation and we will not
indicate the dimension explicitly. In addition, we set

γ
(m)
m+1 = γ̃ = (−i)m̄γ1...γm,

which is the generalization of ‘γ5’ to arbitrary even dimension.
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