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EQUIVARIANT RATIONAL MAPS AND CONFIGURATIONS:
SPHERICAL EQUIDISTRIBUTION AND SO(N,1)
CONTRACTION

SIDNEY FRANKEL

AsTracT. We build up a class of O(N,1)-intrinsic spherical rational maps,
using only stereographic projections and affine centers of mass, and slightly
extend it with antipodal maps. The geometric-analysis of their dynamics lends
itself to applications to equidistribution of points on the sphere and to canon-
ical global parametrizations of the rational maps of CPl. We construct ge-
ometrically natural examples of rational maps of CP”, and introduce a new
approach, “suspension”, to producing iterative algorithms for factoring poly-
nomials, and to finding the k-periodic points of rational maps of CP!

Maps, f, are understood in terms of a discrete steepest descent method,
involving, as Lyapunov function, the log-chordal energy function associated to
the fixed-points of f; ie the spherical Green’s function rather than Coulomb
energy. A transformation of rational maps of CP! which gives singular flat
affine connections on CP! (also known as local systems, a complexification
of polyhedra) in a natural way, provides an O(N,1)-intrinsic analogue of the
Lyapunov force-fields and suggests higher dimensional versions of Schwartz-
Christoffel uniformization of polygonal regions.

Relations to the algebraic geometry of configuration and moduli spaces,
discriminants and dual curves are touched on, and we begin a discussion of
the relation to geometric plethysm-maps as sloC—invariants or covariants. We
note as well the connection to moment maps, and begin a study of the relation
of these constructions to hyperbolic centers of mass (such as Douady-Earle).

A class of self maps O(N,1)-intrinsic for hyperbolic space is constructed
in each dimension as restrictions of the spherical rational maps above with
fixed-point parameters in a hemisphere, generalizing the class of holomorphic
maps of the 2-dimensional disc, and an associated “Schwarz lemma” confirms
that the maps have good geometric and topological properties.

0.0.1. Note on numbering: References to theorems, and all but sections and equa-
tion numbers, are of the form “theorem 2.1” or for short (2.1). Sections, sub™sections
, are referred to as section 2.1, sometimes without the “sub”s, or just 7.2.1, when
they have 2 decimal points, while equations are sometimes called ((3.1)) for short.
Insofar as the following summary is not comprehensive, the reader might supple-
ment it by browsing section and sub™section headings. A list of some open problems
is to be found at the end of the article.

1. INTRODUCTION

Given a point z in S¥, the sphere, Stereographic-projection from z provides an
affine structure A, on its complement, SV — x. We consider the Stereographic
center-of-mass Cen(P, z) of a configuration P C SV — 2. We focus on the case
N = 2 in this article (up to section 8). Cen(P,xz) extends meromorphically to
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P C 5% = CP!, it is even meromorphic in (P,z) C (CP')"; we will allow weighted
interactions, and see that ¢(z) = Cen(P, W, z) is defined by solving for y in

(11) y= o) —— = u,

y—z

1
pj—%

We exploit the symmetries of this expression in section 3, to construct the geo-
metrically natural rational map F : (CPYH™ — (CPY)" of configurations, as well
as its quotients F : CP" — CP", and even meromorphic F : Mg, — My, on
moduli space, in 3.1.1. We then begin a study of the dynamics of F, leading to the
first main theorem 3.12, relating rational maps and equidistribution, though this
leaves open many problems about the global behavior of F. These were our initial
motivations for this work and as such they occupy the central role here.

In section 8 we undertake a study of Cenpyy, with P in a subsphere, SN ¢ SV+1,
(or in a hemisphere, HN*1), to obtain self-maps of hyperbolic space H¥*! and we
prove a Schwarz lemma, (8.20,8.21) which provides a complete description of their
dynamics. This illustrates how constructions based on Cen have nicer properties
than one might have otherwise expected.

A priori, one does expect F : CP" — CP" to have a nice closed form expression,
but its not clear how to produce one —computer algebra packages did not help
here. F provides an algebraically simple but geometrically rich behaviour that we
consider from different viewpoints, and a number of equivalent constructions are
provided; ((3.1)), based on Cen, (3.6), using fixed-points and equivariances, (3.9),
which uses osculating maps, and finally section 7.1, which provides a closed form
expression for F, using the resultant.

Other related results spread throughout the text are less developed, the more
exploratory parts being preceeded by the advice that they are not to be used further
on. We apologize for this, as well as the many questions and occasional speculation
that can slow down the reader, but we include them in the hope that some of these
directions will prove to be fruitful.

1.1. Overview. We begin section 3 with an analysis of standard elementary prop-
erties involving fixed-points and equivariances that leads to a relation to steepest
descent methods—this would be of interest if only because holomorphic maps nor-
mally cannot be constructed using geometric constructions over R of this nature—
moreover this interaction of real and complex geometry can be exploited to produce
attractors for the holomorphic dynamical system.

A variety of relations of F to discriminants, in (3.6), dual curves, in 7.2.1 etc.
arise that are surprising from the elementary viewpoint, but less so from the point
of view of invariant or representation theory since F is also a covariant of sl(2,C) in
the classical sense. We make some attempt to understand F in this latter context,
in section 7.3, which should provide more unity to the theory in the longer run,
and to clarify what other such constructions might be possible.

The suspension construction, section 6, a slight generalization of F that admits
some parameters, underlies a new approach to iterative algorithms for factoring
polynomials, and for finding the k-periodic points of rational maps of CP'. We
first develop a one-variable theory, section 2, 4, 5.1, by fixing some points—treating
them as parameters, at each stage of the development of the multi-variable theory.
This is not only useful in developing some intuition, but can often be applied directly
to establish key points of the multi-variable theory. In addition the one-variable
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theory features a number of constructions and results interesting in their own right;
we cite for example, (2.1), a general NORMAL FORM theorem for rational maps of
CP!, (4.18), a natural transformation of rational maps of CP ! to singular flat affine
connections on CP! (also known as local systems, a complexification of polyhedra).
We also discuss the relation of the latter to Schwartz-Christoffel uniformization of
polygonal regions and hyperbolic centers-of mass in section 8.

The one-variable (or “one-body”) theory turns out to be quite rich for higher
dimensional spheres, particularly in relation to hyperbolic geometry—-it provides an
analogue of holomorphic self maps for hyperbolic spaces, HY = RH" (we specialize
to real hyperbolic space here) which have both good algebraic and topological-
geometric behavior. The analogy to the Schwarz-Pick lemma is secured by (2.1).
(The conjunction of “Douady-Earle” and “Schwarz-lemma” probably brings to mind
the work of Courtois et al, but as far as we can see there is no immediate relation
to their work, the hypotheses and conclusions here being quite different. )

This work began as a study of F as a dynamical system, and the relation to
steepest descent dominates our presentation, but the other directions (algebraic,
hyperbolic) that have emerged from their study could be of more interest in the
long run. In any case the analysis relating to steepest descent is very useful as
regards the latter.

1.1.1. steepest descent, equidistribution, moment map and equivariance. The rela-
tion of the rational map F to a discrete steepest descent method, for an associated
log-chordal energy function, £ (3.11); the spherical Green’s function rather than
Coulomb energy, is one of the main themes, and it’s specialization to the one-
variable theory which is already quite rich can be found in section (5.1). This is
the energy of interest in problem 7 of Smale’s problem list for the 21st century, [37]
, but we do not consider computational complexity questions here. We do discuss
the hessian of energy at Fekete-Tsuji points, ie the global (or local) minimal energy
configurations; in fact it seems that not only is nothing known about uniqueness
of the global minimum, Zj, but even nondegeneracy of the hessian at Zy, (3.14), is
non-trivial, and as far as we know, open.

The fundamental observation regarding equidistributed configurations is that
there are very few solutions coming from finite symmetry groups, (though see [26]).
The fact that there is an equivariant rational map that finds equidistributed con-
figurations seems to provide a reasonable alternative, though specific applications
will require different notions of equidistribution. Diverse energy functionals on the
space of sets of k points, as well as the packing problem are among notions consid-
ered, [25, 34, 12] , and our canonical rational map provides local minima of one of
these. It seems that F has not been considered elsewhere, and, in particular, not
in relation to equidistribution.

The approach to the theory of rational maps presented here should notably be of
interest with regards to the global structure of the space of rational maps, we briefly
consider a holomorphic surgery construction in this context, section 2.1, though the
emphasis here is on the construction of special maps, their geometry and dynamics.

We also emphasize that the theory here is naturally tied to the O(N+1,1) struc-
ture of the sphere. This is the natural equivariance of F. A variant of the moment
map arises as a natural normalization of configurations; it reduces an O(N+1,1)—
orbit of period 2 attractors for the natural rational map F, to an O(N+1)-orbit of
local minima of the energy function. There is a strong coincidence in how well this
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works for precisely the energy of interest here, and we make some attempt to find
an underlying reason for this coincidence. This leads us to also consider relations
of the moment map to hyperbolic centers of mass using these energy functions.
Moment maps are a standard tool for reducing from noncompact-holomorphic to
compact-riemannian-isometric group actions, but we do not know of previous cases
of its use in reducing properties of equivariant-holomorphic maps (of higher degree)
to properties of equivariant-(geo)metric maps. (The maps themselves do not com-
mute with this reduction and we observe that no reasonable reduction will commute
with the maps, but particular properties of the maps such as fixed-points are well
behaved under reduction.) The Schwarz lemma we prove exhibits the Schwarz-
Pick contraction phenomenon as an aspect of the O(N+1,1) geometric structure,
in contrast to the usual holomorphic viewpoint.

The name “elliptic center-of-mass” is likely to win out over alternatives such as
stereographic centrum, not to mention stereogravity or stereographity as a name for
our central construction, especially in view of its relation to hyperbolic centers of
mass, section 8, such as the well known construction of Douady-Earle.

1.1.2. natural correspondences. £ is privileged with a multitude of seemingly un-
related connections to conformal maps and symplectic geometry, which arose here.
The two nice properties of £ in (4.1) that make it useful in studying rational maps
are explained and unified by showing how & is related to homogeneous polynomials.
But there is a direct and natural relation of homogeneous polynomials to rational
maps in one variable, in [9]. This motivates us to look further at the underlying
unifying geometric structures, and a large part of section 4 involves this somewhat
exploratory material. It seems that the payoff in applications might come from the
connection to hyperbolic geometry in section 8, especially the relation of smooth
maps to curvature measures which is somewhat akin to quasiconformal distortion
measures. Various sections contain extended discussions of how these pieces fit to-
gether, in particular we systematically develop some natural correspondences, sec-
tion 4.2.1, providing a geometric explanation and tying together rational maps, local
systems, energy functions, etc. For example, (4.18) gives an easy correspondence
of Gauss-Bonnet for polyhedra to the holomorphic Lefschetz fixed point theorem.
We provide some of these natural correspondences, with a few applications, and
the hope that more will follow. One such correspondence is closely related to the
work of Doyle and McMullen,[9] , on icosahedra and quintics, (as we near the 120th
anniversary of Klein’s 1884 book on the subject). There are also tempting links
to work described in [28] , on moduli spaces of linkages, configurations, etc. The
local minima of the energy functions have been much studied numerically, in the
context, of equidistribution, but it is difficult to give conceptual proofs of any of
their properties. Transforming to the context of holomorphic functions and spher-
ical harmonics, or rational maps may help, (5.13). While most of this work applies
directly to the main goal; relating rational maps and equidistribution, the relation
to hyperbolic geometry which grew partly out of the “coincidences” involving £ and
the moment map provides an equally good motivation.

We have tried to strike a balance between comprehensibility of the proofs and
use of machinery (e.g. Kahler geometry); more elementary approaches to some
points might rely only on trigonometry, and other constructions might benefit from
more powerful algebrao-geometric tools.
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A summary of some open problems is provided at the end. Computer experi-
ments will probably be useful in guiding the next stages of this subject.

We owe much thanks to Chris Connell for help with computer experiments and
discussions leading to the initial conjectures, especially a version of conjecture 5.12
bearing some elements of theorem 3.12. The confirmation of the latter constitutes
the core of this article. Most of this work was done in the summer of 1999, and
part of it was presented, November of that year, in a seminar at Stanford. We also
thank our host, MPI for the possibility to pursue this and other matters farther,
and for their gracious hospitality. In the remainder of this section we introduce the
main actors of the paper, with some clues as to their hidden characters.

1.2. Geometric structure of maps, GRas . The main ingredients used in con-
structing the geometric subclass of rational maps are described in 1.2.1-1.2.4 below,
as well as compositions of maps, and we use the term GRas to refer quite generally
to the class of all such possible constructions. This includes many things not stud-
ied here, such as Cen({fi(z), fo(z), f3(x)},x) where fi(x) = Cenpw (z), f2(z) =
ACenpy (x), f3(x) = gCenpw:(x), g € Aut, combining holomorphic and anti-
holomorphic objects, so we will specify some “tamer” classes below, (see 1.2.5).

We construct rational maps of the sphere SV = SO(N +1)/SO(N) c RN+,
and since an important component of what is used will be conformally intrinsic for
SN ie intrinsic for the structure associated to 9HN*! = SV, where HV*+1 = real
hyperbolic space, with its isometry group of Automorphisms, including reflections
that reverse orientation, [11] , we denote Aut(S™) = SO(N + 1,1) = Aut(HN*1).
(Note: we will use the geometric properties of the 2 groups, (of oriented or all
isometries) in this article but not the algebraic properties of the matrix groups just
alluded to. Subtleties regarding the exact identifications of these matrix groups to
isometry groups, such as the use of SOT(2,1) as (notation for) oriented isometries
are not important in this article, so we do not strictly insist that the matrix groups
act faithfully and our use of SO(N+1, 1) as convenient notation might be off by a Z,
kernel as above. Most often the notation is simply a way to indicate the dimension,
N, in use, as well as the associated Lie algebra that identifies the relevant geometric
structure.)

Conformal structure usually refers to structures local in nature, (but we use
this term for lack of better alternatives, the possible use of Cenformal is suggested
by the relation to center-of-mass) and it is more appropriate to think of Aut(S™)
as preserving a global structure, for example, that provided by round circles, (see
section 4.0.4), or cross ratios of round subspheres, ie S2s.

(1) Complete totally geodesic subspaces of HN*! limit to round spheres in
OHN*1 = SN as follows by symmetry considerations such as those in the
claims in section 4.0.4; any limiting sphere S* is invariant by an O(k+1) C
O(N +1,1). But Aut(SY) acts transitively on the space of all such S* (for
each k).

(2) On each such S? , (with an orientation, thus a CP'), there is a C-valued
cross ratio, XR, and these are Aut(S™)-invariant.

(3) The space RC of round circles determines the Conformal structure of S™v
uniquely, by a passage to the limit giving round circles in T,S%.

Proposition 1.1. Aut(SY) is the largest subgroup of twice differentiable diffeo-
morphisms of S™ preserving either XR or RC.
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This is included for completeness, but isn’t essential in what follows. The structures
XR or RC are typically studied in relation to geometrization of negatively curved
spaces, and some related rigidity conjectures, [21]. These last remarks are relevant
to section 8, if anything.

Rational maps of SN are often denoted RatySY, d = degree, they are maps
whose components are quotients of polynomials, using co-ordinates (by Stereographic—
projection from p) of RN = SN — p. This is independent of p, since Aut is itself
rational (Moebius) in these co-ordinates. A natural alternative is to define Rat
using homogeneous coordinates. Certainly with this definition the antipodal map
A is in Rat, however in the S? = CP' case, which is our main concern here, we
prefer to reserve Rat to denote the construction involving complex coordinates and
holomorphic maps, so A falls outside. We are generally considering maps of CP!,
or (CPH™ to itself, rather than rational functions (which are of interest in control
theory or ODEs, via the laplace transform). Rat is used somewhat ambiguously in
the literature both for self-maps and functions. Note that the two are quite different
insofar as the natural group-actions transform only the domain, for functions, or
both domain and range, for self-maps. This is a common source of confusion when
first looking at the Cen construction (people tend to think of it as a function rather
than a self map).

1.2.1. Center-of-mass:

Proposition 1.2. Given = in SN there is a canonical (conformally intrinsic) affine
structure A, on its complement, SN — x ; it is the affine structure produced by
Stereographic-projection from x, and it is invariant by the (Borel) isotropy group of
x, in SO(N +1,1).

This leads us to consider configurations, P C S — z, of cardinality |P| =n — 1,
and their Stereographic center-of-mass Cen(P, z) with respect to A4,. Cen(P, )
extends meromorphically to P C S? = CP!, it is even meromorphic in (P,z) C
(CP)™, see equation 2.1, corollary 2.12.

UNIQUENESS of the affine structure determined by x can be seen in a multitude
of ways. We provide a few here quickly to get started, but others arise farther on
that may be more interesting and intrinsic to the theory developed here, and might
be preferable in the long run. To keep the discussion clear we will number the ap-
proaches to uniqueness by Aff(i). Each might be useful for different generalizations
of GRas , for example they will not all work over other fields, (a generalization
not taken up in this article). The first couple, using the invariance of XR or RC
introduced above, might be regarded as asides, (mentioned here in passing) whereas
Aff(3,4) are more standard:

Aff(1) fixing p, XR determines a well defined midpoint m(z,y) of any z,y €
SN — p and the midpoints satisfy the necessary relation m(m(z,y), m(z,z)) =
m(xz,m(y, z)) in any S% 3 p to get a bonafide affine structure, [14] .

Aff(2) —Likewise, RC provides a class of straight lines S' > p in any plane S% > p
satisfying the parallel postulate etc. we will not elaborate here.

Aff(3) —In fact it can also be seen for RN, N > 2 by Darboux’s theorem, [20] , (a
weak form—for global maps), it is standard textbook material for N = 2, a corollary
of the uniformization theorem, the main point being the relation of degree to growth
for holomorphic functions .



Aff(4) ~Uniqueness can also be seen from a Lie-theoretic approach, noting that
the Borel (isotropy) groups, in S¥ = SO(N + 1,1)/B,, are affine. In terms of
Fractional-Linear-Transformations, fixing the point at infinity eliminates the de-
nominator.

Aff(5) —If we choose a Moebius transform, M of C such that x — oo, A, is the
pullback from C, if N=2, (or RY, N > 2) of the usual affine structure and this is
independent of the Moebius M chosen. This is how we use uniqueness in practice.

1.2.2. Automorphisms: Aut(SY), as given above, is defined with respect to the
invariant conformal structure. As just indicated, (Aff(5) ) automorphisms are used
to study Cen explicitly. On the other hand, many oriented automorphisms can be
constructed directly using the center-of-mass, see theorem 2.1, but not so for the
ANTIPODAL map, denoted A, which plays a major role here. We use equivariance
properties systematically to simpify proofs. We note that antipodal maps, A, are
parametrized by x € HVN*! (we almost never use the subscript for antipodal maps)
and affine structures, A, or A(x) by x € 9OHN*T! = SN. Note the obvious unifying
property, that they are each centralized by the isotropy group in SO(N+1,1) of «.

In fact we introduce a natural correspondence of affine connections to maps in
(4.18), and one can apply isotropy equivariance to see that the Levi-Civita connec-
tion of the round metric on SV associated to € HN*! corresponds precisely to
the antipodal maps, A,, see also section 8.2.

1.2.3. clamped and variable points: We distinguish clamped from wvariable points,
in the construction of functions; clamped points are denoted p,q, and configura-
tions of clamped points are denoted P, Q. They are constants in SV that we use
to parametrize self-maps of the configuration of wariable points X in S~. Thus
Cen(X, P,W,i) is the (W-weighted) center-of-mass of X — x;, P with respect to the
affine structure of x;, it is a function of X = (x1,...,zx). We will see that p; € P
are fized-points of this map (viewed as a function of z;). Given a configuration
X c SV, one should ideally formalize it not as a set or a tuple, but rather, as a
labelled (or marked) set X = {...,z;,...}, thus j is not so much an index as a
label or marker, though in the generic local case this doesn’t matter much. For
degenerate configurations (double points) and global topology it is essential. (In
section 5, we use Z for a configuration of variable points, but in the beginning we
hold all but one fixed, calling it = to study the one variable case, so Z are clamped.
Other such minor variations in notation are clarified locally in the relevant section.)
Unless stated otherwise one should always suppose that the points in P are DIs-
TINCT. We use the prime, P’ to denote the complementary space, CP' — P, while
in configuration space we often refer to the complement D’ of the diagonal D of
degenerate configurations, see (3.9). |X| denotes the cardinality of a configuration,
(and never a vector norm).

1.2.4. weights: Tt is useful, (remarks after proposition 3.6) to generalize to the
weighted center-of-mass using weights, Wj;;

(1.2) Vi, Y Wi =1,
J

with ¢ indexing X, and j indexing X and P. If X is a single point we denote the

associated center-of-mass, Cen(P, W, x), and W is a vector. In the very special case

N=2, weights can be arbitrary complez numbers, and Cen is fully meromorphic in
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X, P,W. Note that complex weights are justified because the intrinsic affine struc-
tures produced in proposition 1.2 have an additional complex structure preserved
by O(2,1), and that commutativity of C* is essential here, so that generalization
to the quaternionic case is not (obviously) possible.

We will see that w;; essentially reperesents the multiplier i.e. the linearization at
the fixed-point p; of Cen(X, P, W, ). One naturally conceives X, P as the nodes of a
directed graph G(X, P, W) and W as weights on it’s directed edges. We’ll assume
throughout that every p € P has at least one nonzero weight—(otherwise it can be
left out), and that no x; has a nonzero self-weight w;; (otherwise x; is constant under
Cen). When discussing ENERGY functions, £ the edge weights are always assumed
REFLEXIVE, ie w;; = wj;. As a general principle, weights of energy functions are
dictated by the condition that the associated force vectors are determined by a
matrix of weights, which must agree with the matrix used by Cen to construct
the meromorphic map F. Thus one should also appreciate that there is a slight
difference in handling the subsets in P and X when constructing &, (3.11).

1.2.5.  compositions, Ras classes. There is not much to say about compositions,
but formally one only can substitute a map for a variable, compositions come up
notably in the construction of suspensions, section 6, as well as in the iteration
of maps. In fact, for the most part we consider maps that are constructed using
only the weighted center-of-mass, and we propose to use the shorthand term Ras
(pronounced as the 1st syllable of rational in your preferred language) to denote the
geometric subclass of real rational maps consisting of self-maps of the form Cenpy,
or ACenpy , notably P with distinct points,. In dimension 2 we will allow complex
weights here and by (2.1) this just extends Rat by A. But on SN N > 2, one
only has real weights and this class will be much smaller than real-Rat, see (8.4).
Furthermore ARas is the subclass of Ras of maps, ACen(P, W, x), which reverse
orientation.

Rass allows for compositions of maps in Ras , (see 8.1.1). GRas includes the
multivariable constructions, such as (6.1), viewed as a subclass of Rat. Finally we
will use reflections in hyperspheres (codim 1) in section 8, to study a class of maps
of hyperbolic space which we denote HRas . We often use Rat without explicitly
indicating the space (it is usually CP') or even whether maps are defined over R
or C, where this is clear from context.

It might seem that such simple ingredients wouldn’t produce anything of interest.
While we leave this for the reader to judge, our first goal is thus to show that this s
a non-trivial class, already in the case N = 2,82 = C' P!, which is our focus in most
of this article. Note that for N = 2 we get a subclass of meromorphic maps, if one
restricts to orientation preserving automorphisms, but the antipodal map turns
out to play an important role even in this case (tying maps to steepest descent
methods). In section 8 we begin to develop GRas(SY), N > 2, but not beyond the
one-variable case, and recover some of the the nice properties of holomorphic maps,
such as a Schwarz lemma, as well as a related “tautness” property, 8.6.1.

1.3. Divisors. Many of the constructions in this article are parametrized by weighted

configurations, and the set of pairs {(p;,w;),0 < i < n} are best formalized as di-

visors. For a divisor in CP', we allow coefficients in C. Since it is also useful to

formalize P,W, as n-tuples of points or weights, divisors are also denoted in terms of
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these vectors by PW or WP, the pairing of {(p;, w;),0 < i < n} being the essential
structure; PW is an n-tuple of pairs quotiented by permutations.

Definition 1.3. A divisor in CP" is a formal sum, denoted WP € SDiv ={> w;p; :
Di #Dpj € CP', w; € C}. The S prefix emphasizes the distinctness of the p;. SDiv;
is the subspace with > w; = 1. These are clearly complex manifolds.

Since we always assume » w; = 1 in this article, and distinctness in P is our
default mode, we generally drop the modifiers and simply write Div rather than
SDivy. If P alone is used as a divisor, then weights are assumed symmetric, ie
permutation invariant. Compactification of SDiv is nontrivial; there are different
compactifications, at the set of double points, of SDiv, corresponding to rational
maps and local systems for example. We will consider their relation below in section
2.1.

2. THE ONE VARIABLE CASE

We study maps of the form rpy () = Cen(P, W, z) here, with N = 2, 5% = CP!.
Following remarks in 1.2.1 and choosing the Moebius transform, m,(u) = uiz, of

C, such that z — 0o to construct Cen, ¢(z) = ¢ py (x) = Cen(P, W, x) is defined by
solving for y in

(21) =0 —— =Y u,

y—z

1

pj— %

This also shows that y is meromorphic in (z, P, W), (and that Ras is a subset of
the extension by A of Rat).

We emphasize that this definition of ¢ is independent of the choice of Moebius
transform, m, subject to z — oo, (Aff(5) above; by direct calculation). ¢ depends
only on PW.

Theorem 2.1. Every (holomorphic) Rational map of CP' with simple fized points
{pi,0 <i < d} = P is of the form rpw(x) = Cen(P, W, z), where w; = (1 —m;)~ ",
m; = r'(p;). In particular r,(= rpw), is uniquely determined by its fized-points
and multipliers, ie by the divisor PW = {(w;,p;)}.

Note that oriented automorphisms are constructed by using |P| = 2, making
the ingredient list above somewhat redundant. The Cen representation of r in
this case is in effect a diagonalization (normal form) theorem. In low degrees one
can simplify the form of r €Ras alot, using automorphisms, by chosing special
fixed-points , Milnor, [30] and Thurston, [39] (preprint), discuss degrees up to 4.
Despite all efforts, we cannot find evidence that the general NORMAL FORM theorem
implicit in theorem 2.1 was already known. Although the proof we give here is
technically simplest, there is a proof based on (4.18) which might be considered
a better explanation of this phenomenon. The latter approach is taken farther in
section 8.2, where we extend the theorem here to smooth maps, using a symplectic
construction to recover the measure (generalizing weights) which is also realized as
the curvature of a natural connection. The holomorphic maps studied here are thus
those whose graphs are Lagrangian with respect to a complexified symplectic form.

Lemma 2.2. The fized points of ¢ = rpw are precisely the p; € P, each occuring
with multiplicity one, and the multiplier at p; is (1 — w;l), and 1 —n, for ¢p.
In the limit where w; = 0, ¢py is well-defined, but since p; is not a fixed-point

, there is a discontinuity that arises—see section 2.1.
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Proof. Using ((2.1)) to construct Cen, note that p; are fixed points of f; z = p; =
= 00 = y = z. Rewriting the r.h.s. with common denominator and taking

y—=z
reciprocals we see y — z = —z + ‘IZE;;, using > w; = 1, where d = |P| -1 =

degU = degV so deg f = |P| —1 and P gives all fixed points of f by “accounting”.
In particular every fixed point of f is simple. Now letting 2 — p; , and using y—z =

(y—pi)—(z=pj),in 1 =37 w; == gives 1 = w;(—f'(p;)+1) =w; = (1—m;)~".
(Differentiating implicitly with respect to z at z = p; works via I’hopital, but is

much messier.) O

We thus get meromorphic maps: (between mapping spaces, restricting to degree
d maps and configurations of size d + 1)

e Ev: SRat((CPl) — SDivy, by evaluation—restricted to the subspace of Rat,
SRat, with simple fixed points; namely r —PW the fixed-points of r and
their associated multipliers—giving weights as above.

e Cen: SDiv; — SRat, by the Cen construction as above. The latter is
injective by (2.2), in fact
Lemma 2.3. EvoCen is the identity map.

Proof. (of (2.1) ) SRat is Zariski open in an irreducible (algebrao-geometric sense of
unions) variety; SRat is dense in C??*t! ¢ CP24*+! by using polynomial coefficients
(of U,V , above) as coordinates. Also dimDiv is 2d + 1, by equation 1.2, so Cen
must be onto (the unique irreducible component of) SRat and Ev is injective. O

Remark. Y jwj=1Is the Lefschetz holomorphic fixed point thm for . Applying
this to r € Aut (with simple fixed-points ) we get the well known
Corollary 2.4. If r has exactly 2 fized-points then mims = 1.

Remark. (i) This leads to questions about the analogous interpretations of weights
via Lefschetz for the meromorphic multi-dimensional Fpy €GRas discussed in
section 3, and more generally, how broadly the weight-interpretation can be pushed?
(i) On SV, with |P| = 2, Cen gives rpw = 7179, with 75 in the p part of the Lie
group, (in terms of the p + k decomposition of the Lie algebra) and r1 = a rotation
by 7 radians along the axis of ro € Aut.

The proof suggest the relevance of Runge expansions, indeed one can expand
1/(z — r(2z)) in terms of its poles and apply the holomorphic Lefschetz fixed point
theorem to prove part of theorem 2.1. The proof would still use the calculations
behind lemma 2.3 as above. This is the analytic alternative to the more geometric
approach using Cen. The Runge theory for multiple poles then applies nicely to the
case of degenerate fixed points.

2.1. Degenerate fixed points, higher multiplicity and holomorphic surgery.
Here we consider extending the Cen representation to maps with degenerate (ie
multiple) fixed points. (One can skip directly to section 2.2.4 if only interested in
the main theorem 3.12.) In its full complexity this involves a stratification of the
possible degenerations, but we will only consider the simplest, or highest, strata
here, so this is only a sketch of the theory as regards degeneration. In this case
there are analogous formulae for the Cen representation: we consider a family of
T € SRatd((CPl), t # 0 in the degenerate limit, ¢ = 0, where a pair of fixed-points
pi(t), pit1(t) of ry collide; p1(0) = p2(0), but with NO JUMP IN DEGREE, and we call
this a smooth family. Checking smoothness in the U,V coordinates above, (r = %),
10



is somewhat complicated (a resultant), but smoothness makes the choice of PW
coordinates quite natural. We can choose the family r; to be holomorphic and even
algebraic, so the set V. of k-periodic points is an algebraic variety, in particular for

k=1.

(1)
(2)

Note that dro(p1) = m1 = 1; using difference quotients of the p;.

When z € V; and dr(z) # 1 the implicit function theorem shows that V; is
smooth, but when dr(z) = 1 singularities may arise. In this case P can have
nontrivial monodromy, but is generically given by well-defined functions
on the double cover, likewise for W. In what follows we could suppose
that we have chosen a parametrization, (by passing to this double cover, if
necessary) such that the p; are well-defined functions across ¢t = 0. In fact
using ;7 with ; in Aut(CP'), we can even suppose p; (t) = const = 0 and
pa(t) =t + O(t?) near t = 0 (on the double cover in the generic case).
Note that the condition |dr(x)| # 1 often arises in the study of convergence
of normal forms, as well as bifurcation of attractors, but this shouldn’t be
confused with bifurcation of fixed-points .

If w;(to) = 0 then degree jumps and 7 is not smooth. Nevertheless r(z) is
smooth in ¢, in this case, unless © = p;(to), (check using Cen). On the other
hand preimages r; ' (y) jump at to for any y. We call this the bubbling of
the graph of r at to.

At the degenerate p;, dro(p;) = m; = 1= m;,miy1 — 1 = w;, w11 — 00,
(by (2.1) ), as t — 0, but

Lemma 2.5. For a smooth family as above, wy +we = O(1) at the degen-
eracy, t = 0, ie the blow-up of the w; occurs in pairs such that infinities
cancel to give a finite net weight to p;.

Remark 2.6. The technique will be reused a couple of times here; calculate
ri(x), x # p; using Cen: choose coordinates using my as in ((2.1)) so z +— oo,
but z # p; = |pi| < oo and we will use 2(p1w; + pows) = (p1 + p2) (w1 +
wa) + (p1 — p2)(w1 — wa), where pyw; + paws is “part of” the summation
n ((2.1)) for r:(z). Hence to show that both summands on the r.h.s. are
bounded in the limit, ¢ — ¢, it suffices to show that one is.

Proof. 1f there is just one degenerate pair, then wy +ws =1-37,,, ,w; =
O(1) since i # 1,2 = w; = O(1) by the hypothesis and smoothness,
(and using the normalization to get the equality).

In case there are more degenerations at the same ¢y, we’ll check that each
degenerating cluster has bounded total mass. The proof will follow directly
from the smoothness of the family of maps, and the Cen representation
thereof. Now we will derive a contradiction from the case where there are
2 distinct degenerating clusters, each having unbounded total mass in the
limit ¢ — 0, ie where there are infinite weights cancelling “at a distance”
(cancellation is again clear by the normalizations). The contradiction is that
in this case the maps would degenerate; in applying (2.6) here, we will use a
single w;,p; to denote the (weighted) contribution to r;(x) of each cluster,
this approximation can be justified insofar as when t — ¢ty = 0, we just use
it to show that (p1 + p2)(w1 +w2) = O(1). But (wy +w2) = O(1) (this is
the sum of weights over all points of both clusters) by the normalizations,
and (p; +p2) = O(1) since x # p;. Similarly, (p1 — p2) (w1 —wsz) must blow
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up; (p1 — p2) # 0 by the distinctness hypothesis, and (w; + wa) = O(1)
but each w; blows up by hypothesis, so (w; — ws) blows up. This and (2.6)
now implies r¢(z) = x. Furthermore the same holds for all z in a nbhd ie
r¢(x) is the identity map, which is absurd. (2 degenerating clusters entails 4
fixed-points , so degree >2, but the identity map is degree 1, contradicting
smoothness.) 0

(6) Observe now, that as p; — pa (with p; being single points) while staying
away from z, (p1 + p2) = O(1) (using notation as in (2.6)) and we have
remarked that (w; + w2) = O(1) above, so (p1 + p2)(w1 + we) = O(1).
Again 7(z) # = so by (2.6)

(2.2) (p1 — p2) (w1 — w2) = O(1),

and we conclude that |w;| = O(t='/?), or O(t~') on the double cover as
discussed above. Thus, in the generic case of a double point, w; — w;y1
blows up, but

Lemma 2.7. (p; — piy1)(w; — wiy1) = O(1)

Proof. We give another proof here, based again on (w; + ws) # 0, because
the technique is useful in section 2.1.2. Grouping together the termsi = 1,2
in ((2.1)), and rewriting with a common denominator, one gets the symmet-
ric polynomials p1ps2,p1 + p2, prws + pow1, wy + we, arising as coefficients.
Smoothness implies that appropriate ratios of these are then all O(1). In
fact we can suppose that w; + we # 0 is O(1), and the same then follows
for the rest of these “elementary polynomials”. Simple algebra then gives
(pi — pit1)(w; — w;41) = O(1). Note that this grouping can be done for
higher order degeneracies as well and gives formulae such as ((2.3)). O

2.1.1. SURGERY. This suggests that the SURGERY that transforms the compactified
weighted configuration space (later to be identified with Local systems) to Rational
maps is locally the same as the standard holomorphic surgery of ruled surfaces, (the
case CP' — E — CP') as described in [32] , (p. 25). But this is not quite right;
recall that we should pass to a double cover to define p; — p;1+1(¢) as functions, so
the surgery on the space of Rational maps is essentially the standard holomorphic
surgery of ruled surfaces conjugated by a square-root map. (and this is only a
preliminary step towards understanding the global relation of £ to Rat.) But we
also saw that the difference between compactifications of Local systems vs. Rational
maps is that the latter involves a bubbling off of spheres in the graph of the map
as divisors degenerate without the proper blow-up of weights. This also involves a
kind of surgery. It would be interesting to see if the two are more directly related.

One motivation is potential applications of theorem 2.1 to analyzing the topology
of mapping spaces. The obstructions involved in constructing retractions of SRat to
a (circle or other ) bundle over Poly, using retractions of weights to the unit circle
for example, where one must avoid weight zero and respect the sum of weights,
gives rise to nontrivial topological considerations (possibly related to linkages, an
issue pursued no further here).

1
pj—z’
equation 2.1 by a polynomial in the latter, with no condition on any coefficient but
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the first;

(2.3) = Y un)N y=0(e).

— 2 ,
Y i k>0 b

Remark 2.8. The following claims can be easily checked: (i) The only constraint is
>_;uj1 =1 (as for the case of simple fixed-points . (ii) The multiplicity of p; is k;,
the largest k such that ;i # 0; as in the proof of (2.2) one sees that - blows up at

z =p; as (pjl_z)ki, and 1= ij ujk(pjfﬁ implies y —p; = z —p; +O(|z—pj|k).
(iii) Furthermore, the coefficients u;; are derived from the Taylor-series of ¢ at
pj. (iv) Note that these transform by wj, = akilujk with respect to an affine
transformation az 4+ b of C, to get the right equivariance property, so they are
not simply constants, (or masses) but tensors. This suggests that the appropriate
generalization of the normal form for » €SRat above, to very degenerate maps,
would involve replacing the weights in divisors by distributions (in the sense of L.
Schwartz). (v) Note that the representation ((2.3)) provides an easy construction
of smooth families st for some j, u;1(0) = 0, ie the total weight can “degenerate”.
This contrasts with the jump in degree that occurs at a fiber in which the weight of
a simple fixed-point vanishes. In fact for multiple fixed-points it is the vanishing of
the highest order coefficient u i, mentioned above that corresponds to degeneration
of a smooth family.

WARNING: the identity map is too degenerate as a rational map to have any
nice representation of this sort! but it does sit in standard Zariski closures of the
map space, evidently a limit as weights blow-up to infinity.

2.2. Further developments for the One variable case. We include a few more
basic facts relevant to the one variable case here, before introducing the multivari-
able case. We then return to many other aspects of the one variable case after
section 3.

2.2.1. closed forms. A homogeneous polynomial function p : C? — C, degp = d
determines d roots, s; € CP' and supposing they’re distinct, we can apply theorem
2.1 to construct the associated r €Ras , oriented with symmetric weights, i.e.
w; = % at s;. There is an elegant underlying geometric construction, [9] , leading
to an explicit closed form expression; restrict to an affine line L C C? — 0, to get

p:CP' — C, degp = d (d=degree)

(2.4) Ry(z) =z — d(p(z)/p'(z))

by (2.1) it suffices to check (easily) that the fixed-points and weights are correct (or
a formal calculation using the derivative of log(p) and the factorization of p giving
the Cen form directly). In fact this formula was derived by Doyle and McMullen
(building on F. Kleins work on the icosahedron) by quite a different method, viewing
it as a conformally intrinsic transformation of Poly to Rat; the relation to center-
of-mass here is new. For an extension see section 4.1.2, also for an application,
section 6, and the relation to plethysm section 7.

It may at first be surprising or puzzling that Cen can be rewritten using a de-
rivative, but we’ll provide quite a thorough explanation of this equivalence below.
One explanation involves reinterpreting the Cen construction as a steepest descent
method for a natural lyapunov function, see also (4.22) and section 4.2.1.
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Remark 2.9. The construction of R, can easily be extended from p polynomial to
p a rational function f/g st (degree f — degree g) is nonzero. This is clear if one
thinks of the associated divisor normalized to mass 1 as a signed measure. It can
also easily be seen using either of the constructions of [9] . The interesting upshot
is that the zeroes of f can be made superattracting by choosing degree f - degree g
=1 while poles are always repelling, in fact g(z) = z¢~! suffices.

2.2.2. examples. Letting Z = Z™, denote the n-tuple of n-th roots of unity, ¢, (z) =
Cen(Z,z) = x'™".

Letting SZ = SZ™ denote the n-tuple of (n — 2)-th roots of unity, augmented
by 0,00, ¢z (x) = 2"~ for some weights W, which are not symmetric or even
positive. It will be useful (in (5.3)) to calculate ¢g,(z) for symmetric weights,
using (2.1) we get

—x" 24 —1

(2.5) Psz(7) = (

n—1)z"=2 — 1"

One should check directly that this is Z"~2 (multiplication) equivariant, and equi-
variant for the % map, that 0 is a fixed-point as is x = 1, and these with their
respective multipliers and the symmetries suffices to confirm the validity of the
formula. (a direct derivation requires a slightly messier calculation).

2.2.3. one variable; steepest descent vs energy as conformal factor etc. We will soon
see that the map r €Rat, together with the choice of a round metric, CP' = 2, or
equivalently an antipodal map, A,,z € H3, determines a unique energy function &,
in such a way that (i) r(x) determines VE,(z) and (ii) fixed-points of r correspond
to poles of £,.. Simple O(3)-symmetry considerations show:

Proposition 2.10. Given a correspondence with the properties (i) and (ii), a crit-
ical point x of &, satisfies r(z) = A(z), (A being the antipodal map).

This motivates the study of anticonformal maps (of the form Ar(z), we call this
space ARas ) via Morse theory in section 5. Note especially the use of critical points
of r in theorem 5.3.

The point of view we take in this article is to introduce energy and relate it
to r by a steepest descent construction. We thus obtain fixed-points of Ar(x)
with an additional attractor property. There is a less natural, but shorter route
to the proposition above; theorem 2.1 gives an explicit formula for a rational map
with fixed-points and multipliers prescribed by a divisor W P. There is a very
direct way to transform this into an explicit formula for a singular flat holomorphic
connection defining the rank one local system (biholomorphic to TCP!, singular
on P) determined by WP, see theorem 4.18. We have put that material after the
development of the energy function, but one can already appreciate that proposition
4.21 can be used as a shortcut to show the relevance of the PDE in proposition 4.1,
insofar as it relates rational maps having divisors with R—weights to &.

2.2.4.  connections in one complex dimension. (we assume the reader is familiar
with this material, it is included to fix terminology only) that a connection D for
TCP! at z is a linear map D(x) : (T, J?) — T, where J? represents 2-jets (one-
jets of vector fields) at x. D is holomorphic if when extended naturally to complex
vector fields, [31] , D sends holomorphic input data to holomorphic output data.
Since a pair of connections D; differs by a matrix valued one-form, and in one
complex dimension, a pair of holomorphic connections D; differs by a holomorphic
14



scalar valued one-form, 7, the holomorphic connections at x form a one-dimensional
complex affine space.

Denoting by D, the affine connection associated with A, on CP! — z, it is not
hard to check that the correspondence z € S? — x — D,(z) is a holomorphic affine
map, (use equivariance).

This doesn’t directly give an existence or uniqueness proof for the A, structures,
but it induces a dynamical system on a larger class of connections, for which the
desired structure gives at least one fixed-point.

The basic example of a holomorphic connection is 9, on C, so every holomorphic
connection on U C C is of the form 0, + 1, n holomorphic . Furthermore, a
holomorphic connection in one complex dimension is flat; (Froebenius integrability
is vacuously satisfied in one complex dimension). Now it is possible to make sense
of the statement that

Lemma 2.11. A, depends holomorphically on x.

This just says that A, = Ag + n; and 7, depends holomorphically on z. Com-
paring to (2.1) this is a more intrinsic approach to seeing;

Corollary 2.12. Cen(z, P) is meromorphic in (x, P) C (CP')™.

2.2.5. Remark: derived map. Given y = r(z) = rpw (z) as above, we can define an
averaged inverse map,

r(y) = Cen(r~—'(y),y)

where averaging uses symmetric weights. One immediately sees that fixed-points
of r are fixed-points of r®.

Lemma 2.13. r® is a rational map of CP! with the same fized-points , P, as .
(This may fail if r has double fixed-points ). The weights we = 1_—7:”’ and multipliers
m¢ =1—n+nm; " where n=degree(r).

Proof. r® is clearly holomorphic up to the fixed-points of r, and continuous at the
latter, hence holomorphic on CP'. The formula for the multipliers can be derived
by a calculation similar to that in (2.1), using the proof of (but not applying)
I’hopital. The formula for weights follows, note that there are n 4 1 fixed-points so
the total mass is indeed 1. O

A more conceptual proof might first check that w = f(w;) for some holomorphic
f, and since the total mass of W* is 1, f should be linear. Furthermore w{ = 0
is only possible at double points, where w;=1. (Q: Do fixed-points of r® jump,
or does degree jump when r has double fixed-points ?) Note that the fixed-points
of r — r® are precisely the maps with symmetric weights, a space isomorphic to
configurations on CP'. This is the space that F, ((3.1)), acts on, as well as the
image of ((2.4)).

More generally one wonders if this fits naturally into a general geometric the-
ory of rational maps of spaces of rational maps or polynomials? We will present
some evidence later that there is some such theory based on notions of geometric
plethysm, [15], in section 7. This also could tie in neatly with the appearance of
discriminants in the restriction above to SRat.
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3. MULTIVARIABLE CASE

This work began as an effort to understand a canonical rational map, F, of
configurations in CP', and was fueled by the unexpected relation to equidistribution
problems. Let F : C* — C", n > 1, be the meromorphic map defined by solving
(here w is a variable, not a weight)

1 1 1
1 = ;W= .
(8-1) wi—2z n—1 Z zj—zi’w F)
{g:i#4}

F has a natural extension to (CP")”, and at the risk of redundance the geo-
metric interpretation is: given z = (z1,...,2,) € (CP')", removing z; from CP'
gives an affine structure A; = A(z;) that depends holomorphically on z;, so the
A; center of mass w; of the remaining points, z;, in the set is well-defined and
w = (wy,...,w,) is meromorphic in z. Note that the construction is conformally
intrinsic. In particular it is antipodal equivariant, (identifying S? = CP'). We now
outline some of the MAIN PROPERTIES of F;

3.1. Basic Examples:

(1) N = 2,3 pts: F is trivial for n = 2, (it permutes the pair) and F is an
involution for n = 3; check it on the 3rd roots of unity, and use Moebius-
equivariance. But F is not smooth for n = 3; when all 3 points collide F is
singular, i.e. F is meromorphic rather than holomorphic . These configura-
tions always exhibit period 2 behavior, as do many symmetric configurations
including k-th roots of unity. In fact, in each of these cases configurations
(suitably normalized by automorphisms ) get sent to their antipodal images
(componentwise) as is easily seen using equivariance properties; nontrivial
isotropy of a configuration at a point suffices. The same holds for Z" the
n-tuple of n-th roots of unity, and SZ™ the n-tuple of (n — 2)-th roots of
unity, augmented by 0, co.

(2) N =4,12,20, etc. Standard symmetric configurations exhibit period 2 be-
havior, but computer experiments reveal that iterating F equidistributes
points on the sphere! Certain standard symmetric configurations are in
fact period 2 equidistributed attractors. In the computer experiments we
initialize at random points, or roots of unity, Z™. The latter are easily seen
to be period 2, but their instability together with round off error rapidly
leads them to local minima of a lyapunov energy function. Subsequent
analysis proves that any (strong) local minimum X,,;, of the “log energy”
E(X), subsection 3.3 is a period 2 attractor for F. In fact, let A be the
antipodal map with respect to a round metric on CP* such that pts of
Z™ lie on the equator, then A(z) = _71 For Z listing the vertices of any
regular solid P, one sees from Moebius -equivariance of F and rotational
symmetries of P that F(Z) = A(Z).

(3) Appropriate notions of attractor and antipodal must take into account the
equivariances of F discussed below. It suffices to normalize configurations
by their dipole moments, subsection 4.3.

(4) Z™,n > 3, is an unstable fixed set for AF; one may calculate the lineariza-
tion of AF at Z™ explicitly, by exploiting the cyclic group action. It will be
easier to see this instability later, in terms of the associated energy function.
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Example 3.1. Collapse: Consider F with |Z| = 4, and iterate F"(Zy) where Z,
has a double point, z3 = z4. Note that the latter stay fixed. This illustrates the
difference between weighted points and multiple points.

Iterating F the configuration collapses i.e. it converges to a single (quadruple)
point. In fact there is a hyperbolic g € Aut(S?), such that F(Zy) = g(Zp), where
{g*, k € N} is noncompact (in SO(N,1)).

We will see that there is a natural normalization of any Z, by the moment
map, or Douady-Earle center, (associated to equivariances discussed below), but
the example shows this can not give an F invariant slice.

Question: Does the same asymptotic collapsing phenomena obtain generically
for large configurations with a single double point , (perhaps with total mass at
least a half)? Collapse may even be generic in the Julia set. In fact, one may
well find that generically, for Z in the Julia set, J, the Douady-Earle projections
to H® = SO(3,1)/S0(3), of iterates, F"(Z), drift to infinity. It is too much to
hope that a standard measure for J, [13], should behave like a Wiener measure,
but one might say this is a topological version of random walk. One can observe
this computationally, at least if display software does not automatically renormalize
outputs.

Question: Describe the dynamics of F, defined over the reals, (or other fields!),
does it ezhibit generic collapse in a chaotic fashion? (Recall remarks on the dipole
moments in the disc and random walk.) Is (RP')" repelling in (CP')" ?

3.1.1. Equivariance and diagonalization properties of F:

(1) The symmetric-group S,,: F is clearly equivariant with respect to permu-
tations of the z;; renaming the variables has no effect on their behavior.
Quotienting, and noting that (CP')"/S,, = CP", as follows by identifying a
set, of roots with its defining polynomial, F determines a canonical self-map
of CP"™ = Poly(projectivized), (as promised in the abstract). Its geometric
nature is further elaborated, in proposition 3.6, as a map of (CP')”, and
in remark 3.9 as a map of CP".

(2) PSL(2,C)-action: F is Moebius equivariant, since it is defined intrinsically
with respect to the conformal structure. The G=PSL(2,C)-action descends
to (CP1)"/S,, = CP™, and the quotient map is well-defined on the standard
(Fulton-MacPherson) blown-up compactifications of CP™/G, namely the
moduli space, My ,,. It is not well-defined into the blown-up space, only to
the singular space CP™/G. Nevertheless, blow-ups are meromorphic maps,
and F : Mg, — My, thus gives a meromorphic map which is (almost**)
smooth on the blow-up of D , but which is singular on C = F~'D — D,
(** and smoothness fails at D N C). We do not know if this qualifies as
a rational map of My ., it seems the existence of such maps is of some
interest.

(3) It is known in algebraic geometry that certain desingularizing blowups can
be realized by passing to dual curves or varieties. This suggests the use of
looking at the graph of F as a way of constructing desingularizing blowups
in the construction of the compactification of the moduli space My .

(4) Antipodal-symmetry. This follows as above, F is defined intrinsically with
respect to the conformal structure, and it plays an important role, as the ex-
amples suggest. We will see below its role in relating metric to holomorphic
constructs.
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Problem 3.2. The map F : Poly — Poly, should be expressible directly in terms
of the coefficients. The brute force method of (for each |Z| = n) grouping roots
into symmetric polynomials, gives a huge and messy formulas. One would hope
there is a more elegant closed form expression for any |Z|, or an expression with
a clear geometric significance, or at least a nice algorithm. We comment on this
more in section 7.1, where we provide an expression which gives a compromise of
these qualities, with the hope that better expressions will be found.

3.1.2. Diagonals and discriminants.

Definition 3.3. The subvariety of configurations Z = (z1,...,2,) with a double
point, i.e. 3i # j,z; = z; is called the diagonal and its S,-quotient in CP" is the
discriminant locus, they are (both) denoted D. D has a stratification by subvarieties
D, for multiindices «, listing the cardinalities of nontrivial multiple points. Some
shorthand is indespensable; for example D3 consists of configurations with at least
one point of multiplicity at least 3, ie the multiindex is (3,1,...1,1).

D has an obvious, but interesting fixed-point property; diagonals are (compo-
nentwise) fixed points, VX, 1,

We call the only-if part D-graph-invariance, it is a property that is only well-defined
for self-maps of configuration spaces.

Furthermore, one can check that these X € D are repelling as fixed points in the
x; component, provided that they have weight less than half. Note the relation of
this to the equidistribution problem. This uses the relation of weights to multipliers
in (2.1);
Proposition 3.4. The diagonal is an F-invariant variety, with a REPELLING
PROPERTY (see below) on the open dense F-invariant subset, D? = D — Dy, of
configurations Z with at worst double points, and where w;j, wj; < % D? is also
precisely the part of D on which F is smooth.

In particular D C D~ C J, the Julia set of F, where D~ is the union of

preimages of D under iteration.
Remark 3.5. The correct definition of repelling on the meromorphic part of D is not
a priori clear, but we hope that the collapse phenomenon in example 3.1 will provide
an appropriate notion for the case at hand; the collapse to p3 is an explosion away
from some other “condensed state”, limy_, o, g~ *Zy. (In other words, we suggest
that repelling points in D3 are fixed-points for F on M, whose preimage in CP"
includes a Zariski dense subset of a noncompact orbit.) Note also that sequences of
configurations, v;(Z), collapsing along a PSL(2,C)-orbit (3.1) give directions where
the repelling property fails, but the degeneracy is in Ds.

The definition of repelling property on D?, also requires explanation; essentially
one pair of points is increasing its distance, but another pair could create a new
double point, landing on a different diagonal component. Thus we can only hope
to increase distance from that one component of D near which we start (this makes
sense on (CP')” but not CP").

3.2. Geometric-Naturality of F. A full geometric characterization of F is pos-

sible using equivariance, meromorphicity and diagonals, we state a general ver-

sion including the weighted versions of F. Let M, be Moebius transformations
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of CP' = C such that M, (z) = co. Given a matrix U such that Vi¥;4u;; = 1,
consider the function

Fui(z) = M, (S2iuiMs, (25)); Fu : (CPY)™ — (CPY)™.

Zi
Proposition 3.6. Given U as above such that i # j = u;; # 0,

(1) Fy is meromorphic in Z,

(2) Fu is Moebius (or better, O(3,1)) equivariant,

(3) Fui(Z) =Z; <= 3r,j,i, st j#i, and Z € Dyjr ={2: 2 = z; =r},
hence D;j;., D are Fy-invariant, and Fy is D-graph-invariant,

(4) Fu is smooth at Z iff no three z; are identical (no triple point).

Furthermore given any G : (CPYH)" — (CPY™ satisfying these properties there is
a U as above such that G = Fy. Fy is symmetric (i.e. S,-equivariant for S,
the permutation group ) iff Vj # i,u;; = si5 = ﬁ, and in this paper F generally
denotes Fs (S denoting the symmetric weights s;;).

The graph-invariance of the 3rd point reduces the characterization to the fol-
lowing lemma; we can use graph-invariance to reduce to the study of F on the
complement of a point, (call it o) in CP!, hence to C™. For example fixing 1 = o0
and letting the other x; € C vary, we reduce to an analogous characterization of
Cen. The affine group of M Moebius , fixing co, acts on C™ diagonally. Our
characterization of a general weighted version of F is based on,

Lemma 3.7. Consider the maps f : C" — C

fo(z) = wiz; Y ui=1,

with respect to weight vector U, f is holomorphic and affine-equivariant iff it is of
this form. f is symmetric (i.e. Sy-equivariant for S, the permutation group ) iff
Vi,u; = 8; = %, we may denote fs = f in this case.

Note that holomorphicity of f is a valid assumption because graph-invariance
guarantees that we avoid co.

Proof. (of the nontrivial direction). By affine-equivariance, the small diagonal,
D* = {(z1,...,2n) : ¥i,§, z; = z;} maps isomorphically to C, and f is a smooth
holomorphic fibration over C. Dilation equivariance then gives that the full fibration
is isomorphic to the bundle tangent to the fibration along D?, and that the fibers
are affine hyperplanes of C", which must be parallel. It remains to identify U with
the slopes of these planes. O

Problem 3.8. What is the simplest characterization of F on (CP)*? It may be
possible to substantially weaken the equivariance hypothesis; the fact that F is well-
defined depends heavily on equivariance, and this suggests that under a very weak
hypothesis F is forced to be equivariant. Similarly, what is the simplest natural
property characterizing the induced map of F on CP"? Note that graph-invariance
is not directly definable on CP™. It would be good to have a characterization in
terms of the fixed-points of F (see below) and their multipliers, or just the symmetry
property of the latter, noting the analogy to (2.1). If there is a unique map with the
fixed-points and multipliers of F, then it is clearly equivariant. Characterizations of
F based on equivariance should be possible in connection with geometric plethysm,
[15], see the discussion in section 7.
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The introduction of weights is not just generalization for its own sake; they
are necessary to produce attractors in certain algorithms, as in the suspension
constructions below. They are also useful in producing spaces of maps that are
naturally isomorphic to other interesting spaces as one sees in subsection 4.2.1. See
also the application to degree F, (7.1), where weights facilitate an inductive step,
increasing the number of points, but with useful continuity properties.

Note that fixed-points of F correspond to configurations with every point oc-

curing as a double-point, or polynomials where every linear factor occurs at least
twice, denoted D4, for square. In the notation of (3.3) Dsq = D, with Vi, oy = 2,
a middle-dimensional variety, (with an extra codimension one for odd |Z|; D44 has
a; = 3 for some 7). Hence F is quite non-generic, even with weights. Adding
clamped points to the Cen construction of F introduces associated fixed-point sets
with dimensions reduced accordingly, but it does not affect D,, which is still fixed.
Note also that these fixed-points come up in questions disucussed here, in relation
to holomorphic Lefschetz fixed-point theorem, and also with regards to possible
characterizations of F.
Remark 3.9. An alternative construction of F, that works as well on CP", can be
based on the notion of osculation: given a configuration, consider the associated
polynomial, p. We saw, ((2.4)), there is an associated map R,, and at a root,
p(z;) = 0, the 1-jet of p is determined by (2.1); it doesn’t depend on any property
of p aside from p(z;) = 0.

We claim that for simple zeroes of p, the 2-jet of R,(z;) is determined precisely
by F;(p), and equivalently by p”(z;), (or d% logp’(z;) which is the same, in view
of our remark on the 1-jet of p ), in fact this is clear from ((7.2)). (For generic z,
R} (2;) depends on the 3-jet, including p"’, but in the special case p(z) = 0, R} (2;)
depends only on the 2-jet, which just depends on p”. The shift is already evident
insofar as R,(z) depends on p’ generically, but R,(z;) depends only on p(z) = 0.)

The 2-jet of R, (z;) determines a unique osculating moebius transformation M, =
M, ., at z;, and if we construct F°°¢ : (CP')™ — (CP')" which, by definition, takes
each root p(z) = 0 to the unique opposite fixed-point of M., then one can easily
verify that this satisfies the characterization (3.6). The main point, concerning
the behavior of F on D, is that R}, (z;) = 1 iff z; is a double root of p (as well as
meromorphicity and equivariance). As a corollary we can see that the formula for
g(z:), in ((7.2)), must essentially be constructing the unique opposite fixed-point of
M, at each root p(z) = 0.

3.2.1. Embedded dynamics of F. Fixing a weight vector W every r = rpw € Ras
of degree d is embedded in Foq11, (with appropriately weighted interactions) in
the sense that there is an invariant CP' = L, (in fact a standard CP*, parallel to
a coordinate axis) on which the action of F is conjugate to r, and L, is specified
by choosing initial values of F such that every fixed-point of r is represented by 2
variable points of F. Initializing 2 variable points to p; guarantees that these points
stay fixed for any iteration of F (they stay clamped). Weights can be chosen for
F that realize the weight vector of r on this restriction. (alternatively one could
introduce nontrivial diagonal or self-weights to fix points). For rational weights
it suffices to use F with symmetric weights if one allows more variable points to
coincide at each clamped point. Noting that the image of a standard CP', under
the canonical map to CP" , is a line, (generically with n — 1 double tangencies to
D) we get;
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Theorem 3.10. Fizing a degree, d, and the symmetric weight vector, S, every
rational map of CP' of degree d, and weight vector S, is realized as the restriction,
of Faqr1 acting on CP"™ | to a linearly embedded CP' in CP"™ . Furthermore,
generically the line has n — 1 quadruple tangencies to D.

These embedded dynamics might be useful in determining Hausdorff dimensions
for the Julia set of F, or just for showing that it is fractal, related issues have been
considered in the literature, [13].

3.3. The strong attractor property: There are numerous notions of equidistri-
bution on S™. The one that interests us here is based on G(z,y) = clog(|z — y|),
where |z — y| is the chordal Euclidean distance on R? restricted to z,y € S2,
and ¢ < 0 is a normalizing constant (fixed in (4.1)). G stands for Green’s function
,and E(z, P) = G(z, P) = ¢}, cplog(|z — yl), where & stands for Energy, in this
case using only the interactions of x with each p;. (Generally G is a function of
a pair of points or configurations and £ a function of a configuration of variable
points—with clamped points as parameters).

Definition 3.11. Equidistributed sets are global minima of
E(Z) = X g)izgy log(lzi — zj).
One should consider £ to be an AVERAGE of pairwise energies, rather than a sum.

To generalize £ to include real weights in the context of multi-variables with
clamped points, first define the partial energy of z; to be £;,(Z, P,W) = G(z;,(Z —
z;) U P) , which determines the force F; on z;, and the internal energy of Z to be
Ew(Z), (for the latter the restricted weights do not sum to 1). Now if we take
E(Z,PW) =3 &+ 0Ew(Z), first with 6§ = 0, then the force vector components
will double count the £;; (or z;,z; ) terms, so we must set § = —1. Note also that
the effective weights of the force vectors are automatically reflexive, so we may as
well choose them so to begin with. Thus, when applying £ to study F , the latter
MUST have reflexive weights. (See remarks at the end of section 1.2.4).

Theorem 3.12. Given F.E as above, (i) Z is a critical point for € iff F(Z) =
A(Z). Furthermore (ii) Z is a strong local minimum for € iff Z is a stable fized
point for AF.

Recall that A is the antipodal map, and that the metric enters via £ on one side
of the equation and via A on the other.

Corollary 3.13. The period 2 property: Z is a critical point for £ implies F>(Z) =
Z. Furthermore dAF(Z) has real eigenvalues, as does dF 3 (Z).

Equivariance has to be considered to define stable and strong local minimum
appropriately, see (5.10). The reality property is a byproduct of the relation to &
as will be seen in the proof of (3.12)(ii) above. It should also follow from invariance
of F by complex-conjugation with respect to the complex structure of CP!, and
weight reflexivity. (What is the most general statement about reality properties of
the power series? perhaps in terms of symmetric polynomials invariant for a Lie
group, note that there is an interesting implication for the dynamics, of nonrotation
at attractors).

The hessian of energy at X critical has a simple functional relation to the lin-
earization of F at X, using corollary 4.2. Furthermore, degenerate directions for
the hessian correspond precisely to “first-order jets of configurations, staying period
2 to 2nd order”. We do not see any easy approach to show,
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Conjecture 3.14. There does not exist a degenerate direction v for the hessian,
V2E(Z)(v,v) = 0 of £ at a local minimum Z, such that v is orthogonal to the
isometric (rigid motion) orbits.

though this rigidity property should be true for any reasonable notion of equidis-
tribution. On the other hand, the more general dictionary relating £ to F may,
at least, have a nice application to showing local minima are isolated, (5.13). As
obvious as this sounds, we have not seen any such proof.

A better conjecture might propose effective lower bounds for the hessian. It
would be interesting to have a geometric description of configuration perturbations
corresponding to eigenvectors of the hessian; we would guess that they should be
related to rigid motions of hemispherical sub-clusters of a configuration, ie small
eigenvalues of the hessian should be related to “twist” maps rigid (as a first approxi-
mation) on hemispheres and shearing along the equator, “large eigenvalues” likewise
correspond to the associated complex-conjugate flow; opposing dilations from the
poles on each hemisphere. Since there are too many such shears, they should
probably be averaged using eigenfunctions of the laplacian that are antipodally an-
tisymmetric. The relation to twist maps is suggested by empirical observation (and
not enough of it), but there is no theoretical mechanism relating hessians to twist
maps that suggests itself.

Is there an interesting asymptotic behavior of these hessians as n — 0o? For
example do they become SO(n) invariant (ie round). This would diminish the
potential importance of the basis just described, this seems unlikely in view of the
incompatibility with the topology /symmetry of S2. We’d expect them to be as
round as possible subject to some natural geometric constraints.

3.3.1. analytical aspects of equidistribution. Although we do not discuss analytical
aspects of the equidistribution problem in detail here, we mention some more clas-
sical problems that might relate to the material here. The survey [34], as well as
other references below, provide more background and details.

Question: Rigorously estimate asymptotics for the number, N (n) of local minima
of £ , as a function of the size n, of configurations, and estimate the distribution of
values of € at the local minima. It seems that N(n) > 0 is the only known rigorous
lower bound; aside from numerical techniques, which don’t treat n — ooc.

Question: Relate the combinatorics of canonical triangulations associated to Z,
(valences etc.) to the local minimum property. There is much work on this, mostly
experimental, a recent reference being [4], but few rigorous results for large n. There
are some proofs of uniqueness of minima for very small n, [10, 24]. Combinatorial
structures of configurations, given a spherical metric, involve associated triangula-
tions, the simplest of which are more naturally associated to the sphere or circle
packing version of equidistribution. Using Morse-Smale complexes might be more
pertinent for equidistribution associated to functions like £. Conformally intrinsic
combinatorial structures can be developed using Thurston’s notion of hyperbolic
convex hull.

4. ENERGY AND THE CENTER-OF-MASS, CONNECTIONS AND POLYHEDRA.

The full relation between Cen and £ is a consequence of some basic properties of
G(z,y). We continue with the notation of section 3.3. In this section we establish
this relation first in the one variable case, and most of our work is to establish this
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relation in the case of just 2 points, the rest follows essentially by averaging over
all pairs. We achieve the proof of part (i) of theorem 3.12 in this section and lay
some groundwork for part (ii).

A refers to the laplace beltrami operator (trace of hessian) on the round sphere,
52, the normalizing constant factor is not important here, it is absorbed by an
undetermined ¢ factor in various equations below, and can be fixed later (somewhat
arbitrarily). We have structured all proofs so as to avoid any explicit dependence
on the normalizations. A, indicates which variable the A applies to, when this
might otherwise be ambiguous. The stereographic projection usually maps the
plane to the sphere, but we find it convenient to denote this correpondence by
IL, : SN — gz — Ty, SN,

We begin with the elementary properties of £ that make it useful in studying F.

Proposition 4.1. (i) The log-energy is the Green’s function,
1
Vo € 8% — z; eAglog(|z — z|) = ALE(z,2) = 5 > 0.

and (ii) the force Fy(z) = —V,E(z,2) : z € 82 —x — T,S5? gives a conformal
isomorphism of S? — {z} to T,.S?, for each x.

Corollary 4.2. For an appropriate choice of ¢ and for each fized x, F,(z) (or
(dA)F,(2) ) is isomorphic to II,, the stereographic projection of x. In fact,
F.(z) equals the stereographic projection from Ax; lla, Az, of the antipodal Az.

Remark 4.3. (i)It should be clear that some potential function will give a force
vector isomorphic to stereographic projection, in view of radial symmetry. The
particular function which works due to its first derivatives, has a second derivative
with the nice properties discussed here, and this is what makes things interesting.
In other words its not difficult to relate a map like F to discrete steepest descent,
but its (at first sight) miraculous that the resulting steepest descent process actually
has good convergence properties. (ii) One should expect that any maps intrinsic for
the conformal structure should be constructible in terms of cross ratios. Though
Cen doesn’t have a direct definition of this sort, such a relation emerges here in
section 4.0.5. (iii) The constant % in the equation above is somewhat arbitrary;
it effectively fixes a normalization of the laplacian; thus in all that follows we use
this 1, in place of a normalizing constant factor. (iv) part (i) will not hold for
SN N > 2, though we recover an inequality in section 8, but (ii) is valid for any
N. (v) We provide explicit formulae that can be used to give alternative proofs of
both parts in ((8.2,8.3)).

The hidden relation of the 2 properties in proposition 4.1 will be clarified in
the proof, via Kaehler geometry, [23], see theorem 4.6. Much of our use of the
Kaehler formalism is just a natural way of treating a class of spherical harmonics,
as in (4.10), by using line bundle terminology. A polar coordinate version of the
laplacian would be a reasonable substitute.

4.0.2. Proof of theorem 3.12, first steps. By corollary 4.2, the total force exerted
on z; by the other clamped or variable points is now clearly just the weighted
average of the individual forces, but this is also the weighted average of stereographic
projections, which is just Cen, (up to stereographic projection Hgii : Ty, 5% — §?
followed by an antipodal map A), summarizing,
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Theorem 4.4. Given a divisor PW with real weights, and the associated energy
function Epw, with force Fpw (x) = —V.Epw(x) € TpS?, rpw(x) = AHZ}L,(JU +
F(x)), (F = Fpw, as shorthand).

rpw is as in (2.1). The z 4+ F(x) is in terms of vector addition; it represents
a tangent vector to S2? in the embedded affine tangent space. The FIRST POINT
of theorem 3.12 is an immediate consequence. (see also remarks at beginning of
section 5.2).

Let us isolate one point from (4.4); given a section of the tangent bundle, v €
I'TCP", (ie a vector field, such as —VE : CP' — TCP'), define R, : CP* — CP*
by

(4.1) y=R(z;v) =Ry(z) <= —cV loglz —y|=v(z)

R, is well-defined by proposition 4.1. ¢ is defined by (4.2). Note that the 1-1
correspondence of vector fields on CP! to self-maps of CP' thus extends from the
special case of energy functions and holomorphic maps, (4.14), to arbitrary smooth
vector fields and maps. Restating our result in these terms, (using ¢ ,;; rather than
rpw as notation);

Proposition 4.5.
Vx R(:L’; V(E'ZU) = (Z5ZU(QC), V(E'ZU(QC) =0 < Agf)ZU(:E) =xT.

The SECOND POINT of theorem 3.12 will follow in section 5 using theorem 4.9
with a little more work, (continued at (4.14)).

4.0.3. The proof of proposition 4.1 follows from;

Theorem 4.6. Consider £ : X — R, where X = S? x S? with w the Kaehler form
for the round metric on X. Then ¢v/—190log |z — y| = %w on D',

where, as before we choose normalizations of /=190 compatible with the 2-
dimensional laplacian to justify the factor % The Kaehler form w can be thought
of as the curvature form of the dual to the tautological bundle, [18].

The first point of proposition 4.1 is an immediate consequence. For the second
point, consider the mixed term,; 8_y8m log |z—y| = 0, the inner derivative is the force,
but complexified, (we use the S? metric to identify the one form with a vector field).
The outer derivative says that the force is holomorphic ; one should check that the
Cauchy-Riemann equations of the complexified vector field implies conformality of
the real vector field, viewed as a map to the complex line.

Theorem 4.6 is proved, in turn, using;

Lemma 4.7. There exists 0 € End(T:CP',T,CP")= K~!, a Moebius -invariant
(diagonal action) holomorphic section of the anticanonical bundle on X = S? x S2,
and |o(z,y)| = c1|x—y|, where the norm |o| is with respect to the canonical constant
curvature metric g (of K=1).

4.0.4. Proof of lemma 4.7 and theorem 4.6: We provide a purely geometric proof
(ie one based on symmetry considerations, with no long calculations). A round
S1 c S? is one defined by a planar cross section.

CrLAM: Given x,y € S? there is a round S*(z,y) C S? such that S'(z,y) > x,y
and z,y is a diameter of S*. Choosing S! 3 z,y with small a diameter as possible
suffices. PROOF: Note that for any pair of points z, y € S? the only invariant is their
distance, ie there is an isometry taking x,y to «’,y" iff | — y| = d(z,y) = d(«/, v/)
(qed).
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It follows that |z —y| = cxcircum(S*(z,y)) (i-e. circumference). This is the first
step to relating the extrinsic distance |z — y| to a more intrinsic distance.

CramM: Iy €Aut=0(3,1) such that v applied to N,S, (the poles north, south)
gives x, 7, and such that the great circle S'(N, S) — S1(z,y).

Here we can suppose without loss of generality (by composition with an isometry
applied to z,y, but NOT N, S) that the line [z, y] is parallel to the line [N, S], and
we can choose v to fix {E, W} (east, west) so that v transports the great circle
S1(N, S) orthogonal to [E, W] to the circle S'(x,y) orthogonal to [E, W], and such
that dy(E) € R.

By rotational symmetry, |dy(N)| = |dv(S)| (defined using the metric) is just the
ratio of the R3-radii (or lengths of the circles, up to a constant factor); %|x —yl, of
the circle S1(z,y) to that of S*(N,S).

This proves that

(ldy@)ldr(@))/2 = o — y]
for this particular v, but (|dy(y)||dy(z)|) is independent of v by corollary 2.4,
showing:
Proposition 4.8. If v € Aut=0(3,1) such that v applied to N,S, (the poles north,
south) gives x,vy, respectively, then (|dy(N)||dy(S)|)'/? = |z — y|, (for some con-
stant ¢ ).

Note that dy(N)eny @ dy(S)es = o(x,y) (fixing vectors en,eg at the poles) can
be regarded as a Moebius -invariant holomorphic section ¢ of the anticanonical
bundle TS} ® T'S3= End(T;CP*, T,CP"), (by corollary 2.4 again), and its norm,
as above, can be taken in this bundle using the standard metrics. This proves the
lemma. Now the theorem follows by noting that —cddlog|o| is (up to a factor)
the curvature form of the standard metric. (o is invariant for the diagonal action,
while w is invariant for the full isometry group).

It follows by averaging that for the most general form of the energy function,
(recall remarks in section 3.3),

Theorem 4.9. 99E pw (z) = 3w on P’, in the one-variable case, and 0OE pw (Z) =

%w on D, in the multi-variable case, where w is the Kaehler form for the round
metric on X = (S%)N.
One checks, using the partial energies, that in the multi-variable case, the com-

plex hessian in the component (z; ) basis, is diagonal with entries 1.

4.0.5. Remarks: cross-ratios, symplectic forms and energy as a hamiltonian. This
subsection gathers together interesting relations of the energy to other structures,
but it is not essential to the main theorem and one can jump to (4.14) without
harm.

o could be defined by differentiating the cross-ratio twice to produce equivariant
o naturally. The cross ratio X (x,y, z,w) is defined as M (w) where M Moebius
sends x,y, z to 0,1, co. Differentiating twice,

Sx = 0,0, X (2,2, 2,2") along {x =2',2 =2}
determines a holomorphic Moebius -invariant 2-form; X vanishes to 2nd order near
this diagonal, and the 2 derivatives specified pick out the leading order term, hence
it is non-trivial.
This actually gives a meromorphic section of the dual bundle, K, in fact the real
part corresponds to a symplectic form S which blows up on the diagonal, z = z.
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This is essentially the canonical symplectic form, S, on the space of geodesics on
H?3. Thus it generalizes to higher dimensional spheres, the essential point being
(2.4) in any case. In fact, S is just the standard symplectic form for T*S?, where
S? x §?2 — D =T*S? reveals the Z (anti-)symmetry interchanging factors. In
this context £, which depends on the choice of a metric, is none other than the
hamiltonian for geodesic low-the flow in T*S? associated to the round metric on
S52. We wonder if the hamiltonian system given by an appropriately averaged lift
of these structures to (52?)™ — D may have interesting properties, dynamics?

Aff-6: Furthermore, o actually defines the affine structure of CP' — ; given a
vector v at y, o provides a global holomorphic one form on CP' — y and this de-
termines an affine structure which is independent of v, (T, being one dimensional).
In fact even in higher dimensions we get from S a basis of one forms satisfying
Frobenius, and determining A,. A priori the affine structures are weaker than o.
Could o similarly be defined using A,? By adapting the remarks above, (to the real
cross-ratio), to recover S it suffices to construct the cross-ratio from A,, but this is
trivial using x = oo. To fully recover o one needs to use something equivalent to
the conformal structure or its automorphism group (this is possible, and implicit
in (4.18, 8.7), possibly to be discussed elsewhere).

4.0.6. Poly vs £, energy as a homogeneous polynomial. We recall some basic facts
of geometry, [18]; a degree d polynomial on C? is a section of the (-d)-th power
of the tautological line bundle, 7CP*. Every holomorphic line bundle LCP' =
7% is determined by its degree, d, as a power of the tautological line bundle (
Pic(CP')=Z; the Lefschetz-Grothendieck pencil theorem), in particular the tangent
bundle, TCP' =7(~2CP" by topological considerations. The curvature of LCP" is
(—d)w = cg\/—1001og |s| for any holomorphic section s # 0.

We have seen relations of energy to Ras , theorem 4.4 and of Ras to Poly,
subsection 2.2.1. The relation of energy to Poly is even simpler (using homogeneous
coordinates);

Proposition 4.10. log |z — y| is equal to the function h = c3log |(z1y2 — x2y1)| on
C2 x C2 restricted to S3 x S3 and pushed forward to CP' x CP'.

Proof. (x1y2 — x2y1)? is a holomorphic section of the bundle O(2) ® O(2) =T'S? ®
TS2 vanishing on the diagonal, and having the same divisor as o, hence it is a
multiple, A\o. Furthermore with canonical metrics, O(2) ® O(2) =TS? ® TS? as
hermitian bundles, by symmetry considerations. O

The push-forward is easily justified by S'-invariance.
Theorem 4.11. Given W defined over Q, 30, Epw = alog|P| for « € Q and ¢
a polynomial on (C?)" as above.
Remark 4.12. This means that extrema of energy are just the extrema of norms of
homogeneous holomorphic polynomials restricted to (S3)™.

As an interesting aside relating Morse theory of plurisubharmonic functions to
fixed-points of AF or F?;
Corollary 4.13. 90£(Z) = %w, Z € (8*)" —D; w as above. In fact € is a
strictly plurisubharmonic ezhaustion function on (CPl)" — D, (the diagonal, or
discriminant) as is its pushforward to the S, quotient CP™ — D.

Note that we relate the Morse theory of £ to the topological Lefschetz theorem
for the one variable maps in (5.1). The question of a multivariable analog is thus
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suggested. The various relations of energy, Ras and Poly provided to this point
clearly leave something to be desired and we will discuss below some generalizations
that come closer to showing the full picture. It seems likely, in view of [36] and
references therein, that the relation of Poly to £ was known classically, and it is
certain that (4.1)(i) was known classically, but the “geometric” proof we give is
probably new.

4.1. Connections encoding maps. To pursue our proof of theorem 3.12 we will
need (compare proposition 4.1 and theorem 4.4)

Proposition 4.14. Given a smooth function E : U C CP' — R, with force
Fp(r) = —V,E(z) € T,S?, and its associated map, rg(z) = Al (z+ Fg(x)), re
is holomorphic iff ANE = % .

Note that the correspondence is local in S2. In fact there is no need to restrict
to functions here, and we will prove a generalized version,

Lemma 4.15. Given a smooth (force) vector field F : U ¢ CP' — R, its associated
map, rr , is holomorphic iff DivF = —%.

As above, rr is the map naturally associated to F, see ((4.1)). We identify as
usual the space of (local) one-forms 1 such that 2d*n = 1 with the space of F' as
above, using the metric of S2. We give two proofs of the lemma; first a simple
calculation proving the 2 statements above, followed by some general observations
summarizing the relations of maps to connections leading to an alternative, more
geometric, proof. Note that the generalizations of (4.14,4.15) to holomorphic maps
with fixed-points , allowing for isolated logarithmic poles of E, follows by removable
singularities and continuity at fixed points.

Proof. Given a holomorphic map h(z) = y, on U, the corresponding form (or vector

field) is u(r) = —cOjy—n(s)log |v — y| where the derivative is taken with respect to
z only (in x —y), the substitution of h(z) coming after the differentiation. (Note
that this is NOT a holomorphic form). Now du(xz) = —cd|y—p()0log |z —y| = —Fw

because Oh = 0 and by theorem 4.1. This proves only if, but if follows directly
because the correspondence is 1-1 and onto; as seen by localizing the construction,
using well known global approximations, of holomorphic or harmonic functions by
rational functions . O

One-forms correspond to connections using the Levi-Civita connection of S2,
and we get a nice geometric interpretation of the statements above in terms of
connections, as well as an alternative proof . The rest of this section involves the
geometry of connections, polyhedra, etc. and their relation to Ras , the reader
wanting to see a proof of theorem 3.12 as quickly as possible may skip directly to
the next section (with a quick glimpse at section 4.3).

We next consider locally flat holomorphic affine structures with singularities at
z; (we frequently use Z rather than P in the rest of this section, for fixed points,
with z as a variable when necessary).

Lemma 4.16. The space L of singular holomorphic (flat) affine connections on
T((CP1 — Z), with complex monodromy, \; at singularities z; is in canonical 1-1
correspondence to divisors W Z with mass one, where \; = /—12w;. They are thus
denoted by Dy z .
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Existence and uniqueness of such connections are discussed in [8] but can also
be obtained from the following, (using theorem 2.1) and this provides explicit ex-
pressions for Dy, p via ryp in Cen form.

Definition 4.17. Given D € L, L2R : £ —Rat is the meromorphic map defined by
r = L2R(D), such that Yz € CP", Ay (z) = D(x) (as connections at x), identifying
the affine structure A, with the affine-connection on CP! —y.

This makes sense on SV in any dimension, using connections over R, but it is
only for N = 2 that we can also apply the construction using connections over C,
and obtain the meromorphic structure.

Theorem 4.18. L2R is well-defined and it commutes with the canonical 1-1 cor-
respondences of L,Rat, to divisors, (as in the lemma above and (2.1) ). L2R is a
holomorphic isomorphism between L and Rat away from the degenerate divisors.

r = L2R(aDy + (1 — a)D3) iff r(z) = M *(aM,ri(z) + (1 — a)Myra(z)) where
r; = L2R(D;), with M, as in the lines preceeding (3.6).

For more on the last point see suspension, section 6. We call this construction
of r in terms of r; the combination principle; it is used to break up divisors into
pieces to facilitate proofs in section 6, as well as in (8.5,8.7). The extension (by
surgery) of L2R at degenerate divisors was discussed in section 2.1.

Proof. L2R is well-defined, holomorphic and 1-1, onto, by the remarks preceeding
(2.11). A local version of the correspondence follows, Lz — Ratp for B C CP' a
small nbhd, from connections on the nbhd to maps r : B — CP' from the nbhd.
(in the holomorphic or smooth categories).

To establish the correpondence to Div, it remains to verify that \; = v/—12w;
under this correspondence. It suffices to show that there is an induced correspon-
dence between \;, w;, [2r : C — C which is 1-1 and holomorphic , recalling that
the factor of v/—12 comes from normalizations of weights and Gauss-Bonnet. To
see that the monodromy A only depends on the weight w we refer to (4.21) which
suffices for w € R, but analytic continuation for the holomorphic L2R extends this
to w € C. O

4.1.1. connection and force-matching. This “connection-matching” should be com-
pared to force-matching; in theorem 4.4 we saw rpy is isomorphic via AIl; !, to
discrete steepest descent by F(x) we call this force-jumping insofar as one follows
the force vector (note that this jumping construction also defined a transformation
of smooth vector fields to smooth maps). By proposition 4.1:

Lemma 4.19. 2 = ATl,} (z,v) iff v = F.(x). (here (v,v) € TS?, v € T,5?)

Here, F, is the force on z due to z. The antipodal relation of matching to
jumping is a special property of the functions €py , as follows from (4.2) (or of
vector fields as in ( 4.15)).

Corollary 4.20. rpyw (z) =y iff Fpw (z) = F,(z), and we call this force-matching.

The correspondence in theorem 4.18 has an interesting specialization to real
weights, (we use the standard formula for curvature under conformal rescaling of
metrics in 2-dimensions, Kgq = —cAlog ¢ + Kj);

Proposition 4.21. Using exp(|2|€ zv) as a conformal factor for the round metric g
on S? gives a flat metric h on the complement Z' and the associated flat connection,
D. An inverse correspondence is gotten likewise; a flat metric h on Z' determines
a conformal factor ¢ = % and fé log ¢ satisfies the same PDE as the energy &.
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In particular note that metric connections correspond precisely to real weights.
The singularities of h at Z give cone singularities with vertex angles precisely
K(S?)u; at z;, ie proportional by the total curvature, to the weights, so that
> u; = 1 by Gauss-Bonnet (one can calculate the conformal metric at a cone
point using the pullback of the metric |dz|?, by z + 2%). The singularities of D at
Z give monodromy equal to v/—1u; at z;. (see [38] for much more on the polyhe-
dral interpretation of D.) See section 8.4 for a subtle aspect of the relation of these
metrics to equivariance.

One should by now expect that connection-matching is essentially the same thing
as force-matching, and that the equivalence associates the one form 7, such that
D = Dg2 + 1, to the (force) vector field F', in the usual way. There may be a
constant factor intervening, based on normalizations, but otherwise this follows by
equivariance properties, notably invariance with respect to affine reflection in a line.
It is good to know that a metric relation between holomorphic objects just barely
hides a purely holomorphic relation between these objects.

4.1.2. Informal summary of Poly to L correspondence. The homogeneous polyno-
mial, p : C2 — C with n = deg(p) is a section of 7(-)CP! = T*(®@"/2)CP'. Thus
p2/™ provides local holomorphic sections of T*CP!, ie holomorphic one forms, well-
defined up to locally constant factors away from the roots r; € Z of p, and they can
be regarded as locally flat holomorphic affine structures. Furthermore there is no
need to insist on integer exponents (ie multiplicities of factors) for the polynomials;
a standard use of logs shows that for any divisor WP with complex weights of total
mass 1, II(z — p;)*" (with z — p; e~ 21§3 — 22&1 in homogeneous form) provides
well-defined locally flat holomorphic affine structures as above, with singularities
at the roots p;.

The natural transformation ((2.4)) from polynomials to rational maps becomes
the special case, for maps with symmetric weights, of a correspondence of L to
Rat. In fact theorem 4.18 extends this to a transformation from local systems to
rational maps, which is ONTO SRat (simple fixed-points ), see also subsection 2.1.
The correpondence p*/™ of Poly to £ here is based on the abstract isomorphism
Pt = T7+@7/2)CP! (via the pencil theorem) and we do not know of a
concrete geometric realization of the latter, even for n = 2 (it is well defined only
up to a factor in C*). Thus it is nice to get the simple expression in proposition
4.22. Passing from one-forms to connections kills this C* ambiguity and makes
possible such formulae as we proceed to show.

4.1.3. homogeneous polynomials and flat affine connections: Given a homogeneous
polynomial, p : C? — C with n = deg(p), the roots of p determine a connection
D, e L, on CP! with symmetric weights as above. Let L be an affine complex line
0 ¢ L C C?. In view of the chain of correspondences above, we should express
D, = Dy, +n where Dy, is the standard flat affine connection of L, and 7 is of the
form C(dlogpr) where py, is the restriction of p to L, and C is to be determined.
Considering the simplest case, p(z) = (r1y2—22y1) and L = {z : (x1 2 —2x2A1) = 1}
choose C' st the poles of D, = Dy, + n cancel at © = oo, (ie such that D, extends
smoothly across x = oo in L), noting that py, blows up at oo in L (unless p;, = const,
in which case x = oo should be the singularity of D,, and D, = Dp; = oo is
the root of p in this case). The general case follows likewise, (by factorization, and
averaging, as above) with ¢, = <, ¢; = C' , and we get the formula:
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Proposition 4.22. The local system for a divisor Z with symmetric weights, %,
has connection Dz = Dy, + %dlogpz where pz is a homogeneous polynomial with
simple roots Z.

Remark 4.23. A more direct approach to this formula might be to solve Dpp = 0,
ie p is parallel wrt D,,.

4.2. Discussion: Natural correspondences. To summarize the structure that
has developed: we have studied analytic objects which correspond to divisors:

| analytic object | type of weights |
polynomials symmetric
energy functions real
singular flat-connections and Rat complex

The divisors are formal algebraic objects, and they determine formal correspon-
dences or embeddings between the associated analytic objects, but in each case there
is a more direct geometric construction of the correspondences between analytic ob-
jects which leads to localized constructions and extension to smooth categories etc.
It is at this level that the correspondences have some interesting applications (see
remark below on symmetry breaking). It is essential that the analytic objects are
conformally intrinsic (or almost so, in the case of energy—see section 8.4); they
are determined by LINEAR elliptic PDEs with the divisors as forcing terms (except
Rat). Note also that passing to the smooth categories amounts, in some but not
all cases, to passing to the limit of divisors converging weakly to smooth measures.
This issue arises many times in section 8.

There is a 3rd level, a sort of meta-theorem (not meant to be formalized) which
explains these geometric constructions and in particular the relation of elliptic cen-
trums to differentiation, this is the matching construction: given such an analytic
object, f, the germ of f at a point p in the support of its divisor is represented by
a Taylor series. The lowest order terms might depend only on self-interactions of
p, (the multiplier at a fixed-point for example), but the next term, 7, in each case
depends on the AVERAGE influence of the other p;. Matching amounts to comparing
this value of 7 to that due to a single point ¢; in an object of the same class, fs,
whose associated divisor has support exactly p, ¢, we get the same value of 7 at p.
Because these objects are conformally intrinsic, they are well behaved with respect
to automorphisms , and this provides a 1-1 correspondence of points ¢ € CP! — p
to values of 7. Thus there is a unique ¢ with the same 7 as the “average influence
of the other p;”.

Aff(7): We can recover the affine structure S?—z by embedding S?— z canonically
to affine subspaces of algebraic functions or one forms; (i) embed S? — z to degree 1
Poly canonically; € S% — 2z ~ p,, with one root, x, and normalized st p,.(z) = 1,
where z € C2 — 0 — 52 = CP' is a fixed representative of z. For the analogous
embedding to one forms, choose p,, st p.(s) = 0 iff s = z, z, and normalize, in
addition, dp..(Z) = v # 0. Note invariance of the normalization under averaging.
This induces an affine structure on S? — z in an equivariant manner. The essential
point is linearity of the PDE (d-bar) and holomorphic dependence on the divisor.
Though this only works in dimension 2, one might exploit the fact that higher
dimensional affine structures can be characterized in terms of their 2-dimensional
affine subspaces (closely related to characterizing flatness in terms of 2-dimensional
affine subspaces) to obtain a general version of this construction.
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4.2.1. Applications of natural correspondences. We list some observations, results
and potential applications of the existence of these correspondences:

(1) Recall that Gauss-Bonnet is “conjugate”, (2.1, 4.18) under such a transfor-
mation to the holomorphic Lefschetz fixed-point theorem for Rat. Similarly
we will see an equivalence of topological Lefschetz fixed-point theorem to
the Morse theory equality for the Euler class, for maps of degree —d on
CP!, in section 5.1. The question of multivariable analogs arises.

(2) Compactifications of Rat and of £ as roots collide are quite different. We
briefly considered bubbling and surgery in this context, section 2.1. Each
space has a different class of canonical algebraic subvarieties, it may be
interesting to compare them. Similarly the natural invariants in each space
are quite different; spectra for polyhedra, or zeta functions for Rat, for
example. One wonders if there are interesting relations of some such in-
variants?

(3) We will show, in section 8, how to identify smooth self maps of the sphere
with certain singular measures on the sphere. This might be useful in
studying the topology of mapping spaces.

(4) Extracting roots of polynomials involves a symmetry breaking process,
which obstruct existence of formulae for roots, while transforming polyno-
mials to rational maps or potential-energy functions can be done without
any symmetry breaking in a very simple way. We will see below, section 6,
how this gives iterative methods for extracting roots.

(5) The local minima of the energy functions have been much studied numer-
ically, but its difficult to give conceptual proofs of any of their properties.
Transforming to the context of holomorphic functions and spherical har-
monics, or rational maps may help.

One more observation to mention in passing; there is a well-defined, but singular
holomorphic quadratic differential {7y, representing the distortion of projective
structure of the conformal map, (identity map) from the round projective CP' to
the locally affine-flat hence projectively flat (CP' — Z, D). It is also holomorphic
in the parameters (Z,U). It is easy to see that,

Proposition 4.24. The zeroes of £z correspond to the critical points of rzy .

4.3. A Moment for £. Notice that we never claim that local minima of energy
are in 1-1 correspondence with period 2 attractors for F, but only with fixed-points
of AF. This because the period 2 attractors have different equivariances, they
are O(n,1)-orbits, whereas local minima etc are O(n)—orbits. It is reasonable to
expect that the orbits are in 1-1 correspondence; we have essentially shown that an
O(n)-orbit of local minima of energy is the reduction of an O(n,1)-orbit of period
2 attractors of F, but the converse is not treated here—we haven’t shown that every
period 2 attractor of F is of this type (having antipodal behavior etc.) though we’d
readily conjecture it is so. (On the other hand there may well be unstable period
2 sets, possibly even with support on S!, that don’t correspond to higher index
critical points of £.)

It turns out that there is a particularly nice way to characterize the O(n)—sub-
orbits of energy-minimizing configurations; the vanishing dipole moment property
for equilibria is a special relation between £ and the Moebius action:
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Definition 4.25. The dipole moment of a set of n vectors, z; € Z ¢ SN-1 c RV,
is §(Z) = 13z € RY, (vector addition). (the latex code for { is { \mathcal m}
). This, for N = 3, is the standard moment map, for the standard SO(3) action
preserving the standard volume form on the 2-sphere.

By a calculation observed in [2], which generalizes easily to the weighted case,
and arbitrary dimension,

Proposition 4.26. If Z is a critical point for Ey, then §(Z) = 0.

Proof. The total of all forces at z; from all pairs is clearly zero (Newtonian action-
reaction). But in equilibrium, forces F; at z; are orthogonal to the sphere, hence
Fi=Xiz;, and it suffices to show that Vi,j,A\; = A;, but this is clear from the
following lemma. O

Lemma 4.27. 2 - Vlog|z —y| = 3.
Proof. Rewrite the Lh.s. as 2 - (v —y)/|lr —y|? = (1 —2-y)/(2 — 22 - y). O

4.3.1. dipole moment in terms of £, and hyperbolic center of mass. (The rest of this
section is “optional” ie it is not applied in the rest of this article). We recently came
across the article [28] which surveys many structures that involve configurations
similar to those studied here (albeit only with a vector of weights—weighted nodes
rather than a matrix of edge-weights) and it may be interesting to compare further
the structures there with those presented here. In particular they includes remarks
about the moment map in relation to the hyperbolic center of mass (which had
been exploited in earlier work) and a similar application to normalization of Z by
{$(Z). Note that the moment map is by definition symplectically intrinsic whereas
the hyperbolic center of mass is conformally intrinsic. (The group action implicitly
provides conformal structure to the symplectic theory). We have defined {}(Z) here
using the extrinsic euclidean structure.

We know of no simple analogue of the property (4.26) for other energies. It is
a bit mysterious at first that the function £ has the properties of (4.1) as well as
(4.26), with no apparent relation of their derivations. Recall that (4.6) explains
how the properties of (4.1) fit together, but the relation here doesn’t have any
apparent connection to them. We proceed to discuss the geometry underlying this
coincidence. In the process we will find some interesting relations of the hyperbolic
center of mass to &£, here and in section 8.

First note,

Theorem 4.28. & restricted to an SO(N,1) orbit is well-defined, proper and convex
on SO(N,1)/SO(N) = HN. The local minima form a single SO(N) orbit.

Comparing the exhaustion function £ used here, to other treatments of the
Douady-earle centre, it is interesting to notice that &£ is proper on all of HV,
and not just a totally geodesic subspace, even when Z is in the boundary of such a
subspace.

Proof. First consider the case N = 3 where we can use the complex structure on S?;

E(Z) is strictly plurisubharmonic in Z, and well-defined along an orbit as a function

of SO(N,1)/SO(N) = HY, using isometry invariance of £&. Now for N = 3 strict

plurisubharmonicity along with the vanishing of both the gradient and the hessian

along SO(N) orbits, which are totally real in configuration space, implies positivity

of the hessian along H'V, hence strict convexity. Note that this uses that the p+k
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decomposition satisfies dimp = dim k , which only holds for N = 3, and that the
complex structure J satisfies Jp = k in this case, using the equivalence to psl(2,C).
We now observe that & restricted to an SO(N,1) orbit is proper; as v €SO(N,1)
goes to infinity, subconfigurations collapse at the attracting fixed-point on 9HY,
and the last statement of the theorem follows immediately. The case N = 2 follows
by restriction to the associated subspaces.

The general case, N > 3, follows because we can reduce both to (a) convexity
of £ in the case of 2 points, z; € X, |X| = 2, (by linearity; £ as a sum over pairs)
and (b) along one geodesic vy in HV. Furthermore we can suppose 7 is stabilized
by a nonrotational 1-parameter group called \;. Now the 2 fixed-points A € 0HN
of A, and {z;} give 4 points which are all in some round $? C S™¥~! which is
furthermore, (using nonrotational) M\—invariant, so we can apply the preceeding
arguement, (N =3 ). O

Comparing the exhaustion function &£ used here, to other treatments of the
Douady-earle centre, (using Busemann functions, see also (8.20) and related dis-
cussion below) its interesting to notice that £ is proper on all of HY, and not just
a totally geodesic subspace, even when Z is in the boundary of such a subspace.
This reflects the introduction of the auxiliary round metric in the construction of
E.

This motivates us to next establish the identification of {}(Z) with V& ;2(2),
where G is SO(N,1), and GZ is the G-orbit of Z. This will strengthen the existence
of normalizations, and it shows that
Proposition 4.29. In the O(N,1)-orbit of a critical point for Ey, L(Z) =0 iff Z
s a critical point.

Note that this implies existence and uniqueness of the hyperbolic center of mass

as in [7].
To this end we identify the Lie algebra, g = p + k of SO(3,1) with vector fields
v on S%, and on (S?)" , |Z| = n, by the diagonal action, and restricting v to

Tz = T7(S?)", we get g — Tz and the orthogonal projection 7z : Tz — g. Our
goal is to relate 7z (F(Z)), where F = —¢VE is the usual force, to {{(Z). Noting
that F' L k, (by isometry invariance of £) we may as well define 7z : Tz — p.

We denote by mepeF = Y, Fi(Z), ie the average, in R3, of net forces F; €
T.,5? C R3, and note that by the proof of (4.26) including (4.27) or the more
intrinsic approach below (4.32),

Lemma 4.30. 74, F(Z) = c}(Z).

But note that m4.e is also well-defined on p C Tz, and we claim that 7. is
an isomorphism of p — R3, up to the trivial exceptional case where |Z| = 2, of
an antipodal pair. But given v € p, Jv € R3, st Vo € S% v(r) = m,v using
the orthogonal projection to T,S%. Now (Tauev,v) > 0 (each summand is clearly
nonnegative) and can vanish only in the exceptional case noted above which we can
exclude. Thus we get a nondegenerate quadratic form, and conclude that mg,. is
an isomorphism.

Our goal is to show that VE|q; = m2(F(Z)) = 0 < {(Z) = 0, and it now clearly
suffices to check that mapemz (F(Z)) = Tawe F(Z) = c(2).

Once more the key is to consider the case of a pair of points; |Z| = 2, and average.
The averaging step is just a bit more subtle here; we write F' = > F;;, F;; being
the contribution only from the interaction of the pair z;, z;, so 7z F = Y wz F;; and
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nzFij= mzmz, Fij since Fy; € Tz, CTy (more to the point, F;; € pNTz, CTy
by ((4.2)) ). Tz, is the C?>- subspace of the pair z;, z;. Thus it suffices to study
7z, Fij, ie to Show Tayemz(F(Z)) = TaveF (Z) for |Z] = 2.

Furthermore, by symmetry considerations (or equivariance of F in (4.32)), for
|Z| = 2 it suffices to consider the St case, and in the S! case, with |Z| = 2,

(4.2) 72(F(Z)) = F(Z),
so we are finished. In fact,

Theorem 4.31. 7,,.[(Z) € g is equal to VE|zz(Z) up to a constant factor.

The upshot is that our normalization criterion has an expression intrinsic to the
theory previously developed.

Kirwan discusses in great depth the relation of V|{}|? to the structure of config-
uration space, [22].
Remark 4.32. Now in the interest of proving (4.30) more intrinsically note that we
already know this from the relation of £, F; for |Z| = 2, one reads off the forces at
Z, from F(Z), to explicitly describe F' in terms of A, II as in section 4 (for example
(4.4) ); note thus that —2{}(Z) = Azp—21 = Az1—22 = 2(F1(2)+F2(2)) = $mave F.
This gives the same conclusion , in general, for |Z| = n, by averaging.

5. ENERGY AND STABILITY, STABLE ATTRACTORS FOR F.

Our main goal in this section is to produce attracting periodic cycles for F using
the minima of £.

5.1. one-variable case and energy. We summarize some basic facts about the
space, ARas , of anticonformal maps of CP? (¢4 is the notation used here instead
of rpw, A(z) is antipodal to z). Note that the hessian V2& 7y (z) is symmetric
with trace:%, while dA¢,; () is symmetric with trace=0 using the conjugation.
This suggests a simple correspondence between the two. We will discuss eigenvalues
and eigenvectors of the hessian, though the term characteristic values may be more
precise. It may be better to think of V2€ 2 (2) as a map H : v € T), — T, defined
by V,(VE).

Theorem 5.1. Given a rational map ¢ - CP! — CP! = $2, with real weights,

(1) z is a critical point for €z (x) = cXu;log(lx — z;]) iff o4y (x) = A(x).

(2) x is a strong local minimum for the energy Ezu iff x is a STABLE fized
point for the conformal (but antiholomorphic ) map Ad,y. In fact the
hessian V2Ezy(x) determines the linearization d(A¢ 4 )(z) and vice vs.
The eigenvalues £\ of dA¢ 4 (x) are real, and

(3) at a local minimum, (or more generally any critical point) the hessian has
eigenvalue zero iff Ap,; has a parabolic (multiplicity > 1) fixed-point at x,
and A =1,

(4) If x is a degenerate local minimum ( one eigenvalue = 0) for the energy
Ezu then Ad 4y has a nontrivial open parabolic basin of attraction (in fact
the same holds for any degenerate critical point).

(5) the hessian has a double eigenvalue, iff Ad 7 has a superattracting (critical)
fixed-point at x.

(6) If | Z| = n > 3, then = (a local minimum or degenerate critical point) must
attract a critical point of ¢y, ie there is a critical point p of ¢, such
that the forward orbit of p by A¢, converges to x.
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We have already proved the first statement above, see (4.5), also (2.10). The

2nd iterate A¢(Z2) is holomorphic , so to prove the fourth statement above,we can
apply the Leau-Fatou flower theorem, [29] .

Ag is a steepest-descent method for minimizing &£, but with large step size, so
this does not imply stability. The key points underlying stability are thus (4.6), and
(5.7). In fact, one can extend the constructions of ¢ and £ to higher dimensional
spheres, and the correspondence of fixed-points of A¢ to critical points of £ still
holds for log-energy, but we will need extra work to determine higher dimensional
stability.

5.1.1. Critical point structure. Our goal here is to apply the preceeding theorem,
together with some Morse theory applied to &, to clarify the dynamics and fixed-
point structure of A¢ ;. Two interesting things arise as side-benefits; we can apply
the critical point structure of ¢, to get extra information on the critical points
of £, and the Morse theory turns out to be equivalent to the topological Lefschetz
fixed-point theorem for A¢ ;.

(1) To get the Morse theory started it is very convenient to be able to restrict
to the case of nondegenerate hessians. This is standard in the category of
smooth functions , where generically h is Morse. In the finite dimensional
space of degree n maps ARas,, it is not quite clear that generic fixed-
points are nondegenerate, but it suffices to find a single nondegenerate fixed-
point in each connected component of the fixed-point variety; using real
analyticity, the nondegenerate maps are then open and dense. Transforming
back from ARas to &, (as above) we have the analogous fact for critical
points of &, it suffices to find a single nondegenerate critical point in each
connected component, of the critical point variety . But given a critical
point x of £, x is critical for any PW € Div with the same center of
mass 0 € CP!' — z without loss of generality . This is clearly a connected
set, (assuming positive weights) and it is easy to pick a configuration with
nondegenerate hessian at x, for example at roots of unity, ie with cyclic
symmetry around x,0. In particular the generic local minimum is a strong
local minimum, and generically €2y is Morse. We will suppose that €2y
is Morse in what follows.

(2) By subharmonicity, the poles at Z are (or we consider them to be ) the
only local maxima of £z, (ASSUMING POSITIVE WEIGHTS). Let m; be the
number of critical points of £ of index ¢, (Morse numbers), then (£ is a
Morse function and) n—mj+mg = 2, and mgo > 0so m; > n—1. (Note that
this is the topological Lefschetz fixed-point theorem for the corresponding
map). But m; counts repelling fixed-points of A¢.

Proposition 5.2. A¢ has at least n — 1 repelling fized-points . (assuming
positive weights)

(3) Having 3 fixed-points of A¢ in the complement of a basin of attraction
implies the last statement of (5.1) by hyperbolicity [3], this aspect of the
theory of rational maps generalizing to the (antiholomorphic ) conformal
branched cover at hand. (or use the holomorphic 2nd iterate).

(4) One can generalize (5.1) to the case of complex weights, so that certain sinks
of the vector-field Fzy correspond to attractors of A¢,ys, this is pursued
further in the multivariable stability discussion (remark 3).
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By the last statement of (5.1),

Theorem 5.3. For a given Z € (CP')" —D, there are at most 2n — 4 local minima
of £z, (supposing n > 3) and this is sharp. (assuming positive weights)

This is the number of critical points available. It coincides exactly with the
number of triangles in any triangulation of S? with vertices Z. SZ", n > 7 ((2.5)),
realizes the maximum as can be seen by symmetry considerations; one needs enough
points on the equator to rule out equatorial local minima. In cases where exp £ is
a polynomial, this may be re-expressed in terms of properties of local maxima, of
spherical harmonics.

One can establish that the local minima of £gz» are nondegenerate by equating
this to nondegeneracy of (attracting) fixed points for the antiholomorphic A¢gyn,
now one can qualitatively construct the trace of the map along a triangle ( trian-
gulation as above) with adjacent vertices in SZ", and from this one calculates the
degree to be —1.

Using the Morse theory above, and (5.1),

Corollary 5.4. A¢,; has at most 3n — 6 = 3|d| — 3 repelling fized-points , and €
has at most 3n — 6 saddles. (n=d+1=|Z| =deg(¢p) +1 = —deg(4g)+1 )

5.1.2. one variable stability, proof of (5.1). By theorem 4.9 , we immediately get;
Lemma 5.5. 0 < V2Ezp(z) <= V2Ezu(z) < i1
By differentiating the construction in (4.4),

Lemma 5.6. d(Ad,)(x) (recall, notation ¢, here, instead of rpw ) is deter-
mined at its fived points by the (real) Hessian, H = V2E 77 (x) and vice vs.

We present the main features of this relation here for the one variable case and
in the next section for F. It will be useful to have a more explicit formula; take
x = N, Az = S, (at the poles) without loss of generality , and fix the bases e;
at Ty, Tg, from R?, so dA = —I. The Hessian H of £ at N is symmetric hence
diagonal over R with respect to this basis without loss of generality . Noting that
I, 114, and the Hessian of £ are simultaneously diagonalized, by theorem 4.4, we
now show (dA)d¢(x) is also diagonalized. Noting that

Ap(x) = Wy, (x + Fz(x)) = I, (v — VE4(2)), and [Ty, ()] = 1,

applying the chain rule, first note that the term due to V(Ax) vanishes; V& = 0,
so we are projecting z € S? to S2, we can extend the projection maps to R3 —
Az =R? — y canonically, and as y varies, the image II,x = z, trivially stays fixed.
Thus,

(5.1) dAdp(z) = d[IT, L (x — VEz(x))] = I — A\V?Ez(z)

the factor A coming indirectly from the curvature of S? and various unspecified
(not explicitly) normalizations. Note that (5.1) gives a monotonicity property for
diagonal entries, «;, the eigenvalues of d¢(z)(€) - dAE, as a function of diagonal
entries, the “eigenvalues” 3; of VgEZU(IE), and we conclude that —1 < o; < 1, ie
dAdo(z) is contracting, precisely when f; lies in an interval which we proceed to
determine.

Proposition 5.7. Given a fived-point x of A, = Ap as above, A¢ is attracting
at x iff 0 < V2Ezuy(x), = is also a critical point of ¢ (superattracting at x) iff
V25ZU(LL‘) = iI.
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Proof. Note that the following uses the localization of the correspondence of vector
fields to maps, defined in the extension of R from (4.1),

Lemma 5.8. Given x as above, and §& € T, such that V?EZU(I) = 0, then
d(A¢)(x)§ = €.

Proof. First consider the stronger case of a curve v such that £ is constant on ~.
Using theorem 4.4 A, is clearly the identity map on ~. But in the case at hand,
Ve€zu(x) = Vi€zu(z) = 0, so Ag is the identity at least to 1st-order, implying
d(Ag)(x) = 1. O

Lemma 5.9. Given = as above, zf% is an eigenvalue of H, and & € T, such that
ViEzu(x) = 5, then dAdg(§) = —¢.

Proof. This follows immediately from the preceeding lemma, the orientation revers-
ing property, and (4.9,4.14). O

Now we can use the lemmas to fix the sought for §; interval, and we conclude
that dAd¢(x) is contracting precisely when 0 < VESZU(:U) < 3. A strong local
minimum is one where the hessian is non-degenerate and we’ve shown that a strong
local minimum, €2y (x), determines a smooth map A¢ whose linearization at x is
attracting. The converse follows by (5.6). Also, VZEzy(x) = 11 gives a critical
point by symmetry considerations, or ((5.1)). O

Finally we return to the...

5.2. MULTIVARIABLE CASE; stability for F. For the first-order theory, relating
AF(Z) = Z to VE(Z) = 0, the single variable theory is better than a mere analogy;
we can simply apply it componentwise to each z; € Z, in fact componentwise force-
matching (the construction in (4.4)), provides a natural correspondence relating the
force, —VEy(Z) whose components are force vectors F; € T, S?, to the components
of F.

But for the 2nd-order theory, relating dAF(Z) to V2£(Z) the task is (a priori)
more complicated because the components, z; of Z, and the diagonalization of
V2E(Z) are not necessarily aligned. Nevertheless, differentiating the construction
in (4.4), we see that, as in (5.6), the 1-1 correspondence, of dAF(Z) to V2E(Z),
for configurations Z € CP* holds in the multivariable case.

As with ¢, we see that F is a discretized gradient flow for £, (i.e. a steepest
descent method) but again, this does not directly imply stability.

Another complication is the SO(3,1) equivariance of F, and the associated SO(3)
equivariance of £, but this is easily handled using section 4.3:

Definition 5.10. The notions of (i) strong local minimum for £, i.e. nondegenerate
V2E(Z), (ii) stable fixed point for AF, and (iii) basins of attraction for AF or F?2,
should all be interpreted with the natural equivariant actions quotiented out, i.e.
they allow for degeneracies, along orbits by these actions.

Our goal is now to prove (3.12)(ii), in particular (generalizing to the weighted
case);
Theorem 5.11. Given F, £ as above, Z is a critical point for Ew iff F(Z) = A(Z).
Furthermore Z is a strong local minimum for Ew iff Z is a stable fixed point for
AF.
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Note that AF = FA, so (AF)? = F is holomorphic . A version of theorem
3.12 with any real weights follows similarly. One needs positive weights to guarantee
the existence of local minima.

Proof. The first statement follows from the first part of (5.1) and the remarks above,
preceeding the theorem.

For the second statement, we extend the correspondence of positive hessians to
attracting dAJF, from the single variable to the multivariable case. In fact the same
technique of proof goes through, (for mixed derivatives) and one gets, dAd¢(Z) =
I —\V2E(Z), where the derivative of the Az; term vanishes as before. (One should
check that the constant A will be the same for mixed derivatives, this is also clear
from remarks below on neutral directions.) O

The latter, the derivative of the Az; term, which represents the nonlinearity due
to curvature of the sphere, could show up in higher derivatives, for example in
certain approaches to the case of degenerate fixed-points .

At a local minimum of £ the eigenvalues of the hessian H are all weakly positive,
so as in (5.5) they are always in [0, 3]. Furthermore the proofs of lemmas (5.8,5.9)
applied in every complex direction provide a correspondence between neutral di-
rections for the hessian of &, ie those with 8; = 0, %, and neutral directions for
dF, o; = £1, (notation as above). Note that a neutral direction is extremal in the
class of weakly positive hessians, so it must correspond to an eigenvector (using the
Rayleigh-Ritz criterion), likewise for neutral directions in weakly attracting dAF.
We can immediately conclude that the connected subset of hessians H" with all
eigenvalues in [0, %], must map to the connected subset of linearized maps, AT of
End(T,,T, ) (of the type of dAF) with all eigenvalues in [—1, 1], and likewise for
the inverse direction.

In fact the boundaries, such as OH ™, the neutral regions, decompose into con-
nected components which are completely determined by the number of eigenvalue
+1’s they have (likewise for 0, %), this uses a k + p type decomposition of the asso-
ciated lie algebras, and groups, and the fact that the hessians and maps have full
bases of eigenvectors. They thus cut the full matrix spaces up into connected pieces
characterized by the number of eigenvalues of each type.

(1) There is a generalized correspondence between the signature of fixed-points
of AF and index of critical points of £, for any index.

(2) The conjecture (3.14) might well be extended to the case of positive weights,
or even to claim that £y is Morse, in particular that all local minima are
strong. Almost nothing, beyond numerical work, is known of the classifica-
tion of all local minima. We thus discuss weak local minima below. They
are bound to occur in families as weights vary over C.

(3) We sketch modifications that provide sufficient criteria for existence of at-
tractors for the more general case of complex weights. As in the single
variable CP' case there is no global energy function, but a force-field F,
which is locally exact off the singular set, where it has periods. Decompose
the matrix VF as a sum of S, the symmetric and @, the skew(-hermitian)
form; diagonalize over C and separate real R, and imaginary < parts of the
eigenvalues \;. The necessary and sufficient condition for an attractor is
|Ai — %] < %, by (5.1) which by (4.9) is equivalent (for ®); < 1) to the
“one-sided condition” RA; > + — (F — (SAi)?)2, generalizing the real case.
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5.2.1.  Appendiz: Weak local minima. This appendix contains a somewhat detailed
description of problems involved in establishing the existence of a Fatou set.

Conjecture 5.12. The Fatou set of F is nontrivial.

where the Fatou set is an open set defined to be the maximal domain of normality,
(ie where iterates form a normal family). Note that Fatou sets can have periodic
dynamics, but we actually expect a strong Fatou set, ie one whose domain of
normality has a stronger characterization; the convergence of iterates to constant
maps. This is based on the observation that eigenvalues of the linearization are real
(3.13).

Various different approaches to this conjecture are evident,

(1) ruling out degenerate local minima as in conjecture (3.14), we will not have
more to say on this here, or

(2) extending the analysis of nondegenerate hessians to the degenerate case.
In its full generality, normal form theory for degenerate maps in higher
dimensions is very technical and difficult, a reserve of the specialist, but one
can expect our special assumptions to simplify things somewhat. There is
probably a good chance of ruling out degenerate local minima in the case
of real weights and no clamped points, but these singularities can arise for
other maps, and it is certainly interesting to extend to the nondegenerate
case.

(3) We note also that our use of the term “lyapunov function of F”, for &, is
somewhat unconventional insofar as we haven’t shown the lyapunov prop-
erty holds a priori, and not even that it holds on full basins of attraction
a posteriori, though we do use £ to produce these basins. (The term “lya-
punov” is jsutified by the steepest descent involved). If we could prove the
lyapunov property without first producing a fixed-point then the distinc-
tion of degenerate and nondegenerate hessians would not arise. This brings
up the question of convexity of £ at degenerate local minima; a degenerate
local minimal variety of £ is totally geodesic if £ is convex, but one can
create functions (similar to £) locally with minimal variety lying on a circle
(in C) for example. Convexity of £ at degenerate local minima is likely
important, if not the main point in approach (2) above.

The specific characteristic (direction) along which one should look for contraction is
defined by choosing a real-analytic curve (t) with endpoint 2 for which £ increases
as slowly as possible; we break the Taylor series expansions of & = Zé'i, into
its homogeneous parts, in the inductive step choose 7 , to pass through a local
minimum £ of £¥ on the unit sphere. If £7(€) # 0 we can stop; the connected local
minimal set will be an attractor in some blow-up (roughly as in the nondegenerate
case). If not, the curve (t) will attract in directions transversal to Técfy, but we
have to look at higher k to get retraction in Téc’y ie along the complexification
of v (which might have larger dimension if the local minimal set is large). To
see that this procedure stops, we need to show there is some maximal k() for
which VZ™&(z) = 0, i < k. The lemma below will only reduce this to another
conjecture. Note that the study of dynamics near such a curve v(¢) would normally
involve blowing-up and applying center-manifold theorems by induction on degree
in the Taylor series expansions of £ and F, at .
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The technical aspect will certainly be reduced if we can establish that local
minima are isolated. By analyticity, they come in smooth families, so it suffices to
show;

Lemma 5.13. (CONJECTURAL) If v is a real-analytic curve with endpoint x (v as
above) and & is constant along vy, then v is in an SO(3)-orbit.

Proof. In some nbhd of z, every y € -« is a local minimum, hence period 2 for F,
so there is a compact holomorphic curve, V of period 2 points extending ~. = is
not in an SO(3)-orbit iff V' is not in an SL(2, C)-orbit, by (4.29). But VNDy = (),
in (CP')", because F is repelling at Do, (as in (3.4)), contradicting Z € V being
period 2 for F.

Thus V N D3 is nontrivial. This entails the existence of degenerate period 2
configurations for F as limiting cases at D3, so we have reduced the problem to the
following: O

Conjecture 5.14. There are no degenerate period 2 configurations for F.

Now we describe degenerate period 2 configurations. In the limit where a part
Z1 C Z of a configuration degenerates, the map F degenerates into what can be
described as a weakly coupled pair of rational maps, where the coupling just keeps
track of the conservation of mass, and that in an (almost**-see below) arbitrary
way, as far as we are concerned here. In full generality we should consider a finite
set of configurations, analyzed along the lines of the Fulton-MacPherson compacti-
fication of moduli space, with subclusters nested more deeply, but for the essential
points it suffices to consider the case where Z breaks up into 2 configurations, cor-
responding to Z1, Zy = Z — Z, which we call C, = C, Cs and which, without loss
of generality live at or near the poles, N, S € S2.

There is a special (one might say wvirtual) point, s € Cy D Z7, which is not a
point of Z, but which represents all of Zs, ie the subset in Cs (so s = S in effect).
This being (for Z;) the “missing part” of Z, the weights, W(Cy), are inherited
accordingly, and vice vs, for n € Cg, etc. So Cy — s is in a small nbhd of N,
without loss of generality .

F is defined on C, = Cy, Cs using the weights W (Cy),W(Cs), as usual, and we
could call the restrictions Fy,Fg. But the images Dy, Dg, may have a different
subconfiguration structure, which we now outline.

Cn—s = CnynUCnNs where Fy sends Cng to S, (“the evicted part” or “defectors”
if one likes) and Cyny — Dy C S? — S, and vice vs. for N «— S. Note that the
evicted part is generically going to be empty, but there are certainly cases where it
is nontrivial. Also there are maps F* : Cys — Ds C S?— N so the image F(C.) =
D, = Dy, Dg , where Dy is the union of the 2 pieces, Fn(Cnn) U Fs(Csn) just
given, as well as the special point, s, representing the updated missing part of Z.
The F image of D, is defined likewise.

(** There is at least one obvious restriction on Fxn on Cpg; it must vary holo-
morphically, though the space of configurations for which Cg is nontrivial will be
of very small dimension. We hope (and expect) that the conjecture above does not
require any special knowledge of this latter map.)

In brief the Dy image of C' is determined by F on Cl, as usual, together with
an (essentially) arbitrary piece corresponding to the part of Cs that F evicted.
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6. SUSPENSION

We use the term suspension to refer quite generally to an operator from a space
of maps, such as Ras C Maps(CP* ) (the arrow indicating self-maps), to an
enriched space of maps, such as GRas C Maps((CP')™ 9). We discuss a very
specific such construction here, based on Cen, with applications to algorithms for
finding roots of polynomials of one variable, or periodic points of r € Rat. It
doesn’t have any special relation to other suspension-notions in dynamical systems;
for Kleinian groups or Riemann surface laminations. But we can begin by noting
that the diagonal lifting rﬁw : (CPY™ O of rpw is defined by rﬁw(zl, ey Zn)
(rew(21),...,7pw(zn)), and that the suspension will combine rﬁw with Fy, acting
on the same space, where combination is the Cen based construction in (4.18). In
fact, by combining each component F; with r = rpy with appropriate weights, W,
we get a map, denoted S(r, W) : (CPY)" ) which under iteration is attracted to
repelling fixed-points of r. This doesn’t explicitly allow for clamped points, they
could be allowed also, but note that the fixed-points of r(z) are implicitly playing
the role of clamped points here.

We use notation as above, but with special weights w; , = w;, for r;

Theorem 6.1. Let

S(r, W) =S(rk;W)(z1,...,25); = M;il [wi,r Mg, (r(x;)) + Z wij My, (x5)]
J#i
where M, is Moebius as in (3.6). Then S(r,W) = Fpw: where r = ¢py, wij
for indices i, j, of X are the same for both S, F, and w(F) = wipuk for indices i
of X, and k of P, where w(F) indicates a weight of the map F.
Suppose that k < deg(¢) +1 =n+ 1 and that ¢ = ¢p has symmetric weights,
then

S(6.K) w1, 2)s = MG ML, (9()) + 3 73 Mo ()]
J#i
has P, C P as an attractor, for any part with |Py| = k.
In particular, if = Ry, as in ((2.4)) then S has a basin of attraction, convergent
to a superattracting configuration of roots of p.

Proof. The weight formulae follow directly from definitions, we are just taking affine
linear combinations of divisors under the equivalence in (4.18), w;, represents a
rescaling factor for the weights of the divisor of r. Recall that a clamped point ¢;
in F(X;Q;W) is superattracting for z; iff their joint weight is one. This is the
case in the weighted suspension of R, constructed above. Note that weights W of
the z;,z; interactions have been chosen to set the weight-sums equal to one, as
required, (using the known weights of R,,). O

Note also: x;,x; are mutually repelling (near the diagonal).

These seem to provide good candidates for generally convergent purely itera-
tive algorithms (on a large dimensional space) for finding roots of polynomials of
one variable, [27]. With a little more effort the technique generalizes to finding
repelling (and all) fixed or periodic pts of any r(z) in Rat of CP'; we need a rough
approximation of the multiplier of the periodic point to be able to set weights for .S
appropriately. Most such points lie in the Julia set, J, and their multiplier is close
to some central value, determined by the Hausdorff dimension of J, and the period.
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Doyle and McMullen constructed Rp in their work on 1-variable purely iterative
Rats. They noted explicitly that Rp doesn’t converge to roots; they are repelling
fixed points. They were interested in the possibility of iterating a single-variable
map to solve polynomial equations, while respecting certain group actions, see also
[5]. We have shown that using the averaging technique of Cen it is easy to overcome
this problem in the multivariable context, with appropriate weights for S(r, k; W).

The existence of an algorithm for putting 7 € Ras(CP') in normal form, (2.1),
by constructing the suspended S € Ras((CP')") to find its fixed-points , is also
interesting wrt the Smale model of computation over the reals, insofar as it is viewed
as a self-contained model of computation; the suspension provides a construction
using only rational functions, (in several variables) that finds normal forms of one-
variable rational maps. Note that the suspension technique treats the input r as
a "blackbox"; we never need to formally compose or manipulate it, but only use
evaluations of ().

7. ALGEBRAIC-GEOMETRY OF F.

It should be possible to find an explicit expression for F as a self-map of Poly,
since no symmetry breaking occurs at this level. We will provide a closed-form
expression of this type, using resultants, sylvester matrices etc. We also find the
(generic topological) degree of F below, on (CP')", (though our proof is not really
algebraic) and it is clearly the same on CP"; preimages generically won’t have
permuted pairs. An easy remark relating Cen to dual curves is also included for
motivation—our other goal here is to begin a discussion relating constructions here to
representation theory; many coincidences that have so far been observed involving
notably Cen, differentiation, discriminants, duality, R, of ((2.4)), will seem more
natural in this light.

7.1. F as resultant . Our goal here is to explain and prove the following formula
for F as a transformation of Poly

(7.1) F(p(z)) = ¢(A) = RSLT.(p(2), A" (2) — 2p"(2) = 2(L = n)p'(2)),
where the sylvester determinant realization of the resultant (RSLT) has to be con-
structed to reflect the natural degrees of the polynomial entries; the leading order
terms in the summands of the second entry do not cancel due to the factor of 2,
(the non-cancellation should probably be related to dilation equivariance of F) but
one can cancel leading order terms between the two resultant entries (as for the
standard discriminant construction) and we discuss below the correct total degree
in the coefficients proposing that it is 2n-3. Note that this is not explicitly an equi-
variant expression; there is a choice of coordinates both in taking derivatives and
calculating resultants. Nevertheless we provide more intrinsic descriptions of this
map below, and in (3.9).

We first give a closed-form expression for F(Z); in terms of the polynomial, p,
and z; such that Vi, p(z;) = 0, but it does not satisfy the symmetry demands stated
above; we use the individual roots z; in Z, explicitly,

(7.2) F(2)i = zi +2(1 = n)p' (20) /9" (2:) (=7 g(1)).
The easiest proof is to rewrite p in terms of factors, and formally use the sum

£ Jog(p'(z;)) which simplifies alot since p(z;) = 0.
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Note that p, h have a common zero iff
(7.3) RSLT (p, h) = Ilp(z)=0(h(2)) = 0,

so the explicit regrouping of this product expression is just the usual sylvester
determinant expression of the resultant. Now the polynomial ¢ = F(p) = II(\ —
F(Z);) has the form of a quotient of resultants;

Hp(z):O()‘ - 9(2)) = Hp(Z)ZO()‘p”(Z) - zp”(z) - 2(1 - n)p'(z))/Hp(z)zop”(z) =

= RSLT(p, \p"(z) — 2p"(2) — 2(1 = n)p'(2))/RSLT (p,p").
In the RHS, X should be regarded as part of the coefficients of a polynomial in
z, and it enters the sylvester determinant as such. The polynomial ¢(\) sought
doesn’t depend on the denominator—the latter gives just an irrelevant C* factor
of ¢, and dropping it greatly simplifies computation of g. On the other hand this
factor seems necessary if one is interested in sloC equivariance as opposed to psioC

equivariance (see remarks below on such lifts).
Thus

F(p(2)) = a(A) = RSLT.(p(2), A" (2) — 2p"(2) — 2(1 — n)p'(2)).
degp = d guarantees that degq = d as is clear from ((7.3)).

7.2. Topological Degree of F.
Theorem 7.1. The degree of F* (= F on (CP')") is (n — 2)!.

Proof. We calculate the degree on (CP')”, by induction on the number, n, of points.
Since the map is meromorphic the generic point has degree d preimages. Recall that
(n—2)! has been checked (section 3.1) for n = 2,3. Suppose F"(Z) =Y has (n—2)!
solutions. For the inductive step, we introduce a generic new variable point y,1
in the configuration Y, and count solutions of F/""*(Z, z,11) = (Y, Yns1), using a
continuity (homotopy) method, with ¢ parametrizing weights W (t,n + 1), chosen
such that the new point is introduced with weight close to zero, i.e. w; n41(t,n +
1) = t/n, and other weights close to those of F", so for ¢ << 1 solutions are
generically (see section 2.1 remarks on this) only perturbed slightly. Since ¥,41
is degree n — 1 in 2,41, (2.1), F;"™1(Z) = Y has (n — 1)! solutions for ¢ small.
We homotope .7-}”“ to F*t1, ¢ =1, by choosing W and Y so as to avoid the real
codimension 2 set on which F; can degenerate. (ie D3 which is complex codimension
2 is blown up and the image is complex codimension 1, see section 3.6 ). O

It is interesting to compare to Bezout’s theorem; this is not just the product of
degrees of components, suggesting some analytic dependency among the component
equations.

7.2.1. duality. We present here a natural application of Cen to the geometry of
dual curves, and though the result itself is not particularly new, we include it
because there are probably more interesting constructions along these lines—and we
hope that duality might shed more light on the geometry of F.

Given a curve V' C CP? of degree d, one can enrich the standard dual map
f 'V — V* by providing a canonical rational map f; : CP? — CP?" which
extends f to CP?.

Let p € CP2?, let Ly, be the associated pencil of lines through p, ¢ being the
angular coordinate. For each p,t let Ly, NV = Z,, and let ¢y, : Lty — Lty be the
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map Ceng; Z = Zip. Recall that this is well-defined even though the degree of ¢,,
can jump when Z, degenerates. Now setting W (V,p) € CP? to be {¢i,(p) 1 t €
(CPI}, W defines a compact curve, with one point for each ¢, hence,
Lemma 7.2. W(V,p) is a line, depending holomorphically on V,p.

Thus we have canonically associated to V' a map Gy (p) = W(V,p) of the com-
plement V' € CP? to the dual space, (CP?)*.

Theorem 7.3. Gy (p) extends across V' except possibly at singularities and flex
points, such that Gy (p) restricted to V is precisely the standard dual map f:V —
V*. Furthermore Gy determines V uniquely.

“Sketch of proof": Given p close to x € V such that z is not a flex point, let L,
be the line through p and z (“orthogonal to V") and L be the line through p but
parallel to T,.)V. The image p; of p associated to L, lies close to x, hence close to
T,V , while the image p- of p associated to Lo lies far from x, as the 2 pts of LoNV
near p will cancel, but it is close to T,,V. Thus L(p) which is determined by the p;
is close to T, V. This proves that not only does the extension exist, but that it is
precisely the map of V to its dual curve V*. "qed"

In fact, the map we construct is well known, it coincides with the one-form ob-
tained by differentiating the homogeneous defining function of V. Compare ((2.4))!

7.3. Representation theory of rational maps via geometric plethysm.
Many of the intrinsic constructions of algebraic geometry are clarified when viewed
from the point of view of representation theory, and the term geometric plethysm
[15] refers to the aspects of this involved in decomposing symmetric powers into
irreducibles. Since these projections provide multilinear maps they can be used
to construct equivariant rational maps— this is implicit in the treatment of geo-
metric plethysm in [15] for example. In our case the relevant Lie algebra is sl>C,
and homogeneous degree d polynomials PolysCP! = Sym‘Poly, CP* = O(1)Cp
(up to a blow-up at 0) are the irreducibles, V' = Poly;CP" denotes the stan-
dard/fundamental irreducible. Thus discriminants, derivatives and dual maps arise
quite naturally as invariants or covariants of the group and a variety of identities
that have arisen here can be considered from this viewpoint— and some can be seen
as consequences of the machinery. Note though that pslsC equivariant maps of
CP? are not quite the same as covariants of sloC; there is a meromorphic factor
(a multiplicative 1-cocycle with values in meromorphic functions ) that intervenes
in lifting from maps of CP%to maps of C*!, which it seems should vanish in co-
homology for topological reasons. While we will not discuss this in general here,
one can remark it in the examples.

The powerful counting/combinatorial techniques available from representation
theory reduce certain identities to systematic (but not always easy) dimension
counts, though it is not clear to us to what extent they provide explicit algebraic
or geometric identifications in the process (in practice...this is tied up in the shift
from 19th century “classical” invariant theory to modern representation theory).
This approach thus complements the geometric understanding achieved so far, but
we do not think it subsumes it. We will only give a few examples and illustrations
of its relevance to our constructions here (while pleading lack of expertise on the
general theory).

Note that preimages of discriminants by F and its iterations F(~*)D define in-
variants quite easily, (we have no idea how this relates to the classical literature)
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also forward images of the (blow-ups of) more degenerate higher discriminants,
eg Dy.k>2, by F provide other invariant constructions relevant elsewhere in the
paper, (such as (5.14)). It is natural to ask then, what generalizations or exten-
sions of the constructions presented so far, here, are possible, and representation
theory/geometric plethysm should be an indispensable guide. Recall also the ques-
tions about characterization of F in section 3 as another source of motivation.

As a preliminary (and primordial) example, notice that the correspondence R :
Polyy — Raty,k = d — 1 can be viewed as a map P(R) : Sym?V @ Sym*V — V
by first lifting a degree k map r : CP* — CP* to r* : V — V, in homogeneous
coordinates, then 7" is the restriction of a k-multilinear map p(r) : Sym*V — V,
(the “polarization”) to the diagonal (a veronese type construction). But SymdV ®
Sym*V ® V is dimension 1 iff k = d + 1 and dimension 0 otherwise, (see the
introduction to [33] and the formula for Sym*V ® Sym!V in [15]). Thus R, which
corresponds to k = d — 1 is singled out as the only possible such construction
linear in Polyy. k = d+ 1 it turns out, corresponds to a trivial construction once
projectivized; z — p(z)z projectivized gives the identity map. This also provides a
systematic way to look for higher degree, equivariant rational map constructions,
ie nonlinear Polyy — Rat.

Notice also that this effectively isolates/characterizes the Cen construction; the
d = 2 case gives a midpoint construction, ie evaluating R, at = gives the midpoint
of the roots of p with respect to A(z). In fact, in the product Sym?V @ Sym*V @V
the first factor gives the configuration P, the 2nd factor corresponds to z using a
diagonal restriction, and the 3rd factor is the midpoint. Recall that affine structure
is characterized by functional equations (Aff(1) after (1.2) ) and this could be
related to the uniqueness above for SymV ® Sym*V ® V, d=4, thus providing a
first step in translating every sloC intrinsic construction of the article to the present
language.

One of the main goals should obviously be to situate F (as a map on CP") in
(SymFSym™V) @ Sym™V, and in the process to pin down the algebraic degree of
F. Tt seems to us likely that the latter is £ = 2n—3 and furthermore that F belongs
to an irreducible factor F of Sym*Sym"V @ Sym™V where F corresponds to the
Young diagram/partition 2n—3 = (n—1)+(n—2) via the Littlewood-Richardson or
Pieri enumeration of the factors of (Sym™V)®*. (One might use the Schur functor
associated to this Young diagram to furnish a multilinear map, whose restriction
to the diagonal in (Sym™V)®F is the polynomial map desired). This is in part
motivated by the explicit formula ((7.1)) above . It would also be interesting to
know if there is a nice way to describe F in the context of the theory of [17].

A final observation along these lines is motivated by some “numerology”; com-
paring the appearance of 2n — 4 critical points of R, = f/g in (5.3), n = deg(p),
to the 2nd irreducible factor Sym2Sym™V — Sym?"~4V. It is obvious that the
degree 2 rational map of Poly, — Polys,_4 has to be the one that takes p — ¢
where ¢(2) =0 <= R} (2) = 0, as this satisfies the required equivariance etc. In
particular ¢ is quadratic in p insofar as it depends on the vanishing of gf’ — f¢'.
Symmetry is implicit; the full projection is recovered by polarization which gives
symmetric maps by definition—the key point is nontriviality on the diagonal. Note
also that we introduce an auziliary variable z to define p — ¢ implicitly in terms of
p. This suggest that such constructions are not to be had by any easy systematic
means.
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It would seem to be a difficult challenge to find analogous constructions for the
Sym?2"~8V factor not to mention the rest of the sequence for Sym”Sym™V,k=2
—this begins to touch on classical invariant theory [6], already for n = 4. In fact
the difficulty of systematically producing these geometric constructions leads us
to suspect that the appearance of the relatively simple construction of F is more
the exception than the rule. For higher k the combinatorics of the decomposition
become more complicated, and though the extra flexibility of large k makes it easy
to find some intuitive geometric constructions of factors, we would guess (very
superficially) that these are likely to represent a vanishingly small fraction of the
full decomposition.

8. THE HYPERBOLIC CASE

8.1. Divisors in the equator; extending maps and hyperbolic centrum.
We will consider maps whose associated divisor is contained in a subsphere, SV C
SN+k they are especially interesting in relation with hyperbolic centrums.

8.1.1. Extending maps and degree. We first define embeddings of mapping spaces
Ras™ — Ras™** | or more specifically, extensions of maps, obtained simply by
pushing forward the associated divisors, we will assume that weights are real;

Lemma 8.1. Given r € Ras™, and a round, (section 4.0.4) embedding SN —
SN*+E let PW be the associated divisor, ie r(x) = Cen(PW,z) on SN. Then using
the embedding to pushforward PW, define r = rN*tk(2) = Cen(PW, z) on SN*F,
This EXTENDS r to SNT*, If k = 1, and weights are real and positive, then r maps
each complementary hemisphere Hy = HNT1 of SN+ to its opposite hemisphere.

The last point follows easily using convexity properties, SV is A,—convex to
the opposite hemisphere of x. Note that r(z) = Cen(PW, z) does determine PW
uniquely, the correspondence of weights to multipliers does extend to higher di-
mension even though the maps are not everywhere conformal, (8.4). Thus the
extension is somewhat canonical; it’s not clear that a composition of such maps
gives the same extension when definable, ie composition and extension may not
commute. This is reminiscent of the quasiconformal reflection situation. In our
case, for N=k=1 though they do commute, by analytic continuation. For N=2
we don’t know, but (2.1) assures us that at least the composition has a divisor
and, if the associated divisor has real weights, its associated extension exists. For
N = 3 compositions rarely have a divisor; the fixed-points do not have conformal
linearizations, (compare (8.9)), and the question becomes mute.

It is not quite trivial to calculate the degree of a map in Ras” unless N = 1,2 (N
is the dimension, and it amounts to calculating the degree of Cen(PW, x)); already
for N = 3 the orientation information at preimages of a point might differ from point
to point. For positive real weights, W, standard homotopy arguements show that
degree only depends on the cardinality of the configuration P, deg(rpw) = d(|P|).
Similarly if there are exactly k positive weights, then deg(rpw) = d(|P|,x). It is
only for N = 2 that we may use W € C% to homotope around w; = 0.
Proposition 8.2. Given r € Ras™ with positive real weights W, deg(rpw) =
d(|Pl) = (1) (1P| - 1).

Proof. Using (8.1) with N = 2,k = 1, we see that by homotoping P into S? C S?,

r~1(z) c S? for x € S? and that the orientation at each preimage has negative

orientation; along S? it’s positive, but the last point of (8.1) provides a negative
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factor transverse to S2. By induction on dimension, SV c SV*! the general case
follows similarly. O

Problem 8.3. What is d(|P|, s, N)?

Applying the topological lefschetz fixed-point theorem should suffice in view of
(8.4).

8.1.2. Dimension > 2: the weight-multiplier relation, properties of £, etc.;

Proposition 8.4. Let Epw : SNV — R as above, and ¢(x) = Cenpy (z) be the
associated self-map. Note that (4.5,4.1(ii) ) generalize directly to N > 2. At poles
x of €, dp(x) is conformal, and the weight to multiplier relation is the same as in
(2.1).

Note though, that for N > 2, f is certainly not conformal on open sets (by
Darboux’s theorem).

Proof. For N = 2, £ is of the form Alog|z| + smooth where \ is the weight at
p = 0, thus it is the residue A of £ that determines the multiplier of ¢(x), as in
(4.4,2.1). But this residue to multiplier relation can be applied in the higher di-
mensional case, (in the context of (4.5)) along any 2-dimensional subspace spanned
by eigenvectors of d¢(x). Since it provides the same eigenvalues on each such slice,
d¢(x) is conformal, and the N-dimensional weight to multiplier relation follows.
Another way of seeing this is to break up the measure PW = pywy + P'W’ to 2
parts, and apply the combination principle (4.18); this reduces d¢(p1) to the case
of |[P| =2, P = {p1,Cenpw(p1)} , hence, for a given X € T,, SV, to the S? case;
Pc S?and X €T,,5% O

We next present the higher dimensional extensions of (4.1)(i) and its conse-
quences that will be of use later.

Proposition 8.5. Let Epy : SV — R as above, and let G be the grassmannian of
2-planes in TSN, then the hessian of Epw on SN — P has trace tr(VfU&’pw) < %
for every U € G.

Proof. Tt suffices to prove this for P having one point, P = {p}, by calculating
A€ < % along any “great 2-sphere” ie round 2-sphere S? C S%, of maximal radius.
A useful trick here is to exploit the positive curvature form of S? as in (4.18,4.21); £
is a conformal factor for a flat metric on S —p , and AE determines the curvature
form, which restricted to S? gives either a flat plane when p € 52, or a round sphere
when p ¢ S2, in a euclidean space EV = SN — p.

Furthermore, the map from the round S? C SV to the image, in EV, is a moebius
transformation M (conformal automorphism) which enjoys an S* symmetry around
the extremal points of the SV distance d(z,p) = d,,(z) along S?. We thus claim that
the extremal points of AE along S? are the same pair; the S' symmetry reduces
this to monotonicity of A€ in d,, ie the monotonicity of (M*(vol) — vol) /vol where
vol is the volume (and curvature) form of each S?. Thus it suffices to check this

for M : C — C,M(z) = Az,A € R, with vol = % which boils down to

log(1 + |Az]?) — log(1 + |2|?) monotone in |z|, an exercise.

But it is easy to see that the minimum, z_, of distance to p is in the p-
hemisphere, and AE(z_) < 0, and the maximum, z, being in the opposite hemi-
sphere, AE(z4) < since S? is totally geodesic it suffices to note that at the
extremal points 7'S” is in an eigenspace for the hessian and to use facts about

47

1.
2
2



the N = 2 case. Using polar coordinates one easily sees the eigenvalue for the

radial direction e, (t) is monotone decreasing from oo to 1 and the eigenvalue for
the orthogonal direction is e, (t) = 3 — e,(t) and e,(t) = 0 at the boundary of the

p-hemisphere which is clearly a totally geodesic level set. O

Proposition 8.6. A¢py (z) = x iff VEpw(x) = 0 and x is a local minimum iff
Adpy is attracting at x.

Proof. This now follows as for N = 2, (section 5.1, in fact with a better upper
bound). O

8.2. Measures associated to maps. To begin the generalization of Cen from
divisors PW to measures, note;

Proposition 8.7. Given smooth f : S> — S?, with isolated fized-points , there is
a probability measure p (complez-valued, [y = 1), which is smooth up to a finite
set of atoms, st f(x) = Cen,(x) iff the fixed-points of f are simple and df at fized-
points is (oriented) conformal, and the atoms correspond to the fized-points , as in
(). If u is smooth then deg(f) = —1.

Note that the deg(f) = —1 property follows from absence of fixed-points by the
Lefschetz fixed-point theorem. In particular such maps cannot be holomorphic .
Note that Cen,(x) is meromorphic in p(y),z, away from D ie {(z,y) : = = y},
much like the case of Cenpw (z), but with Cen,(x) not being holomorphic in z, this
property fails on D (in view of separate holomorphicity etc) in contrast to the case
of Cenpw (x). One should also note here that

Lemma 8.8. Given a smooth probability measure u on S?, f(x) = Cen,(z) is
absolutely convergent, hence well-defined. f(x) = Cen,(z) is also well-defined for p
smooth with isolated atoms.

and that this distinguishes (in the smooth case) N = 1 from N = 2. See
also remarks before (8.20). The case with isolated atoms is clear by continuity
and removeable singularities. It can also be treated by the combination principle,
(4.18). Note also that the latter implies

Lemma 8.9. Given p smooth with isolated atoms, the weight to multiplier relation
for f(z) = Cen,(z) at fixed-points is the same as in (2.1).

In particular df (x) at fixed-points is independent of the smooth part of yx, and
it is conformal.

Proof. (of (8.7) First f determines a connection Dy on S?, which as in (4.18), is
well-defined and smooth away from fixed-points . The curvature form (or measure)
of Dy (constructed using monodromies of Dy as measures of opens) provides a
probability measure jif, which, under the hypotheses above on fixed-points of f,
includes atoms at the fixed-points . In fact one can separate the smooth and atomic
parts of the measure by first decomposing the map using the combination principle

(81) f(l‘) = Cen(P(:L’),:L’),P(l‘) = {fa(x)a fs(x)}

as in (8.4) into (i) a part fy(x) (the atomic part) with the same fixed-points as f,

and in view of (8.9) weights determined by multipliers as in (2.1) up to a normalizing

factor (total mass one) and (ii) fs(x) (the smooth part) being the solution to ((8.1)),

which will have no fixed-points . In fact fs(z) can be constructed directly from

fa(z) and f(z) using the combination principle (with a negative weight on f,(z)
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to kill the atomic part—continuity has to be checked using (8.8,8.9) and removeable
singularities applied where the fixed-points were “removed”).

By the linear relation of measures to connections in (4.18) underlying the combi-
nation principle, it thus suffices to establish (8.7) in the fixed-point free case, f = f
and assume fi5 smooth. Also (4.18,4.21), already show that for holomorphic maps
Cen(:ufvx) =/

That this holds generally essentially follows from the correspondences in section
4; recall first that smooth maps f with no fixed-points correspond 1-1 to smooth
vector fields, vy, ((4.1)), or smooth connections Dy (4.18) (and these are equivalent
as noted after (4.21)). Thus it remains, for example, to show that smooth connec-
tions correspond 1-1 to smooth (complez-valued) curvature forms (it is the curva-
ture form—not the function which one is prescribing, otherwise the PDEs involved
would be nonlinear) satisfying the Gauss-Bonnet normalization, but we have seen
that these connections correspond faithfully to 1-forms, and the correspondence
becomes a standard application of the complex-one-dimensional d-bar theory. [

We will now also sketch the relation to Laplace’s equation as in section 4. First,
we fix an auxiliary round metric on S2, vol =its volume form, as in section 4 and
5, and restricting to the subclass defined by curi(vy) = 0 there is a 1-1 corre-
spondence of smooth vector fields, vy, to smooth energy functions £; (mod con-
stant summands), and to div(vy) = A€y, which is in 1-1 correspondence with the
(curvature-form) = py = hyvol = —cAvol + kvol, with x the curvature of the
round metric as in (4.21), and we restrict to the subclass of curvature forms with
values in R, as in (4.21), satisfying Gauss-Bonnet. Here we use a density function,
py = hyvol. This provides a proof for the special case of maps f(z) = Cen,(x)
determined by real measures pu.

The proof also shows that the theorem is not only analogous to existence and
uniqueness theory for laplace’s equation on the 2-sphere, but it is formally equiv-
alent , via adding a round metric in the background. In fact the theorem gives
a conformal (metric free) version where the flat affine structures play the role of
green’s functions. Note that we implicitly use the uniqueness theory for AE = %— I
to prove that for a given measure there is at most one map. Compare to the tech-
nique used in (2.1) where we could easily reduce to finite dimensional spaces.

This leaves some questions involved in weakening the condition on conformal-
ity at fixed-points . Note that a smooth map st the linearization at a fixed-point
is not conformal will have an associated measure whose smooth part is not abso-
lutely convergent, hence some work is necessary to have a well-defined inversion
Cen associating maps to such measures. These measures do have other interesting
properties (integrals vanishing on fundamental domains of the linearization) and
could be worth considering.

It is not at all straightforward (not even rectifiable) to prove the correspondence
above for smooth measures using discrete approximations; the latter have too many
fixed-points , and too large a degree to converge smoothly! It would be interesting
to know if there is any geometrically well motivated notion of convergence of maps
that corresponds to convergence of measures (ie finitely supported, converging to
smooth) in this context? This is related in spirit to bubbling phenomena.

In higher dimensions, maps of SV determine connections, hence curvature and
monodromy at fixed-points . But the inversion that would recover a map, from cur-
vature and monodromy, is less evident, owing essentially to the noncommutativity
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of the Lie algebra associated to the connections. For NV = 2 we have seen that one
doesn’t need any elliptic PDE theory for ( stating the ) solution for the connec-
tion given the curvature form; affine center-of-mass and stereographic projection
suffices. On the other hand the Sym? /\Qfstructure of curvature tensors suggests
a possible generalization of the use of complex weights to N > 2; the weights can
be assigned to every pair of oriented 2-planes, with appropriate bianchi identities
in case of sufficient regularity. While we do not pursue this here, we now consider
a further development of pf in the 2-D case that suggests an easier way to recover
the measure from the map.

Recalling that the liouville symplectic form S on S2? x S? — D in section 4.0.5
is SO™(3,1) invariant, it is natural to try to recover us as S evaluated on the
graph Gf C S%2 x S2 — D, up to fixed-points , where the intersection with D
provides atomic contributions. In fact this is almost correct, the point though is
that s is a complez measure, so we extend to a complexr valued symplectic form
w=we(X,Y) = S(X,Y) +/-158(X, JY) using the complex structure J on S2.
This is the (“anti-holomorphic ”) complex conjugate of the holomorphic extension
o discussed in 4.0.5. Thus given a map f as above,

Theorem 8.10. pu; = cwc(Gf) on the smooth part (up to fized-points , c is some
normalizing constant factor) and this is also the curvature of the canonical connec-
tion associated to f.

Proof. By conformal invariance of both w and puy it suffices to check this for f,z
normalized, st = n, (north) and f(n) = An = s, by fixing an auxiliary round
metric as in section 4,5. Thus the restriction S|y = C x tr(d(Af)) for some
constant C. On the other hand, recall that in section 5.1 we saw that (at least
for maps f(z) = Cen,(z) determined by real measures u) d(Af) = I — 4VZ2E, so
tr(d(Af)) = 2 —4AE, and, in (4.21), that the (curvature-form) = py = hyvol =
—cA&vol + kvol, so tr(d(Af)) = a+bhy, for some constants a,b. We also remarked
in section 5.1 that tr(d(Af)) = 0 in the holomorphic case, and in (4.21), that hy = 0
in the holomorphic case, so a = 0. But this now gives S|y = Cbhy as desired, (in
the case iy = hyvol real). The proof can be systematically translated to extend to
the general case, replacing VE by the connection-1-form n, AE by dn, etc.

In fact all one really needs, as in section 5, is to remark the existence of an
affine relation between d(Af) and V7, (the latter being the same as V2& in the
special case). By linearity, it now suffices to find the contraction of d(Af) that
corresponds to hy = v/—1. But symmetry and uniqueness reduce it to the 2 possi-
bilities, +tr((d(Af)(X),JY)) = £5(X, JY). Finally, one uses the vanishing of hy
associated to any complex-linear d(Af), as in (4.15), to fix the choice of sign to get
the (“anti-holomorphic ”) w as claimed. O

Corollary 8.11. Holomorphic maps are defined by (wc)gs = 0 ie pointwise van-
ishing of the pullback form, ie their graphs are Lagrangian for the (anti-holomorphic
) complexzified Liouville form.

8.3. Schwarz-Christoffel type uniformization.

Definition 8.12. A subvariety V' of a manifold is said to be invariant for a con-
nection D if VX, Y € TV, DxY € TV , we also say V is totally geodesic or has the
D-convezity property, or CP(D), or just CP .

If pe SN C SNT* then SV is totally geodesic for A,, and since
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Lemma 8.13. CP is preserved under averaging of connections. (Averaging must
use real weights W, not necessarily positive though.)

we have shown,

Proposition 8.14. Given any divisor PW in SN c SN** | with real weights W,
SN has the Dpy—convexity property. (Dpw as in (4.18))

One can immediately conclude that for N = kK = 1 | Dpy gives a Schwarz-
Christoffel type uniformization of the polygonal region whose angles correspond,
(4.18), to the weights of W; Dpyy is flat on each complementary component of S*
and each arc of S! complementary to P is (totally) geodesic for Dpy .

The higher dimensional versions similarly give polyhedra with totally geodesic
faces, though the regions and faces are not flat except when their dimension is
N=1,2.

Schwartz-Christoffel uniformization gives a conformally intrinsic center of mass
constructions for divisors PW in S' C S?%; the flat convex structure on the disc
allows one to assign the Dpyy affine center of mass to PW. This doesn’t generalize
easily to higher dimension. We call these hyperbolic centers of mass. The Douady-
Earle center of PW is another such hyperbolic center, and we do not know if the
two are equal (probably not) or somehow related?

8.4. Polyhedral volume and hyperbolic center of mass. Note that the con-
nection provided in theorem 4.18 is conformally intrinsic, but the metric in proposi-
tion 4.21 DEPENDS a priori on the choice of a METRIC ON THE SPHERE, S? and these
are parametrized by H3. In fact it is easy to see that the metric is determined up to
a scale factor, v(h) in R*, ( which stands for volume), h € SO*(3,1)/SO(3) = H3.
More generally we can define v(Z) in R*on configurations in S?, assuming some
metric, so that v(h) = v(hZ), and show it is non-trivial;

Lemma 8.15. v(h) — 0o as h — oo in H3.

Proof. To see this, note that v(h) is finite iff Vi,w; < 1/2 and use continuity of v
on configurations Z in S? into R; as h — oo, Z tends to a configuration with 1 or
2 points, hence Vi, w; < 1/2 fails in the limit. O

Theorem 8.16. v along an orbit is well-defined and convex on H?>, and the local
minimum of v exists and is unique.

So this also defines a hyperbolic center of mass. The proof uses:

Lemma 8.17. Given fized positive weights v(Z) is strictly plurisubharmonic on
SDiv, the nondegenerate configurations on S2.

Again one wonders if this has any nice relation to the Douady-Earle center? Note
the relation of the proof here to that of (4.28), and in particular the method there
for extending to higher dimension.

Proof. v(Z) is an S*~integral of € asin proposition 4.21. Fixing a point = at which
we evaluate &(x; P) and varying the configuration, £ is strictly plurisubharmonic
in P. Thus v is strictly plurisubharmonic in P. v is well-defined along an orbit
as a function of SO*(3,1)/SO(3)= H? using isometry invariance of v. Now strict
plurisubharmonicity and the vanishing of the gradient and hessian along SO(3),
which is totally real in configuration space, implies positivity along H?, hence
convexity. O
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8.5. A sketchy form of a Projective Paley-Wiener formalism. Our goal
here is to introduce a decomposition, of self maps g of S', using the combination
principle (4.18): g(t) = Cen({g+(t),g9-(t)},t), where g1+ are themselves maps of
S' to S? which extend to holomorphic fixed-point free maps ¢+ : Hy — CP' | of
each hemisphere. Perhaps the most natural viewpoint though, is to consider the
connection DY on S! associated to g as in (4.18). Then the decomposition here
provides holomorphic connections DY on the hemispheres Hy, st D9 = DY + DY.

The term Paley- Wiener usually refers to decomposition of real or complex func-
tions on S! to summands which extend holomorphically (or harmonically) to either
hemisphere Hy of S2. In fact this gives one way of decomposing self maps g of a
metric space S*; consider the first derivative as a function and apply Paley-Wiener.
The construction here is different in that it is projective intrinsic and requires no
metric. The basic idea, which we sketch here, is to associate a divisor in S? as we
have been doing throughout the paper, to a map g of S'. Here we must extend g
from S' to S? appropriately, and then split the divisor into its hemispherical pieces.

Given a sufficiently regular self map g of S, ¢ is associated to an energy function
E,, in section 4; by this we intend ((4.1)), over S* = RP', rather than CP'. One
can extend approximations E; of E, to a nbhd (in CP') st AE; = ¢, but there
are well-known global approximation methods that allow us to assume without loss
of generality that E; is defined globally with simple logarithmic poles, which by
the same, reversed, £ < g correspondence , give approximations of g by self maps
of CP!, g;, that extend globally as holomorphic maps. Furthermore, reflection
symmetry of g implies existence of global reflection symmetric approximations.

We note that the associated divisors PW* are reflection symmetric, where re-
flection symmetry of weights means that weights are complex-conjugate under re-
flection; we write PW* = PW% + PW" to express the decomposition of PW into
pieces in each hemisphere (one can divide weights in half for p; € S'). Finally,
each part PW defines a map g+ = Cen(PW, z) which is well-defined in the limit
and holomorphic on the hemisphere opposite the support of its divisor, and g; is
the combination of g% in the sense of (4.18), since this corresponds to the sum of
divisors.

In the case of positive real weights we get in addition that g% maps each hemi-
sphere to itself, but we cannot expect this in general.

To finish we should pass back to the limit g; — g, and take limits of the associated
PW;. This leads to the question of the nature of the limiting divisor; whether it is a
measure or perhaps a distribution, and how this depends on regularity hypotheses
for the original circle map g? We do not discuss these questions here, which is why
we referred above to a “formalism”. Using a Paley-Wiener decomposition on the
level of connections or one-forms, as suggested above, should provide some ready
made regularity statements.

8.6. Schwarz-Pick for Cen. The following is standard;

Lemma 8.18. Given SV C SN+ there is a canonical reflection map, p : SN :0,
(self-map) , ie a conformal involution of SNt fizing SV, and equivariant for
Aut(SN) € Aut(SN*Y), [1, 7).

e.g. use canonical boundary measures associated to the HV*! structures. Ap-
plying the canonical reflection p to the maps described in the last point of (8.1)
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provides self maps pCenpy of HNT! and (continuing with notation as in (8.1),
P c SN

Lemma 8.19. IfVi,0 < w; < 1/2, then there is a unique fived-point in HNT! of
pCenpy and it is the Douady-Farle center of PW.

This follows immediately from the existence and uniqueness of the Douady-Earle
center, [7] , especially using the characterization in terms of measures on the unit
sphere of T, H, which is exactly the equilibrium condition involving the dipole
moment, in section 4.3. We have given a self-contained proof, using £, in section
4.3.

It is natural to ask then if the Douady-Earle center is an attracting fixed-point
for pCenpy , and whether there is an extension of the Schwarz lemma which would
prove this? Our goal here is to show this is so, and to discuss some of its conse-
quences —or further questions that this suggests.

Note also that if Vi, w; < 1/2, then the H¥*!-boundary fixed-points of pCen pyy (z)
are repelling in SN+t > gN+L,

This affine construction makes sense for other symmetric spaces H of noncompact
type; reflection of € H can be generalized; it gives a sphere or other space (at
00), rather than a point, but this still determines an affine structure A, on H,
(by Harish-Chandra embedding theory, [19] ) thus a divisor PW on 0H determines
a well-defined map denoted Cen}yy, (z) for any H of noncompact type, but we do
not know if the extension of the Schwarz lemma is valid in such generality—we only
consider real hyperbolic space here.

We restrict ourselves to the real hyperbolic space, and measures with finite sup-
port. But in general, any measure can be handled using finite approximations,
(using x € HN*1 P C 9HN*! ) since Cen is continuous in this larger class. Two
extreme cases of the latter are worth noting;:

(1) The case of standard spherical measure, u; for the H? case this determines
a constant map, it suffices to approximate by measures with support on
the roots of unity, and to note that z — 0 as n — oco. One should use
this to see that for any smooth u, the image of Cen;(x) is bounded in H?.
For the HN*! case equivariance shows that Cen’,(z) = Ay (|z|)z for some
function A. But for N > 2, one can define the associated map Cen(zx, i) :
SN — SN see (8.8), and by continuity of extensions this implies that
Cen;(:c) is proper! A simple calculation shows that the critical dimension
is %, so we would guess that the property of unboundedness holds even for
very singular boundary measures in the case NV > 2. It is also interesting to
relate this to existence of the affine connection on S¥ associated to singular
i, see (8.7) for the smooth case.

(2) At the opposite extreme, the possibility exists that (with N = 1) for very
singular measures one can hope to construct inner functions using finite
approximations, and the fixed-point property of the support of p in the
finite case.

Theorem 8.20. (“Schwarz lemma”) Suppose P C S and Vi,0 < w;, then f =
pCenpyy HiV‘H O is (weakly) distance decreasing with respect to the hyperbolic
metric.

(1) In fact the map is strongly contracting (but not uniformly) unless the sup-
port P only spans™ a totally geodesic subspace, but even in this case a
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reflection property in the transverse directions (see below) ensures the ex-
istence and uniqueness of the fixed-points desired. (**the span being the
smallest totally geodesic subspace containing (possibly in the ideal bound-
ary) the set.)

Observe that N = 1 involves the case, H?> — H?, and for any P this is a
standard fact of complex analysis; essentially the sharp form of the Schwarz
lemma, but our statement, as it stands, only applies to the case of maps
with positive real weights and with all fixed-points in the boundary, in the
correspondence established in (2.1). We will overcome these limitations, to
some extent, further below. On the other hand our proof is quite different
from the usual (known?) proofs even in this case.

In higher dimensions N > 1, for |P|=3; we will exhibit a fibration st Cenpy
is handled using the H? — H? case along fibers, and is isometric along the
base. This thus describes the extremal case where weak contraction is in
fact isometry. P spans an H2 = H%, which is invariant for f, so H% C S%
is Cenpw invariant. Note that the isotropy Gp of P in O(N + 2,1) is
compact-it fixes the Douady-Earle center of P in HV*+2, and Cenpyy is Gp—
equivariant, so Vg € Gp, gS% is Cenpw invariant. The contraction property
follows along each gS% N HN*! noting the cancellation of the conformal
factors (in domain and range) which relate the hyperbolic metrics on the
fiber to that of the ambient space. Also G p—orbits, Gpx are orthogonal to
z € S% by symmetry, clearly Gpx N S% = z, hence conformal invariance
implies G px is orthogonal to gS%, Vg € Gp. These orbits are spheres, as
one can see that P C S! and Gpzx correspond to fibers associated to an
embedding SO(2) x SO(N) — SO(N+2). Since S¥ = 9HN*+1 is fibered by
gS%’s, Gpx is orthogonal to OHN 1 so G prN HNT! is totally geodesic (wrt
the hyperbolic metric) in HN*+1. Thus the fibration, with fibers gS%,g €
Gp, induces mutual isometries of the orbits GpzNHN 1 z € HV*! which
are thus isometric copies of the base space of this fibration. Transverse to
the fibers the map pCenpyy is now clearly isometric along the base, hence
only weakly contracting. In fact it corresponds to a map of the base of the
fibration, which is reflection through a point, s, where s is the (class of the
) fiber H? spanned by P. In particular, there is a unique fixed-point. By
an obvious extension to other codimensions, we can assume without loss
of generality that P spans H™*! so |P| > N + 1, this being useful for
intuition but not strictly necessary in our proof.

Note also that for |P|=2 pCenpy is an isometry and it follows that for
any |P| finite, z — p € P, nontangential approach entails asymptotically
isometric pCenpyy .

The proof here is augmented below to work also for measures with support
in HY, in (8.21,8.22) allowing support in the interior (of the complementary
target space). It is not clear if the Douady-Earle or other proofs cover this
generalization. One can weaken the hypotheses to allow negative weights
in the (interior of) HY, and ask if pCenpw being a self map still suffices
for the contraction property? (See also 8.6.2 below.)

The idea of the proof is to use the correspondence of minima to attractors
(8.6). Critical points are denoted crit(z’), in terms of a point 2’ € HVN12
used to parametrize the round metrics on S™V*1. We show that for enough
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of the associated energy functions interior critical points, crit(z’) have to be
local minima. It will be useful to now consider a couple of special situations
where this is easy to establish; we consider the boundary behaviour of

crit(z’) as well as an obvious case where crit(z’) has a local minimum in

N1,
Hj: 5

(7) For the latter, choose P to be the vertices of a regular simplex inscribed
in SN ¢ SVt with symmetric weights, |P| = N + 2. The energy £p
and it’s hessian, H, are invariant by the symmetries, which fix the centrum
xe € crit(E) N HJ]FVH, so H is either strictly positive or strictly negative,
or zero. For N = 1 it has positive trace, (4.1), so it is strictly positive.
For N = 1 with larger |P|, any |P| > N + 1, one can perturb the simplex,
replacing each vertex by a cluster, and the hessian perturbed slightly is
strictly positive. For larger N, it is easy to see that at x., H has positive
trace; x. is at radial distance 7/2 from each p € P by symmetry, so the
hessian of each £, is positive in the radial direction and zero along the
totally geodesic level set. In fact this works for energy £p(x) of any P C
SN at x the pole in SV (ie the center of the hemisphere).

(8) The boundary behaviour of crit(£); as we approach the case where P is
clustered at one point Ag “opposite” to ¢, £ pw is a small perturbation of the
function & 44 (case |P|=1), but € 4, has a unique local minimum at ¢, and
this is the only critical point of € pyy in the limit as the size of perturbations
vanishes. One can see directly then that the perturbation doesn’t change
the critical point structure outside a nbhd of Ag; in a nbhd of Agq it must
create saddle points, but they clearly stay near Aq in SN*1. We claim these
must stay in SV for sufficiently small perturbations; it suffices to note that
for p; near Aq the V&, are all transverse to the concentric spheres SN
(perturbations of S™) near Aq. The version of this last point which is
relevant below involves perturbing the choice of round metric rather than
P, ie 2/ — OHN*2,

Proof. (of (8.20)). To simplify notation and facilitate the comparison to the usual
Schwarz lemma, for holomorphic maps in H?> C C, we will consider Cenpy :
HN*TY — ¥t e we don’t use the reflection map here. This isometric change
doesn’t affect contraction properties.

Given z € HYN! asin (8.1), Cenpw (z) € HY Tt ¢ SN*1. Now SN¥*! bounds
a copy of HV*2 and SV = dHY*! bounds a totally geodesic copy of H(J)VH C
HN+2and the geodesic in HN*2 from x to Cenpyy (z) crosses this Hy' ** at exactly
one point ' = n(x), the normalizing projection. We can assume without loss of
generality that ' = 0 € HV*2 so that z and Cenpw (z) are antipodal (with
respect to the round metric determined by z’). The antipodal property implies
Epw is critical at z, and we claim that £py has a local minimum at x.

But first, taking into account equality of the conformal factors of the hyperbolic
metrics at  and Cenpw (z) with respect to the round metric, (by symmetry; both
are antipodal invariant), proposition 8.6 implies the distance decreasing property
at x, a local minimum. It remains to verify the claim.

To confirm the claim now, we will need some explicit formulae for derivatives
of £,(x) = —log(lp — z|), (we do not need to worry about the positive constant
normalizing factors here) ; by explicit calculation, for the single point p
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u
(8.2) CVuE(x) = (((p,z)z —p), ),
1—(p,x)
where p, z are points on the sphere |p|?> = |z|?> = 1 as well as vectors in RN +2, we
use inner products (p, z) multiplying vectors as usual, and VE,(z) € TSV is the
usual projection. We record also

(83) vggp(x) = (1 - (p,l’))72((p,’0)2 + (pa x)Q - (pa l‘)),

|v|2 = 1,v L 2 and one can check easily it has constant trace for N = 1.
Now the critical point condition is

iy L)L — Pi
(84) 0=VEpw(x)=— wa%) = &(z, PW) = (E(z, PW), )z,
where we write
w;
8.5 x, PW) = — ;.
(8.5) €. PW) = Y s
But P C SN Cc RV*! = ¢(x, PW) C RVF! and x € RVF2 — RN+ 50 ((8.4))
implies ({(xz, PW),x) = 0, and moreover, &(x, PW) = 0.
Now it is easy to see that

ViEpw(x sz (pi» ) 2 ((pi, v)* + (piy2)* — (piv @) =

Zw’t p’L7 ) 2(pi,U)2]—(€($,PW),I) 207
finishing the proof. (]

An obvious candidate for generalizing (8.20) is to allow divisors PW with support

in HY ™! rather than SV, and just as well, in HY*'. We can easily adapt the proof
above to cover this case; we pick up in the preceeding proof from ((8.5)), and rather
than (z, PW) = 0, we will show ({(z, PW),z) < 0 which clearly suffices. But the
p; all have positive components in the ex 4o direction, where zero components in the
en 2 direction cuts out SV, and z has negative component in the ey o direction.
Thus ((8.4)) implies ({(z, PW),x) < 0.

Finally we can apply (8.20) to £, for any positive measure, regarding ; as a

limit of divisors with finite support in H f *1 and using continuity with respect to
H_ and Div (noting disjointness) to get the decreasing property in the limit.

Theorem 8.21. Suppose P C Hivﬂ and Vi, 0 < w;, then Cenpyy : HY T — Hivﬂ
is (weakly) distance decreasing with respect to the hyperbolic metric. The same holds

for Cen,, for any (nontrivial positive probability) measure p with support in Hivﬂ

As a consequence, and using remark 3 following (8.20), we can extend the
Douady-Earle center;

Corollary 8.22. Given P C HiVH and weights stVi,0 < w; < 1/2, or a measure

as above but without atoms of mass > 1/2, there is a unique fizved-point in Hiw'l of
pCenpyw and it agrees with the Douady-FEarle center where the latter is well defined.
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8.6.1. unique critical point for £py in HY 1. (This subsection is just a techni-
cal follow-up to things touched upon in the proof.) Note that there is a natural
candidate for the left-inverse of 2’ = n(x), from the proof above, namely the map
crit(z') that assigns to each 2/ € HY ™ the critical points z; of € py associated to
this normalization. This is a priori multivalued, but it is natural to conjecture

Conjecture 8.23. If P spans HY ! then Epw has at most one critical point for
Epw in HY ' (assuming positive weights).

We do not expect there to be a natural metric in which the functions are convex
though. In the degenerate case where P spans a subspace, we expect a unique
linear slice of the sphere to correspond to the critical set. We also remark that
there is an interesting relation between degeneration of the hessian at a critical
point and reversal of orientation of the map n which we will not be able to discuss
here. The conjecture is easily motivated by a continuity method arguement; as long
as every critical point is a local minimum no bifurcation is possible. One can use
real analyticity of £ as well. We give a linear-algebra arguement below in a special
case.

The functions £ pyy are thus conjectured to be perfect in the sense of Morse the-
ory in these hemispheres (our proof of (8.20) has even ruled out degenerate local
minima). If the geometry of £ pyy reflects a global topological property we will say
that it is topologically adapted (in fact we would prefer to say “taut”, but the term
is already taken). It would be interesting to know how well £ pyy is topologically
adapted for other classes of divisors as well. The motivation comes from complex
analysis, where holomorphic functions have well known perfect intersection theo-
retic properties. One is always interested in finding other classes of functions or
maps with analogous behaviour.

We now reduce to a simplified setting; noting that ((8.5)) is linear in W, as is
V2E pw () it would have sufficed to check positivity of the latter at extreme points
of the compact convex space of {W : &£(x, PW) = 0}, and by standard convexity
theory this reduces to weights with at most N + 2 nonzero entries. We can also
write {(z, PW) = > w;p;, with p; = mpi. By fixing a moebius map M

sending = +— oo, Az +— 0, and letting p; = Mp;, the latter lie in a fixed sphere S
and a similar formula can be derived from Cenpyw (z) = Ax.

So it is of interest to consider the case |P| = N + 2, and fixing a generic such P,
2 now determines W uniquely by &(xz, PW) = 0.

We will now show that W determines z € HV*! uniquely assuming |P| = N +2.
But for generic P the N + 1 by N + 2 matrix of p; is of rank N + 1, so it has a one
dimensional kernel, say 0 = > w;(P)p;. Clearly { =0 = o = Aw;(P) =
w; = Aw;(P)(1 — (pi,x)). Rewriting (p;,z) = Px as a matrix product, we need
to check that the image in RV*+2 of the unit ball BN*! by e — Px.e = (1,...,1)
intersects any line ¢ through 0 at most once (no 2 z’s give proportional ¢ — Px).
(or the image projects 1-1 into the sphere or simplex). If the contrary were true
then the affine linear space V = range of ¢ — Pz on EN*1 (alias RV ') contains
¢ 5 0 which implies that the range of Py on y € E" contains Py = e for some 7.

Since w;,1 — (p,x) > 0, >, %pi = Y a;p; = 0 has positive coefficients,
showing that 0 is in the convex hull of p;. (Note also that if 0 is not in the convex
hull of p;, this implies there is no critical point in HV+! and it is clear in this case
that the local minimum should be in the boundary, this is an intuitively satisfying
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analysis of the case where P lies in a hemisphere.) So 0 < > a; = (3 aipi,yo) =0
and by the contradiction, W determines x uniquely for generic P.

Proposition 8.24. If P spans HY ' and |P| = N 4 2 then £ pw has at most one
critical point for €pw in HNFL,

Motivated by the continuity method suggested above, we discuss, in the case
|P| = N + 2, the set of all solutions, Crit, in xz, PW, its connectedness proper-
ties, with attention to it’s interior Crit°, and the relation of the boundary to the
degenerate set (nonmaximal rank of P).

We consider Crit fibered over z € HN*! and parametrize the fiber by P, ie
configurations of p; € S as above. W exists iff 0 € Hull (p;) and the p; determine
W uniquely if the the p; have maximal rank, this holds if 0 € Hull°(p;) , the interior.
One would like to view this as the interior of a solution-space, and we expect that
modulo permutations of the indices i €I, there is a unique open connected set Py
of configurations 15, in the complement of the degenerate set (nonmaximal rank ie
dim(hull) )whose closure is Crit.

8.6.2. the classical Schwarz lemma and divisors . The comparison to the 2-D case,
ie the classical Schwarz lemma, should be completed by (i) weakening the hypothe-
ses to allow any weights in the (interior of) Hi, and extending the technique here
to show that pCenpy being a self map still suffices for the contraction property,
(recall as motivation the case of negative weights in HY') and (ii) analyzing which
divisors/measures are associated to self-maps of H2. The case of atomic measures
with support P C S! on the boundary is easy; the fixed-points p € P must have, for
f:H? — Hf_, negative real multipliers, hence, by (2.1), 0 < w < 1. This is not at
all clear for smooth support: note that the fixed-point property is lost in the smooth
limit of atomic support, so a different approach is necessary. In fact we remarked
that lebesgue measure on S! gives a constant map, so small complez perturbations
still give self-maps of H2. If the perturbation involves a smooth measure p on S*,
then one must be careful about uniformity, up to the boundary, of the resulting
perturbation of pCen, over H?. But one can perturb by a pair of atoms in Hi
with small imaginary weights, and total weight real, to avoid the uniformity issue.
Then using the “S2-harmonic measure” construction, which we proceed to discuss,
given any P C H_, we produce p on S' with smooth support, which determines
the same map on H?, and one thus gets a perturbation by a nontrivial imaginary
smooth measure g on S, which induces a self-map.

Suppose PW has support in H_%, then for each p; € P, the restriction of £, to
H? is by potential theory equal to £, where y1 = p,, is the “SQ;Earmonic measure”
of p; on S'; this is just the jump of the normal derivative 9,&,, at each x € St ,
(or equivalently a distributional laplacian) where we construct £,, by continuously

extending &,, from H? to H? as an S?-harmonic function. This can also be
described using the standard euclidean harmonic measure of ( p;+ an additional
mass ) where the additional mass corresponds to the forcing term in the definition
of & (coming from the curvature of the sphere). The main point is that

Lemma 8.25. p,, is positive on S |
despite this forcing term. This is best seen using 81,5; .; the maximum principle
implies that &, _is everywhere smaller than the (S?—)harmonic function with the

same boundary values, and this implies an inequality on the normal derivatives at
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the boundary. But the reflection of this harmonic function is the extension used
to define S%2-harmonic measure. Note that we use the isometry property of the
reflection map here, this being a special feature of the hemisphere case.

Since an atom PW in H 3_ and its S2-harmonic measure induce the same energy
& on H?, the Cen construction is not 1-1 from measures to maps in this context.

8.6.3. more questions: Q: It is natural to consider existence of a.e. boundary
limits for pCenpw as well as growth of pCen,, in relation to Hausdorff dimension,
or entropy numbers, associated to the boundary measure.

Q: Are there notions of convexity associated to the distance decreasing property?
It is tempting to use a convexity arguement to get the unique local minimum in
HN+L but we don’t see how.

Q: The Schwarz lemma is a powerful tool for studying holomorphic maps as
dynmical systems. In the general context of maps constructed using Cen form, this
requires a Poincare or Kobayashi metric type construction on the complement of
the Julia set compatible with associated generalized Schwarz lemmas.

9. PROBLEMS

We summarize some but not all problems from the text, some not yet mentioned,
and some relations to those already mentioned.

(1) (8.14) diagonalizing hessians geometrically. Note the relation to discrimi-
nants implicit in 4.0.6.

(2) The conjectures in section 5.2.1 on degenerate attractors.

(3) General convergence of the maps in section 6. Classify all periodic-attractors

for F and for the root-finding algorithm. Relate the combinatorics of trian-

gulations to attractors for . This includes the case of collapsing attractors,

3.1, and the problems there.

possible characterizations of F, (3.8).

(3.2).

Morse-theory of £ vs dynamics of F:The energy functions we study provide

strictly plurisubharmonic exhaustions with interesting equivariance proper-

ties and relations to the moment map. It should be interesting to compare

the Morse-Smale complex of £ to dynamics of F. Does Z™ (roots of unity)

play a special role in the dynamics of F, or VE 7 Are all local minima of

£ in the drainage basin of Z"? Note that this is the grad flow analogue

of the question as to whether every basin of attraction for F has Z* in its

closure? Is Z™ the only critical point of index n, for £ 7

(7) The holomorphic surgery analysis of Rat; section 2.1.1.

(8) The holomorphic Lefschetz fixed-point theorem in terms of weights, after
(2.1) vs generalizations to the multivariable case including F and suspen-
sions?

(9) (8.6.3) problems following up on the Schwarz lemma for Cenpyy.

(10) Regularity theory for section 8.5. The problem would be better motivated
with some specific applications in mind.

(11) Deformation and rigidity theory for the Cenpy, in higher dimension; topo-
logical conjugacy vs smooth(er) conjugacy. Qualitative descriptions of the
branching behavior of Cenpyy .
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