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A NEW PROOF OF THE CHEEGER-GROMOLL SOUL

CONJECTURE AND THE TAKEUCHI THEOREM

Jianguo Cao and Mei-Chi Shaw

Abstract. In this paper, we study the geometry for the evolution of (possibly
non-smooth) equi-distant hypersurfaces in real and complex manifolds. First we use
the matrix-valued Riccati equation to provide a new proof of the Takeuchi Theorem
for peudo-convex Kähler domains with positive curvature. We derive a new mono-
tone principle for both smooth and non-smooth portions of equi-distant hypersurfaces
in manifolds with nonnegative curvature. Such a new monotone principle leads to a
new proof of the Cheeger-Gromoll soul conjecture without using Perelman’s flat strip

theorem.
In addition, we show that if Mn is a complete, non-compact C∞-smooth Riemann-

ian manifold with nonnegative sectional curvature, then any distance non-increasing
retraction from Mn to its soul S must be a C∞-smooth Riemannian submersion, a
result obtained independently by B. Wilking.

Introduction

The classical Oka’s Lemma states that if Ω is a compact pseudoconvex domain
with C2-smooth boundary ∂Ω in the Euclidean space C

n and if r(x) = d(x, ∂Ω)
is the distance function from boundary, then the complex Hessian of the function
(− log r) is nonnegative on Ω, (i.e., i∂∂̄[− log r]|Q ≥ 0 for all Q ∈ Ω). For the
pseudoconvex domains in a Kähler manifolds with positive curvature, Takeuchi
[Ta] (see also Suzuki [Su]) obtained the following result.

Proposition A. (Takeuchi [Ta], [Su]) Let Ω be a pseudoconvex domain with C2-
smooth boundary ∂Ω in (M2n, g) and let r = d(x, ∂Ω) be the distance function from
x ∈ Ω to Σ. Suppose that the Kähler manifold (M2n, g) has holomorphic bisectional
curvature ≥ 2. Then the equi-distant subdomain Ω(−t) = {x ∈ Ω|d(x, ∂Ω) ≥ t} is
strictly pseudoconvex for any t > 0. Furthermore, we have

i∂∂̄(− log r)(ζ, ζ̄) ≥ 1
4
‖ζ‖2
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for any ζ ∈ T 1,0
x (Ω) and x ∈ Ω.

In this paper we present a new geometric proof of Proposition A using comparison
theorems in Riemannian geometry. Another proof of the result above can also be
found in Siu [Siu1] via the variational approach. Recently Proposition A has been
used by Cao-Shaw-Wang [CaSW] to obtain regularity for the ∂̄-Neumann operator
on pseudo-convex domains in the complex projective space.

We will use the Riccati equation to provide a new proof of Proposition A. The
idea of using the matrix-valued Riccati equation has been applied in Riemannian
geometry by various authors, including L. Green, Hawking-Ellis, Gromov and Es-
chenburg, see references in [Es]. Gromov [Gro] emphasized that the evolution of
principal curvatures of equi-distance hypersurfaces is the source of the comparison
theorems. Our approach is to consider the evolution of all diagonal entries and diag-
onal 2× 2 sub-matrices in the matrix-valued Riccati equation (instead of Gromov’s
method on principal curvatures only).

Let {Σt}a≤t≤b be a family of equi-distant C2-smooth hypersurfaces and let σ :
[a, b] → Mn be a geodesic of unit speed orthogonal to each hypersurface Σt at
σ(t). The matrix-valued Riccati equation for equi-distant C2-smooth hypersurfaces
{Σt}a≤t≤b is given by

B′(t) + [B(t)]2 + R(t) = 0, (0.1)

where R(t) is the curvature matrix and B(t) is the matrix-representation of the
second fundamental form of Σt with respect to the unit normal vector ∂

∂t and an
orthonormal parallel frame {Ei(t)}1≤i≤n−1 along σ.

We say that two real-valued symmetric matrices A and B satisfy the inequality
A ≤ B if 〈Av, v〉 ≤ 〈Bv, v〉 for any vector v.

Under the assumption that the sectional curvatures are nonnegative i.e., R(t) ≥
0, by the Riccati equation (0.1), we derive the following monotone principle for
equi-distant hypersurfaces {Σt} in any non-negativity curved manifold (Mn, g).

Proposition B. (Monotone Principle, smooth part) Let (Mn, g) be a Riemannian
manifold with nonnegative sectional curvature. Suppose that {Σt}a≤t≤b is a family
of equidistant C2-smooth hypersurfaces and {B(t)}a≤t≤b is the matrix-representation
of the second fundamental form of {Σt} with respect to an orthonormal parallel
frame {Ej(t)}1≤i≤n−1 and unit normal direction ∂

∂t . Then the following is true.
(B.1) B(t) is a monotone matrix-valued function.
(B.2) If all sectional curvatures at one point p0 ∈ Σt0 ⊂ Mn are strictly positive,
then B(t0) is strictly decreasing at p0. More precisely, if R(t) ≥ λI > 0, then
B(t2) − B(t1) ≤ −λ(t2 − t1)I < 0 for all t2 > t1, where I is the identity matrix.

By a theorem of Siu and Yau, any compact Kähler manifold with positive
holomorphic bisectional curvature must be bi-holomorphic to the complex pro-
jective space CPn. By definition, the complex Hessian of a function f , i∂∂̄f =
i
∑n

j,k=1
∂2f

∂zj∂z̄k
dzj ∧ d∂z̄k, is independent of choice of the metrics on a complex

2



manifold M2n. On the other hand, it is well-known (cf. [GW1-2]) that, for any
Kähler metric, the complex Hessian is related to the real Hessian as follows:

√−1∂∂̄f(ξ̃, ¯̃ξ) = Hess(f)(ξ, ξ) + Hess(f)(Jξ, Jξ) (0.2)

where J is the complex structure of the complex manifold M2n, ξ ∈ [T (M2n)]R and
ξ̃ = 1√

2
ξ − √−1Jξ, (see [GW2]). Therefore, it is sufficient to verify Proposition

A for domains in CPn with respect to the Fubini-Study metric. We will choose
B = Hess(−r)|Σ(−r) , where Σ(−r) = ∂Ω(−r) = {x ∈ Ω|d(x, ∂Ω) = r}. Applying
the Riccati equation (0.1) and Proposition B to the matrix-valued function B +
J−1BJ , we will get a desired estimate for i∂∂̄(−r) in complex tangential directions
of {∂Ω(−r)}.

In order to derive estimate of i∂∂̄[− log r] in the other directions, we use a new
technique of “upper barrier holomorphic hypersurface” inspired by the work of
Calabi [Ca]. In addition, although the function r(x) = d(x, ∂Ω) may not be dif-
ferentiable at the cut-loci of ∂Ω in Ω, we can use the barrier function again to
estimate the Hessian of [− log r] at the cut-locus. Thus, Proposition A will become
a consequence of Proposition B. Details are given in Section 1 below.

In the second part of this paper, we are mainly interested in evolutions of
equi-distant hypersurfaces (possibly non-smooth) in real Riemannian manifolds.
The equi-distant non-smooth convex hypersurfaces played important roles in the
Cheeger-Gromoll seminal paper [ChG], which we now briefly describe.

Let Ω be a compact convex domain in M with possible non-smooth boundary.
We consider the equidistant hypersurface Σ(−r) = {x ∈ Ω|d(x, ∂Ω) = r}, which
may have singularities as well. When Ω is convex and has nonnegative sectional
curvature, Cheeger and Gromoll [ChG] showed that Σ(−r) remains to be a convex
real hypersurface, which bounds a convex sub-level set Ω(−r) = {x ∈ Ω|d(x, ∂Ω) ≥
r}.

Because Ω(−r) is convex, its outward normal cone is well defined along its bound-
ary Σ(−r) as follows:

N+
Q (Ω, ∂Ω) = {v ∈ TQ(Mn)|d(ExpQ(sv),Ω) = s for sufficiently small s > 0},

where Expp is the exponential map of the Riemannian manifold (Mn, g) at p.
When Ω is convex and (Mn, g) has nonnegative sectional curvature, the distance

function r(x) = d(x, ∂Ω) is concave down on the domain Ω, i.e., Hess(r) ≤ 0.
Sharafutdinov [Sh] further observed that the one-sided gradient of r, ∇+r|Q, ex-
ists uniquely and never vanishes for Q ∈ Ω with r(Q) < rmax = supP∈Ω{r(P )}.
Therefore, there is a corresponding one-sided flow given by

dσ

d+t
=

∇+r

‖∇+r‖2
(σ(t)) (0.3)
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for Q ∈ Ω with r(Q) < rmax = supP∈Ω{r(P )}, where dσ(t)
d+t denotes the right-side

derivative of the curve σ.
Let P|σ be the parallel transportation along the curve σ. We say that the normal

cones {N+
σ(t)(Ω(−t), ∂Ω(−t))} is non-decreasing, if

P|σ[N+
σ(t1)(Ω(−t1), ∂Ω(−t1))] ⊂ N+

σ(t2)(Ω(−t2), ∂Ω(−t2)),

for t1 ≤ t2. The following is the non-smooth version of Proposition B.

Theorem C. (Monotone Principle, non-smooth part) Let (Mn, g) be a complete
Riemannian manifold with nonnegative sectional curvature. Suppose that Ω is a
convex subdomain with possible non-smooth boundary in (Mn, g). Let σ(t) be a
trajectory of the one-sided flow (0.3) as above. Then the outward normal cones
{N+

σ(t)(Ω(−t), ∂Ω(−t))} is non-decreasing along the trajectory σ.
Consequently, the inward tangent cones of {T−(Ω(−t))} becomes smaller and

smaller along any trajectory of the flow (0.3).

A subset Ω is said to be totally convex in a complete Riemannian manifold
(Mn, g), if for any pair of points {p, q} ⊂ Ω any geodesic σp,q from p to q in
Mn, we have σp,q ⊂ Ω.

According to the Cheeger-Gromoll theory [ChG], for a complete nonnegatively
curved manifold (Mn, g), there exist a partition 0 = a0 < a1 < ... < am < am+1 =
∞ of [0,∞) and an exhaustion Mn = ∪t≥0Ωt such that the following holds:

(0.4.1) {Ωt}t>am is an equi-distant, compact and totally convex n-dimensional do-
mains with (possibly non-smooth) boundaries. If t2 ≥ t1 ≥ am, then Ωt1 = {x ∈
Ωt2 |d(x, ∂Ωt2) ≥ t2 − t1};
(0.4.2) For each m ≥ j ≥ 1, the set Ωt = {x ∈ Ωaj |d(x, ∂Ωaj ) ≥ aj − t} is totally
convex for t ∈ [aj−1, aj], where aj−1 = aj − max{d(x, ∂Ωaj )|x ∈ Ωaj )};
(0.4.3) Ω0 = S is the soul of (Mn, g) of dimension n0 < n; In particular, Ω0 is a
totally convex, compact and smooth submanifold without boundary.

Using the flag of the totally convex exhaustion above, Cheeger and Gromoll
established the fundamental theory for complete Riemannian manifolds of nonneg-
ative sectional curvature. Among other things, Cheeger and Gromoll [ChG] derived
the following important result: If (Mn, g) is a complete non-compact manifold with
nonnegative sectional curvature, then Mn contains a compact totally geodesic sub-
manifold S without boundary (called a soul of Mn) such that Mn is diffeomorphic
to the normal vector bundle of S in Mn. In particular, if the soul S is a point, then
Mn is diffeomorphic to the Euclidean space Rn.

The Cheeger-Gromoll soul conjecture asserts that “if a complete and non-compact
Riemannian manifold (Mn, g) has nonnegative sectional curvature and if Mn con-
tains a point p0 where all sectional curvatures are positive, then Mn must be diffeo-
morphic to the Euclidean space Rn”. This is true if (Mn, g) has positive sectional
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curvature everywhere by the earlier work of Gromoll and Meyer [GrM]. This conjec-
ture was solved by G. Perelman [Per] by his flat strip theorem. Earlier partial results
on the Cheeger-Gromoll soul conjecture were obtained by Marenich, Walschap and
Strake, see references in [Per].

Applying Proposition B and Theorem C to Cheeger-Gromoll’s totally convex
family {Ωt}0≤t≤∞ described in (0.4.1)-(0.4.3) above, we will prove the following:

Corollary D. (Perelman [Per]) If a complete and non-compact Riemannian man-
ifold (Mn, g) has nonnegative sectional curvature and if Mn contains a point p0

where all sectional curvatures are positive, then the soul S = Ω0 of (Mn, g) must be
a point. Consequently, Mn is diffeomorphic to the Euclidean space Rn.

When each leaf of the Cheeger-Gromoll exhaustion {∂Ωt} is smooth, the above
Corollary D is a direct consequence of Proposition B. To see this, let σ : [0, T ] →Mn

be a broken geodesic from the soul S to p0 such that σ′(t) is orthogonal to the
leaves of the Cheeger-Gromoll exhaustion. Suppose contrary, the soul S has positive
dimension. We consider a piece-wise Jacobi field {J(t)} along the broken geodesic
σ such that {J(t)} is continuous with 0 �= J(0) ∈ Tσ(0)(S). A direct computation
shows that

λ(t) =
d[log ‖J(t)‖]

dt
= Hess(−r)( J(t)

‖J(t)‖ ,
J(t)

‖J(t)‖ ) = 〈B J(t)
‖J(t)‖ ,

J(t)
‖J(t)‖〉 ≥ 0

due to convexity. Notice that λ(0) = 0 because the soul S is totally geodesic. Using
Proposition B, one can show that λ(t) ≡ 0 and {J(t)} is a piece-wise parallel Jacobi
field. When curvature R > 0 is positive, by the Jacobi equation, there is no parallel
Jacobi field {J(t)} along any broken geodesic σ, where σ passes through p0 and
{J(t)} is orthogonal to σ′(t). This is a contradiction and Corollary D follows in this
case.

We would like to say a few words about the role of the Riccati equation in our new
proof of Corollary D, when the Cheeger-Gromoll exhaustion {∂Ωt} is non-smooth.
Suppose the contrary is true, the soul S has positive dimension. In the presence
of possible singularities of {∂Ωt}, we can still construct a piece-wise parallel Jacobi
field {J(t)} as above with the following extra observation.

Even if Q ∈ ∂Ωt is a non-smooth point, the inward tangent cone T−
Q (Ωt) is still

well-defined. Similarly, one can define the tangent cone T−
Q (∂Ωt) of ∂Ω. Notice that

the cone T−
Q (∂Ωt) is not necessarily a linear vector space. A unit vector �v ∈ T−

Q (∂Ωt)
is said to be a regular direction of ∂Ωt at Q, if the inverse direction −�v is tangent
to ∂Ωt as well, i.e., ±�v ∈ T−

Q (∂Ωt).
When dim(S) > 0, we can choose a unit vector �v ∈ TQ0(S). Suppose that

σ : [0, �] →Mn is a geodesic orthogonal to the soul S at σ(0) = Q0. By the discrete
version of Theorem C (Theorem 2.1 below), we conclude that ±P|σ�v remains to
be tangent to the leaves of the Cheeger-Gromoll convex exhaustion {∂Ωt}. I.e.,
±P|σ�v remains to be regular for each level set {∂Ωt}. Let σ : [0, T ] → Mn be a
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broken geodesic from the soul S to p0, which is given by a sequence of the nearest
point projections as in [ChG]. Suppose that {�V (t)} is the parallel transportation
of v along the broken geodesic σ. Applying a version of Theorem C (Theorem 2.1
below) several times if needed, we conclude that {±�V (t)} is tangent to leaves of
{∂Ωt}. Similarly, we have

λ(t) = Hess(−rj)(�V (t), �V (t)) = 〈B[�V (t)], �V (t)〉 ≥ 0

due to the convexity of {∂Ωt}. Clearly, we still have λ(0) = 0. Using an upper
barrier function λ̂ and a corresponding Riccati equation

λ̂′(t) + [λ̂(t)]2 +K(t) = 0,

we conclude that 0 ≤ λ(t) ≤ λ̂(t) ≡ 0. It follows that {�V (t)} is a piece-wise parallel
Jacobi field along σ, which passes through p0, a contradiction. Hence, Corollary D
follows. For details, see section 2 below.

In the Perelman’s proof [Per] of Cheeger-Gromoll Soul conjecture, the so-called
Sharafutdinov retraction from Mn to its soul S plays an important role. The
Sharafutdinov retraction Sh : Mn → S is produced by the piecewise generalized
one-sided gradient flows (0.3) described above, see [Sh] or [Yim]. It is known that
the retraction Sh : Mn → S is distance non-increasing. However, a-priori, it was
not known how smooth the Sharafutdinov retraction would be. L. Guijarro [Gu]
has shown that the Sharafutdinov retraction is C2-smooth.

Theorem E. Let (Mn, g) be a complete, non-compact and C∞-smooth Riemannian
manifold with nonnegative sectional curvature. Suppose S is a soul of Mn. Then
any distance non-increasing retraction Ψ : Mn → S must give rise to a C∞-smooth
Riemannian submersion.

The C∞ regularity result in Theorem E is also proved by B. Wilking [Wi] via
a different approach independently. If one removes the assumption of nonnegative
curvature, then the distance non-increasing retraction may not be of C2-smooth,
(cf. [BG] or Example 3.14 below).

To prove Theorem E, we show that the distance non-increasing retraction Ψ is
compatible with a family of vertical Fermi maps {FA}, where FA is related to the
exponential map along subset A. Precise definitions are given in Section 3.

The organization of this paper goes as follows. We will derive new proofs of the
Takeuchi Theorem in Section 1. The proofs of other results in this paper have to
deal with possible singularities on each level set. In section 2, we provide a new proof
of Cheeger-Gromoll soul conjecture. Section 3 is devoted to the proof of smoothness
of the distance non-increasing retractions, in the presence of nonnegative curvature.
Our new proof of the Takeuchi Theorem inspired the authors to obtain other results
of this paper. Our method of using “upper barrier surfaces” along with appropriate
Riccati equations in this paper seems to be new.
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§1. The evolution of smooth portions of
equi-distant hypersurfaces in Kähler manifolds

In this section, we are mainly interested in the evolution of smooth portions of
equi-distant hypersurfaces in Kähler domains with nonnegative sectional curvature.
As an application of Proposition B (monotone principle for the smooth portions),
we provide a new proof for Takeuchi Theorem and Oka Lemma.

Let M2n be a complex manifold with the complex structure J and real dimension
2n. For any C2 smooth function f and a complex vector τ of (1, 0)-type, the Levi
form and complex Hessian are related as follows:

Lf(τ, τ̄ ) = 4
n∑

j,k=1

∂2f

∂zj∂z̄k
τj τ̄k = 2

√−1(∂∂̄f)(τ, τ̄ ), (1.0)

where τ =
∑n

j=1 τj
∂
∂zj

∈ T (1,0)(M2n). Notice that the complex Hessian
√−1(∂∂̄f)

is independent of the choice of the metrics on Mn.
WhenM2n admits a Kähler metric g = 〈, 〉, both the Levi form Lf and

√−1(∂∂̄f)
are related to the real Hessian of f which we now recall.

Since the Kähler metric g is a Hermitian metric, it preserves the complex struc-
ture J, i.e., |JX |2 = 〈JX, JX〉 = 〈X,X〉 = |X |2 for any real vector X ∈ [T (M2n)]R.
There is a natural isometry between T (M2n)]R and T (1,0)(M2n) over the real num-
bers. The map

u �→ ũ =
1√
2
(u−√−1Ju) (1.1)

is a linear isomorphism from [T (M2n)]R to T (1,0)(M2n). Recall that, for ũ = 1√
2
(u−√−1Ju), we have

√−1∂∂̄f(ũ, ¯̃u) = Hess(f)(u, u) + Hess(f)(Ju, Ju)

see [GW1]), where Hess(f)(X,Y ) = XY f − (∇XY )f = 〈∇X(∇f), Y 〉 and ∇ is the
covariant derivative (the induced connection) determined by the Kähler metric g.

§1.a. Estimates for the complex Hessian of distance functions

When f has the property |∇f | = |df | = 1, it is easy to check integral curves
of the gradient flow are geodesics of unit speed. Therefore, ∇∇f (∇f) = 0 and
Hess(f)(∇f, Y ) = 〈∇∇f (∇f), Y 〉 = 0 for any Y ∈ [T (M2n)]R. In particular, if
f(x) = r(x) = d(x, ∂Ω) is a distance function, we have

Hess(r)(∇r, Y ) = 0, (1.2)

for any Y ∈ [T (M2n)]R.
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It is sufficient to estimate Hess(r) when it is restricted to the tangential sub-
space [T (∂Ω(−r))]R, where Ω(−r) = {x ∈ Ω|d(x, ∂Ω) ≥ r}. The real Hessian
Hess(r)|[T (∂Ω(−r))]R is exactly the so-called second fundamental form of ∂Ω(−r) in
the Kähler manifold (M2n, g). It is well-known that the tangential part of Hess(r)
satisfies the Riccati equation:

∇∇rHess(r) + [Hess(r)]2 + R = 0,

where R is a bi-linear form related to sectional curvatures of the Kähler metric g.
The following result was proved by the variational method (e.g., see Takeuchi

[Ta] or Siu [Siu1]). We shall use the Riccati equation to give a new simple proof.

Theorem 1.1. Let (M2n, g) be a Kähler manifold with bisectional curvature ≥ 1.
Let Ω ⊂M2n be a pseudoconvex domain with C2 boundary ∂Ω = Σ and let Ω(−ε) =
{x ∈ Ω | ρ < −ε} for sufficiently small ε > 0, where ρ(x) = −d(x,Σ). Then

L(ρ)(τ, τ̄ ) = 2
√−1∂∂̄(ρ)(τ, τ̄ ) ≥ ε‖τ‖2, (1.3)

for any τ ∈ T (1,0)(∂Ω(−ε)).

Proof. Let Q0 ∈ ∂Ω and ExpQ0 denote the exponential map from TQ0(M2n) to
M2n. Let σ : [−t0, t0] →M2n be the geodesic given by

σ(t) = ExpQ0(t∇ρ), (1.4)

for small t0 > 0. We will study how the Levi form L(ρ) changes along σ. By (0.2),
it suffices to analyze Hess(ρ) along σ(t). Recall that σ′(t) = ∇ρ|σ(t) and

Hess(ρ)(∇ρ, ξ) = 〈D̃∇ρ(∇ρ), ξ〉 ≡ 0

since σ is geodesic. It remains to discuss Hess(ρ)(ξ, ξ) for ξ ⊥ ∇ρ, or equivalently,
ξ ∈ T (Σ(−s)) where Σ(−s) = {x ∈ X | ρ(x) = −s} = ∂Ω(−s) for some small number
s > 0. Notice that the second fundamental form of Σ(−s) is equal to the Hess(ρ)
restricted to the tangent space T (Σ(−s)), i.e.,

Hess(ρ)(ξ, η) = 〈∇ξ∇ρ, η〉 = ΠΣ(−s)(ξ, η)

for ξ, η ∈ T (Σ(−s)).
The second fundamental forms of Σ(−s) along σ(s) satisfy the Riccati equa-

tion. We choose an orthonormal frame e1(0), · · · , e2n(0) of TQ0(M2n), where ẽk =
1√
2
[e2k−

√−1Je2k], k = 1, · · · , n. We require that ẽ1(0), · · · , ẽn−1(0) span T (1,0)
Q0

(Σ)
and that e2k−1 = −Je2k. We also choose

e2n(0) = σ′(0) = ∇ρ|Q0 (1.5)
8



Let {Ek(t)} be a parallel vector field along σ(t) with initial condition Ek(0) =
ek(0). Since X is Kähler, we have

E2n(t) = ∇ρ|σ(t), E2n−1 = −J(∇ρ),
E2j−1(t) = −J(E2j(t)), j = 1, · · · , n− 1

(1.6)

for all 0 ≤ t ≤ ε.
For each k = 1, · · · , 2n− 1, we consider the Jacobi field ξk with initial condition

{
ξk(0) = Ek(0),
ξ′k(0) = ∇Ek(0)(∇ρ).

For any Jacobi field ξ(s), we have

Hess(ρ)(ξ, ξ) = ΠΣ(−s)(ξ, ξ)

= 〈∇ξ∇ρ, ξ〉 = 〈∇∇ρξ, ξ〉
= 〈ξ′(s), ξ(s)〉.

(1.7)

Let A(s) = (ajk(s)) be the matrix-valued function defined by

ξk(s) =
2n−1∑
j=1

ajk(s)Ej(s)

and the curvature matrix R(s) = (Rij(s)) defined by

R(σ′, Ei)σ′ =
2n−1∑
j=1

RjiEj .

With the notation above, we have using the Jacobi equation

0 = ξ′′k +R(σ′, ξk)σ′

=
2n−1∑
j=1

a′′jkEj(s) +
2n−1∑
i,j=1

RjiaikEj .

Thus we have the matrix expression of the Jacobi equation

A′′(s) +R(s)A(s) = 0. (1.8)

Let
B(s) = A′(s)A−1(s) = (bij(s)).
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Then
ΠΣ(−s)(Ei, Ej) = bij(s).

Using (1.7), we get

ΠΣ(−s)(ξ, ξ) = 〈A′(s)A−1(s)ξ, ξ〉 = 〈B(s)ξ, ξ〉. (1.9)

Thus B(s) is the matrix representation of the second fundamental form ΠΣ(−s) with
respect to the orthonormal basis E1(s), · · · , E2n−1(s). It follows from (1.8) and
(1.9) that

0 = A′′A−1 +R = B′ +B2 +R, (1.10)

or equivalently,
Π′ + Π2 +R = 0. (1.11)

We now apply the above Riccati equation (1.11) to prove Theorem 1.1. If τ(s) ∈
T (1,0)(Σ(−s)), then

τ(s) = ξ(s) −√−1J(ξ(s)),

where ξ =
∑2n−2

k=1 ckEk(s) for some C
¯

= (c1, · · · , c2n−2) ∈ R2n.
Let

λξ(s) = Π(ξ(s), ξ(s))

and let
µτ (s) = L(ρ)(τ(s), τ̄ (s)) = 2i∂∂̄(ρ)(τ(s), τ̄ (s))

be the Levi form in the τ direction. From the assumption that Ω is pseudoconvex,
we have

µτ (0) ≥ 0.

Using (1.11), we get
λ′ξ(s) = 〈B′(s)C

¯
,C
¯
〉

= 〈−B2C
¯
,C
¯
〉 − 〈RC

¯
,C
¯
〉

= −‖BC
¯
‖2 − 〈RC

¯
,C
¯
)

≤ −〈R(σ′, ξ)σ′, ξ〉,

(1.12)

where we have used that the second fundamental form is symmetric and B(s) is a
symmetric matrix. Similarly, we have

λ′Jξ(s) ≤ −〈R(σ′, Jξ)σ′, Jξ〉. (1.13)

Substituting (1.12) and (1.13) into (0.2), we obtain

µ′
τ (s) ≤ −(〈R(σ′, ξ)σ′, ξ) + 〈R(σ′, Jξ)σ′, Jξ〉).

10



The term (〈R(σ′, ξ)σ′, ξ) + 〈R(σ′, Jξ)σ′, Jξ〉) is equal to the bisectional curvature
(see e.g. Zheng [Zh]) of the complex tangent plane spanned by ẽn, τ . Thus from our
assumption, the bisectional curvature is greater or equal to one. Hence, we have

µ′
τ (s) ≤ −1. (1.14)

Using

µτ (0) − µτ (−ε) =
∫ 0

−ε

µ′
τ (s)ds

and (1.14), we have that

µτ (−ε) = µτ (0) −
∫ 0

−ε

µ′
τ (s)ds ≥ 0 − (−1)ε = ε

for any 0 < ε < t0. Thus
L(ρ)|σ(−ε)(τ, τ̄ ) ≥ ε

for any 0 < ε ≤ t0 with τ ∈ T (1,0)(Σ(−ε)). This proves (1.3) and Theorem 1.1. �
We would also like to extend the inequality (1.3) to the subset of full measure

in domain Ω, not just near the boundary ∂Ω. To do this, we need to recall the
definition of cut loci and focal loci in Riemannian geometry.

Definition 1.2. (Cut loci or focal loci) Let Ω ⊂ Mm be a compact domain in a
Riemannian manifold (Mm, g). Suppose that σ : [0, �] → Ω is a geodesic of unit
speed such that σ(0) ∈ ∂Ω and σ′(0) is orthogonal to ∂Ω at σ(0).

(1) The above geodesic segment σ is said to be length-minimizing from ∂Ω if
d(σ(t), ∂Ω) = t for any t ∈ [0, �];

(2) Suppose that the above geodesic segment σ is length-minimizing from ∂Ω. The
endpoint Q = σ(�) is said to be a cut point of ∂Ω in Ω if d(σ(�+ ε), ∂Ω) < �+ ε for
any ε > 0.

(3) The subset of all cut points Q described in (2) is called the cut-loci of ∂Ω in Ω,
denoted by CutΩ(∂Ω).

We need to use the following geometric properties of the cut-loci.

Proposition 1.3. ([CE] p99, [Pe]) Let Ω ⊂ M2n be a compact domain with C2-
smooth boundary in a C2-smooth Riemannian manifold (Mm, g). Then

(1) The cut-loci of ∂Ω in Ω is a closed subset of zero measure;

(2) There is a nearest point projection: P∂Ω : [Ω̄ − CutΩ(∂Ω)] → ∂Ω; i.e., for each
Q /∈ CutΩ(∂Ω), there exists the unique nearest point PQ = P∂Ω(Q) ∈ ∂Ω such that
d(Q, ∂Ω) = d(Q,PQ).

The proof of Theorem 1.1 also implies the following:
11



Corollary 1.4. Let (M2n, g) be a Kähler manifold with holomorphic bisectional
curvature ≥ 1. Suppose that Ω ⊂M2n is a pseudoconvex domain with C2 boundary
∂Ω = Σ. Let Ω(−t) = {x ∈ Ω | d(x, ∂Ω) = d(x,Σ) ≥ |t|} and ρ(x) = −r(x) =
−d(x,Σ). Then

L(ρ)|Q(τ, τ̄ ) ≥ |ρ|‖τ‖2 (1.3’)

for any τ ∈ T
(1,0)
Q (∂Ω(ρ)) and Q /∈ CutΩ(∂Ω).

Notice that neither Theorem 1.1 nor Corollary 1.4 has estimates of complex Hes-
sian L(−r) on complex normal directions. In fact, we already have Hess(r)(∇r, Y ) =
0 for any Y . Furthermore, one can also construct an example of pseudoconvex do-
main Ω ⊂ C, for which the signed distance function ρ(x) = ρ∂Ω(x) has the prop-
erty Hess(ρ)(J∇ρ, J∇ρ)|Q < 0 for some Q ∈ Ω. In such an example, we have

i∂∂̄(ρ)(∇̃ρ, ∇̃ρ)|Q < 0 for some Q ∈ Ω.
In order to find a plurisubharmonic function f (i.e., Lf ≥ 0 on Ω), Oka considers

[− log r] instead of the signed distance function ρ. Therefore, in next subsection,
we estimate L(− log r)(τ, τ̄ ) = 2i∂∂̄[− log r](τ, τ̄ ). It will be shown that L(− log r)
is strictly positive definite in all directions.

§1.b. The estimates for i∂∂̄(− log r) in all directions

Compact Kähler manifolds with nonnegative holomorphic bi-sectional curvature
have been classified, see [Mok]. In particular, Siu and Yau showed that any compact
Kähler manifolds with nonnegative holomorphic bi-sectional curvature must be bi-
holomorphic to CPn. It is sufficient to consider the case of CPn.

Our goal of this subsection is to show the following

Theorem 1.5. Let Ω be a pseudoconvex domain with C2 boundary ∂Ω = Σ in
CPn with the Fubini-Study metric and let r = d(x,Σ) be the distance function from
x ∈ Ω to ∂Ω = Σ. Then

L(− log r)(ζ, ζ̄) = 2i∂∂̄(− log r)(ζ, ζ̄) ≥ 1
4
‖ζ‖2 (1.15)

for any ζ ∈ T
(1,0)
x (Ω) and x ∈ Ω.

Before we provide the proof of Theorem 1.5, we need to recall two elementary
but useful facts, which will be used in the proof. The first one is related to the
definition of Hessian of a continuous function by the barrier functions:

Fact 1.6 (E. Calabi [Ca]) Let U be an open disk of C = R2, f : U → R be a real-
valued continuous function and Q0 ∈ U . If there is another C2-smooth function
h : U → R such that (1) h ≤ f on U, (2) f(Q0) = h(Q0) and �h(Q0) ≥ C, then
we have �f(Q0) ≥ C.

12



Fact 1.7. Suppose that Ω(−ε) is strongly pseudo-convex at P . Then there exists
a small neighborhood Wε of P and a complex hypersurface S(−ε) ⊂Wε such that

(1.7.1) S(−ε) intersects with ∂Ω(−ε) at P tangentially, i.e., [TP (S(−ε))]R ⊂ TP

(
∂Ω(−ε)

)
;

(1.7.2) S(−ε) lies outside of Ω(−ε).

For proof of Fact 1.7, see page 46 of [CS]. It was proved in the previous subsection
that Ω̄(−ε) is strongly pseudo-convex for any ε > 0, see Theorem 1.1.

Proof of Theorem 1.5. We first assume that x ∈ U ∩ Ω, where U is a small neigh-
borhood of ∂Ω. It is easy to see that for any C2 function f , we have

Hess(f(ρ))(ξ, η) = f ′(ρ)Hess(ρ)(ξ, η) + f ′′(ρ)d ρ(ξ) ⊗ dρ(η).

Let ρ = −r. Then

Hess(− log |ρ|)(ξ, η) =
1
−ρHess(ρ)(ξ, η) +

1
ρ2
dρ(ξ) ⊗ dρ(η). (1.16)

Using the same notation as in the proof of Theorem 1.1, by (1.3) and (1.16) we
already have

L(− log |ρ|)(τ, τ̄ ) ≥ ‖τ‖2, τ ∈ T (1,0)(∂Ω(−ε)), (1.17)

for 0 < ε < t0.
For any Vn−1 ∈ T (1,0)(∂Ω(−ε)) with |Vn−1| = 1, it remains to estimate (1.15)

with ζ = aVn−1 + bẽn for b �= 0.

Special Case: ζ = ẽn

This part of the proof will be superseded by the proof for the general case below.
We include it here, in order to indicate the strategy of our proof for the general
case.

From (1.2) and (1.16), we have

L(− log |ρ|)(ẽn, ¯̃en) =
1
|ρ|Hess(ρ)(J(∇ρ), J(∇ρ)) +

1
ρ2
. (1.18)

Choose c0 ∈ (0, π
2 ] such that B(0) ≥ −2 cot(2c0)I. Under the assumption that

ρ = −r is C2 and that the sectional curvatures of the metric g are between 1 and
4, by Riccati equation (0.1) it was shown in [Pe] and [Es] that

Hess(−r)(J(∇r), J(∇(r)) ≥ 2 cot[2(r − c0)], (1.19)

for sufficiently small 0 < r < c0.
13



It follows from (1.18) and (1.19) that, for 0 > ρ > −c0, we have

L(− log |ρ|)(ẽn, ¯̃en) =
1
|ρ|Hess(ρ)(J(∇ρ), J(∇ρ)) +

1
ρ2

≥ 1
|ρ|2 (1 − 2|ρ| cot(2|ρ+ c0|))

≥ 1
|ρ|2 (1 − 2|ρ| cot(2|ρ|)).

Set v = 2|ρ| and h(v) = 1
v (1 − v cot v). Since

h′(v) =
v2 − sin2 v

v2 sin2 v
≥ 0

and
lim

v→0+
h(v) = lim

v→0+

1 − cos v
v sin v

=
1
2
,

we have that
L(− log |ρ|)(ẽn, ¯̃en) ≥ 2

|ρ|h(2|ρ|) ≥ 1
|ρ| . (1.20)

Combining (1.17) and (1.20), we have proved (1.15) for the case either ζ = ẽn or
ζ = Vn−1 ∈ T (1,0)(∂Ω(−t)).

General Case.

When τ = aVn−1 + bẽn with ab �= 0 and Vn−1 ∈ T (1,0)(∂Ω(−t)), we observe that

Hess(r)(τ, τ̄ ) =|a|2Hess(r)(Vn−1, V̄n−1)

+ 2Re{abHess(r)(Vn−1, ¯̃en)} + |b|2Hess(r)(ẽn, ¯̃en).

The term Hess(r)(Vn−1, ¯̃en) is very difficult to handle. However, using Facts 1.6-1.7
we will get rid of this term.

Our strategy is as follows: For any given Q0 ∈ Ω − CutΩ(Ω), we choose a
small neighborhood W around Q0 and an upper barrier distance function r̃ ≥ r.
It follows that − log r ≥ − log r̃ and hence Hess(− log r)|Q0 ≥ Hess(− log r̃)|Q0 .
When r̃(x) = d(x, S) for some holomorphic submanifold S of complex dimension
(n − 1), the Hessian of r̃ has the property that J∇r̃ is an eigen-vector of Hess(r̃).
Recall that if r̃ is the distance function, then ∇r̃ is eigen-vector of Hess(r̃). In fact,
Hess(r̃)(∇r̃, .) = 0. Because Hess(r̃) is real and symmetric, there is an orthonormal
eigen-basis. It follows that

Hess(r̃)(J∇r̃, Vn−1) = 0 (1.21)
14



whenever Vn−1 is orthogonal to J∇r̃. The equation (1.21) will play crucial role in
the proof presented below.

Let us now carry out the idea above in details.
Motivated by Fact 1.6, we choose f = − log r and h(x) = − log r̃S(x) where S

is a holomorphic submanifold of complex dimension (n − 1) and r̃S(x) = d(x, S).
It remains to construct the complex submanifold S and verify (1.21). For any
given Q0 ∈ Ω but Q0 /∈ CutΩ(∂Ω), we let P0 ∈ ∂Ω be the nearest point with
d(Q0, P0) = d(Q0, ∂Ω) = r0. Let σ : [0, r0] → Ω̄ be the geodesic from P0 to Q0.

Let us now apply Fact 1.7. To simplify our proof, we may assume that ∂Ω is
strongly pseudo-convex at P0, otherwise, we can use a family of functions r̃ε(x) =
d(x, ∂Ω(−ε)) instead; and let ε→ 0 at the end of our proof.

Using the polar coordinate system around σ(0) for the Fubini-Study metric,
we see that ξ2n−1(r̃) = sin(2r̃)(J∇r̃) is a Jacobi field along σ. Since ∇∇r̃ξ =
2 cos(2r̃)(J∇r̃) is a scalar multiple of ξ, we have

∇ξ∇r̃ = ∇∇r̃ξ = 2 cot(2r̃)ξ. (1.22)

Therefore, the unit direction J(∇r̃) = ξ
|ξ| is an eigenvector of the real symmetric

bi-linear form Hess(r̃)(X,Y ) = 〈∇X∇r̃, Y 〉 in X and Y . Furthermore, we have

Hess(r̃)(J(∇r̃), Y ) = 2 cot(2r̃)〈J(∇r̃), Y 〉 (1.23)

for any tangent vector of T (CPn).
Let Σ̃2n−1

(−s) = {x ∈ Ω|d(x, S) = r̃(x) = s} and we also let �{λ} denote the real

part for any complex number λ. It follows from (1.22) that if Vn−1 ∈ T (1,0)(Σ̃2n−1
(−s) ),

then
Hess(r̃)(aVn−1 + bJ∇r̃, aVn−1 + bJ∇r̃)
= |a|2Hess(r̃)(Vn−1, V̄n−1) + 2�{abHess(r̃)(Vn−1,−J∇r̃)}

+ |b|2Hess(r̃)(J∇r̃, J∇r̃)
= |a|2Hess(r̃)(Vn−1, V̄n−1) + 0 + |b|2Hess(r̃)(J∇r̃, J∇r̃),

(1.24)

where the midterm vanishes, because J∇r̃ is an eigen-vector of Hess(r̃) and it is
orthogonal to Vn−1.

It remains to estimate other eigen-values of Hess(r̃) in complex tangential direc-
tion Vn−1, i.e., we need to estimate Hess(r̃)(Vn−1, V̄n−1).

For this purpose, we use the Riccati equation and the same notation as in the
proof of Theorem 1.1. Notice that, by the definition of P0, σ and our upper barrier
function r̃, we see that ∇r̃ = ∇r along the geodesic σ joining P0 and Q0. We choose
an orthonormal frame {−Je2, e2, · · · ,−Je2(n−1), e2(n−1)} of TP0(S), where S is the
holomorphic hypersurface of complex dimension (n− 1) given by Fact 1.7 above for
ε = 0.
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In what follows, we let ρ̃ = −r̃. Let {Ek(t)} be a parallel vector field along σ(t)
with initial condition Ek(0) = ek. Recall that e2n−1 = −J(∇ρ̃) and e2n = ∇ρ̃.

Suppose that B̃(s) is the matrix representation of the second fundamental form
ΠΣ̃(−s)

with respect to the orthonormal basis E1(s), · · · , E2n−1(s), where Σ̃(−s) =
{x ∈ Ω|d(x, S) = s}. Using the same argument as before, we obtain that

0 = B̃′ + B̃2 +R.

Observe that the proof of Theorem 1.1 is independent of the (2n-1)-th column
and the (2n-1)-row of B(s). Since the complex hypersurface is holomorphic, one
can show that

(i∂∂̄r̃)(ξ̃, ¯̃ξ)|P0 = 〈B̃(0)ξ, ξ〉 + 〈B̃(0)Jξ, Jξ〉 = 0,

for ξ ⊥ {∇r̃, J∇r̃}. Hence, we have the zero initial condition for ξ ⊥ {∇r̃, J∇r̃} at
P0:

〈[B̃(0) + J−1B̃(0)J ]ξ, ξ〉 = 0.

Replacing the matrix-valued function B(s) by B̃(s) in the proof of Theorem 1.1,
we obtain that if τ = 1√

2
(ξ − iJξ) ∈ T (1,0)(Σ̃(−s)) then

L(ρ̃)(τ, τ̄ ) = Hess(ρ̃)(ξ, ξ) + Hess(ρ̃)(Jξ, Jξ) ≥ 2|ρ||τ |2, (1.25)

where Σ̃(−s) = {x ∈ Ω|d(x, S) = s}. By (1.16), (1.22)-(1.23) and the inequality
1
r2 − 2

r cot(2r) ≥ 1
r above, we obtain

[Hess(− log r̃)](ẽn, ẽn) =
1
r2

− 2
r

cot(2r) ≥ 1
r
≥ 2
π
, (1.26)

where we used the fact that r ≤ Diam(CPn) and the diameter Diam(CPn) of CPn

is equal to π
2 .

Let Vn = 1√
2
[∇r − iJ∇r] and Vn−1 ∈ T

(1,0)
Q0

(∂Ω(−r0)) with |Vn−1| = 1. Using

(1.22)-(1.26) and Fact 1.6, we conclude that, for any τ = aVn−1+bVn ∈ T
(1,0)
Q0

(CPn),
the following is true:

L(− log r)|Q0 (τ, τ̄ ) ≥ L(− log r̃)|Q0 (τ, τ̄ )

= Hess(− log r̃)(aVn−1 + bVn, aVn−1 + bVn)

= |a|2Hess(log r̃)(Vn−1, V̄n−1) + 2�{abHess(− log r̃)(Vn−1, V̄n)}
+ |b|2Hess(− log r̃)(Vn, V̄n)

= |a|2Hess(log r̃)(Vn−1, V̄n−1) + |b|2Hess(− log r̃)(Vn, V̄n)

≥ 2|a|2 + |b|2[ 1
r2

− 2 cot(2r)] ≥ 1
2
[|a|2 + |b|2] =

1
2
|τ |2

(1.27)
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This completes the proof of Theorem 1.5 away from the cut-locus. On the cut-
locus r is not C2. However, it is well-known (see Proposition 1.3 above) that the
cut-locus ofM2n has measure zero in Ω. Observe that, on the cut-locus, the function
r(x) = d(x, ∂Ω) remains to be continuous. By Fact 1.6, one can show that [− log r]
is strictly subharmonic on any complex curve in Ω. Hence, the function [− log r] is
strictly pluri-subharmonic in all of Ω. �

We remark that our proof of Proposition A also gives a new proof of the classical
Oka’s Lemma. The Oka Lemma states that if Ω ⊂ Cn then the function (− log r)
is pluri-subharmonic in Ω, where r(x) = d(x, ∂Ω), see [CS] Chapter 3, Theorem
3.4.7 or [Kr] page 117. In this case, the curvature is identically zero. The proof of
Theorem 1.1 implies that if Ω(−ε) = {x ∈ Ω|d(x, ∂Ω) ≥ ε} then ∂Ω(−ε) remains to
be pseudoconvex. Similarly, the proof of Corollary 1.4 implies that

L(ρ)|Q(τ, τ̄ ) ≥ 0 (1.28)

for any τ ∈ T
(1,0)
Q (∂Ω(−t)) and Q /∈ CutΩ(∂Ω).

For the choice of barrier functions r̃(−ε), it is sufficient to find a complex hy-
persurface S(−ε) for each σ(−ε). This is possible because we have the embedding
Ω ⊂ Cn ⊂ CPn. By Theorem 1.5, the interior of Ω has a strictly pseudo-convex
exhaustion ∪Ω̂(−t). We can now use (1.28), Fact 1.6 and Fact 1.7 to complete the
proof of Oka’s Lemma as in the proof of Theorem 1.5.

§2. A new monotone principle for non-smooth
portions of convex equi-distant hypersurfaces

In this section, we consider the convex equi-distant hypersurfaces in a complete
Riemannian manifold with nonnegative sectional curvature.

The proof of Theorem 1.1 inspired us to make the following observation, which
is the starting point of our proof of the Cheeger-Gromoll soul conjecture.

2.a. Proof for a special case.

The argument in Section 1 also yields the following elementary result, which is
a very special case of Cheeger-Gromoll soul conjecture.

Proposition 2.0. Let (Mn, g) be a complete and non-compact Riemannian man-
ifold with nonnegative curvature. Suppose that the Cheeger-Gromoll totally convex
exhaustion Mn = ∪m+1

j=1 ∪aj−1≤t<aj Ωt described in (0.4.1)-(0.4.3) satisfies the ad-
ditional property that each relative boundary set ∂Ωt is a C1-smooth submanifold
for each t (but dimensions of {∂Ωt} may jump more than once). Then the Cheeger-
Gromoll soul conjecture holds in this case.

Proof. By the assumption in the Cheeger-Gromoll soul conjecture, (Mn, g) is a
complete and non-compact Riemannian manifold with nonnegative sectional cur-
vature and Mn contains a point p0 where all sectional curvatures are positive.
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Let W = {x ∈ Mn| all sectional curvatures are positive at x} be a subset of Mn.
Clearly, W is relatively open in Mn. Hence, dim(W ) = dim(Mn) = n. Let {Ωt} be
the Cheeger-Gromoll totally convex exhaustion described in (0.4.1)-(0.4.3). Notice
that if t ≤ am then dim(Ωt) ≤ dim(Ωam) ≤ n− 1. Thus, we have [W \ Ωam ] �= ∅ is
a non-trivial set. We may assume that p0 ∈ ∂Ωtm+1 for some tm+1 > am.

By our assumption that each relative boundary set ∂Ωt is a C1-smooth submani-
fold. Hence, the function rm+1(x) = d(x,Ωam ) is C1-smooth at x /∈ Ωam . Similarly,
the function rj(x) = d(x, ∂Ωaj ) is C1-smooth at x ∈ Ωaj − Ωaj−1 . The semi-flow
(0.3) becomes piecewise C1-smooth. Because ‖∇rj‖(x) = 1, then each trajectory
of the dynamic system dx

dt = ∇rj(x(t)) is a local length-minimizing geodesic seg-
ment between level sets of rj . Hence, each trajectory of the flow (0.3) is a geodesic
segment.

More precisely, let Pm : Mn → Ωam be the nearest projection along the trajectory
of flow (0.3). Similarly, let Pj : Ωaj+1 → Ωaj be the nearest point projection as well,
for j = 0, 1, ...,m−1. We choose Qm+1 = p0, Qm = Pm(Qm+1) and Qj = Pj(Qj+1)
for j = m − 1,m − 2, ..., 0. Let σj : [0, �j] → Mn be the geodesic segment of unit
speed from Qj−1 to Qj for j = 1, ....,m. Clearly, ∪m+1

j=1 σj is a continuous broken
geodesic.

To simplify our proof, we assume that Qj �= Qj−1 for all j. Choose tj =
inf{t|Qj ∈ Ωt}. We now use Proposition B (or Theorem 1.10 of [ChG, p420-421])
to show that the soul S must be a point.

Suppose contrary, dim(S) = k > 0. Choose a unit vector w ∈ TQ0(S) and let
c0(s) = ExpQ0(sw). Let V1(0) = σ′(0) and {V1(s)}s∈R be the parallel transport of
Vj(0) along the geodesic c0.

Proposition B (or Theorem 1.10 of [ChG, p420-421]) implies that the strip φ1 :
R × [0, a1] → Ωa1 defined by φ1(s, t) = Expc0(s)[tVj(s)] is flat and totally geodesic.
Consequently, the curve c1 : R → ∂Ωt1 defined by c1(s) = φ1(s, t1) is geodesic.

Using Proposition B again and induction on j, for each j we get a totally geodesic
flat strip

φj : R × [aj−1, tj ] →Mn

(s, t) → Expcj(s)[(t− aj−1)Vj(s)]
(2.0.j)

for j = 1, ...m, where cj(s) = φj−1(s, tj−1) and {Vj(s)} is the parallel vector field
along cj with Vj(0) = σ′

j(0). Consequently, because the strip is totally geodesic and
flat, we would have

K(
∂φm+1

∂s
,
∂φm+1

∂t
) = 〈R(

∂φm+1

∂t
,
∂φm+1

∂s
)
∂φm+1

∂t
,
∂φm+1

∂s
〉 = 0,

where R(X,Y )Z = −∇X∇Y Z + ∇Y ∇XZ + ∇[X,y]Z is the curvature tensor. This
is contradict to the assumption that Mn has positive curvature in all directions at
p0. Thus, dim(S) = 0.

The case of Qj0 = Qj0+1 for some j0 can be handled similarly with minor modi-
fications. This completes the proof of Proposition 2.0. �
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2.b. Proof of the soul conjecture assuming Theorem 2.1.

Let us now turn our attention to the general case of Cheeger-Gromoll convex
exhaustion {∂Ωt}t≥0 with possible singularities.

Inspired by Proposition 2.0 and its proof, we make the following observation.
In order to prove Cheeger-Gromoll soul conjecture, we only need to construct a
sequence of totally geodesic strips along the trajectory of the semi-flow (0.3) if the
soul S has positive dimension.

For this purpose, we need to point out the main difficulties in the construction
of flap strips. In the proof of Proposition 2.0, we used the extra assumption that
the function rj(x) = d(x, ∂Ωaj ) satisfies ‖∇rj‖ = 1 on Ωaj . However, the equality
‖∇rj‖ = 1 fails when ∂Ωaj has singularities. For example, if ∂Ωaj is a triangle in
Euclidean plane R2 (cf. Example 2.4 below). In fact, if Ω has non-smooth boundary
then it is not necessarily true that Uε(Ω(−ε)) = Ω, where Ω(−ε) = {x ∈ Ω|d(x, ∂Ω) ≥
ε} and Uε(A) is the ε-neighborhood of A.

When the Cheeger-Gromoll exhaustion {∂Ωt} has possible singularities, we will
use a version of Theorem C and the argument in previous sub-section to prove the
Cheeger-Gromoll soul conjecture as follows.

Notice that in the proof of Proposition 2.0, we used the nearest point projection.
Hence, we need to modify Theorem C in terms of the nearest point projection.
In addition, Sharafutdinov and Yim observed that the trajectories of the semi-
flow (0.3) can be approximated by a sequence of the nearest point projections. In
what follows, we consider the nearest point projection instead. Here is a version of
Theorem C, which we will need to construct totally geodesic flat strips.

Theorem 2.1. (Discrete version of Theorem C) Let {Ωt} be the Cheeger-Gromoll
totally convex exhaustion for an open complete manifold (Mn, g) with nonnegative
sectional curvature be as in (0.4.1)-(0.4.3). Suppose that, for any sufficiently large
T > 0, there exists a δT > 0 such that whenever aj−1 ≤ t0 < t ≤ aj ≤ T with t−t0 <
δT , the nearest point projection P : Ωt → Ωt0 is well-defined. Let σ : [0, �] → Mn

be a length-minimizing geodesic segment from Qt0 = P(Qt) to Qt ∈ ∂Ωt, where
σ(u) = ExpQt0

[uσ′(0)]. Then the outward normal cones satisfy

P−σ[N+
Qt

(Ωt, ∂Ωt)] ⊂ N+
Qt0

(Ωt0 , ∂Ωt0), (2.1)

where P−σ is parallel transport along −σ and −σ(t) = σ(−t)
In other words, the inward tangential cones becomes smaller and smaller as

t↘ t+0 , i.e.,
P−σ[T−(Ω̄t)}] ⊃ [T−(Ω̄t0)}], (2.1’)

for t ≥ t0.

Using Theorem 2.1 and proof of Proof of Proposition 2.0, we obtain the following
broken flat strip theorem.
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Proposition 2.2. Suppose that Theorem 2.1 holds and suppose that the soul S has
dimension ≥ 1. Then, for each p ∈Mn, there is a broken totally geodesic flat strips
{φ0, ...., φk} with φj : R × [0, uj] →Mn such that

(2.2.1) c0(R) = φ0(R, 0) is a geodesic in the soul S;

(2.2.2) Two consecutive flat strips φj−1 and φj meet at a common geodesic cj, for
j = 1, ..., k; I.e, φj−1(s, uj−1) = φj(s, 0) = cj(s);

(2.2.3) ck(R) = φk(R, uk) is a geodesic passing through p.
Consequently, the Cheeger-Gromoll soul conjecture is true, assuming Theorem

2.1.

Proof. Choose T such that p ∈ ∂ΩT . If {∪m+1
i=1 ∪ai−1≤t<ai Ωt} is the flag of Cheeger-

Gromoll convex exhaustion. Let i0 = max{i|ai ≤ T }. We choose a refined partition
0 = t0 < t1 < .... < tk = T such that {t1, ..., tk} ⊃ {a0, a1, ..., ai0 , T } and |tj−1 −
tj | < δT for j = 1, ...k, where δT is as in Theorem 2.1.

Suppose that Pj : Ωtj → Ωtj−1 is the nearest point projection. Define Qk = p,
Qk−1 = Pk(Qk) and Qj−1 = Pj(Qj) inductively on j. Consider the geodesic
segment σj : [0, uj] →Mn of unit speed from Qj−1 to Qj.

When the soul S has positive dimension, we choose a geodesic c0 : R → S with
c0(0) = Q0 and |c′0(0)| = 1. Let {V1(s)} be a parallel vector field along c0 such that
V1(0) = σ′

1(0). We now consider the following Fermi map.

φ1 : R × [0, u1] →Mn

(s, u) → Expc0(s)[uV1(s)]
(2.2.1)

Using the convexity of {Ωt} and the assumption of nonnegative sectional curvature,
we will verify the following:

Claim 2.3. Let (Mn, g), {Ωt}, {Pj}, Qj , σj and φ1 be as above. Then

(2.3.1) The map φ1 is a totally geodesic isometric immersion;

(2.3.2) The vector field ∂φ1
∂s (u, s) is a parallel Jacobian field along the geodesic

u→ φ1(s, u);

(2.3.3) The sectional curvature of the strip φ1(R × [0, u1]) is zero:

K(
∂φ1

∂s
,
∂φ1

∂u
) = 〈R(

∂φ1

∂u
,
∂φ1

∂s
)
∂φ1

∂u
,
∂φ1

∂s
〉 = 0.

To verify Claim 2.3, for each ŝ ∈ R, we let {Wŝ(u)} be a parallel vector field
along the vertical geodesic

ηŝ : u→ φ1(ŝ, u) (2.3)

with Wŝ(u) = ∂φ1
∂s (ŝ, 0) = c′0(ŝ).
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It follows from Theorem 2.1 that if [±Wŝ(0)] ∈ T−
ηŝ(0)

(Ω̄t(0)) = T−
ηŝ(0)(S) then

[±Wŝ(u)] ∈ T−
ηŝ(u)(Ω̄t(u)) as well, for all u ∈ [0, u1]. Recall that by Cheeger-

Gromoll’s convex exhaustion, the inward tangent cone T−
ηŝ

(Ω̄t(u)) is convex. By the
convexity and the fact that [±Wŝ(u)] ∈ T−

ηŝ(u)(Ω̄t(u)), we conclude that [±Wŝ(u)] ∈
T−

ηŝ
(∂Ωt(u)).
Since [±Wŝ(u)] ∈ T−

ηŝ
(∂Ωt(u)), we can consider the horizontal Fermi map

Ψ1,ŝ : [0, u1] × R →Mn

(s, u) → Expηŝ(u)[sWŝ(u)],

which is compatible with the 1-parameter family of curves {γu} which we now
describe.

Let Σ̂1,ŝ = Ψ1,ŝ

(
[0, u1]×(−ε, ε)) be an immersed surface. Suppose that the curve

γu = Σ̂1,ŝ ∩∂Ωt(u) is the intersection curve passing thorough ηŝ(u). Let us choose a
parametrization γu : (−ε, ε) → Σ̂1,ŝ such that γu(0) = ηŝ(u). The argument above
implies that the γu has the tangential vector W (u) at γu(0).

Because of the convexity of ∂Ωt(u) with respect to the outward normal vector
η′ŝ(u), the curve γu is convex at γu(0) as well. Thus, γu has nonnegative geodesic
curvature λ(u) ≥ 0 at the point γu(0) = ηŝ(u).

By our construction, along the curve ηŝ, the Σ̂1,ŝ is totally geodesic. (To see
this, one computes the vector-valued the second fundamental form IIΣ̂1,ŝ

of the

surface Σ̂1,ŝ along the curve ηŝ as follows. It is easy to see that ∇ ∂Ψ1,ŝ
∂u

∂Ψ1,ŝ

∂u (u, 0) =

∇ ∂Ψ1,ŝ
∂u

∂Ψ1,ŝ

∂s (u, 0) = ∇ ∂Ψ1,ŝ
∂s

∂Ψ1,ŝ

∂s (u, 0) = 0. Hence we have IIΣ̂1,ŝ
(X,Y )|(u,0) = 0

for all u ∈ [0, u1]). It follows that, along the curve ηŝ, the intrinsic curvature KΣ̂1,ŝ

of Σ̂1,ŝ is equal to its extrinsic curvature:

K(u) = KΣ̂1,ŝ
(u, 0) = KΣ̂1,ŝ

(η′ŝ,Wŝ(u)) = KMn(η′ŝ(u),Wŝ(u)) ≥ 0. (2.4)

Notice that the geodesic segment ηŝ is orthogonal to the 1-parameter family of
curves {γu}0≤u≤u1 . However, {γu}0≤u≤u1 is not necessarily an equi-distance family
of curves in the surface Σ̂1,ŝ. To overcome this difficulty, we will replace {γu} by
a family of “upper barrier” curves {γ̂u} as follows. Let us compare two distance
functions:

r(x) = dMn(x, c0(R)) and r̂(x) = dΣ̂1,ŝ
(x, c0(R))

for x ∈ Σ̂1,ŝ.
Clearly, r̂(x) ≥ r(x) for x ∈ Σ̂1,ŝ. Moreover, r̂(x) = r(x) when x is on the

geodesic ηŝ. Let λ̂(u) = HeesΣ̂(r̂)(Wŝ(u),Wŝ(u))|ηŝ(u). By Fact 1.6, we have

λ̂(u) ≥ λ(u) ≥ 0. (2.5)
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By a version of (0.1), we have the Riccati equation for λ̂(u) = B(u) along the
orthogonal geodesic ηŝ as follows:

∂λ̂(u)
∂u

+ [λ̂(u)]2 +K = 0. (0.1’)

Recall that by assumption and (2.5) we have

λ̂(0) = 0 and λ̂(u) ≥ 0. (2.6)

It follows from (2.4), (0.1’) and (2.6) that λ̂(u) ≡ 0 for all u ∈ [0, u1]. Using (0.1’)
and the fact that λ̂(u) = 0 for all u, we conclude

KMn(η′ŝ(u),Wŝ(u)) = KΣ̂1,ŝ
(η′ŝ(u),Wŝ(u)) = 0, (2.7)

for all u ∈ [0, u1].
It remains to show that Wŝ(u) = ∂φ1

∂s (ŝ, u). For this purpose, we observe that the
bi-linear symmetric curvature form R(ŝ,u) : (X,Y ) → 〈RMn(η′ŝ(u), X)η′ŝ(u), Y 〉 is
nonnegative semi-definite in {X,Y }. By (2.7), we know that {Wŝ(u)} is an eigen-
vector of the symmetric bi-linear form R(ŝ,u) with eigenvalue 0:

RMn(η′ŝ(u),Wŝ(u))η′ŝ(u) = 0, (2.8)

for all u.
Because {Wŝ(u)} is parallel along the geodesic ηŝ, by (2.8) we know that the

vector field {Wŝ(u)} is parallel Jacobian field along the geodesic ηŝ as well.
It is well-known that any variation vector field of 1-family of geodesics is a

Jacobian field. By our construction, the variation field ∂φ1
∂s (ŝ, u) is also a Ja-

cobi field along the geodesic ηŝ. Moreover, Jŝ(u) = ∂φ1
∂s (ŝ, u) has the same ini-

tial conditions as W (u) does. Namely, we have Wŝ(0) = ∂φ1
∂s (ŝ, 0) = c′0(ŝ) and

W ′
ŝ(0) = 0 = ∇η′

ŝ(0)
∂φ1
∂s (ŝ, 0). Therefore, by the uniqueness of Jacobi field with the

given initial conditions, we arrive at Wŝ(u) = ∂φ1
∂s (ŝ, u).

Consequently, {∂φ1
∂s (ŝ, u)} is a parallel Jacobian field along each geodesic ηŝ for

any ŝ ∈ R. This completes the proof of Claim 2.3.
By induction on j, we let cj−1(s) = φj−1(s, uj−1) for j ≥ 2 and let {Vj(s)} be

a parallel vector field along the geodesic cj−1 with initial condition Vj(0) = σ′
j(0).

Finally, we set
φj : R × [0, uj] →Mn

(s, u) → Expcj−1(s)[uVj(s)].
(2.2.j)

By the proof of Claim 2.3, we con show that each φj is a totally geodesic isometric
immersion. This completes the proof of Proposition 2.2 �
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2.c. Proofs of Theorem 2.1 and Theorem C

We begin an elementary example of non-smooth convex domains in R2 and in
the unit sphere S2(1). Such an example inspires us to derive a monotone principle
stated in Theorem C.

Example 2.4. We first consider the case of constant curvature.
(2.4.1) Let ∂Ω1 be an equilateral triangle in R2 such that each edge of ∂Ω1 has
length 2

√
3. Thus, the maximum inner scribed circle in Ω1 has radius 1, (i.e.,

rmax = supx∈Ω1
{d(x, ∂Ω)} = 1). Let Ω1 be the solid triangle bounded by the

triangle ∂Ω1 and let Ωt = {x ∈ Ω|d(x, ∂Ω1) ≥ 1 − t} for t ∈ [0, 1]. Then Ω0 is a
point.

(2.4.2) Similarly, we consider an equilateral geodesic triangle ∂Ω̂ in the unit sphere
S2(1) such that each edge of ∂Ω̂ has length π

16 . We also let Ω̂ be the solid triangle
bounded by the triangle ∂Ω̂ in a hemisphere. Suppose that r0 = supx∈Ωr0

{d(x, ∂Ω̂)}
and that Ωt = {x ∈ Ω|d(x, ∂Ω̂) ≥ r0 − t} for t ∈ [0, r0]. Let {θ1(t), θ2(t), θ3(t)} be
the inner angles at three vertices of ∂Ωt. It follows from the Gauss-Bonnet Theorem
that

∫
Ωt
KdA+

∑3
j=1[π − θj(t)] = 2π. Thus, we conclude that

3∑
j=1

θj(t) = π +
∫

Ωt

KdA, (2.4.3)

where K = 1 is the sectional curvature of S(1). As t → 0+, the integral
∫
Ωt
KdA

gets smaller and smaller. Hence, the normal cones N+(Ωt, ∂Ωt) is strictly increasing
as t↘ 0+. �

We would like to say a few words about the nearest point projection maps,
because they have been frequently used in our paper.

Definition 2.5. (The reach and/or focal radius of a subset, Federer [Fe]) Let A be
a subset in a complete Riemannian manifold (Mn, g). The reach of a subset A of
Mn is the largest ε such that if x ∈Mn and if d(x,A) < ε, then A contains a unique
point, PA(x), nearest to x. In other words, we let Uε(A) = {x ∈ Mn|d(x,A) ≤ ε}
and let

ε0(A) = sup{ε| There is a nearest point projection P : Uε(A) → A}
be the reach of A.

We would like to estimate the reach of a convex subset A in a Riemannian
manifold with nonnegative curvature. Let us consider the following example. Let
A be a great circle in the unit sphere Sn(1). Since A is a closed geodesic, A is a
convex subset of Sn(1). Clearly, reach of A is equal to π

2 .
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Proposition 2.6. (compare Lemma 2.4 of [ChG]) Let A ⊂ ΩT be a connected,
convex subset in a Riemannian manifold with nonnegative curvature, let K0 =
max{K(x)|x ∈ ΩT+1}, Inj(Mn,g)(ΩT ) and S be as above. Then the subset A has
positive reach (or focal radius) bounded below by

ε0(A) ≥ εT =
1
4

min{Inj(Mn,g)(ΩT ),
π√
K0

, 1},

where εT is independent of choices of convex subsets A ⊂ ΩT .

Proof. We prove Proposition 2.6 by a contradiction argument. For each q ∈ Mn

with d(q, A) < εT , suppose contrary, there were two distinct nearest points {p, w} ⊂
A with d(p, q) = d(w, q) = d(A, q). Then we consider a geodesic triangle �pqw whose
sides are length-minimizing geodesic segments. Since {p, w} are nearest point and
A is convex, the inner angles of �pqw at {p, w} must be greater than or equal to π

2 ,
by the first variational formula.

On other hand, it follows from a triangle comparison theorem in [Kl, p219] that
the angles of triangle �pqw at p and w must be strictly less than π

2 . This is a
contradiction. Therefore, we have ε0(A) ≥ εT > 0. �

For any subsets A and B in Mn, we consider the Hausdorff distance Hd(A,B) =
sup{ε|Uε(A) ⊃ B,Uε(B) = A}.

It was shown in [Yim1] that there is a constant αT ≥ 1

Hd(∂Ωt1 , ∂Ωt2) ≤ αT |t1 − t2|, (2.9)

for all t1 ≤ t2 ≤ T .
Let us clarify our notations before the proof of Theorem 2.1.

Definition 2.7. Let Ω be a compact and convex domain with the relative boundary
∂Ω in a complete Riemannian manifold (Mn, g).
(2.7.1) (Inward Tangent Cone) For each boundary point p ∈ ∂Ω, the inward tangent
cone of Ω at p is defined to be T−

p Ω = {v ∈ Tp(Mn)|Expp(tv) ∈ Ω for some small t >
0}, where ExpP is the exponential map of (Mn, g) at p.
(2.7.2) (The whole linear tangent space) The linear space spanned by T−

p Ω is called
the whole linear tangent space of Ω at p, which is denoted by Tp(Ω);

Proof of Theorem 2.1.

We will use Proposition 2.6 to identify the outward normal cone N+(Ωt0 , ∂Ωt0)
with another cone as follows. Let W = P−1(Qt0). It follows from Proposition 2.3
that V = T−

Qt0
(W ) = N+

Qt0
(Ωt0 , ∂Ωt0). Since Ωt0 is convex, one can verify that

N+
Qt0

(Ωt0 , ∂Ωt0) is a convex cone in TQt0
(Mn). Because V = N+

Qt0
(Ωt0 , ∂Ωt0) is

convex, we consider its relative boundary ∂V . For each unit outward normal vector
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v0 ∈ ∂V , we let ψ(t) = ExpQt0
[(t − t0)v0]. Then ψ : [t0, t1] → Ωt1 is a length

minimizing geodesic from Qt0 to ∂Ωt1 .
Let p1 = ψ(t1). For any Qt1 ∈ W ∩ ∂Ωt1 with Qt1 �= p1, we consider geodesic

triangle �Qt0 ,Qt1 ,p1 . Since Ωt1 is convex, we see that the inner angle of �Qt0 ,Qt1 ,p1

at p1 is ≤ π
2 , i.e., ∠p1(Qt1 , Qt0) ≤ π

2
On the other hand, the sectional curvature is nonnegative, by the classical angle

comparison theorem of Alexandroff and Toponogov for K ≥ 0, we know that the
sum of inner angles of �Qt0 ,Qt1 ,p1 is greater than or equal to π, (e.g., see [Kl, p220]
or [Cha, p329]). It follows that

∠Qt1
(p1, Qt0) + ∠Qt0

(p1, Qt1) ≥ π − ∠p1(Qt1 , Qt0) ≥
π

2
. (2.10)

Let us now take a parallel transport Pσ where σ : [0, �] → Ωaj is geodesic segment
of unit speed from Qt0 to Qt1 . We consider the Fermi coordinate system around the
geodesic σ. Namely, we choose an ortho-normal frame {e1, e2, ..., em} of TQt0

(Ωaj )
such that em = σ′(0). Suppose that { �E1(t), ..., �Em(t)} is a parallel transport of
{e1, e2, ..., em} along σ. The Fermi coordinate system is given by the following
map:

F : R
m−1 × [0, �] →Mn

(x1, ..., xm−1, xm) → Expσ(xm)[
m−1∑
k=1

xk
�Ek(s)]

It is well-known that the derivative of F at the zero section is equal to identity, i.e.,

F∗|(0,...,0,xm) = id (2.11)

for all xm. Let R2
0 ⊂ TQt0

(Mn) be a 2-dimensional subspace spanned by σ′(�) and
the vector Ψ′(t0). Similarly, if φ : [0, t1− t0] →Mn be a geodesic of unit speed from
Qt1 to p1, then we consider a 2-plane R

2

 ⊂ TQt1

(Mn) spanned by σ′(�) and φ′(0).
Then by (2.11) we have

∠Qt1
(R2


 ,Pσ[R2
0]) = O(�2), (2.12)

where O(�2) denotes a term of order 2 in �. We also have � = d(Qt0 , Qt1) =
O(|t1 − t0|) by (2.9), Lemma 1.1 of [Yim1] and its proof.

We consider �v(t) = Pσ(�v0) at σ(t) and an angle function

βv(t) = ∠σ(t)(�v(t), T
−
σ(t)(Ωt)).

It follows from (2.9)-(2.10) and (2.12) that

βv(t1) ≤∠Qt1
(�v(t1), p1)

=π − [∠Qt1
(σ′(t1), �v(t1)) + ∠Qt1

(p1,−σ′(t1))] +O(�2)

=π − [∠Qt0
(Qt1 , p1) + ∠Qt1

(p1, Qt0)] +O(�2)

≤π
2

+O(�2) =
π

2
+O(|t1 − t0|2).

(2.13)
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Recall that �v(t0) = v0 is an outer normal vector of Ωt0 . Thus, βv(t0) = π
2 . It follows

from (2.13) that the one-sided derivative of angle function βv is non-positive, i.e.,

∂+(βv)
∂t

|t0 ≤ 0, (2.14)

for all v ∈ ∂V . Theorem 2.1 is a direct consequence of (2.14). �
In order to prove Theorem C using Theorem 2.1, we approximate the trajectories

of (0.3) by the broken geodesics as follows.
Let Λk = {aj−1 = t0 < t1 < ... < t2k = T } be the partition of [aj−1, T ] of mesh

size ≤ 4T−aj−1
k . Let Pi = Pj,k,i : Ωti → Ωti−1 be the nearest point projection.

By Proposition 2.6, each convex domain Ωti has positive reach (focal radius). If
the mesh size of the partition Λk is sufficiently small (less than εT given by (2.3)
), then the nearest point projection Pi = Pi,j,k is well-defined. For each point
Q ∈ ∂ΩT , we let Q0 = Q and Qi = Pi(Qi−1). Let σk,Q be the broken geodesic
joining {Q = Q0, ...., Q2k}. Then Sharafutdinov and Yim obtained the following:

Proposition 2.8. ([Sh, p563], [Yim1-2]) Let T > aj−1,Λk, εT , Q ∈ bΩT , {Q0, Q1, ..., Qk}
and σk,Q be as above. Then, as k → +∞, the broken geodesic σk,Q will converges
to the trajectory σ∞,Q of the semi-flow (0.3) with initial point Q (in the Lipschitz
topology).

Theorem C follows from Theorem 2.1 and proposition 2.8.

3. Distance non-increasing retractions
compatible with the vertical Fermi maps

In this section, we study the smoothness of distance non-increasing retraction
Ψ : Mn → S from the manifold Mn of nonnegative curvature to its soul S. The
main technique is to show that such a retraction Ψ is compatible with various
smooth Fermi maps which we now describe.

Definition 3.1. Let A be a subset of a complete smooth Riemannian manifold
Mn. Suppose that A has positive reach ε0(A) > 0.
(3.1.1) The outward normal cone of A in Mn is defined to be

N+(A,Mn) = {(p, v)|p ∈ A, d(Expp(tv), A) = t for some t > 0, or v = 0}.
(3.1.2) The Fermi map along the subset A is defined to be

FA : N+(A,Mn) → Mn

(p, v) → Expp(v)

(3.1.3) A retraction Ψ : Mn → S is said to be compatible with FA if Ψ(FA(p, v)) =
Ψ(p) for all (p, v) ∈ N+(A,Mn).

For our application in this paper, we consider the so-called the Sharafutdinov
retraction φ : Mn → S from an open manifold Mn to its soul. The Sharafutdinov
retraction is constructed by the piecewise flow (0.3).
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Proposition 3.2. ([Sh], [Yim1]) The Sharafutdinov retraction φ : Mn → S given
by the piece-wise semi-flow (0.3) is a distance non-increasing retraction.

Proof of Proposition 3.2 only uses the convexity of the exhaustion {Ωt}. The
curvature assumption of K ≥ 0 does not play any role in the proof of Proposition
3.2.

In presence of nonnegative sectional curvature, Perelman [Per] showed that any
distance non-increasing retraction Ψ : Mn → S from Mn to its soul is compatible
with the Fermi map along the soul. Perelman’s result was improved by Guijarro
[Gu]. In both Perelman and Guijarro’s approach, Berger comparison theorem plays
an important role. In fact, Berger comparison theorem implies that if K ≥ 0,
then the Fermi map FS along the soul is distance non-increasing in “horizontal
directions” as well. In other words, the evolution of “horizontal directions” starting
from soul is length non-increasing. This observation together with Proposition 3.2
gives rise to Perelman’s rigidity theorem [Per] about the uniqueness of the retraction
Mn → S.

For the completeness of our paper, we give a short proof of Berger Comparison.

Proposition 3.3. (Berger Comparison for K ≥ 0) Suppose that γ : [a, b] → Mn

is a geodesic of unit speed and {V (s)} is a parallel unit normal vector field along γ.
Let γt : [a, b] →Mn be the horizontal curve given by

γt(s) = φ(s, t) = Expγ(s)[t�V (s)]. (3.1)

Then, for any pair of t1 < t2, the length L(γt2) of γt2 is always less than or equal
to the length of γt1 , i.e.,

L(γt2) ≤ L(γt1). (3.2)

Equality holds in (3.2) if and only if φ([a, b]× [t1, t2]) is a totally geodesic immersed
flat strip.

Proof. For any given ŝ ∈ [a, b], let us consider a hypersurface

Σn−1
ε (γ(ŝ)) = {Expγ(ŝ)w|w⊥V (ŝ), |w| ≤ ε}. (3.3)

By the definition of the exponential map, we see that the hypersurface Σn−1
ε (γ(ŝ))

is totally geodesic at γ(ŝ). Thus, the second fundamental form of Σn−1
ε (γ(ŝ)) at at

γ(ŝ) is zero.
Let rŝ(x) = d(x,Σn−1

ε (γ(ŝ))) and Jŝ(t) = ∂φ
∂s (ŝ, t). A computation shows that

d[log |Jŝ(t)|]
dt

= Hess(rŝ)(
Jŝ(t)
|Jŝ(t)| ,

Jŝ(t)
|Jŝ(t)| ) = 〈B Jŝ(t)

|Jŝ(t)| ,
Jŝ(t)
|Jŝ(t)| 〉. (3.4)

Since K ≥ 0, using Proposition B for B(t) = Hess(rŝ)|σŝ(t) and the initial condition
B(0) = 0, we see that B(t) ≤ 0 for t ≥ 0 and

d[log |Jŝ(t)|]
dt

≤ 0 (3.5)
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for all t ≥ 0. Thus, it follows from (3.5) that (3.2) holds. Moreover, if equality holds
in (3.2), then {Jŝ(t)} is a parallel Jacobi field along the geodesic σŝ : t→ φ(ŝ, t) for
all (ŝ, t) ∈ [a, b]× [t1, t2]. It follows that if equality holds in (3.2), then φ is a totally
geodesic isometric immersion. �
Proposition 3.4. (Perelman [Per]) Let Mn be a complete open C∞-smooth man-
ifold with nonnegative sectional curvature and let S be its soul. Suppose that
Ψ : Mn → S be any distance non-increasing retraction. Then
(3.4.1) Ψ must be compatible with the Fermi map FS : N+(S,Mn) →Mn;
(3.4.2) For each (p,�v) ∈ N+(S,Mn) and �w ∈ Tp(S) with �v �= 0 �= �w, the surface
Σ{�w,�v} = Expp[spanR{v, w}] is a totally geodesic flat immersed Euclidean plane.

Consequently, the map Ψ must be C∞-smooth at the regular values of the Fermi
map FS . The distance non-increasing retraction Ψ : Mn → S is C∞-smooth almost
everywhere.

Proof. We reproduce Perelman’s proof here because we need to use it somewhere
else in our paper.

Let ŨN
t (S) = {(p,�v) ∈ N+(S,Mn)||�v| ≤ t, p ∈ S}. We consider the distance

function
η(t) = max{d(p,Ψ[F(p, �u)])||�u| = t, p ∈ S}.

It is sufficient to verify the following.

Claim 3.5.T. Let Mn, S and η be as above. Then
(3.5.1.T). The left derivative of η is non-positive:

dη

d−t
(t) ≤ 0 and η(t) = 0 (3.6)

for all t ∈ [0, T ];
(3.5.2.T). For any geodesic segment of unit speed γ : [a, b] → S and any vector field
�V ∈ ∂ŨN

1 (S) parallel along γ, then the map

φ : [a, b] × [0, T ] →Mn

(s, t) → Expγ(s)[t�V (s)]
(3.7)

is totally geodesic isometric immersion.

The proof of Claim 3.5.T is based on a bootstrap argument as in the proof of
Proposition 2.0 with some modifications. We first verify that (3.5.1.T)-(3.5.2.T)
hold for T = ε0, where ε0 = 1

4 Inj(S) and Inj(S) is the injectivity radius of S.
Afterwards, we verify that (3.5.1.T)-(3.5.2.T) hold for T = jε0 with j = 2, 3, ....

Fix any ŝ ∈ [a, b], the variation field Jŝ(t) = ∂φ
∂s (ŝ, t) is a Jacobi field along the

vertical geodesic σŝ : t → σŝ(t) = φ(ŝ, t). We now use Berger comparison theorem
(Proposition 3.3) to prove (3.5.1.T) for T = ε0.
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For each t0 ∈ (0, ε0], since S is compact, there is a (x0, v0) ∈ ∂[ŨN
1 (S)] such that

η(t0) = d(Expx0(t0v0),Ψ[Expx0(t0v0)]).
Let x̄0 = Ψ[Expx0(t0v0)] and γ̂ : [−η(t0), 0] → S be a geodesic of unit speed

from x̄0 to x0 such that γ̂(−η(t0)) = x̄0 and γ̂(0) = x0. Let {V (s)} be a parallel
vector field along γ̂ with V (0) = v0. Similarly, we define

φ̂ : [0, ε0] × [0, t0] →Mn

(s, t) → Expγ̂(s)[t�V (s)].
(3.8)

Let γ̂t : [0, ε0] → Mn be given by γ̂t(s) = φ̂(s, t). We also let x1 = γ̂(ε0), x̄1 =
Ψ[Expx1(t0V )]. By the distance non-increasing property of Ψ and Proposition 3.3,
we have

d(x̄0, x̄1) ≤ L(γ̂t0) ≤ L(γ̂) = d(x0, x1). (3.9)

We now show that equality holds in (3.9) as follows. By our choice of t0v0, we have

d(x0, x̄0) ≥ d(x1, x̄1) (3.10)

Since x0 lies between x̄0 and x1 on the geodesic γ̂, we have

d(x0, x̄0) + d(x0, x1) = d(x̄0, x1) ≤ d(x1, x̄1) + d(x̄0, x̄1) (3.11)

Subtracting (3.10) from (3.11), we obtain the reversed inequality

d(x0, x1) ≤ d(x̄0, x̄1). (3.12)

Hence, it follows (3.9) and (3.12) that

d(x0, x1) = d(x̄0, x̄1) and L(γ̂t0) = L(γ̂). (3.13)

Combining (3.13) and Proposition 3.3, we see that

φ̂ is a totally geodesic isometric immersion. (3.14)

As before, we let σs(t) = φ̂(s, t). As δ ↘ 0, by (3.14) we have

[d(σε0(t0 − δ), σ0(t0))]2 = [d(σε0(t0), σ0(t0))]2 + δ2. (3.15)

Let O(δ2) denote a term of order 2 in δ. Finally, by (3.14)-(3.15) and the distance
non-increasing property of Ψ, Perelman observed

η(t0 − δ) ≥ d
(
x1,Ψ[σε0(t0 − δ)]

)
≥ d(x1, x̄0) − d(x̄0,Ψ[σε0(t0 − δ)])

≥ d(x̄0, x1) − d(σ0(t0), σε0(t0 − δ))

= d(x̄0, x1) − [d(σ0(t0), σε0(t0)) +O(δ2)]

= d(x̄0, x1) − [d(x0, x1) +O(δ2)]

= d(x̄0, x0) −O(δ2) = η(t0) −O(δ2).

(3.16)
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This shows that dη
d−t (t0) ≤ 0 for all t0 ∈ [0, ε0].

Since η(0) = 0 and η(t) ≥ 0, one concludes that η(t) = 0 for all t0 ∈ [0, ε0]. Thus,
we showed that

Ψ[FS(p, �u)] = p, (3.17)

holds for all ‖�u‖ ≤ ε0. Using (3.17), the distance non-increasing property of Ψ and
Proposition 3.3 again, we obtain (3.5.2.T) holds for T = ε0.

We now using a bootstrap argument and induction on j to verify Claim 3.5.T
holds for T = Tj = jε0 with j = 2, 3, .... This completes the proof of Proposition
3.4. �

3.a. A sufficient condition for the smoothness of Ψ.

By Proposition 3.4, we see that any distance non-increasing retraction Ψ : Mn →
S is C∞-smooth away from the focal-loci of the soul S in Mn. We are going to
elaborate this observation to derive a sufficient condition for the C∞-smoothness of
Ψ everywhere.

Proposition 3.6. Let Ψ : Mn → S be as in Proposition 3.4. Suppose that for each
p0 ∈ Mn, there exist a C∞-smooth submanifold A(p0) ⊂ Mn and a Fermi map
FA(p0) : N+(A(p0),Mn) →Mn such that
(1) FA(p0) is compatible with Ψ;
(2) p0 ∈ A(p0);
(3) Σq = A(p0) ∩ Ψ−1(q) is C∞-smooth for each q ∈ S.
(4) Hd(Σq,Σq′) = d(q, q′) for any pair {q, q′} ⊂ S; The family {Σq} is C∞-smooth
in q ∈ S.
Then the map Ψ is C∞-smooth everywhere.

Proof. Notice that, for any C1-smooth Fermi-map, the derivative DF of the Fermi
map F satisfies:

DFA(p0)|(p,0) = id.

Hence, FA(p0) is a local diffeomorphism along the zero-section of N+(A(p0),Mn).
By our assumptions (1)-(4), there is a compatible Fermi-coordinates around p0:

Gp0 : (x1, ..., xk; y1, ..., yl; �u) → Expφ(x1,...,xk;y1,...,yl)�u

such that Ψ[Gp0(x1, ..., xk; y1, ..., yl; �u)] = (x1, ..., xk) for (x1, ..., xk) in a small neigh-
borhood of Ψ(p0). By our assumption (4), φ(x, y) is a C∞-smooth in x and y.
Furthermore, φ is an immersion. It follows that our map Ψ is C∞-smooth around
p0. �

Inspired by Proposition 3.6, we need to construct a compatible Fermi-map FA(p0)

and a C∞ submanifold A(p0) for any p0 in the next two subsections.
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3.b. Horizontal Fermi diffeomorphisms between fibres.

In order to construct compatible Fermi maps {FA(p0)} with different base sub-
manifold {A(p0)}, we need to recall a result of L. Guijarro [Gu].

Definition 3.7. A map Ψ : Mn → S between two Riemannian manifolds is called
a submetric if Ψ maps a ball Br(x) of radius r centered at x onto Br(Ψ(x)), i.e.;
Br(Ψ(x)) = Ψ(Br(x)) for all x ∈Mn and r ≥ 0.

For each p ∈Mn, the tangent subspace Vp = Tp[Ψ−1
(
Ψ(p)

)
] is called the vertical

subspace associated with Ψ. The orthogonal complement of Vp is denoted by Hp.
The distribution {Hp}p∈Mn is called the horizontal distribution.

In general, the horizontal distribution {Hp}p∈Mn is not integrable. This leads
the main difficulty in our construction of {A(p0)} described in Proposition 3.6.

For any distance non-increasing retraction Ψ : Mn → S, in the presence of
nonnegative sectional curvature, Ψ must be a submetric map. In fact, by Perelman’s
flat strip theorem (Proposition 3.4 above) the fibres {Ψ−1(q)}q∈S form an equi-
distant family of submanifolds. Namely, we have

Hd(Ψ−1(q),Ψ−1(q′)) = d(q, q′) (3.18)

holds for any pair {q′, q} ⊂ S.

Proposition 3.8. (compare [BG]) Let Ψ : Mn → S be a submetric map. Then
each fibre Fq = Ψ−1(q) with q ∈ S has positive reach ≥ δ, where δ is the injectivity
radius of the soul S. Consequently, each fibre is a C1,1-submanifold. Moreover the
horizontal Fermi map FFq : N+(Fq ,M

n) → Mn is a local diffeomorphism around
a tube of Fq.

Proof. Let A ⊂ Rn be a subset with positive reach δA > 0. Then, by Theorem 5.9
of [Fe], the hypersurface ∂Us(A) is of C1,1-smooth for 0 < s < δ, where Us(A) =
{x ∈Mn|d(x,A) < s}.

For each �w ∈ Tq(S), we have a horizontal lifting vector field { �W (p)}p∈Fq . We
are going to show that W (p) is Lipschitz continuous in p, by the result of Federer
above. We may assume that w �= 0 and ‖w‖ = 1 after re-scaling if needed. Choose
q′ = Expq[−sw] for s = 1

4δ, where δ is injectivity radius of S. Setting A = Fq′ ,
we observe that Fq ⊂ ∂Us(A). Furthermore, the outward unit vector field W̃ of
∂Us(A) satisfies

W̃ |Fq = W. (3.19)

Federer already showed that W̃ is Lipschitz continuous on ∂Us(A). Hence, W is
Lipschitz continuous on Fq by (3.19). �

Using Proposition 3.8 and its proof, Guijarro further investigated relations among
fibres using horizontal Fermi maps.
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Proposition 3.9. ([Gu]) Suppose that Mn is an open manifold with nonnega-
tive curvature and S is its soul. Let Ψ : Mn → S be a Riemannian submetric
map. Given any geodesic γ̄ : [a, b] → S from q to q′, there is a horizontal C1-
diffeomorphism hγ̄ : Fq → Fq′ obtained by lifting γ̄ horizontally to each p ∈ Fq.
Such a map hγ̄ coincides the nearest point projection from Fq to Fq′ , which is com-
patible with the horizontal Fermi map FFq′ in a tubular neighborhood Us(Fq′ ) of
Fq′ .

Applying Proposition 3.9 to any closed broken geodesic γ̄ : [0, 1] → S based
at q, we get a corresponding self-diffeomorphism hγ̄ : Fq → Fq where γ̄(0) =
q = γ̄(1). Since any Lipschitz curve ᾱ : [0, 1] → S can be approximated by a
sequence of broken geodesics, Guijarro considered the normal holonomy associated
with horizontal Fermi maps.

Definition 3.10. Let Ψ : Mn → S be a Riemannian submetric map. For each q ∈
S, we let GΨ

Fq
⊂ Diff(Fq) be the sub-group of self-diffeomorphisms of Fq generated

by horizontal Fermi diffeomorphisms hᾱ as above, where ᾱ is a closed contractible
loop based at q in S. The group GΨ

Fq
is called horizontal holonomy group associated

with Ψ acting on the fibre Fq = Ψ−1(q).

In the presence of nonnegative sectional curvature, we will use the group orbits
of GΨ

Fq
to construct a family of {A(p0)} described in Proposition 3.6 above.

3.c. Nonnegative curvature and compatible vertical Fermi maps.

The main tool in construction of {A(p0)} and compatible vertical Fermi maps is
the following.

Proposition 3.11. ([Gu]) Let Ψ : Mn → S be as in Proposition 3.4. Suppose
that �v ∈ Vp is a vertical unit vector that stays vertical under parallel transport
along any horizontal piecewise broken geodesic. Then, for any horizontal geodesic
α : R → Mn with α(0) = p of unit speed and the parallel vector field {V (s)} along
α with V (0) = v, we have

(1) Ψ
(
Expα(s)[tV (s)]

)
= Ψ(α(s)) for all s, t;

(2) The map
φ : R × R →Mn

(s, t) → Expα(s)[tV (s)]

is a totally geodesic isometric immersion;

We are now in the final step of our construction of compatible Fermi map at each
point p0 ∈Mn.

Proof of Theorem E.
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For each p0 ∈ Mn, we consider q0 = Ψ(p0) and the fibre Fq0 = Ψ−1(q0). Let
us choose A(p0) = {p1 ∈ Mn|p1 = hᾱ(p0), ᾱ(0) = Ψ(p0), ᾱ(1) = Ψ(p1), ᾱ : [0, 1] →
S is Lipschitz continuous }.

By Proposition 3.6, it is sufficient to verify the following:

Claim 3.12 Let Ψ : Mn → S and A(p0) be as above. Then

(3.12.1) For each q ∈ S, the intersection Σq = A(p0) ∩ Fq is a C∞ submanifold;

(3.12.2) For each (p,�v) ∈ N+(A(p0),Mn), the geodesic σ(p,�v)(t) = Expp(t�v) lies
entirely in FΨ(p).

For (3.12.1), we observe that the group GΨ
Fq

is independent of choice of p ∈ Fq. Let
δ be the focal radius S in Mn. Then the Fermi map FS is a local diffeomorphism
in a small tubular neighborhood of S. Let HolNq be the holonomy group of the
linear vector bundle N+(S,Mn) along S over the contractible loops based at q. If
k = n − dim(S) is the codimension of the soul S, then it is well-known that HolNq
is a sub-group of the orthogonal group SO(k), see [KN]. Since HolNq is an analytic
group and GΨ

Fq
is conjugate to HolNq via the local diffeomorphism FS , the group GΨ

Fq

must be a C∞-smooth Lie group as well, i.e., GΨ
Fq

= FS ◦ [HolNq ]◦ [F−1
S |Uε(S)], where

Uε(S) is the ε-neighborhood of S in Mn.
For each p ∈ Σq, we let Ip = {hᾱ|hᾱ(p) = p} be the isotropic subgroup of GΨ

Fq

and let Op be the orbit of GΨ
Fq

which passes through p.
Then Σq = Op = GΨ

Fq
/Ip for any p ∈ Σq. It follows that any orbit Σq of GΨ

Fq
is a

C∞-smooth submanifold. This completes the proof of (3.12.1).

For (3.12.2), by Proposition 3.9, it is sufficient to verify the following:

Assertion 3.13. For each (p,�v) ∈ N+(A(p0),Mn), the vector �v stays vertical
under parallel transportation along any horizontal piecewise geodesic.

Equivalently, the tangent subspace Tp

(
A(p0)

)
is invariant under parallel trans-

portation along any horizontal piecewise geodesic.

Assertion 3.13 has been established in Lemma 5.4 of [Gu] for the special case when
p is a focal point of the soul S and when v is orthogonal to FS [∂ŨN

t (S)], where
t = |w| for some (q, w) ∈ F−1

S (p) and ŨN
t (S) = {(q, w) ∈ N+(S,Mn)||w| = t}.

In general, we consider the following integrable distribution

Tp(A(p0)) = Hp ⊕ Tp(Op). (3.20)

and
Tp(Mn) = Tp(A(p0)) ⊕

[
Tp(A(p0))

]⊥
.

If ξ ∈ Tp(Mn), we let [ξ]⊥ be the component of ξ in
[
Tp(A(p0))

]⊥.
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If α : [0, 1] → Mn is a horizontal geodesic segment contained in A(p0), then
hᾱ(Op) = Ohᾱ(p). Therefore, all members of the family {Op}p∈A(p0) have the same
dimension. If Dhᾱ denotes the derivative of hᾱ, then we have [Dhᾱ]

(
Tp(Op)

)
=

Thᾱ(p)[Ohᾱ(p)].
Let us now consider a Jacobian field {J(s)} along the horizontal geodesic α :

[0,∞) →Mn with α(0) = p and J(0) ∈ Tp(Op), we have shown that

J(s) ∈ Tα(s)[Oα(s)] ⊂ Tα(s)(A(p0)) (3.21)

for all s. We now claim that J ′(s) ∈ Tα(s)(A(p0)). Otherwise, we let s0 =

max{ŝ|[J ′(s)]⊥ = 0 on [0, ŝ]}. We would have [J(s0+ε)]⊥ =
[ ∫ s0+ε

s0
Pα(J ′(s))ds

]⊥ �=
0, which contradicts to (3.21).

Similarly, if {J(s)} is a Jacobi field with J(0) ∈ Hp, then by the definition of
A(p0) we see that J(s) ∈ Tα(s)(A(p0)). For the same reason as above, we can show
that J ′(s) ∈ Tα(s)(A(p0)).

We now translate the above result in terms of the Hessian of distance functions.
For each fibre Fq′ = Ψ−1(q′), we consider the distance function rq′(x) = d(x, Fq′ ).
We have shown the linear map

Bq′ : Tp(Mn) → Tp(Mn)

J → ∇J (∇rq′ ) = ∇∇rq′J

keeps the subspace Tp(A(p0)) invariant, where p ∈ Fq with q �= q′ but d(q, q′) is
sufficiently small. Clearly, the map Bq′ is symmetric because

〈Bq′(�v), �w〉 = Hess(rq′ )(�v, �w).

By the argument above, we have shown that

[J ′(s)]⊥ = 0 (3.22)

for any Jacobi field along a horizontal geodesic segment with J(0) ∈ Tp(A(p0)).
Suppose that m = dim[Tp(A(p0))]. Let α : [0, �] → Mn be a horizontal geodesic

segment with σ(0) = p. If {E(s)} is parallel vector field along α with E(0) ∈
Tσ(0)(A(p0)), our goal is to show that E(s) ∈ Tσ(s)(A(p0)) for all s ∈ [0, �].

To do this, we consider Ê(s) =
∑m

i=1 xi(s)Ji(s), where {J1(s), ...., Jm(s)} span
Tσ(s)(A(p0)). By (3.22), we may assume that

J ′
i(s) =

m∑
i=1

bik(s)Jk(s),

for i = 1, 2, ...,m. Let B̂(s) = (bik(s)) be the m×m sub-matrix-valued function.
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Thus, we derived an ODE sub-system

0 = Ê′(s) =
m∑

i=1

[x′i(s)Ji(s) + xi(s)J ′
i(s)] =

m∑
k=1

[x′k(s) +
m∑

i=1

bikxk(s)]Jk(s) (3.23)

which is equivalent to
d�x

ds
(s) = −B̂(s)�x(s). (3.24)

The ODE sub-system (3.24) is always solvable. Clearly, any solution {Ê(s)} of
(3.23) satisfies Ê(s) ∈ Tσ(s)(A(p0)) for all s ∈ [0, �].

Observe that the parallel vector fields are uniquely determined by their initial
values. Hence, if E(0) = Ê(0) ∈ Tσ(0)(A(p0)), then E(s) = Ê(s) ∈ Tσ(s)(A(p0)) for
all s ∈ [0, �]. This completes the proof of Assertion 3.13 as well as Theorem E. �

Finally, we should point out that the conclusion of Theorem E fails if the as-
sumption of nonnegative sectional curvature is dropped.

Example 3.14 (Compare [BG] Section 4). Let M̃2 = {(x, y)|x2 + y2 < 1} with the
Poicaré metric and S̃ = {(x, 0)||x| < 1}. For each x ∈ S̃, we define Fx = F+

x ∪ F−
x

where F+
x = {(t, y)|[t− 1

2 (x+1)]2+y2 = 1
4 (1−x)2, y ≥ 0} is the upper half horo-circle

with the center (1
2 + x

2 , 0) and F−
x = {(t, y)|[t− 1

2 (x− 1)]2 + y2 = 1
4 (1 + x)2, y ≤ 0}

is the lower half horo-circle with the center (− 1
2 + x

2 , 0). F+
x meets F−

x at (x, 0)
C1,1-smoothly, but not C2-smoothly.

With respect to Poicaré metric, the curves {Fx} form an 1-family of equidistant
curves. Thus, there exists a corresponding Riemannian submetric map Ψ̃ : M̃2 → S̃
such that Ψ̃−1

(
(x, 0)

)
= Fx for all x.

Let 0 < a < 1, there is an isometry of M̃2 given by

fa(x+
√−1y) =

x− a+
√−1y

1 − a(x+
√−1y)

The isometry fa preserves the geodesic S̃ and keeps the family {Fx} invariant. Let
Z be the group generated by fa. Consider the quotient spaces M2 = M̃2/Z and
S = S̃/Z. Then S is the unique closed geodesic within its free homotopy class in
M2. This induces an Riemannian submetric map Ψ : M2 → S.

Notice that F+
x meets F−

x at (x, 0) only C1,1-smoothly. Hence, Ψ is exactly
C1,1-smooth, but not C2-smooth.

Similarly, one can consider one sheet hyperboloid M2 given by

M2 = {(x, y, z)|x2 + y2 = 1 + z2}.
The set S = {(x, y, 0)|x2 + y2 = 1} is unique non-trivial closed geodesic in M2.
Clearly, M2 has non-positive curvature. Using the same method as above, one can
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construct a C1,1-smooth Riemannian submetric map Ψ : M2 → S such that Ψ is
not C2-smooth.

We should point out that, in the examples above, there is no compatible Fermi
maps associated with Ψ. Therefore, as Example 3.14 indicated, the assumption of
nonnegative section curvature is essential to construct compatible vertical Fermi
maps in our proof of Theorem E.
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[El] Elencwajc, G., Pseudo-convexité locale dans les variétés Kähleriennes, Manuscripta
Math. 59 (1987), 295-323.

[Es] Eschenburg, J.-H., Comparison theorems and hypersurfaces., Manuscripta Math. 59
(1987), 295-323.

[Fe] Federer, H, Curvature measures, Trans. Amer. Math. Soc. 93 (1959), 418-491.

[GW1] Greene, R. E.; Wu, H, On Kähler manifolds of positive bisectional curvature and a
theorem of Hartogs. Special issue dedicated to the seventieth birthday of Erich Kähler.,
Abh. Math. Sem. Univ. Hamburg 47 (1978), 171-185.

[GW2] Greene, R. E. and Wu, H., Function theory on manifolds which possess a pole, Springer

Verlag, Lecture Notes in Mathematics, Volume 699, New York, 1979.

[GrM] Gromoll, D. and Meyer, W. T., On complete open manifolds of positive curvature,,
Ann. of Math. 90 (1969), 75-90.

[Grom1] Gromov, M., Metric structures for Riemannian and non-Riemannian spaces., Progress
in Mathematics, 152. Birkhuser Boston, Inc., Boston, MA,, 1999.

[Grom2] , Hyperbolic groups, In “Essays in group theory”. Edited by S. M. Gersten.
Mathematical Sciences Research Institute Publications, 8. Springer-Verlag, New York
(1987), 75-263.

[Gu] Guijarro, Luis, On the metric structure of open manifolds with nonnegative curvature,
Pacific J. Math. 196 (2000), 429-444.

36



[HSW] Howard, A, Smyth, B, and Wu, H., On compact Kähler manifolds of nonnegative
bisectional curvature. I, Acta Math., 147 (1981), 51-56.

[Kl] Klingenberg, W., Riemannian geometry, Second edition. de Gruyter Studies in Mathe-
matics, 1. Walter de Gruyter Co., Berlin edition. AMS Chelsea Publishing, Providence,
RI,, 1995.

[Kr] Krantz, S., Function theory of several complex variables., Reprint of the 1992 edition.
AMS Chelsea Publishing, Providence, RI,, 2001.

[KN] Kobayashi, S and Nomizu, K., Foundations of differential geometry, volume II, John
Wiley & Sons, New York, 1969.

[Mok] Mok, N., Metric rigidity theorems on Hermitian locally symmetric manifolds, Series
in Pure Mathematics, 6, World Scientific Publishing Co., Inc., Teaneck, NJ, USA,
1989.

[Oh] Ohsawa T., Pseudoconvex domains in P
n: A question on 1-convex boundary points,

Analysis and Geometry in Several Complex Variables, G. Komatsu and M. Kuranishi,
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