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1 Introduction

We investigate the following nonlinear Neumann boundary value problem

∆u+ λu = 0, u > 0 in Ω,
u = 0 on ΓD,

− ∂u

∂xn
= u

n
n−2 on ΓN ,

(Pλ)

where n > 2, Ω = B+
1 (0) is the half-ball {x ∈ R

n : |x| < 1, xn > 0}, ΓD =
{x ∈ R

n : |x| = 1, xn ≥ 0} and ΓN = {x ∈ R
n : |x| < 1, xn = 0}. Solutions are
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understood in the weakW 1,2-sense. Due to the exponent n
n−2 in the boundary con-

dition, the problem is of critical Sobolev-type since the embedding from W 1,2(Ω)
into L2∗

(ΓN ) with 2∗ = 2n−2
n−2 is continuous but no longer compact. Thus the varia-

tional methods for existence of solutions are not directly applicable. However, due
to the presence of the linear term λu, compactness is partially recovered. This was
first noticed in a celebrated paper by Brezis and Nirenberg [2] for a corresponding
Dirichlet boundary value problem with critical nonlinearity in the equation. For
the nonlinear Neumann boundary value problem (Pλ) we have the following result.

Theorem 1. Let λ1 be the first eigenvalue of the problem

∆φ+ λφ = 0 in B+
1 (0),

∂φ

∂ν
= 0 on ΓN , φ = 0 on ΓD.

(i) For n ≥ 4 a solution uλ of (Pλ) exists if and only if λ ∈ (0, λ1).

(ii) For n = 3 there is no solution of (Pλ) for λ ≥ λ1 = π2 while for π2/4 <
λ < π2 solutions exist. There is a value λ∗ ∈ (0, π2/4) such that no solution
exists for −∞ < λ < λ∗. A lower bound for λ∗ is 0.772.

The above result is analogous to the Brezis-Nirenberg result [2] for the bound-
ary value problem ∆u+λu+u

n+2
n−2 = 0 with Dirichlet boundary conditions. There,

existence in the full interval (0, λ1) was established for space-dimensions n ≥ 4.
But n = 3 was exceptional in the sense, that nonexistence for small positive values
of λ occurs on star-shaped domains. Hence n = 3 is a critical dimension (in the
sense of Pucci and Serrin, see [7]) both for the Brezis-Nirenberg problem and for
(Pλ).

In the case of a three-dimensional ball Brezis and Nirenberg established π2/4
as the exact threshold for nonexistence/existence, where the nonexistence was
established via a Pohožaev-type identity. This was possible, since by the radial
symmetry result of Gidas, Ni, Nirenberg [5] all solutions are radially symmetric
and the problem effectively reduces to one dimension, which enabled the deriva-
tion of an optimal Pohožaev identity. In our case we make use of the half-ball
geometry. The solutions possess the cylindrical symmetry which reduces the prob-
lem effectively to two dimensions. Our non-existence result is also proved via a
Pohožaev-type identity, cf. Section 4. However, in contrast to the Brezis-Nirenberg
situation, our problem is genuinely two-dimensional, which makes the use of the
Pohožaev identity harder, and new ideas needed to be developed. It is an open
problem to determine the sharp nonexistence/existence threshold.

Equations with critical growth in the Neumann boundary data have been
previously investigated by Adimurthi and Yadava [1]. Their results were stated
for boundary conditions of the type ∂νu+ n−2

n β(x)u = u
n

n−2 on ΓN . In particular
they obtained Part (i) of Theorem 1 for space-dimensions n ≥ 5 but not for the
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interesting low dimensions n = 3, 4. Adimurthi and Yadava also studied another
version of (Pλ), namely

∆u = 0, u > 0 in Ω,
u = 0 on ΓD,

− ∂u

∂xn
= u

n
n−2 + µu on ΓN ,

(Qµ)

where the linear perturbation has been moved into the nonlinear Neumann bound-
ary condition. If we denote by µ1 the first Steklov eigenvalue of the corresponding
linear problem, then in this case existence of positive solutions holds precisely for
0 < µ < µ1 in any space dimension n ≥ 3. In particular the three dimensional
case is no longer critical. Although (Pλ) and (Qµ) are linear perturbations of the
same nonlinear problem, their behavior in dimension n = 3 is very different. We
will give an explanation for this surprising feature at the end of Section 2.

Adimurthi and Yadava worked on smooth domains where the boundary was
split between the Dirichlet boundary ΓD and the Neumann boundary ΓN . Their
solutions are typically weak W 1,2-solutions. In contrast, we make use of the half-
ball geometry which has two advantages: (i) the solutions are C2,α(Ω), and (ii) due
to this regularity we have the Pohožaev identity to investigate the nonexistence
regions in more detail.

The paper is organized as follows. In Section 2 we prove existence-results for
(Pλ) on domains, which generalize the half-balls B+

1 (0). In Section 3 we establish
regularity and symmetry results for the solutions of (Pλ) on half-balls. Nonexis-
tence in dimension n = 3 for half-balls is proved via a Pohožaev-type identity in
Section 4. Finally, in Section 5 we study the λ-behavior of various norms of uλ.
Acknowledgment. Parts of this work were done while the second author visited
the University of Basel and while the third author visited the Comenius University.
Another part was done during a stay of the second and third author in Oberwolfach
in February 2000. This stay was supported by the Volkswagen Stiftung (RiP-
Program). The first two authors were partially supported by the VEGA-grant
1/7677/20.

2 Existence of positive solutions

In this section we use a variational approach to obtain positive weak solutions of
(Pλ). The method goes back to the well known and fundamental work of Brezis,
Nirenberg [2]. We will consider more general domains than half-balls. We there-
fore introduce the following notation: Let ω ⊂ R

n be a bounded domain, whose
boundary is decomposed into γD �= ∅ and γN �= ∅. We assume that γN is part of
a hyperplane (γN is then called flat), and without loss of generality we suppose
that γN ⊂ ∂R

n
+ = {x ∈ R

n : xn = 0} and that 0 ∈ int (γN ), i.e., that the origin
lies in the relative interior of γN .
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The space W 1,2(ω) is defined as the norm closure of the C∞-functions van-
ishing on γD. As the standard norm we use ‖∇u‖2,ω :=

(∫
ω
|∇u|2 dx)1/2. From

now on we will consider weak W 1,2(ω)-solutions of (Pλ) on the set ω. Moreover,
we will use the norms ‖u‖q,γN = (

∫
γN

|u|q dσ)1/q and ‖u‖2,ω = (
∫
ω
u2 dx)1/2. We

denote by S the best Sobolev constant of the embedding W 1,2(ω) into L2∗
(γN ),

i.e.,

S = inf
ψ∈W 1,2(Ω)

‖∇u‖2
2,ω

‖u‖2
2∗,γN

. (1)

The constant S is independent of ω and γN , and it is not attained on any bounded
domain ω. Instead, any positive solution of the half-space problem ∆u = 0 in
R
n
+ = {x ∈ R

n : xn > 0} with ∂u/∂ν = u
n

n−2 on ∂R
n
+ is a minimizer. It is given

by u(x) = α
n−2

2 |x− x0|2−n with x0 in the lower half-space and α = (n− 2)|x0,n|.
Evaluation of S gives

S = (n− 2)σ1/(n−1)
n−1

(∫ ∞

0

rn−2(r2 + 1)1−ndr
)1/(n−1)

,

where σn−1 is the surface-area of the (n− 1)-dimensional unit sphere.
By λ1 and φ1 we denote the first eigenvalue and eigenfunction of the problem

∆φ+ λφ = 0 in ω,

∂φ

∂ν
= 0 on γN , φ = 0 on γD.

The following theorem is an existence theorem for domains ω where γN is
flat. It includes in particular the existence parts of (i) and (ii) in Theorem 1.

Theorem 2. Let ω be a bounded domain where γN ⊂ ∂R
n
+ is flat. Let λ1 be the

first eigenvalue for the linear eigenvalue problem corresponding to (Pλ) and let

λ∗ := inf
u∈W1,2(ω)

u�≡0

J(u) with J(u) :=
‖∇u‖2

2,ω − S‖u‖2
2∗,γN

‖u‖2
2,ω

.

Then λ∗ ∈ [0, λ1) and (Pλ) has a solution for all λ ∈ (λ∗, λ1). Furthermore:

(i) For n ≥ 4 we have λ∗ = 0, i.e. a solution uλ of (Pλ) exists for all λ ∈ (0, λ1).

(ii) For n = 3 an upper bound for λ∗ is given by

λ∗ ≤ λ̃ := inf
x0∈γN

inf
φ∈Mx0

∫
ω

|∇φ(x)|2
|x− x0|2 dx

/ ∫
ω

φ(x)2

|x− x0|2 dx

where

Mx0 = {φ ∈ C∞(Rn) : φ ≡ 0 on γD, φx1(x0) = φx2(x0) = 0}.
Hence a solution of (Pλ) exists for λ∗ < λ < λ1.

4



Corollary 3. If n = 3 and Ω = B+
1 (0) then a solution uλ exists for λ ∈ (π2/4, π2).

Proof. It is sufficient to choose x0 = 0, φ(x) = cos(π|x|/2) and then λ̃ ≤ π2/4. �

For the proof of Theorem 2 we consider the following minimization problem

SPλ := inf
W 1,2(ω)

‖∇u‖2
2,ω − λ‖u‖2

2,ω

‖u‖2
2∗,γN

.

The definition of λ∗ implies that

λ∗ = sup
{
λ > 0 : ‖∇u‖2

2,ω ≥ S‖u‖2
2∗,γN

+ λ‖u‖2
2,ω for all u ∈ W 1,2(ω)

}
.

It easily follows that SPλ < S for λ > λ∗, and SPλ = S for 0 ≤ λ ≤ λ∗. Hence,
λ ∈ (λ∗, λ1) is the case when 0 < SPλ < S. A well known consequence of P.L.
Lions’ concentration-compactness alternative [8] is, that in this case a minimizer
exists, and it is a solution of the corresponding Euler-Lagrange equation (Pλ).

Our task is to obtain further information on λ∗ depending on the space
dimension. We do this by considering the functional J on suitably chosen test-
functions. We define Uδ(x) = δ

n−2
2 |(x, xn + δ)|2−n. Clearly Uδ is a function for

which S in (1) is attained. The following constants depend only on n and not on δ:

L1 := ‖∇Uδ‖2
2,R

n

+
= ‖Uδ‖2∗

2∗,∂R
n

+
, L2 := (L1)2/2

∗
.

The best Sobolev constant then satisfies S = L1/L2. Our test function will be

vδ := Uδφ

where φ is a suitable cut-off function which will be chosen such that vδ ∈ W 1,2(ω).
This choice implies the following lemma that will be proved at the end of this
section.

Lemma 4. For any fixed smooth function φ : ω̄ → R with φ ≡ 0 on γD, φ(0) = 1,
Dα
x′φ(0) = 0 for 1 ≤ |α| ≤ n− 2 we have the following estimates as δ → 0:

‖vδ‖2
2∗,γN

= L2 +O(δn−1| log δ|) (2)

‖∇vδ‖2
2,ω = L1 + δn−2

∫
ω

|∇φ|2
|(x′, xn + δ)|2n−4

dx+O(δn−1| log δ|). (3)

If we insert vδ into the functional J we obtain as a consequence of Lemma 4
that

λ∗ ≤ J(vδ) =
∫
ω

|∇φ|2
|(x′, xn + δ)|2n−4

dx

/∫
ω

φ2

|(x′, xn + δ)|2n−4
dx + o(1) (4)
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as δ → 0. Next we follow an observation of Janelli [7]. As δ → 0 clearly

|(x′, xn + δ)|2−n → |x|2−n a.e. in ω.

In order to take the limit δ → 0 in (4), we must decide whether the fundamental
solution of the Laplacian F (x, 0) = |x|2−n is in L2

loc or not.

First case: F (x, 0) �∈ L2
loc. This is the case for n ≥ 4. We refine our choice of φ by

requiring that φ ≡ 1 in a neighborhood of x = 0. Therefore∫
ω

|∇φ|2|(x′, xn + δ)|4−2n dx <∞ as δ → 0,

while ∫
ω

φ2|(x′, xn + δ)|4−2n dx→ ∞ as δ → 0.

We conclude from the fact that λ∗ ≥ 0 and from (4) that λ∗ = 0. Therefore we
have proved part (i) of Theorem 1.

Second case: F (x, 0) ∈ L2
loc. This is the case for n = 3. This time we can take the

limit in (4) and obtain

0 ≤ λ∗ ≤
∫
ω

|∇φ|2
|x|2n−4

dx

/∫
ω

φ2

|x|2n−4
dx.

Next we decide on the optimal choice of the cut-off function φ. If we realize that
the choice of the origin was arbitrary in so far that it only had to be on γN , we
obtain the final characterization of λ̃ as an upper bound for λ∗. This establishes
Part (ii) of Theorem 2.

Proof of Lemma 4. (2): Let Dρ ⊂ ∂R
n
+ denote the (n − 1)-dimensional ball of

radius ρ centered at 0. We consider v2∗
δ (x′, 0) = δn−1|(x′, δ)|2(1−n)φ2∗

(x′, 0).

‖vδ‖2∗
2∗,γN

= δn−1

∫
Dρ

φ2∗
(x′, 0)

|(x′, δ)|2(n−1)
dx′ +O(δn−1)

= δn−1
(∫

Dρ

dx′

|(x′, δ)|2(n−1)
+

∫
Dρ

φ2∗
(x′, 0) − 1

|(x′, δ)|2(n−1)
dx′

)
+O(δn−1)

=
∫
Dρ/δ

dy′

|(y′, 1)|2(n−1)
+

∫
Dρ/δ

φ2∗
(δy′, 0) − 1

|(y′, 1)|2(n−1)
dy′ +O(δn−1)

= L1 −
∫
∂R

n

+\Dρ/δ

dy′

|(y′, 1)|2(n−1)
+

∫
Dρ/δ

φ2∗
(δy′, 0) − 1

|(y′, 1)|2(n−1)
dy′ +O(δn−1).

The first integral behaves like
∫ ∞
ρ/δ r

−n dr and is therefore O(δn−1). For the
second integral we may use Dα

x′φ(0) = 0 for 1 ≤ |α| ≤ n − 2 to estimate
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it by δn−1
∫ ρ/δ
0

r2n−3(1 + r2)1−n dr, which equals O(δn−1) +
∫ ρ/δ
1

δn−1r−1 dr =
O(δn−1| log δ|). This implies (2).

(3): Clearly

|∇vδ|2 =
δn−2

|(x′, xn + δ)|2n−4
|∇φ|2 +

δn−2

|(x′, xn + δ)|2n−2
φ2 +

1
2
∇(φ2) · ∇(U2

δ )

and hence by the divergence theorem and by the identity ∆(U2
δ ) = 2|∇Uδ|2 =

2δn−2|(x′, xn + δ)|2−2n we see that∫
ω

|∇vδ|2 dx =
∫
ω

δn−2

|(x′, xn + δ)|2n−4
|∇φ|2 dx+

1
2

∫
γN

φ2∂ν(U2
δ ) dx′

=
∫
ω

δn−2

|(x′, xn + δ)|2n−4
|∇φ|2 dx+ δn−1

∫
γN

φ2

|(x′, δ)|2n−2
dx′.

Now the last integral is the same as in (2) apart from the fact that φ2∗
is replaced

by φ2, which makes no difference in the calculation. Therefore we find∫
ω

|∇vδ|2 dx = L1 +
∫
ω

δn−2

|(x′, xn + δ)|2n−4
|∇φ|2 dx+O(δn−1| log δ|),

which implies (3). This finishes the proof of Lemma 4. �

We finish this section by comparing the two problems (Pλ) and (Qµ). Adimur-
thi and Yadava obtained solutions of (Qµ) by finding minimizers of

SQµ := inf
W 1,2(Ω)

‖∇u‖2
2,Ω − µ‖u‖2

2,ΓN

‖u‖2
2∗,ΓN

below the critical energy level S. As before the existence-range of µ is given by
(µ∗, µ1) with

µ∗ := inf
u∈W1,2(Ω)

u�≡0

I(u), I(u) :=
‖∇u‖2

2,Ω − S‖u‖2
2∗,ΓN

‖u‖2
2,ΓN

.

Repeating the ansatz vδ = Uδφ leads with exactly the same calculations as before
to the estimate

0 ≤ µ∗ ≤ I(vδ) =
∫

Ω

|∇φ|2 dx
|(x′, xn + δ)|2n−4

/∫
ΓN

µφ2 dx′

|(x′, δ)|2n−4
+ o(1)

as δ → 0. This time we see that the fundamental solution of the Laplacian
F (x, 0) = |x|2−n is never in L2

loc(ΓN ) for any n ≥ 3. Therefore by choosing φ ≡ 1
in a neighborhood of 0 and letting δ → 0 we see that µ∗ = 0 for any dimension
n ≥ 3. To sum up, we see that the problem (Qµ) is different from (Pλ) in the sense
that the linear perturbation taking place on an (n− 1)-dimensional hypersurface
instead of an n-dimensional domain typically reduces the critical dimension by 1,
which in the case of (Qµ) leads to the fact that there is no critical dimension any
more.
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3 Properties of weak solutions

Lemma 5. Every weak W 1,2-solution uλ of (Pλ) is in L∞(ω) and in L∞(γN ).

The proof is done by the Moser iteration scheme. It is a direct transcription of the
standard proof, see for instance Struwe [13], Appendix B, where volume integrals
of u

2n
n−2 are replaced by surface integrals of u

2n−2
n−2 .

In the case where Ω = B+
1 (0) we can now derive C2,α-regularity for weak

solutions. This will be important for showing symmetry in Lemma 7 and non-
existence in Theorem 10.

Lemma 6. If Ω = B+
1 (0) then every weak W 1,2-solution uλ of (Pλ) is in

C2,α(B+
1 (0)).

Proof. Let I: Rn \{0} → R
n \{0} denote the inversion I(x) = |x|−2x, let hx denote

the Newton kernel

hx(y) =
1

(n− 2)σn−1
|x− y|2−n, σn−1 =

2π
n
2

Γ
(
n
2

) .
For x ∈ R

n \ {0} let h∗x denote the Kelvin transform of hx,

h∗x = |x|2−nhI(x).

Now define x = (x1, x2, . . . , xn−1,−xn) for x = (x1, x2, . . . , xn−1, xn) ∈ R
n and

Γ(x, y) = −hx(y) + h∗x(y) − hx(y) + h∗x(y) for x �= y �= x, x, y ∈ R
n.

Then Γ is Green’s function for the problem

−∆u = f in Ω,
u = 0 on ΓD,

− ∂u

∂xn
= φ on ΓN .

(L)

Our aim is to show that if f ∈ L∞(Ω), φ ∈ L∞(ΓN ) and u is a weak W 1,2-solution
of (L) then u can be represented as follows:

u(x) = −
∫

Ω

f(y)Γ(x, y) dy −
∫

ΓN

φ(y′)Γ(x, y′, 0) dy′ for a.e. x ∈ Ω.

Due to uniqueness of weak W 1,2-solutions of (L), it is sufficient to show that

v(x) := −
∫

Ω

f(y)Γ(x, y) dy, x ∈ R
n,
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(restricted to Ω) is a weak W 1,2-solution of the problem

−∆v = f in Ω,
v = 0 on ΓD,

− ∂v

∂xn
= 0 on ΓN ,

and
w(x) := −

∫
ΓN

φ(y′)Γ(x, y′, 0) dy′, x ∈ R
n,

(restricted to Ω) is a weak W 1,2-solution of the problem

−∆w = 0 in Ω,
w = 0 on ΓD,

− ∂w

∂xn
= φ on ΓN .

I. (Case of v) Let F be obtained from f by extending it first symmetrically to

B1(0), i.e. F (x) = f(x) for x ∈ Ω, and then antisymmetrically (with a suitable
multiplier) to R

n \B1(0), that is

F (x) = −|x|−n−2F (I(x)) for x ∈ R
n \B1(0).

Then F ∈ L∞(Rn) ∩ L1(Rn), v = F ∗ h0 and we have that v ∈ C1,β(Rn) for any
β ∈ (0, 1), v(x) = v(x) (cf. [3]). Hence, the boundary conditions for v are satisfied
in the classical sense. Further, as F ∈ L1(Rn), v is a distributional solution of
−∆v = F in R

n (see e.g. Theorem (2.15) in [6]).
To show explicitly that for any ψ ∈ C∞

0 (Rn \ ΓD) we have
∫

Ω

∇v · ∇ψ dx =
∫

Ω

fψ dx

or even ∫
R

n

+

∇v · ∇ψ dx =
∫
R

n

+

Fψ dx (5)

we proceed as follows. Let R ∈ (0,∞) be fixed and let F0(x) = F (x) for |x| ≤ R
and F0(x) = 0 for |x| > R. Further, set F∞(x) = F (x) − F0(x), v0 = F0 ∗ h0

and v∞ = F∞ ∗ h0. Again, v∞ is a distributional solution of −∆v∞ = F∞ and
v∞ ∈ C1,β(Rn). Clearly, v∞ is harmonic in BR(0), v∞(x) = v∞(x), hence, to show
that (5) holds for all ψ ∈ C∞

0 (BR \ ΓD), it is sufficient to prove
∫
R

n

+

∇v0 · ∇ψ dx =
∫
R

n

+

F0ψ dx for all ψ ∈ C∞
0 (BR \ ΓD). (6)
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Now standard regularization techniques apply since F0 is compactly sup-
ported. For example, we can take the regularized Newton kernels

hε(x) =
1

(n− 2)ωn−1
(|x|2 + ε2)

2−n
2 ,

and set vε0 = F0 ∗ hε. Clearly, the functions vε0,
∂vε

0
∂xj

and ∆vε0 = F0 ∗∆hε belong to

C∞(Rn). It is easily checked that vε0 and ∂vε
0

∂xj
converge uniformly on compact sets

to v0 and ∂v0
∂xj

, respectively. Again, vε0(x) = vε0(x) and, in particular, ∂vε
0

∂xn
= 0 if

xn = 0. To conclude the proof of (6) take ψ ∈ C∞
0 (BR \ΓD) and pass to the limit

(as ε→ 0) in ∫
R

n

+

∇vε0 · ∇ψ dx =
∫
R

n

+

F0 ∗ (−∆hε)ψ dx.

To do this, observe that F0 ∗ (−∆hε) → F0 in Lploc(R
n), 1 ≤ p <∞ since

Ψε := −∆hε =
n

ωn−1
ε2(|x|2 + ε2)−

n+2
2

satisfies
Ψε = ε−nΨ1

(x
ε

)
and

∫
R

n
Ψε dx = 1.

II. (Case of w) If

Φ(y′) := −|y′|−nφ(I(y′, 0)) for y′ ∈ ∂R
n
+ \ ΓN , Φ(y′) = φ(y′) for y′ ∈ ΓN ,

then Φ ∈ Lp(∂R
n
+) for any 1 ≤ p ≤ ∞ and

w(x) = 2
∫
∂R

n

+

Φ(y′)Γ(x, y′, 0) dy′, x ∈ R
n.

It is known (cf. [3]) that w is bounded and Hölder continuous in R
n, harmonic in

R
n \ ∂R

n
+, w = 0 for |x| = 1 and ∂w

∂xn
is bounded in R

n
+.

As before, we write a point x ∈ R
n
+ in the form x = (x′, xn), x′ ∈ R

n−1,
xn ∈ R+. Let Pxn denote the Poisson kernel for R

n
+,

Pxn(x′) =
2

ωn−1

xn
(|x′|2 + x2

n)n/2
.

Then
− ∂w

∂xn
(x) =

∫
∂R

n

+

Φ(y′)Pxn(x′ − y′) dy′, x ∈ R
n
+, (7)

− ∂w

∂xj
(x) =

∫
∂R

n

+

RjΦ(y′)Pxn(x′ − y′) dy′, j = 1, . . . , n− 1, x ∈ R
n
+, (8)

10



here RjΦ is the Riesz transform of Φ (in ∂R
n
+),

RjΦ(y′) := lim
t↓0

2
ωn−1

∫
∂R

n

+\Bt(0)

Φ(y′ − x′)
xj
|x′|n dx

′,

the convergence is in the Lp–sense and also pointwise almost everywhere.
We will need the known fact from harmonic analysis that

Rj : Lp(∂R
n
+) → Lp(∂R

n
+), 1 < p <∞,

is a bounded linear operator (see [11, Theorems 3, 4, Chapter II], for example).
Another known fact we will use is:

‖Φ ∗ Pxn − Φ‖p,∂Rn

+
→ 0 as xn → 0, 1 ≤ p <∞, (9)

see [12], for instance.
Using Hölder’s inequality in (7) and (8) we obtain

sup
xn>0

∥∥∥∥ ∂w∂xj
∥∥∥∥

2,∂R
n

+

≤ const ‖Φ‖2,∂R
n

+
<∞, j = 1, . . . , n,

and it follows easily that w ∈ W 1,2(Ω).
To complete the proof it is sufficient to show that for any ψ ∈ C∞

0 we have
∫
R

n

+

∇w · ∇ψ dx =
∫
∂R

n

+

Φψ dx′.

Fix such a function ψ and denote R
n
t = {x ∈ R

n
+ : xn > t}, t > 0. As w is

harmonic in R
n
+, for t > 0 it holds

∫
R

n

t

∇w · ∇ψ dx = −
∫
∂R

n

+

∂w

∂xn
(x′, t)ψ(x′, t) dx′.

Now (7) and (9) yield
∫
R

n

+

∇w · ∇ψ dx = lim
t↓0

∫
R

n

t

∇w · ∇ψ dx

= − lim
t↓0

∫
∂R

n

+

∂w

∂xn
(x′, t)ψ(x′, t) dx′ =

∫
∂R

n

+

Φψ dx′.

�

Lemma 7. If Ω = B+
1 (0) then every solution uλ of (Pλ) has cylindrical symmetry,

i.e. uλ(x′, xn) only depends on |x′| and xn. We write uλ(|x′|, xn). Furthermore
uλ(|x′|, xn) is strictly decreasing as a function of |x′| and xn.

This symmetry result appeared as Proposition 5.1 and 5.2 in Chipot et al. [3].
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4 Nonexistence of positive solutions

Testing (Pλ) with φ1 immediately shows that positive solutions can only exist for
λ < λ1. If ω is a domain with γN ⊂ ∂R

n
+ flat, then ω is called star-shaped with

respect to 0 if x · ν ≥ 0 on γD. The following identity is a generalization of the
famous identity found by S.I. Pohožaev [9]:

Lemma 8. Let ω be a bounded domain where γN ⊂ ∂R
n
+ is flat. If u is a classical

solution of ∆u + f(u) = 0 in ω with u = 0 on γD and ∂u
∂ν = g(u) on γN then the

following identity holds

1
2

∫
γD

|∇u|2h(x) · ν dσ −
∫
γN

div ′(h′(x′, 0))G(u) dx′ (10)

=
∫
ω

F (u)div h+ ∇uDh(x)∇u− 1
2
|∇u|2div h dx,

where G(s) =
∫ s
0
g(t) dt, F (s) =

∫ s
0
f(t) dt and h : ω → R

n is a C1-vector-field
which has to satisfy h(x) · ν(x) = 0 on γN .

Proof. Let u be a solution. We begin with the following differential identity

div
(
(h · ∇u)∇u − 1

2
|∇u|2h

)
(11)

= ∆u(h · ∇u) + ∇uDh∇u− 1
2
|∇u|2div h.

Integrating identity (11) over ω and observing that h(x) · ν(x) = 0 on γN gives∫
γD

1
2
|∇u|2h · ν dσ +

∫
γN

h · ∇u∂u
∂ν

dx′

=
∫
ω

∆u h · ∇u+ ∇uDh∇u− 1
2
|∇u|2div h dx (12)

=
∫
ω

−div (F (u)h) + F (u)div h+ ∇uDh∇u− 1
2
|∇u|2div h dx.

Due to the zero boundary conditions on γD and due to the assumption that h(x) ·
ν(x) = 0 on γN the integral over the first divergence-term vanishes. Next we use
the flatness of γN . Notice that due to h(x)·ν(x) = 0 on γN we have h·∇u = h′ ·∇′u
on γN and therefore

div ′
(
h′(x′, 0)G(u)

)
− div ′(h′(x, 0))G(u)

= h′(x′, 0) · ∇′G(u) = h(x′, 0) · ∇u(x′, 0) g(u).

Integrating the last identity over the flat part γN we obtain∫
γN

h · ∇u g(u) dx′ = −
∫
γN

div ′(h′(x′, 0))G(u) dx′.

Inserting back into (12) we have proved the lemma. �
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Corollary 9. Let ω be a bounded star-shaped domain where γN is flat. Then (Pλ)
has no classical solution for λ ≤ 0.

Proof. We use the previous lemma with h(x) = x. The integral identity (10) then
reads

1
2

∫
γD

|∇u|2x · ν dσ −
∫
γN

(n− 1)G(u) dx′

=
∫
ω

nF (u) +
2 − n

2
|∇u|2 dx (13)

=
∫
ω

nF (u) +
2 − n

2
f(u)u dx+

∫
γN

2 − n

2
ug(u) dx′.

For (Pλ) we apply this identity to f(s) = λs, g(s) = s
n

n−2 . Due to the star-
shapedness, the boundary integral over γD is non-negative. The sum of the inte-
grands in the boundary integrals over γN vanish and the integrand of the volume
integral is λu2. For non-positive values of λ this implies that only trivial solutions
exist. �

Remark. We note in passing that Corollary 9 remains valid for weak W 1,2-
solutions. One way to prove this result with the help of maximum principles is as
follows, cf. Reichel, Zou [10]: If u is a W 1,2-solution let vρ be the Kelvin-transform
of u at the sphere of radius ρ centered at the star-center of ω. Due to the structure
of the equations and provided λ ≤ 0, the function vρ is a supersolution. With the
help of a continuous version of the maximum principle one establishes that u ≤ vρ
for all values of ρ ∈ (0, 1). Taking the limit ρ→ 0 implies u ≡ 0. The proof makes
use of the fact that u ∈ L

2n−2
n−2 (γN ), and therefore it only just works for the critical

case and not for supercritical cases.

The next application of the Pohožaev-type integral identity (10) uses explic-
itly the special domain Ω = B+

1 (0).

Theorem 10. For n = 3 and Ω = B+
1 (0) problem (Pλ) has no solution for −∞ <

λ ≤ 1/8.

Remark. The value 1/8 does not appear to be best possible. A larger, but com-
putationally more involved bound is 0.772. It is an open problem to determine the
precise range of λ for nonexistence/existence. A possible conjecture based on the
existence interval from Corollary 3 is that nonexistence holds for λ ≤ π2/4.

Proof. By Corollary 9 we only need to investigate positive values of λ. Due to
Lemma 7, all solutions u have cylindrical symmetry and are therefore of the form
u(r, z), where r =

√
x2 + y2. For the vector-field h(x): Ω → R

n we make an ansatz
which also respects the cylindrical symmetry. If (r, t, z) denote the cylindrical
coordinates x = r cos t, y = r sin t with t ∈ [0, 2π), then we set

h(r, t, z) = (k(r, z) cos t, k(r, z) sin t, l(r, z)),
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with two real-valued functions k(r, z), l(r, z). If we use that the gradient of u(r, z)
can be written as ∇u(r, z) = (ur cos t, ur sin t, uz) and if we express Dh(x, y, z)
in cylindrical coordinates (a relatively long calculation which we do not perform
here), we obtain

∇uDh∇u = u2
rkr + uzurkz + uruzlr + u2

zlz. (14)

For a successful application of Pohožaev’s identity (10) we need to have ∇uDh∇u=
H(x, y, z)|∇u|2 with a function H which does not depend on the solution u. By
(14) this is only possible if

kz = −lr and kr = lz

which is equivalent to the requirement that p(w) = k(r, z)+il(r, z) is a holomorphic
function of w = r+iz. Under these circumstances we have indeed that ∇uDh∇u =
kr|∇u|2. If we furthermore notice that div h = kr + k/r+ lz = 2kr + k/r then the
Pohožaev identity (10) reduces to

1
2

∫
ΓD

|∇u|2h(x) · ν dσ −
∫

ΓN

(kr(r, 0) + k(r, 0)/r)G(u) d(x, y)

=
∫

Ω

(2kr + k/r)F (u) + (kr − 1
2
(2kr + k/r))|∇u|2 d(x, y, z) (15)

=
∫

Ω

(2kr + k/r)F (u) − k/(2r)|∇u|2 d(x, y, z).

Next we test the differential equation with m(r, z)u(r, z), where the C2-function
m(r, z) will be chosen later. After observing that div (∇umu) = |∇u|2m +
1
2∇(u2)∇m− f(u)um and by using the divergence theorem we obtain

∫
Ω

|∇u|2m− u2

2
∆m− f(u)umd(x, y, z) =

∫
ΓN

g(u)um− u2

2
∂m

∂ν
d(x, y).

Now we set m(r, z) = k(r, z)/(2r) (which requires k(r, z)/(2r) to be a C2-function)
and substitute − ∫

Ω
|∇u|2md(x, y, z) from the previous integral identity into (15).

The calculation of ∆m uses the fact that krr + kzz = 0 and gives

∆m = − 1
2r2

(
kr − k

r

)
.

Altogether we have

1
2

∫
ΓD

|∇u|2(k(r, z)r + l(r, z)z) dσ

+
∫

ΓN

−
(
kr(r, 0) +

k(r, 0)
r

)
G(u) +

k(r, 0)
2r

g(u)u+
1
2
u2 kz(r, 0)

2r
d(x, y)

=
∫

Ω

(
2kr +

k

r

)
F (u) − k

2r
f(u)u+

u2

4r2

(
kr − k

r

)
d(x, y, z),
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and if we insert f(u) = λu, g(u) = u3 then we finally obtain

1
2

∫
ΓD

|∇u|2(k(r, z)r + l(r, z)z) dσ

+
∫

ΓN

(
−kr(r, 0) +

k(r, 0)
r

)
u4

4
+
u2

4
kz(r, 0)

r
d(x, y)

=
∫

Ω

(
4λkr +

kr
r2

− k

r3

)
u2

4
d(x, y, z).

In order to obtain non-existence of positive solutions the following set of conditions
needs to be satisfied

(i) kr ≤ k
r on ΓN , (iv) k(r, z)r + l(r, z)z ≥ 0 on ΓD,

(ii) kz ≥ 0 on ΓN , (v) kr(4λ+ r−2) ≤ kr−3 in Ω,
(iii) l(r, 0) = 0 on ΓN , (vi) 1

r k(r, z) ∈ C2(Ω),

where (iii) stems from the condition h(x) · ν(x) = 0 on ΓN in Lemma 8. In the
next step we need to decide on the choice of the holomorphic function p(w) =
k(r, z)+ il(r, z) with w = r+ iz. If we choose p(w) = w, then we have only created
the vector-field h(x, y, z) = (x, y, z) and we obtain non-existence only for λ ≤ 0.
A more successful choice is p(w) = w − αw3, where α is determined a-posteriori.
This leads to k(r, z) = r − αr3 + 3αrz2 and l(r, z) = z − 3αr2z + αz3 and we
immediately see that (ii), (iii) and (vi) are fulfilled. Condition (v) is equivalent to

(1 + 3α(z2 − r2))λ ≤ α/2 for 0 < r < 1 and 0 < z <
√

1 − r2,

which shows that α must be positive (take z = r = 1/
√

2). Since z2 ≤ 1 − r2 a
necessary and sufficient condition for (v) is (1 + 3α(1 − 2r2))λ ≤ α/2. The left
hand side takes its maximum at r = 0 and hence we need to require that

λ ≤ α

2 + 6α
for α > 0. (16)

Due to the positivity of α we find that (i) is also fulfilled and it remains to inves-
tigate (iv) on ΓD, were z =

√
1 − r2. Thus, (iv) takes the form 1 + α − 2αr2 ≥ 0

for 0 ≤ r ≤ 1. By monotonicity in r this only needs to be checked at r = 1,
which leads to the restriction 0 < α ≤ 1. Hence α = 1 in (16) gives us the largest
non-existence interval λ ∈ (0, 1/8). �

Remark. The larger non-existence interval λ ∈ (0, 0.772) was obtained by choosing
the holomorphic function p(w) = sin(αw), where α is determined a-posteriori as
π − 0.097.

5 Properties of uλ for λ → 0

Proposition 11. Let ω be a bounded star-shaped domain where γN ⊂ ∂R
n
+ is flat.

If n ≥ 4 and uλ is any sequence of solutions of (Pλ) with λ → 0 then necessarily
‖u‖∞,ω → ∞ as λ→ 0.
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Proof. If ‖uλ‖∞,ω stays bounded we may extract a subsequence uλ which converges
in W 1,2(ω) to a weak solution u of (P0). By the Pohožaev-type non-existence result
and in particular the remark following Corollary 9 it follows that u ≡ 0. However,
near u ≡ 0 the linearization of (Pλ) has a bounded inverse. Hence the uniqueness
part of the implicit function theorem shows that it is impossible for nontrivial
solutions uλ to approach the trivial solution in the W 1,2(ω)-norm as λ → 0.
Therefore ‖uλ‖∞,ω must become unbounded as λ→ 0. �

Proposition 12. Let Ω = B+
1 (0).

(i) If uλ is any sequence of solutions of (Pλ) then, for the entire sequence,
‖uλ‖q,ΓN is uniformly bounded in λ for all q ≤ n

n−2 .

(ii) Let ε > 0. On ΓN,ε = {x′ ∈ R
n−1 : ε < |x′| ≤ 1} and on Ωε = {x ∈ R

n : ε <
|x| ≤ 1} we have that ‖uλ‖∞,ΓN,ε and ‖uλ‖∞,Ωε are uniformly bounded in λ.

Proof. (i) Let λs, φs be the first Steklov eigenvalue and positive eigenfunction of

∆φ = 0 in Ω,
∂φ

∂ν
= λsφ on ΓN , φ = 0 on ΓD.

By testing (Pλ) with φs we obtain∫
ΓN

φsu
n

n−2
λ dx′ =

∫
Ω

(∇uλ∇φs − λuλφs) dx

≤
∫

Ω

∇uλ∇φs dx = λs

∫
ΓN

uλφs dx
′.

After using Hölder’s inequality this implies that
∫
ΓN

φsu
n

n−2
λ dx′ ≤ K uniformly

in λ. Since uλ(x′, 0) is monotone decreasing as a function of |x′| by Lemma 7, we
obtain the full result

∫
ΓN

u
n

n−2
λ dx′ ≤ K uniformly in λ.

(ii) By (i) we find the following estimate

K ≥
∫

ΓN

φsu
n

n−2
λ dx′ ≥

∫
|x′|≤ε

φsu
n

n−2
λ dx′ ≥ Kε‖uλ‖

n
n−2
∞,ΓN,ε

,

where in the last step we have used the monotonicity result uλ(x′, 0) ≥ uλ(ξ′, 0)
for |x′| ≤ ε ≤ |ξ′| ≤ 1. This establishes the claim for ‖uλ‖∞,ΓN,ε . The estimate for
‖uλ‖∞,Ωε follows in the set Ω̃ε = {(x′, xn) ∈ Ω : x′ ∈ ΓN,ε} by monotonicity in the
xn-direction from the estimate on ΓN,ε. The estimate in the remaining parts of
Ωε follows by Harnack’s inequality and in a neighborhood of the pole (0, . . . , 0, 1)
again by monotonicity in the xn-direction. �

Remark. Part (i) of the Proposition holds for any bounded domain ω with γN flat
and γD ∈ C2. To show this, the simple monotonicity argument in our proof for
B+

1 (0) has to be replaced by a more refined monotonicity argument based on the
Kelvin transform as in de Figueiredo et al. [4], Section 1.2.
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