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Abstract

The class of H-matrices allows an approximate matrix arithmetic with almost linear complexity.
In the present paper, we apply the H-matrix technique combined with the Kronecker tensor-product
approximation (cf. [2, 20]) to represent the inverse of a discrete elliptic operator in a hypercube (0, 1)d

∈

R
d in the case of a high spatial dimension d. In this data-sparse format, we also represent the operator

exponential, the fractional power of an elliptic operator as well as the solution operator of the matrix
Lyapunov-Sylvester equation. The complexity of our approximations can be estimated by O(dn logq n),
where N = nd is the discrete problem size.
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1 Introduction

There are several sparse N ×N -matrix approximations which allow to construct optimal solution methods
for elliptic/parabolic boundary value problems with O(N) arithmetic operations. In many applications, one
has to deal with full matrices arising from boundary element discretisations (BEM) or FEM methods. In
the latter case the inverse of a sparse FEM matrix is a full matrix.

A class of hierarchical (H) matrices has been introduced and developed in [15]-[19], [11]. These structured
matrices allow an approximate matrix arithmetic (including the computation of the inverse) of almost linear
complexity and can be considered as data-sparse. Given an elliptic operator A, it is of important theoretical
and practical interest to find H-matrix approximations of the operator exponential exp(tA), of sinh(t

√
A) and

of cos(t
√
A), which represent the solution operators for evolution differential equations of parabolic, elliptic

and hyperbolic types, respectively. Another interesting example of an operator-valued function is given by
sign(A) that arises in many-particle simulations, control theory and linear algebra. Data-sparse (H)-matrix
approximations of almost linear complexity in N based on the efficient Sinc-quadrature for the Dunford-
Cauchy integral representation to the above mentioned operator-valued functions have been developed in
[7]-[9]. Note that generalised Gaussian quadratures for certain improper integrals were described in [27].
The basic approximation theory by exponential sums is presented in [3].

There are important applications requiring computations in higher spatial dimensions, where the problem
size may grow exponentially in d, i.e., N = O(nd). In particular, we mention the many-particle Schrödinger
equation in quantum chemistry and material sciences, the Black-Scholes equation describing option pricing
problems in financial models as well as multi-dimensional data mining problems. We stress that due to the
“curse of dimensionality”, in the case of higher dimensions linear complexity O(N) is not satisfactory, hence
we are looking for efficient methods with a cost O(dnp logq n), with p, q independent of d. A desirable cost
would be a clearly sublinear cost like O(dn logq n) (i.e., p = 1).

The approximability of integral operators in higher dimensions using the so-called hierarchical Kronecker
tensor-product format (abbreviation: HKT format) is proven in [20]. Therein, also numerical experiments
indicating exponential convergence of the HKT approximation to the inverse of an elliptic operator were
presented. Moreover, the efficiency of the corresponding matrix algebra involving tensor-product vector
representation was also addressed (see also [26] for tensor representation of function generated matrices).
In paper [2] the idea was described on how the inverse to the multi-dimensional Laplace operator ∆ can
be approximated in the Kronecker tensor-product format using an integral representation to (−∆)−1 that
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includes the operator exponential exp(t∆) (cf. (5.1)). However, both the theoretical analysis and numerical
tests are missing there. Computational aspects of a low Kronecker-rank approximation to the solution of a
tensor system with tensor right-hand side were considered in [10]. The HKT approximation to the matrix-
valued functions A−1 and sign(A) for indefinite matrices A representing the discrete elliptic operators is
addressed in [18].

In the present paper we construct and analyse an HKT approximation to A−1 and to exp(−tA) in
higher dimensions d for the general class of strongly positive operators A in Rd, defined as a sum of
low-dimensional commutative operators. Combining the tensor-product representation that includes one-
dimensional operators and then approximating the latter in the H-format, we arrive at the complexity
O(dN1/d logqN1/d) = O(dn logq n). Finally, we develop the data-sparse HKT approximation to fractional
powers A−σ (σ > 0) of an elliptic operator as well as to the solution operator of the matrix Lyapunov-
Sylvester equation. In the case of discrete elliptic operators we provide a unified construction of the approx-
imate inverse to a family of matrices provided that the spectrum of the corresponding matrix family lies in
a fixed sector in the right half-plane.

Note that our approach represents the (approximate) inverse of the finite difference or finite element
approximations to A−1 on a hypercube and, hence, it can be interpreted as an extension of the widely used
Fast Fourier Transform (FFT). In fact, contrary to the FFT, the presented method applies to non-uniform
tensor-product grids and to variable equation coefficients.

2 Preliminaries

In the following, we use the notation A,B, ... for operators and A,B, ... for matrices.

2.1 Excursus to the approximation theory

Practically relevant methods approximating functions in higher dimensions are usually based on some kind
of separation of variables. One may try to approximate a multi-variate function F : Rd → R, d ≥ 2, in the
form

Fr(x1, ..., xd) :=

r∑

k=1

Φ1
k(x1) · · ·Φdk(xd) ≈ F, (2.1)

where the set of functions {Φlk(xl)} can be fixed or chosen adaptively (cf. discussion in [2]). Here the key
quantity is r, which is usually called the separation rank and which should be reasonably small. One expects
the approximation error to tend to zero as r → ∞, but the crucial question is how r depends on the required
approximation accuracy.

Let ε > 0 be the required approximation accuracy. In the case of globally analytic data, the classical
polynomial approximation by interpolation at tensor-product Chebyshev nodes implies

r = O
(
(log | log ε|)d−1| log ε|d−1

)
, (2.2)

where the low-order factor O((log | log ε|)d−1) appears because of the bound O(log | log ε|) on the Lebesque
constant due to the tensor-product interpolation (cf. [17], [21, Thm. 4.1]). The above mentioned estimates
are based on the standard results for the best polynomial approximation of analytic functions. Let I0 :=
[−1, 1]

d
and let E1

r ⊂ C be the interior of the ellipse with focal points ±1 such that the sum of semi-axes
equals r > 1. We set Er := E1

r1 × ... × E1
rd

. Let A(Er, I0;M) be the subset of those continuous functions
on I0 which can be extended analytically into Er and are bounded there by the positive constant M . In
opposite to the one-dimensional construction in the multi-dimensional case there are various possibilities to
choose the polynomial space πm. One can use, for example,

P (x) =
∑

0≤k≤m−1

akx
k ∈ πm, x ∈ I0 ⊂ R

d,

with the multi-index notation k = (k1, ..., kd), m = (m1, ...,md), m − 1 = (m1 − 1, ...,md − 1), xk =
xk11 · · ·xkd

d , where 0 ≤ k ≤ m − 1 means the component-wise inequalities 0 ≤ kj ≤ mj − 1 (j = 1, ..., d).

The dimension of πm is N = dimπm =
∏d
j=1mj . Given a function f(x) ∈ A(Er, I0;M), choosing N
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points x(1), ...,x(N) lying on a m1 × ... ×md tensor-product grid in I0, we want to determine a polynomial
P (x(j)) = P (x(j), f) – the interpolation polynomial – satisfying

P (x(j), f) = f(x(j)), j = 1, ..., N.

These conditions define the projector P : C(I0) → L, P : f → P (·, f). It is known (see, e.g., [17]) that for
m1 = · · · = md = m there exists a constant C independent of n such that

‖f(x) − P (x(j))‖∞ ≤ C(logm)dr−m

for some r > 1. Thus, in order to arrive at a given tolerance ε, we require m = O ((log | log ε|)| log ε|), i.e.,
one needs at least

Nε = O
(
(log | log ε|)d| log ε|d

)

parameters. Obviously, one can apply interpolation algorithms to achieve these optimal characteristics for
the separable approximation (2.1). The constructions of such algorithms for analytic data that represent
certain operator-valued functions is one of the aims of this paper.

For more general classes of multi-variate functions one obtains much worse complexity estimates. Let
X = W r

p (M ; I) with M = (M1, ...,Md) and r = (r1, ..., rd) be the class of anisotropic Sobolev spaces defined

on the d-dimensional interval I =
∏d
j=1[aj , bj] possessing generalised xj-derivatives of order rj which are

bounded by the constantsMj with respect to the Chebyshev norm ‖·‖∞. The important characteristics of this

function class are the effective class smoothness ρ = 1/(
∑d
j=1 r

−1
j ) and the class constant µ =

∏d
j=1M

ρ/rj

j

(cf. [1, p. 81]). It is known (cf. [1, p. 232]) that for this class we need

N (opt)
ε ≍ const(µ) · ε−1/ (ρ− 1/p)

parameters in order to approximate an arbitrary function of this class with a given tolerance ε. Note that

N
(opt)
ε grows exponentially as d→ ∞. This phenomenon is known as the “curse of dimensionality”.

The familiar hyperbolic-cross approximation (cf. [25, 13]) allows to get rid of this phenomenon. It applies
to the class of functions with higher mixed derivatives and leads to a complexity r = O(n logd−1 n).

On the level of operators (matrices) we distinguish the following structure. Given a matrix A ∈ CN×N

of order N = nd, we try to approximate A by a matrix Ar of the form

Ar =
r∑

k=1

V 1
k ⊗ · · · ⊗ V dk ≈ A, (2.3)

where the V ℓk are n×n-matrices and ⊗ denotes the Kronecker product operation. Now the crucial parameter
is r, called the Kronecker rank (cf. [20]). Very little is known about the approximability of nonlocal operators
(e.g., integral and pseudo-differential operators, operator-valued functions) by the Kronecker tensor-product
ansatz (2.3). The HKT approximation to the integral operators with asymptotically smooth kernel was
introduced in [20], tensor approximations of some function-related matrices have been addressed in [26].

The main result of the present paper is a proof for the existence of tensor product approximations to
exp(−tA), A−σ (σ > 0) and the Lyapunov-Sylvester solution operator, in the form (2.3) with a Kronecker
rank r = O(| log ε|2) independent of d (cf. (2.2)). Furthermore, we provide a constructive algorithm producing
Ar in the HKT form (cf. [20]), where each Kronecker factor V ℓk is given in the H-matrix format with
complexity O(n log4 n). This leads to an overall cost O(dn log4 n| log ε|2) to compute the discrete elliptic
inverse A−1. Note that the dimension d appears as a factor but not in the exponent.

2.2 Strongly positive operators

The following notation is commonly used in operator theory. A densely defined closed linear operator A
with the domain D(A) in a Banach space X , with the spectral set σ(A), the resolvent set ρ(A) and the
numerical range ν(A) is said to be of type (θ,M) for θ ∈ (0, π/2) and M ≥ 1, if C\Σθ ⊂ ρ(A),

‖(zI −A)−1‖ ≤ M

|z| for ℜe z < 0,

‖(zI −A)−1‖ ≤ Mǫ

|z| for θ + ǫ ≤ | arg z| ≤ π with ǫ > 0,
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where Σθ = {z ∈ C : 0 ≤ | arg z| ≤ θ} for θ ∈ (0, π/2) (cf. [5, p. 6]). In what follows, we suppose that zero
belongs to the resolvent set of A. By L(X), we denote the space of bounded linear operators in a Banach
space X .

Let aij(x) = aji(x), bj(x), c(x) be real valued smooth functions on Ω ∈ Rd and suppose uniform ellipticity,

ℜe
d∑

i,j=1

aij(x)ξiξj ≥ σ|ξ|2 for ξ = (ξ1, ..., ξd) ∈ R
d and x ∈ Ω

with a constant σ > 0. Given

A = −
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
+

d∑

j=1

bj(x)
∂

∂xj
+ c(x)

with X = L2(Ω), the associated bilinear form reads

a(u, v) =

∫

Ω

{ d∑

i,j=1

aij(x)
∂u

∂xj

∂v

∂xi
+

d∑

j=1

bj(x)
∂u

∂xj
v + c(x)uv

}
dx

with V = H1
0 (Ω). The bilinear form a : V × V → R is continuous and it is assumed to be V -elliptic:

|a(u, v)| ≤ C‖u‖V ‖v‖V , ℜe a(v, v) ≥ δ0‖v‖2
V , δ0 > 0,

and the corresponding elliptic operator A satisfies

‖(zI −A)−1‖X←X ≤ 1

|z| sin(θ1 − θ)
for all z ∈ C with θ1 ≤ | arg z| ≤ π, (2.4)

for any θ1 ∈ (θ, π), where cos θ = δ0/C.
Note that operators of type (θ,M) are also called strongly positive with the spectral angle θ ∈ (0, π/2)

(see, e.g., [6] and the references therein).
In the case of discrete elliptic operators (say, A is the FEM stiffness matrix corresponding to a) the

bound (2.4) on the matrix resolvent is valid uniformly in the mesh-size h (cf. Example 4.3).

3 Exponentially convergent quadrature rules

In the following, our low Kronecker rank tensor-product approximations are based on efficient quadratures
for the arising improper integrals on R := (−∞,∞). Quadrature rules with an exponentially convergent
rate can be based on the so-called Sinc-quadrature formulae from [24]. We consider the integral

I(F) =

∫

ω

F(x)dx (ω = R or ω = R+) , (3.1)

under different assumptions on the integrand F : ω → L(X). The quadratures discussed below can be
applied, in particular, to operator- or matrix-valued functions of a strongly positive elliptic operator A.

Let ω = R. We introduce the family H1(Dδ) of all operator-valued functions of strongly positive oper-
ators, which are analytic in Dδ := {z ∈ C : |ℑmz| ≤ δ}, 0 < δ < π, such that for each F ∈ H1(Dδ) there
holds ‖F‖H1(Dδ) <∞ with

‖F‖H1(Dδ) :=

∫

∂Dδ

‖F(z)‖|dz|.

3.1 Standard Sinc quadrature

Given F ∈ H1(Dδ), h > 0, and M ∈ N, we use the notations

T (F , h) = h

∞∑

k=−∞
F(kh), TM (F, h) = h

M∑

k=−M
F(kh), (3.2)

η(F , h) = I(F) − T (F , h), ηM (F , h) = I(F) − TM (F , h).
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In the case ω = R, the error estimate of ηM is as follows (cf. [24]). If

‖F(ξ)‖ ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0, (3.3)

then the error ηM from (3.2) satisfies

‖ηM (F , h)‖ ≤ C

[
e−2πδ/h

1 − e−2πδ/h
‖F‖H1(Dδ) +

1

b
exp(−bhM)

]
. (3.4)

The choice h =
√

2πδ/M leads to the exponential convergence rate

‖ηM (F , h)‖ ≤ Ce−
√

2πδM (3.5)

with a positive constant C independent of M (cf. [24, 8, 9]). Note that 2M + 1 is the number of quadrature
points. If F is even function, the number of quadrature points reduces to M + 1.

In the case of integrals defined on R+ one has to substitute the corresponding integral by ξ = ϕ(z) with a
bijection ϕ : R → R+. This changes F into the integrand F1 := ϕ′ · (F ◦ ϕ) over R. Assuming F1 ∈ H1(Dδ),
one can apply (3.3)-(3.5) to the transformed function. For the respective families of operator-valued functions

on R+, the domain of analyticity Dδ will be substituted by D
(1)
δ or D

(2)
δ , specified in the examples below.

3.1.1 Example 1: Polynomial decay

Let us set ω = R+ and assume the following two conditions (cf. [24, p. 193]):

(i) the integrand F can be analytically extended from the real half-axis into the sector

D
(1)
δ = {z ∈ C : | arg(z)| < δ} for some 0 < δ < π, (3.6)

(ii) F satisfies the inequality

‖F(z)‖ ≤ c|z|α−1(1 + |z|)−α−β for some 0 < α, β ≤ 1 and all z ∈ D
(1)
δ . (3.7)

For the ease of exposition we consider only the case α = 1. Choosing m ∈ N and taking

h(1) =
√

2πδ/(βm), (3.8)

we define the corresponding quadrature rule

I
(1)
M (F) = h(1)

M∑

k=−βM
κ

(1)
k F(z

(1)
k ), z

(1)
k = ekh

(1)

, κ
(1)
k = ekh

(1)

, (3.9)

possessing the exponential convergence rate
∥∥∥I(F) − I

(1)
M (F)

∥∥∥ ≤ Ce−
√

2πδβM (3.10)

with a positive constant C independent of M . Note that in the case β = 1, the bound (3.10) coincides with
the standard estimate (3.5).

3.1.2 Example 2: Exponential decay

Let us set ω = R+ and assume that the integrand F in (3.1) can be analytically extended into the “bullet-

shaped” domain D
(2)
δ = {z ∈ C : | arg(sinh z)| < δ} for some δ ∈ (0, π), and that F satisfies

‖F(z)‖ ≤ C

( |z|
1 + |z|

)α−1

e−βℜe z in D
(2)
δ with α, β ∈ (0, 1].

Again we set α = 1. Then choosing h(2) = h(1), we obtain the quadrature rule

I(2)
m (F) = h(2)

M∑

k=−βM
κ

(2)
k F(z

(2)
k ), z

(2)
k = log[ekh

(2)

+
√

1 + e2kh(2) ], κ
(2)
k = 1 + e−2kh(2)

(3.11)

possessing again the exponential convergence rate (3.10).
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3.2 Improved quadratures in the case of hyper-exponential decay

In this section, we construct a new Sinc-quadrature rule for the integral (3.1) defined on R with the operator-
valued function F of a strongly positive operator. This quadrature is similar to that one in [9] and converges
faster than (3.5).

Adapting the ideas of [24, 9], one can prove the following approximation results for functions from
H1(Dδ), describing the accuracy of T (F , h) and TM (F , h) (cf. Lemma 2.4 in [9]).

Lemma 3.1 For any operator valued function F ∈ H1(Dδ), there holds

‖η(F , h)‖ ≤ e−πδ/h

2 sinh(πδ/h)
‖F‖H1(Dδ). (3.12)

If, in addition, f satisfies the condition

‖F(ξ)‖ ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0, (3.13)

then the error ηM of the quadrature TM (F , h) satisfies

‖ηM (F , h)‖ ≤ C

[
e−2πδ/h

1 − e−2πδ/h
‖F‖H1(Dδ) +

1

ab
exp(−beahM)

]
(3.14)

with the parameter δ from H1(Dδ).

Proof. The bound (3.12) is proven in [8]. The assumption (3.13) now implies

‖ηM (F , h)‖ ≤ ‖η(F , h)‖ + h
∑

|k|>M
‖F(kh)‖

≤ exp(−πδ/h)
2 sinh(πδ/h)

‖F‖H1(Dδ) + c h
∑

k: |k|>M
exp(−bea|kh|). (3.15)

For the last sum we use the simple estimate to obtain

∑

k: |k|>M
exp(−bea|kh|) = 2

∞∑

k=M+1

exp(−bea|kh|)

≤ 2

∫ ∞

M

exp(−bea|xh|)dx =
2

abh
exp(−beahM). (3.16)

Now (3.15) and (3.16) imply (3.14) completing the proof.

Due to Lemma 3.1, we can improve the asymptotical convergence of the above quadratures for the integral

(3.1) in the case ω = R. Let D
(3)
δ be the domain

D
(3)
δ :=

{
z = u+ iv :

v2

sin2 δ
− u2

cos2 δ
≤ 1

}
,

where 0 < δ < π/2 (see Figure 3.1). Returning to the integral (3.1), we can change the variables by
z = sinhw and obtain the integral

I(F) =

∫

R

F(z)dz =

∫

R

F̃(w)dw

with the integrand F̃(w) = coshwF(sinhw). Under the assumption that F(z) satisfies (3.3), and that it

can be analytically extended into the domain D
(3)
δ , we conclude that the new integrand F̃(w) possesses a

hyper-exponential decay (3.13) and can be analytically extended into the domain Dδ. Now assuming that
F̃ ∈ H1(Dδ), we arrive at the situation of Lemma 3.1 and get the following quadrature rule for (3.1):

I
(3)
M (F) = h(3)

M∑

k=−M
κ(3)F(z

(3)
k ), (3.17)
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0

d

d

D
d
(3)

Figure 3.1: The analyticity domain D
(3)
δ .

where, with some fixed constant Cint > 0,

h(3) = Cint
logM

M
, κ(3) = cosh(wk), wk = kh(3), z

(3)
k = sinhw

(3)
k .

Due to Lemma 3.1 (cf. (3.4)), there are some positive constants C, s such that
∥∥∥I(F) − I

(3)
M (F)

∥∥∥ ≤ Ce−sM/(logM). (3.18)

3.3 Numerics I

To complete this section, we present numerical results characterising the exponential convergence of the
quadrature rules (3.9) and (3.11). We compute the integral

1

r
=

∫ ∞

0

e−rtdt, r > 0. (3.19)

The table below represents the error of I
(2)
m (F) from (3.11), where m is the parameter from (3.8).

Quadrature (3.11), r = 1.0
m 4 9 16 25 36 49 64
ε 2.610-3 6.010-5 1.310-6 1.810-8 3.910-10 5.410-11 3.610-12

The next table shows the error of quadrature I
(1)
m (F) from (3.9) applied to the above integral.

Quadrature (3.9), r = 1.0
m 4 9 16 25 36 49 64
ε 1.310-2 6.710-4 5.110-5 6.710-7 1.010-7 6.410-10 1.810-10

The last table shows the dependence of m (necessary to achieve the accuracy ε ≤ 4.010 − 7) with respect
to the parameter β from §3.7 in the case of quadrature (3.9). Here a small β > 0 corresponds to a small
parameter r in the exponent in the right-hand side of (3.19).

Quadrature (3.9), accuracy ε ≤ 4.0 · 10−7

r 1.0 10−1 10−2 10−3 10−4 10−5 10−6

m 36 81 121 169 200 280 440

3.4 Numerics II

We present numerical results for the quadrature rule (3.17) applied to F (u) = e−r
2u2

. We confirm exponential
convergence of the quadrature (3.20), namely

h

M∑

k=−M
cosh(kh)F (sinh(kh)) ≈

∫

R

F (u)du =

∫

R

cosh(w)F (sinh(w))dw, (3.20)
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approximating the Gauss integral
1

r
=

1√
π

∫

R

e−r
2t2dt. (3.21)

This integral is commonly used in quantum chemistry calculations as well for representation of certain matrix
valued functions. Clearly, in a certain range [R1, R2] of r (R1 < 1 < R2), the function cosh(w)F (sinh(w))
satisfies all conditions of Lemma 3.1. Thus, we choose h = Cint

logM
M and obtain fast exponential convergence

O(e−cM/ logM ) for r ∈ [R1, R2].

Quadrature (3.20) for (3.21), r = 1.0
M 4 9 16 25 36
ε 1.110-4 1.510-6 2.310-9 2.010-12 < 1.010-15

Figure 3.2 represents the convergence history for (3.20) corresponding to the choice r = 1 and Cint = 1.0.
This quadrature shows a similar convergence in the interval r ∈ [0.2, 10], i.e., in this case R2/R1 ≈ Q = 50.
An application of this quadrature for a larger range [Rmin, Rmax] requires piecewise quadrature using a
rescaling of r in each subinterval., thus, in general, we need about pM quadrature points, where Qp ≈
Rmax/Rmin (cf. [18] for a quadrature, which is robust with respect to the condition number Rmax/Rmin).

2 4 6 8 10 12 14 16 18 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

M − number of quadrature points

er
ro

r

F = exp(−r2 t2), r=1.0, C
int

=1.0

Figure 3.2: Approximation to the integral (3.21)

The following table shows the quadrature error of (3.9) applied to the integral (3.21) with r = 0.1.

Quadrature (3.9), r = 0.1
M 4 9 16 25 36 49 64
ε 6.210-2 1.810-3 2.810-4 1.510-5 3.710-7 2.010-9 1.310-10

In the second example, we set F (u) := eu−re
u

in (3.20), which applies to the integral

1

r
=

∫

R

eu−re
u

du, (3.22)

obtained from (3.19) by the substitution t = eu, u ∈ R. Here we choose h = Cint
logM
M with Cint = 1.35.

Quadrature (3.20) for (3.22), r = 1.0
M 4 9 16 25 36 49 64
ε 1.610-2 1.010-5 2.68-6 4.110-9 2.710-11 2.110-12 5.210-14

Figure 3.3 illustrates exponential convergence (we use a semi-logarithmic scale), though the theoretical
analysis does not imply the desired estimate. The above quadrature converges faster than (3.11), however,
the convergence rate strongly deteriorates if Rmax/Rmin increases. The robust quadrature for the integral
(3.19) is presented in [18].
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Figure 3.3: Quadrature (3.20) for the integral (3.22), r = 1.0, with different Cint.

4 Tensor-product approximation to exp(−tA)

4.1 Approximation to exp(−tA) by a sum of few resolvents

It was shown in [22, p. 30] that each operator exponential e−tA with t ∈ [0,∞) (belonging to the semi-group
{e−tA}t≥0 generated by a strongly positive operator A) can be represented by the Dunford-Cauchy integral

T (t;A) := e−tA =
1

2πi

∫

Γ

e−tz(zI −A)−1dz

=
1

2πi

∫

Γ+

e−tz(zI −A)−1dz +
1

2πi

∫

Γ−

e−tz(zI −A)−1dz,

where Γ = Γ+ + Γ− is a curve in the resolvent set with the ray Γ+ = {z : z = ρeiθ1 , ρ ∈ (0,∞)} running
from ∞eθ1 to 0 and the ray Γ− = {z : z = ρe−iθ1 , ρ ∈ (0,∞)} running from 0 to ∞e−θ1. This leads to the
representation

T (t;A) =
1

2πi

∞∫

0

F (t, ρ)dρ, (4.1)

where F = −eiθ1F1 + e−iθ1F2 with

F1(t, ρ) = e−tρ(cos θ1+i sin θ1)(ρeiθ1I −A)−1,

F2(t, ρ) = e−tρ(cos θ1−i sin θ1)(ρe−iθ1I −A)−1.

We choose θ2 > 0 such that θ1 + θ2 < π/2 and θ1 − θ2 > θ. Considering ρ = |ρ|eiφ, |φ| < θ2, as a complex
variable, one can easily see that the integral can be extended analytically into the sector

Σθ2 = {ρ = |ρ|eiφ : |ρ| ∈ (0,∞), φ ∈ (−θ2, θ2)},

and the following estimates hold in Σθ2 :

‖F1(t, ρ)‖ = ‖e−t|ρ|ei(φ+θ1)

(|ρ|ei(φ+θ1)I −A)−1‖
≤ e−t|ρ| cos (φ+θ1)(1 + |ρ|)−1 ≤ e−t|ρ| cos (θ2+θ1)(1 + |ρ|)−1,

‖F2(t, ρ)‖ = ‖e−t|ρ|ei(φ−θ1)

(|ρ|ei(φ−θ1I −A)−1‖ ≤ e−t|ρ| cos (θ2+θ1)(1 + |ρ|)−1.

Thus, the integrand in (4.1) can be analytically extended into the sector D
(1)
δ from [24, p. 68] (see also (3.6))

with δ = θ2 and in this region the estimate (3.7) holds with α = β = 1. This means that we can apply the
quadrature rule (3.9) with h(1) =

√
2πδ/M to derive

I(t) ≈ I
(1)
M (t) =

h(1)

2πi

M∑

k=−M
κ

(1)
k F (t, z

(1)
k ), κ

(1)
k = ekh

(1)

, z
(1)
k = ekh

(1)

, (4.2)
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which possesses the accuracy O(e−
√

2πδM ). The formulae

T (t;A) ≈ T
(1)
M (t;A) = I

(1)
M (t) ≡

M∑

k=−M

[
κ

(1)
k,1(t)(ζ

(1)
k,1I −A)−1 + κ

(1)
k,2(t)(ζ

(1)
k,2I −A)−1

]
(4.3)

with

κ
(1)
k,1(t) = −e

iθ1h(1)

2πi
e−te

kh(1)
(cos θ1+i sin θ1)ekh

(1)

, κ
(1)
k,2(t) =

e−iθ1h

2πi
e−te

kh(1)
(cos θ1−i sin θ1)ekh

(1)

,

ζ
(1)
k,1 = ekh

(1)

eiθ1 , ζ
(1)
k,2 = ekh

(1)

e−iθ1 ,

and I
(1)
M (t) computed according to (4.2) represents new exponentially convergent algorithms for the operator

exponential of a strongly positive operator with the accuracy e−s
√
M , where the constant s depends on the

spectral characteristics of A.
Due to Lemma 3.1, we can improve the asymptotical convergence of the above quadratures to the better

estimate (3.18). Let us defines the so-called spectral curve

ΓS = {z = ξ + iη : ξ = apη
2 + bp}, (4.4)

containing the spectrum sp(A) of the operator A.

Lemma 4.1 ([9]) Let the spectral curve for A be ΓS defined by (4.4). Choose the (integration) curve
ΓI = {z = ξ + iη : ξ = ae cosh (s) , η = be sinh s} with ae, be such that ΓI envelops ΓS. Then the operator
exponential T (t;A) = e−tA can be represented by the Dunford-Cauchy integral

T (t;A) =
1

2πi

∫

ΓI

e−zt(zI −A)−1dz =

∫

R

F1(s, t)ds,

where the integrand

F1(s, t) = − 1

2πi
e−ztz′(s)(zI −A)−1,

z = ae cosh (s) + ibe sinh (s) , z′(s) = ae sinh (s) + ibe cosh (s) , s ∈ R,
(4.5)

can be estimated on the real axis by

‖F1(η, t)‖ ≤M1e
−t
√
a2

e+b2e| sinh s| for s ∈ R

with some positive constant M1. Moreover, F1(·, t) can be analytically extended into the strip Dδ of the width
δ > 0 and belongs to the class H1(Dδ) (even to the suitably defined spaces Hp(Dδ) for all p ∈ [1,∞]).

The operator exponential T (t;A) is represented as integral according to Lemma 4.1. Applying the
quadrature rule TM (cf. (3.2)) to the operator valued function F1(η, t) given by (4.5), we obtain for the
operator family {I(t) ≡ T (t;A) : t > 0} (cf. (3.1)) that

I(t) ≈ TM (F1, h) = h

M∑

k=−M
F1(kh, t). (4.6)

The error analysis is due to Lemma 4.1: set h = logM
M , then (cf. Theorem 2.5 in [9])

‖T (t,A) − TM (t,A)‖ .
1

t
√
a2
e + b2e

(e−2πδM/ logM + e−t
√
a2

e+b2eM ).

We see that for fixed t > 0, the error of this quadrature becomes O(e−cM/ logM ).
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4.2 Tensor-product representation of exp(−tA) in Rd

Let A =
∑d

j=1 Aj be a strongly positive operator, where Aj are mutually commutative, strongly positive
operators with the respective spectral sectors Sj . Then we introduce the tensor-product approximant

T (t;A) =
d∏

j=1

T (t;Aj) =
d∏

j=1

e−tAj ≈ Tm(t) = Tm(t;A) =
d∏

j=1

Tmj
(t;Aj), (4.7)

where each of the operator exponentials Tmj
(t;Aj) can be computed by the algorithm (4.3) or (4.6). Here

we use the notations m = (m1, . . . ,md). We denote by mj the quadrature parameter in the quadratures
above. For simplicity, we consider only the case m = (m, . . . ,m) with fixed mj = m.

Lemma 4.2 For any fixed t > 0, the approximation error by (4.7) satisfies

‖e−tA − Tm(t;A)‖ ≤ Cde−sM , (4.8)

where M =
√
m in the case of (4.3) and M = m/ logm in the case of (4.6), and where C and s depend

neither on d nor on m.

Proof. Representing the error by a chain sum, we arrive at the estimate (say in the case (4.3))

‖e−tA − Tm(t;A)‖ = ‖[e−tA1 − Tm]e−tA2 · · · e−tAd + Tm(t)[e−tA2 − Tm(t)]e−tA3 · · · e−tAd

+ . . .+ Tm(t) · · ·Tm(t)[e−tAd − Tm(t)]‖
≤ Cde−s

√
m

providing an error bound (4.8) with C, s being independent of d, m.

To represent the operator exponential with small t > 0, in the following proposition we use an approx-
imation to the weighted exponential Tσ(t) = Tσ(t;A) := A−σe−tA, t ≥ 0, σ > 1, which guarantees an
exponential convergence rate for all t ≥ 0.

Proposition 4.3 ([9]) a) Let ε > 0 be given. In order to obtain ‖Tσ(t) − Tσ,M (t)‖ . ε uniformly with
respect to t ≥ 0, choose

M = O(| log ε|2), h =
√
πδ/[σM ],

zk = z(kh) = ξ(kh) + iψ(kh) (k = −M, . . . ,M),

ξ(s) = ae cosh s, ψ(s) = be sinh s,

γσ,k(t) = z−σk e−zkt
h

2πi
z′(kh).

Then Tσ,M (t) is a linear combination of 2M + 1 resolvents with scalar weights depending on t :

Tσ,M (t) =
M∑

k=−M
γσ,k(t)(zkI −A)−1,

so that the computation of Tσ,M (t) requires 2M + 1 = O(| log ε|2) evaluations of the resolvents (zkI −A)−1,
k = −M, . . . ,M.

c) The evaluations (or approximations) of the resolvents can be performed in parallel. Note that the shifts
zk are independent of t.

d) Having evaluated the resolvents, Tσ,M (t) can be determined in parallel for different t-values t1, t2, . . . .

In practical computations one can choose σ = 2. Hence, the operator exponential Tmj
(t;Aj) in (4.7) can

be approximated by
Tmj

(t;Aj) ≈ A2
jT2,mj

(t;Aj). (4.9)
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4.3 Some examples

Example 4.4 As a basic example we consider the elliptic operator A =
∑d

j=1 Aj in the d-dimensional unit

hypercube (0, 1)d , subject to zero Dirichlet boundary conditions, where

Aj =

2m∑

k=0

ak(xj)
∂k

∂xkj
, (−1)ma2m(xj) ≥ µ > 0,

is a one-dimensional, strongly elliptic operator. It is known (cf. [7, 22]) that A and each Aj are strongly
positive (m-sectorial). Furthermore, it is easy to see that the operators Aj : H−m(0, 1) → Hm

0 (0, 1) are
commutative.

Example 4.5 Consider the elliptic operator of divergent type,

A := −
d∑

j=1

∂jaj(xj)∂j , x ∈ Ω := (0, 1)
d
,

defined on the Sobolev space H1
0 (Ω). We assume that aj ≥ a0 > 0. Introduce a uniform grid with step size

h and N = nd interior nodes. Using the (2d+ 1)-point stencil, we obtain the finite difference discretisation

Ahz := −
d∑

j=1

2ajijzi1...id − bjij−1zi1...(ij−1)...id − cjij+1zi1...(ij+1)...id

h2
, 1 ≤ ij ≤ n, (4.10)

where z denotes the vector corresponding to [zi1...id ]nij=1 ∈ RN given in the tensor-product numbering. In

fact, we can regard d-dimensional n× . . .× n arrays (tensors) also as one-dimensional ones (vectors) with
nd components. Then the matrix Ah in (4.10) takes the form

Ah =

d∑

j=1

Aj ,

where
A1 = V 1 × I × . . .× I, A2 = I × V 2 × . . .× I, . . . , Ad = I × . . .× I × V d

with

V j =
1

h2




2aj1 −cj1
−bj2 2aj2 −cj2

. . .
. . .

. . .

−bjn−1 2ajn−1 −cjn−1

−bjn 2ajn




n×n

, I =




1
1

. . .

1
1




n×n

.

It is easy to see that Aj > 0 for all j = 1, . . . , d, and that they commute pairwise, i.e., AjAm = AmAj.
Finally, (4.7) implies the following tensor-product representation

e−tA ≈
d⊗

j=1

Tmj
(t;V j).

Example 4.6 In the situation of Example 4.5, we consider an application to parabolic problems in Rd posed
in the semi-discrete form. Using the semigroup theory (see [22] for more details), the solution of the first
order evolution equation

du

dt
+Ahu = f, u(0) = u0 ∈ R

N ,

with a given initial vector u0 and with a given right-hand side f ∈ L2(QT ), QT := (0, T ) × RN , can be
represented as

u(t) = exp(−tAh)u0 +

t∫

0

exp(−(t− s)Ah)f(s)ds, t ∈ (0, T ].

12



Figure 5.1: The integration path for an unbounded operator A

Assume that our input data can be represented in the tensor-product form

u0 ≈
r∑

k=1

uk1(x1) ⊗ . . .⊗ ukd(xd), f ≈
r∑

k=1

fk1 (s;x1) ⊗ . . .⊗ fkd (s;xd)

with uki , f
k
i ∈ Rn, i = 1, ..., d, and with r = O(| log ε|q). Then we obtain the tensor-product approximation

ũ(t) =

r∑

k=1






d⊗

j=1

Tnj
(t;V j)ukj (xj) +

t∫

0

d⊗

j=1

Tnj
(t− s;V j)fkj (s;xj)ds




 ≈ u(t)

which can be implemented with the complexity O(rdn logp n).

5 A separable representation to A−1 and further applications

5.1 Inverse of a strongly positive operator

Lemma 5.1 Let A be a densely defined, strongly positive operator with the spectral set σ(A). Then the
following integral representation holds

A−1 =

∫ ∞

0

e−tAdt. (5.1)

Proof. For A being strongly positive, the semigroup {e−tA}t≥0 can be extended to an analytic semigroup in
the sector

∆δ = {w : | arg(w)| < δ}
of the complex w-plane and ‖e−wA‖ is uniformly bounded in every closed subsector ∆δ′ , δ

′ < δ, of ∆δ (see
[22, p.61]).

Let Γ = ∂ΩΓ be a closed path in the complex z-plane consisting of the two rays

S(±φ) =
{
ρe±iφ : γ ≤ ρ <∞

}

and the circular arc C =
{
z : |z| = γ, | arg z| ≤ φ

}
(see Figure 5.1) with φ such that

Σ(A) ⊂ ΩΓ.

Let w = |w|eiψ ∈ ∆δ′ and |ψ| ≤ δ′. For any φ < π/2, there exists a positive number δ′′ = δ′′(φ) such that
δ′′ < φ and φ+ δ′′ < π/2. Using the representation of e−wA by the Dunford-Cauchy integral along the path
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Γ, we conclude for w ∈ ∆δ′′ that

‖e−wA‖ =

∥∥∥∥
1

2πi

[
−

∫ ∞

γ

e−wρ exp(iφ)(ρ exp(iφ) −A)−1dρ (5.2)

−iγ
∫ φ

−φ
e−w exp(iγθ)eiγθ(γeiγθ −A)−1dθ +

∫ ∞

γ

e−wρ exp(−iφ)(ρe−iφ −A)−1dρ

]∥∥∥∥∥

=

∥∥∥∥
1

2πi

[
−

∫ ∞

γ

e−|w|ρ exp(i(φ+ψ))(ρ exp(iφ) −A)−1dρ

− iγ

∫ φ

−φ
e−|w| exp(iγ(θ+ψ))eiγθ(γeiγθ −A)−1dθ

+

∫ ∞

γ

e−|w|ρ exp(−i(φ−ψ))(ρ exp(−iφ) −A)−1dρ

]∥∥∥∥

≤ c

[∫ ∞

γ

e−|w|ρ cos (φ+δ′′) dρ

ρ
+ γ

∫ φ

−φ
e−|w|γ cos (θ+δ′′) dθ

γ
+

∫ ∞

γ

e−|w|ρ cosφ dρ

ρ

]
.

The function f(τ) = τe−τ is bounded on [0,∞) by a constant c yielding the estimate

‖e−wA‖ ≤ c

[
1

|w| cos (φ+ δ′′)

∫ ∞

γ

ρ−2dρ+
2φ

|w| cos (φ + δ′′)
+

1

|w| cosφ

∫ ∞

γ

ρ−2dρ

]
, (5.3)

which we use for |w| small enough. For |w| large enough and for some positive ǫ1 < γ, we get

‖e−wA‖ ≤ c

[∫ ∞

γ

e−|w|(ρ−ǫ1+ǫ1) cos(φ+δ′′) dρ

ρ
+

2φ

|w| cos(φ + δ′′)
+

∫ ∞

γ

e−|w|(ρ−ǫ1+ǫ1) cosφ dρ

ρ

]

≤ c

[
e−|w|ǫ1 cos(φ+δ′′)

∫ ∞

γ

e−|w|(ρ−ǫ1) cos(φ+δ′′) dρ

ρ

+
2φ

|w| cos (φ+ δ′′)
+ e−|w|ǫ1 cosφ

∫ ∞

γ

e−|w|(ρ−ǫ1) cosφ dρ

ρ

]

≤ ce−|w|ǫ1 cos(φ+δ′′). (5.4)

The estimates (5.3), (5.4) imply that there exists a constant c0 independent of γ, φ and constants c =
c(γ, φ) ≤ c0

γ cos (φ+δ′′) , β = β(γ, φ) ≤ γ cos (φ+ δ′′) such that (5.3) holds for all w ∈ ∆δ′′ . The condition

w ∈ ∆δ′′ now implies

‖e−wA‖ ≤ c
1

1 + |w|e
−βℜew, (5.5)

where c→ ∞, β → 0 as γ → 0 or φ→ π/2.
The asymptotics in (5.5) ensure the existence of the integral in (5.1). Finally, the assertion follows from

A
(∫ ∞

0

exp(−tA)dt

)
= −

∫ ∞

0

∂

∂t
exp(−tA)dt = exp(0) = I,

due to the main property of the continuous semigroup {e−tA}t≥0.

Remark 5.2 In the case of a bounded operator A, one can integrate in (5.2), e.g., along the closed path as
in Figure 5.2, and gets the estimate (5.5) with constants depending on γ, and the angle φ.

Let A =
∑Aj with commutative matrices (operators) Aj as above. Now, given M, we get α = 1,

β = max(1, γ cos(φ+ δ′′)) and h (cf. (3.8)) which define the following quadrature rule:

A−1 =

∫ ∞

0

e−tAdt ≈ h(2)
M∑

k=−βM
κ

(2)
k e−z

(2)
k
A = h(2)

M∑

k=−βM
κ

(2)
k

d∏

j=1

e−z
(2)
k
Aj

≈ h(2)
M∑

k=−βM
κ

(2)
k

d∏

j=1

T (ℓ(k))
m (z

(2)
k ;Aj) := Ar,
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.

Figure 5.2: The integration path for a bounded operator A

where, first, the quadrature (3.11) with h(2) = h(1) given by (3.8) can be used in order to approximate the

integral
∫∞
0 e−tAdt and then T

(ℓ(k))
m (z

(2)
k ;Aj) represents each exponent e−z

(2)
k
Aj by the algorithm (4.6) for

ℓ(k) = 3 or by (4.9) for ℓ(k) = 2, where ℓ(k) is defined by

ℓ(k) =

{
3 if |z(2)

k | ≥ t0

2 if |z(2)
k | < t0

for some t0 > 0 , (5.6)

and so we arrive at the desired product representation.

Let β = 1, then the quadrature error to approximate the Laplace transform is O(e−s1
√
M ). Furthermore,

the quadrature error of our representations to each individual exponential is O(e−s2
√
m) for ℓ = 2 and

O(e−s3m/ logm) for ℓ = 3 in the operator norm. Hence, with r = 2M + 1, we obtain

‖A−1 −Ar‖ ≤ C1e
−s1
√
M + C2e

−s2
√
m + C3e

−s3m/ logm.

Remark 5.3 For the matrix arising in Example 4.5, A = Ah, we obtain the following low Kronecker rank
tensor-product approximation

A−1
h ≈ h(2)

M∑

k=−βM
κ

(2)
k

d⊗

j=1

T (ℓ(k))
m (z

(2)
k ;V j) := Ar (5.7)

with ℓ(k) defined in (5.6). Here each low dimensional component T
(ℓ(k))
m (z

(2)
k ;V j) ∈ Rn×n is a sum of 2m+1

rank-1 H-matrices via the weak admissible partitioning. Hence T
(ℓ(k))
m (z

(2)
k ;V j) is at most the rank-(2m+ 1)

H-matrix and (5.7) is the desired HKT approximation to A−1
h .

5.2 Numerics III

We give numerical examples that illustrate the accuracy of our quadrature rule for the integral (5.1) in
the case of the Laplace operator in Rd. We show the spectral norm of the matrix (see Example 4.5) that

represents the approximation error for the quadrature I
(2)
m ,

δ :=

∥∥∥∥∥∥
A−1
h − h

m∑

k=−m
(1 + e−2kh)

d⊗

j=1

e−zkV
j

∥∥∥∥∥∥
2

,

where the sum of Kronecker tensor-product terms is calculated with linear complexity O(dmW (n)) with
W (n) being the cost to compute a matrix exponential in Rn×n. The main observation is that the rate of
exponential convergence does not depend on the spatial dimension d and also the rate turns out to be nearly
the same as that for the quadrature rules from above applied to the integrals of analytic functions (compare
the tables in §4).
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approximation to A−1
h = ∆−1

h in [0, 1]d, with N = nd, n = 4
m 4 9 16 25 36

d = 1 4.910-3 1.610-4 6.710-6 2.810-7 1.110-8
d = 2 6.210-3 2.910-4 1.210-5 4.310-7 2.410-8
d = 3 4.410-3 1.910-4 7.410-6 2.910-7 1.310-8
d = 4 4.210-3 1.810-4 7.910-6 3.310-7 1.410-8

Our calculations also show that the approximation error practically does not depend on the “one-
dimensional” problem size n, which is also confirmed by our theory. The next table shows that with a
fixed number of terms in the quadrature rule (we choose m = 4), we obtain the same accuracy δ for different
values of the problem size n.

approximation for ∆−1
h in [0, 1]d, with m = 4, d = 2

n 4 8 16 32 64
δ 6.2 10-3 7.310-3 7.4 10-3 7.4 10-3 7.610-3

5.3 Negative fractional powers of A
Similar to the previous section, we can prove the following result.

Theorem 5.4 Let A be a densely defined, strongly positive operator, then the following integral representa-
tion holds

A−σ−1 =
1

Γ(σ + 1)

∫ ∞

0

tσe−tAdt, σ > −1.

Moreover, let Ah =
∑
Aj with commutative matrices Aj as in Example 4.5. Define ℓ(k) as in (5.6), then

the following Kronecker tensor-product approximation obtained by combining the three quadrature algorithms
from above,

A−σ−1
h ≈ h(2)

M∑

k=−M
κ

(2)
k (z

(2)
k )σ

d⊗

j=1

T (ℓ(k))
m (z

(2)
k ;V j) := Ar (r = 2M + 1),

has an error estimate

‖A−σ−1
h −Ar‖ ≤ C1e

−s1
√
M + C2e

−s2
√
m + C3e

−s3m/ logm.

Proof. Analogously to the previous section, the integrand Iσ(t) = tσe−tA can be analytically extended into
the sector ∆δ = {z : | arg(z)| < δ} and ‖Iσ(z)‖ is uniformly bounded in every closed subsector ∆δ′ , δ

′ < δ, of
∆δ. Thus, given M, we get α = 1, β = max(1, γ cos (φ + δ′′)) and h (see (3.8)) and obtain the representation

A−σ−1
h =

∫ ∞

0

tσe−tAhdt ≈ h(2)
M∑

k=−βM
κ

(2)
k (z

(2)
k )σe−z

(2)
k
Ah = h(2)

M∑

k=−βM
κ

(2)
k (z

(2)
k )σ

d⊗

j=1

e−zkV
j

≈ h(2)
M∑

k=−βM
κ

(2)
k (z

(2)
k )σ

d⊗

j=1

T (ℓ(k))
m (z

(2)
k ;V j)

(see (3.11)) with an error O(e−s1
√
M ) for the external quadrature. Now, we can represent each e−zkV

j

by
the algorithms (4.9) or (4.6) with an error O(e−s2

√
m) for ℓ = 2 and O(e−s3m/ logm) for ℓ = 3 in the operator

norm, which leads to the desired HKT (tensor) representation of A−σ−1
h .

We note that the case A
−1/2
h plays the important role for the interface preconditioning in FEM and BEM

applications.
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5.4 An HKT representation to the Lyapunov-Sylvester solution operator

As an example we consider the matrix Sylvester equation

AX +XB = G

with the solution given by the integral

F(G;A,B) =

∫ ∞

0

e−tAGe−tBdt (5.8)

(see e.g. [8]), where we suppose that A,B provide the existence of this integral (for example, that A,B are
strongly positive and G is bounded). A particular case is the Lyapunov equation

AX +XA = G

with the solution

F(G;A) =

∫ ∞

0

e−tA
⊤

Ge−tAdt

generated by a discrete elliptic operator A.
Analogously as above for A being strongly positive, the semigroup {e−tA}t≥0 can be extended to an

analytic semigroup in the sector
∆δA

= {w : | arg(w)| < δA}
of the complex w-plane and ‖e−wA‖ is uniformly bounded in every closed subsector ∆δ′

A
, δ′A < δA, of ∆δA

.
Let ΓA = ∂ΩΓ be a closed path in the complex z-plane consisting of the two rays

SA(±ϕA) =
{
̺e±iϕA : γA ≤ ̺ <∞

}

and the circular arc C =
{
z : |z| = γA, | arg z| ≤ ϕA

}
with ϕA such that

σ(A) ⊂ ΩΓA
.

Let w = |w|eiψ ∈ ∆δ′
A

and |ψ| ≤ δ′A. Since φA < π/2, there exists a positive number δ′′A = δ′′A(φA) such that

δ′′A < φA and φA + δ′′A < π/2. Using the representation of e−wA by the Dunford-Cauchy integral along the
path ΓA, analogously as above we get the estimate

‖e−wA‖ ≤ cA
1

1 + |w|e
−βA ℜew

for all w ∈ ∆δ′′ , where cA = cA(γA, φA) ≤ c0,A

γA cos (φA+δ′′
A

) , βA = βA(γA, φA) ≤ γA cos (φA + δ′′A), the constant

c0 is independent of γA, φA and cA → ∞, βA → 0 as γA → 0 or φA → π/2.
Similarly, one defines the constants δB, δ

′
B, δ

′′
B, γB, φB , cB, βB and gets the estimate

‖e−wB‖ ≤ cB
1

1 + |w|e
−βB ℜew

for all w ∈ ∆δ′′
B
. Thus, in the smallest of the two sectors ∆δ′′

A
,∆δ′′

B
we have

‖e−wAGe−wB‖ ≤ cAcB
1

1 + |w|e
−(βA+βB)ℜew,

which provides the representation (5.8). Moreover we can use the quadrature (3.11) in order to approximate
the integral

∫∞
0 e−tAGe−tBdt and then again one of the quadratures (3.11) or (3.17) in order to approximate

the split operator exponentials:

F(G;A,B) =

∫ ∞

0

e−tAGe−tBdt ≈ h(2)
M∑

k=−M
κ

(2)
k e−z

(2)
k
AGe−z

(2)
k
B

= h(2)
M∑

k=−M
κ

(2)
k




d∏

j=1

e−z
(2)
k
Aj


G




d∏

j=1

e−z
(2)
k
Bj




≈ h(2)
M∑

k=−M
κ

(2)
k




d∏

j=1

T (ℓ(k))
m (z

(2)
k ;Aj)



G




d∏

j=1

T (ℓ(k))
m (z

(2)
k ;Bj)



 ,

(5.9)
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where T
(ℓ(k))
m (z

(2)
k ;Aj), T

(ℓ(k))
m (z

(2)
k ;Bj), for various ℓ(k) = 2, 3 denote one of the algorithms (4.9), (4.6). The

accuracy of the product approximation (5.9) is bounded by the error O(e−s
√
M ) for external integral, while

for internal quadratures we have the error O(e−s2
√
m) for ℓ = 2 and O(e−s3m/ logm) for ℓ = 3, respectively,

in the operator norm. Now, we can summarise our considerations in the following assertion.

Theorem 5.5 Let A and B be strongly positive matrices, then the following integral representation

F(G;A,B) =

∫ ∞

0

e−tAGe−tBdt

holds. Moreover, let A = A1+ . . .+Ad, B = B1+ . . .+Bd and let {Aj}, {Bj} be commutative sets of matrices
(but Aj must not necessarily commute with Bl), then the tensor-product approximation

F(G;A,B) ≈ h(2)
M∑

k=−M
κ

(2)
k




d∏

j=1

T (ℓ(k))
m (z

(2)
k ;Aj)



G




d∏

j=1

T (ℓ(k))
m (z

(2)
k ;Bj)



 := Ar

with ℓ(k) defined by (5.6) allows an error bound

‖F(G;A,B) −Ar‖ ≤ C1e
−s1
√
M + C2e

−s2
√
m + C3e

−s3m/ logm

in the operator norm.

The statement similar to Remark 5.3 remains true.
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