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Abstract. Let Mt be a smooth family of embedded, strictly con-
vex hypersurfaces in R

n+1 evolving by the inverse harmonic mean
curvature flow

d

dt
F = H−1ν.

Surprisingly, we can determine the explicit solution of this nonlin-
ear parabolic equation with some Fourier analysis. More precisely,
there exists a representation formula for the evolving hypersurfaces
Mt that can be expressed in terms of the heat kernel on Sn and
the initial support function.

1. Introduction

Let M0 be a smooth, closed, strictly convex hypersurface in euclidean
space R

n+1 and suppose that M0 is given by a smooth embedding
F0 : Sn → R

n+1 of the unit n-sphere Sn = {x ∈ R
n+1 : |x| = 1}.

We consider the initial value problem for the inverse harmonic mean
curvature flow

d

dt
F (x, t) = H−1(x, t)ν(x, t),(∗)

F (·, 0) = F0,

where

H :=
1

1
κ1

+ · · ·+ 1
κn

is the harmonic mean curvature of the hypersurface Mt parameterized
by Ft := F (·, t) : Sn → R

n+1, κ1, . . . , κn denote the principal curvatures
of Mt and ν(·, t) is the outer unit normal vectorfield along Mt.

There are numerous important works on this flow. One should for
example consult Andrews [3], [4], Chow-Liou-Tsai [8], Gerhardt [10]
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and Urbas [13]. It has been shown in Urbas [13] that (∗) admits a
smooth solution for t ∈ [0,∞) and that the solutions converge to in-
finity as t → ∞. Moreover, the hypersurfaces stay strictly convex
and embedded and after a time dependent homothetic rescaling the
rescaled hypersurfaces converge smoothly to a round sphere (see also
Gerhardt [10] for an extension to starshaped hypersurfaces). In Chow-
Liou-Tsai [8] the authors considered hypersurfaces driven by functions
of the inverse harmonic mean curvature and also proved that convexity
is preserved for a wide class of such flows, including (∗). Andrews [3],
[4] treated both inward and outward directed flows.

For a geometric evolution equation it is in general not possible to de-
termine the explicit solution. If T denotes the first time where a singu-
larity occurs, one rather studies the blow-up behaviour of such flows as
t → T . Under certain conditions for the initial hypersurface it is often
possible to classify the singularities, at least after a suitable rescaling
procedure. E.g. under the assumption that the initial hypersurface is
convex one was able to prove for a wide class of such flows (inward
and outward directed) that a homothetically rescaled flow smoothly
converges to a round sphere as t → T .

If a convex hypersurface is evolving under the nonlinear parabolic equa-
tion (∗) given by the inverse harmonic mean curvature flow, it is there-
fore astonishing that it is possible to obtain the explicit solution. We
state the main theorem

Theorem 1.1. Let M0 be a smooth, closed, strictly convex hypersur-
face in euclidean space R

n+1 and suppose that M0 is given by a smooth
embedding F0 : Sn → R

n+1 of the unit n-sphere Sn = {x ∈ R
n+1 : |x| =

1}. The inverse harmonic mean curvature flow

d

dt
F (x, t) = H−1(x, t)ν(x, t),

F (·, 0) = F0,

admits a smooth, strictly convex solution for t ∈ [0,∞). The hyper-
surfaces Mt := F (Sn, t) ⊂ R

n+1 can be parameterized by their inverse
Gauss maps Yt : Sn → Mt in the following way

Yt(x) = DS̄(x, t), for all (x, t) ∈ Sn × [0,∞)

where S̄(·, t) : R
n+1 \ {0} → R is the homogeneous extension of degree

one of the support function S(·, t) : Sn → R of Mt defined by

S̄(λx, t) := λS(x, t), for all (x, t) ∈ Sn × [0,∞), and all λ > 0.
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Here, D is the gradient in R
n+1 and the support function S(·, t) is given

by the formula

S(x, t) = ent

∫
Sn

H(x, y, t)S(y, 0)dσ(y),(1.1)

where H(x, y, t) is the heat kernel and dσ the standard volume element
on Sn. S(·, 0) denotes the support function of the initial hypersurface
M0.

Remark 1.2. The following theorem about the heat kernel is well-
known (cf. Berger-Gauduchon-Mazet [5])

Theorem: Let M be a compact Riemannian manifold, {fi} be an or-
thonormal basis of L2(M) consisting of eigenfunctions with correspond-
ing eigenvalues λi (i.e. ∆fi = −λifi), then

H(x, y, t) =
∑

e−λitfi(x)fi(y).

Moreover, the eigenfunctions fk on the unit n-sphere are the spher-
ical harmonics Yn,k which are restrictions to Sn of the homogeneous
harmonic polynomials of degree k in R

n+1. They can be expressed in
terms of the Legendre polynomials (see Müller [12] for more details on
spherical harmonics).

Example 1.3. Let us briefly discuss the one-dimensional situation. If
n = 1, then H−1 = 1

k
, where k denotes the curvature of the evolving

convex curves γt. In this case, the flow

d

dt
γt =

1

k
ν(∗′)

can also be viewed as the one-dimensional version of the inverse mean
curvature flow

d

dt
F =

1

H
ν

which is important in General Relativity (see Huisken-Ilmanen [11]
for details). The eigenvalues λk of the Laplacian on S1 ∼= [0, 2π)
are λk = k2, k ∈ N with multiplicity 2. Moreover, the functions
1√
π

cos (kx), 1√
π

sin (kx) form an orthonormal basis of L2(S1). For the

heat kernel on S1 we get

H(x, y, t) =
1

π

∑
k∈N

e−k2t
(
cos (kx) cos (ky) + sin (kx) sin (ky)

)
.
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According to Theorem 1.1, the support function S(·, t) of γt is given
by the formula

S(x, t) =
∑
k∈N

e(1−k2)t
(
ck cos (kx) + sk sin (kx)

)
,(1.2)

where the constants ck, sk are defined by

ck :=
1

π

∫ 2π

0

cos (ky)S(y, 0)dy, sk :=
1

π

∫ 2π

0

sin (ky)S(y, 0)dy

and S(·, 0) denotes the support function of the initial curve γ0. If S̄
denotes the extension of S to R

2 \ {0} as above, then

DS̄(x, t) = S(x, t)

(
cos x

sin x

)
+ S ′(x, t)

(− sin x

cos x

)
, for all x ∈ [0, 2π),

where we have set

S ′(x, t) :=
∂

∂x
S(x, t).

Consequently

Y(x, t) =
∑
k∈N

e(1−k2)t cos (kx)

(
ck cos x − ksk sin x

ck sin x + ksk cos x

)

+
∑
k∈N

e(1−k2)t sin (kx)

(
sk cos x + kck sin x

sk sin x − kck cos x

)

is the parameterization of γt by the inverse Gauss map.

Example 1.4. We give an explicit example. Let a ∈ [0, 1) be a number
and assume that the initial support function is given by

S(y, 0) = 1 + a sin2(y) =
2 + a

2
− a

2
cos (2y).

It then easily follows that

sk = 0 for all k ∈ N

c0 = 2 + a, c2 = −a

2
and ck = 0 for all k ∈ N \ {0, 2}.

By formula (1.2) the support function of the evolving curves γt is

S(x, t) = (2 + a)et − a

2
e−3t cos (2x)

and the inverse Gauss maps are

Y(x, t) =
(
(2+a)et− a

2
e−3t cos (2x)

)(cos x

sin x

)
+ae−3t sin (2x)

(− sin x

cos x

)
.
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If we consider the rescaled curves γ̃t := e−tγt, then the support func-
tions S̃ and inverse Gauss maps Ỹ(x, t) of γ̃t are

S̃(x, t) = 2 + a − a

2
e−4t cos (2x),

Ỹ(x, t) =
(
2 + a − a

2
e−4t cos (2x)

)(cos x

sin x

)
+ ae−4t sin (2x)

(− sin x

cos x

)
.

In particular, if t → ∞, then the support functions S̃(x, t) tend to the
constant a + 2 which means that the curves converge uniformly to the
circle of radius a+2 centered at the origin. Figure 1 shows the flow for
a = −3

4
at different time steps, Figure 2 depicts the rescaled solution

and Figure 3 shows the curves in a single coordinate plane.

O O O O

O O O O

Figure 1. The flow d
dt

γt = 1
k
ν for the curve γ0 with

support function S(x) = 1 − 3
4
sin2 (x) at the different

time steps t = j
10

, j ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

Acknowledgements: This work was completed while the author stayed
at the Max Planck Institute for Mathematics in the Sciences in Leipzig.
He wants to express his gratitude to Jürgen Jost for his support.

2. Support functions

Let M be a smooth, closed, strictly convex hypersurface in R
n+1. We

shall recall some facts about the support function of convex hypersur-
faces (for more results see Bonnesen-Fenchel [6]). Since M is strictly
convex, the Gauss map is invertible. Thus we may assume that M is
parameterized by the inverse Gauss map Y : Sn → M ⊂ R

n+1. This
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O O O O

O O O O

Figure 2. The rescaled curves γ̃t = e−tγt with γt as in
Figure 1

O O

Figure 3. The curves in Figure 1 resp. Figure 2 in a
single coordinate plane.

means that ν(x) = x. Without loss of generality, we may assume that
M encloses the origin. The support function S of M is defined by

S(x) := 〈x,Y(x)〉 for all x ∈ Sn,

where 〈·, ·〉 denotes the standard inner product of R
n+1. One can extend

S to a homogeneous function S̄ on R
n+1 \ {0} of degree one by

S̄(λx) := λS(x) for all x ∈ Sn and λ > 0.

It then follows

DS̄(x) = Y(x) for all x ∈ Sn,
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where DS̄ is the gradient of S̄ in R
n+1. Let σ = σijdxi ⊗ dxj denote

the standard metric on Sn and ∇ its induced Levi-Civita connection.
We want to compute the Hessian ∇2S of S. We have

∇iS = ∇i〈Y , x〉 = 〈Y ,∇ix〉
because ν(x) = x and 〈∇iY , ν〉 = 0. Taking another covariant deriva-
tive we obtain

∇i∇jS = 〈∇iY ,∇jx〉 + 〈Y ,∇i∇jx〉.
The Gauss-Weingarten equations imply

∇i∇jx = −τijx,

where τij is the second fundamental form of Sn and because τij = σij

we have
∇i∇jx = −σijx.

On the other hand

〈∇iY ,∇ix〉 = 〈∇iY ,∇iν〉 = hij

is the second fundamental form of M , so that we derive

∇i∇jS = hij − σijS.(2.1)

Moreover, the Weingarten equation gives

∇iν = hijg
jk∇kY .

Then

σij = 〈∇ix,∇jx〉 = 〈∇iν,∇jν〉 = 〈hikg
kl∇lY , hjsg

st∇tY〉 = hikhjlg
kl

so that

σij = hikhjlg
kl,(2.2)

where gkl is the inverse of the induced metric gij on M . From (2.1)
and (2.2) we immediately obtain

∆S = σij∇i∇jS = H−1 − nS.(2.3)

Next we will compute the evolution equation of the support function S.
To this end let us assume that Mt is a smooth family of closed, strictly
convex hypersurfaces in R

n+1 parameterized by a smooth embedding
Ft : Sn → Mt ⊂ R

n+1 such that

d

dt
Ft(x) = f(x, t)ν(x, t),

where f(x, t) is a smooth speed function. It is then possible to find
a uniquely determined diffeomorphism Ψt : Sn → Sn such that the
embedding

Yt : Sn → Mt, Yt(x) := Ft(Ψt(x))
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is the inverse Gauss map. Thus we obtain

d

dt
St =

d

dt

〈Yt(x), x
〉

=
d

dt

〈
Ft(Ψt(x)), x

〉

=

〈
∂

∂t
Ft(Ψt(x)) + DFt

(
∂Ψ

∂t

)
, x

〉

=

〈
∂

∂t
Ft(Ψt(x)), x

〉

= 〈f(Ψt(x), t)ν(Ψt(x), t), x〉
= f.

In particular, if f is given by the inverse of the harmonic mean curva-
ture, then (2.3) implies

Lemma 2.1. If Mt is a smooth family of closed, strictly convex hyper-
surfaces in R

n+1 evolving by the inverse harmonic mean curvature flow
(∗), then the support function satisfies the linear equation

d

dt
S = ∆S + nS,

where ∆ is the Laplacian w.r.t. the standard metric on Sn.

Corollary 2.2. If Mt is a smooth family of closed, strictly convex hy-
persurfaces in R

n+1 evolving by the inverse harmonic mean curvature
flow (∗), then the support function S(·, t) of Mt is given by

S(x, t) = ent

∫
Sn

H(x, y, t)S(y, 0)dσ(y),

where H(x, y, t) is the heat kernel on Sn and dσ the standard volume
element on Sn.

Proof. The function S̃(x, t) := e−ntS(x, t) satisfies the heat equation

d

dt
S̃ = ∆S̃(2.4)

and then

S̃(x, t) =

∫
Sn

H(x, y, t)S̃(y, 0)dσ(y).

But since S̃(y, 0) = S(y, 0) we obtain the result.

Corollary 2.3. Let M0 be a smooth, closed, strictly convex hypersur-
face in R

n+1 and let Mt be the corresponding smooth family of hy-
persurfaces evolving by their inverse harmonic mean curvature. Then
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the rescaled hypersurfaces M̃t := e−ntMt converge smoothly to a round
sphere centered at the origin as t → ∞.

Proof. If S(·, t) and S̃(·, t) are the support functions of Mt resp. M̃t,
then

S̃(x, t) = e−ntS(x, t).

In addition, by equation (2.4) S̃ solves the heat equation on Sn and
therefore smoothly converges to a constant as t → ∞. It is clear
that a smooth convergence of the support function implies a smooth
convergence of the corresponding hypersurfaces as well. On the other
hand, the support function is constant if and only if the hypersurface
is a round sphere centered at the origin.

Proof of the main theorem. It is well-known that a solution of (∗)
exists for t ∈ [0,∞) and that the hypersurfaces Mt stay convex and
embedded during the flow (cf. Urbas [13]). It is also well-known the
the rescaled hypersurfaces M̃t := e−ntMt converge smoothly to a round
sphere centered at the origin. It remains to prove the precise formula
for the support function and the inverse of the Gauss maps. This has
been shown in Corollary 2.2 and the equation for the inverse of the
Gauss maps Y follows from DS̄|Sn = Y . q.e.d.
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