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Abstract

When approximating the singular integrals arising in the boundary element method
by quadrature techniques, it is important to keep the quadrature error consistent
with the discretization error in order to reach the optimal order of convergence. In
classical approaches, this means that the order of the quadrature grows logarithmi-
cally in the number of degrees of freedom.

We present a quadrature scheme based on alternative representations of the sin-
gular integrands that allows us to use a constant quadrature order without giving
up consistency.

1 Introduction

The integral equation method is an elegant tool to transform homogeneous
linear boundary value problems with constant coefficients into boundary in-
tegral equations (BIE) on the boundary of the domain (see, e.g., [8], [13]).
The boundary element method (BEM) is a flexible discretisation technique
for solving these equations numerically.

∗ Corresponding author

Preprint submitted to CMAME 8 October 2003



However, the implementation of the Galerkin BEM is non-trivial since, in or-
der to keep the computational costs moderate, the use of efficient quadrature
methods for computing the entries of the system matrix is essential. Fur-
thermore, fast operator compression techniques [9], [14], [17], [10], [18] such
as panel clustering, multipole, H-matrices, or wavelets have to be applied to
avoid the storage of the n2 matrix entries by computing instead n logκ n al-
ternative quantities for, e.g., the panel clustering algorithm. (Here and in the
following n denotes the dimension of the system matrix.)

The reason for the (logκ n)-term in the complexity estimates for the fast com-
pression algorithms is two-fold:

(1) The numerical computation of the nearfield entries of the system matrix,
i.e., the entries lying close to the diagonal, requires quadrature schemes
where the order has to be increased logarithmically with the number of
unknowns.

(2) The expansion order for the farfield approximations for, e.g., the panel-
clustering method, has to be increased logarithmically with the number
of unknowns.

The power κ in the poly-logarithmic term typically ranges between 4− 7 and,
for practical problem sizes with, say, 103 − 105 unknowns, spoils significantly
the “almost linear” computational complexity of the overall discretisation.

In this paper, we will present a numerical quadrature method which can be
applied to all classical boundary integral operators corresponding to Laplace-
type problems and the order m of the quadrature method may be chosen very
low m ∼ 1, independent of the number of unknowns.

We will not discuss in this paper the combination of the proposed quadrature
method with panel-clustering but refer for the variable order panel-clustering
method to [1], [17]. However, we emphasize that the implementation of the
new quadrature method uses the same data structures as the panel-clustering
method and therefore can be considered as a basic building block for incorpo-
rating this fast compression technique.

The focus of this paper lies in the presentation of the new quadrature tech-
niques in a self-contained way which allows their straightforward implementa-
tion. We will report on the results of numerical experiments which shows that
all quadrature and approximation orders can be chosen O(1), independent of
the number of unknowns.

The error analysis will be presented in part II of this paper.
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2 Galerkin discretization of integral operators

Throughout this paper, Ω ⊂ R
3 denotes a bounded Lipschitz domain with

boundary Γ and normal vector field n (oriented to the exterior of Ω). We
define the Sobolev space Hs(Γ), s ≥ 0, in the usual way (see, e.g., [13]). Note
that the range of s for which Hs(Γ) is defined may be limited, depending on
the global smoothness of the surface Γ. For s < 0, the spaces Hs(Γ) are the
duals of H−s (Γ).

We will consider the general integral equation

(λI + K) u (x) := λu (x) +
∫
Γ
k (x, y)u (y) dsy = f (x) , x ∈ Γ,

for some given scalar λ ∈ R kernel function k and sufficiently smooth right-
hand side f . The corresponding weak form is

Find u ∈ H such that a(u, v) := ((λI+K)u, v) = (f, v) for all v ∈ H. (2.1)

Here H equals Hµ (Γ) or is a closed subspace of Hµ (Γ) for some µ ∈ {−1/2, 0, 1/2}.
(The bracket (·, ·) denotes the continuous extension of the L2 (Γ) scalar pro-
duct to the H−µ(Γ)×Hµ(Γ) duality pairing.) A typical example is the hyper-
singular operator

aH(u, v) :=
1

4π

∫
Γ
v(x)

∫
Γ
u(y)

∂

∂nx

∂

∂ny

1

‖x − y‖ dsy dsx

with H = H1/2(Γ)/R.

In the standard, conforming Galerkin method we select a subspace S ⊂ H
and approximate (2.1) by seeking uS ∈ S, such that

a (u, v) = (f, v) for all v ∈ S. (2.2)

In the context of the boundary element method, these subspaces are finite
element spaces lifted to the surface Γ.

Definition 2.1 (a) The master element τ̂ ⊆ R
2 is the open triangle with

vertices (0, 0)ᵀ, (0, 1)ᵀ and (1, 1)ᵀ.
(b) A set G = {τ1, τ2, . . . , τn} consisting of open and disjoint (possibly curved)

triangles in R
3 such that there is a C∞-diffeomorphism Ψτ : τ̂ → τ for

each τ ∈ G is a surface triangulation of Γ if it satisfies Γ =
⋃

τ∈T τ
and if the intersection e := τ ∩ t of non-identical triangles t, τ ∈ G
is either empty, a common vertex of a common edge and, in the case
that e is an edge, there exists an affine mapping γ : τ̂ → τ̂ such that
Ψ−1

τ |e = (Ψt ◦ γ)−1|e.
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The stepsize of a grid is given by h = maxτ∈G diam(τ). For k ∈ {0, 1} and
p ∈ N0, the finite element space S(k, p,G) is defined by S(k, p,G) := {u ∈
Hk(Γ) | ∀τ ∈ G : u ◦ Ψτ ∈ Pp}.

We will consider boundary elements of lowest order for the discretisation of
the integral operators, i.e.,

• S = S(0, 0,G) for the single layer operator and
• S = S(1, 1,G)/R for the hypersingular operator.
• The boundary element space for the double layer potential operator is a

subset of S(0, 0,G) which contains all functions vanishing in a certain neigh-
bourhood of the corners and edges of the surface Γ. For the detailed defini-
tion of the finite section method we refer to [6].

Let (bi)
n
i=1 be the local basis of S(k, p,G). The standard Galerkin method

requires us to compute the matrix K ∈ R
n×n given by Kij := a(bi, bj) for

i, j ∈ {1, . . . , n}. The direct numerical realisation of this approach suffers
from two bottlenecks: (a) the computation of the matrix entries requires the
evaluation of singular, nearly singular and regular surface integrals over pairs
of panels, (b) the system matrix is not sparse but fully populated and the
computational and storage costs are at least of order n2.

In this paper, we will only address the first point, i.e., the question how quadra-
ture of singular and nearly-singular integrals can be performed efficiently, but
our approach can also be used to construct a variant of the panel-clustering
method [9] with linear complexity [1].

3 Alternative representations

In [1], the following alternative representations have been derived for the clas-
sical boundary integral operators

aD(u, v) =
(
λ − 1

2

)
(u, v) +

∫
Γ×Γ

v(x)(u(y)− u(x))
∂G1

∂ny
(x, y) dsy dsx, (3.1)

aH(u, v) =
∫
Γ

∫
Γ
〈−−→curlΓu(y),

−−→
curlΓv(x)〉∆Γ,xyG2(x, y) dsy dsx (3.2)

+
∫
Γ

∫
Γ
〈−−→curlΓu(y),

−−→
curlΓv(x)〉〈ny, y − x〉∂G1

∂ny
(x, y) dsy dsx and

aS(u, v) =
∫
Γ

∫
Γ
v(x)u(y)∆Γ,xyG2(x, y) dsy dsx (3.3)

+
∫
Γ

∫
Γ
v(x)(u(y) − u(x))〈ny, y − x〉∂G1

∂ny

(x, y) dsy dsx

+ (ρu, v) .
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Here, we have used the notation

G1(x, y) :=
1

4π‖x − y‖ , G2(x, y) :=
‖x − y‖

4π
, ∇Γu := (∇u�)|Γ ,

∇t
Γu := ∇Γu − n

∂

∂n
u,

−−→
curlΓu := −n ×∇Γu and ∆Γ,xyG := −〈∇Γ,x,∇t

Γ,y〉G,

where n is the exterior unit normal vector field and u� is a Lipschitz continuous
extension of u to a tubular neighbourhood of Γ. In the case of the single layer
potential, we assume that Γ is the union of q plane polygons Γi and define

ρ(x) := −
q∑

i=1

∫
Γi

〈ny, x − y〉 ∂

∂ny
G1(x, y) dsy (3.4)

(note that, due to orthogonality, 〈ny, x−y〉 depends only on x and the polygon
Γi, but not on the value of y).

The equations (3.1), (3.2) and (3.3) imply that we have to deal with the
following kernel functions:

k1(x, y) :=
∂G1

∂ny
(x, y), k2(x, y) := 〈ny, x − y〉∂G1

∂ny
(x, y) and (3.5)

k3(x, y) := ∆Γ,xyG2(x, y). (3.6)

4 Algorithm

4.1 Quadrature techniques for the kernels k1 and k2

In this section, we will recall quadrature techniques (cf. [16], [12], [7]) for
integrals of the form

Iτ×t :=
∫

τ×t
k(x, y)H(x, y)dsydsx, (4.1)

where k ∈ {k1, k2} is one of the kernel functions in (3.5) and H(x, y) is the
combination of the basis functions as in (3.1), (3.2) and (3.3).

The quadrature technique for the kernel k3 is different from that and will be
discussed in Subsection 4.2.

For the quadrature, we have to distinguish four cases:

(1) Identical panels: τ = t
(2) Common edge: τ ∩ t is a common edge,
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(3) Common point: τ ∩ t is a common point,
(4) Positive distance: dist (τ, t) > 0.

The integration method in the singular cases (1-3) consists of two steps: (i) the
application of regularising coordinate transforms and (ii) numerical quadra-
ture based on tensor Gauß formulae.

4.1.1 Regularizing coordinate transforms

Let τ, t ∈ G be triangles. By definition, there are C∞-diffeomorphisms Ψτ :
τ̂ → τ and Ψt : τ̂ → t which map the unit triangle τ̂ onto τ and t, respectively.

This implies

Iτ×t =
∫

τ̂

∫
τ̂
K̂(x̂, ŷ) dŷ dx̂

with K̂(x̂, ŷ) = gτ (x̂)gt(ŷ) k(Ψτ (x̂), Ψt(ŷ)) H(Ψτ(x̂), Ψt(ŷ)) for surface elements

gτ(x̂) =
√

det(DΨτ(x̂)�DΨτ (x̂)) and gt(x̂) =
√

det(DΨt(x̂)�DΨt(x̂)).

4.1.1.1 Identical Panels We assume that τ = t. Then Ψτ = Ψt and
gτ = gt hold.

The following coordinate transforms are taken from [7], [15]. We have

Iτ×t =
∫
(0,1)4

ξ3η2
1η2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 − η1 + η1η2

1 − η1η2η3

1 − η1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − η1η2η3

1 − η1

1

1 − η1 + η1η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2)

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

η1 (1 − η2 + η2η3)

1 − η1η2

η1 (1 − η2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − η1η2

η1 (1 − η2)

1

η1 (1 − η2 + η2η3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − η1η2η3

η1 (1 − η2η3)

1

η1 (1 − η2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

η1 (1 − η2)

1 − η1η2η3

η1 (1 − η2η3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

dη1dη2dη3dξ.
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Example 4.1

a. Kernel function k1.
The kernel function k1 appears only in the context of the double layer

potential where we used piecewise constant ansatz functions. Hence, we
have u (x)−u (y) ≡ 0 on τ = t and the integral (4.1) vanishes in the case
of identical panels.

b. Kernel function k2.
In the case of the single layer potential the kernel k2 is multiplied by

the factor {u (y) − u (x)} and the integral (4.1) vanishes in the case of
identical panels as in (a).

For the hypersingular operator, we distinguish between two cases.
i. If the curved surface is approximated by plane triangles the kernel k2

is zero on τ × τ since ny is orthogonal to y − x.
ii. For τ , being a curved triangle, we obtain

gτ

(−−→
curlu

)
◦ Ψτ = Jτ∇̂⊥û (4.3)

with û = u ◦ Ψτ , Jτ :=
[
∂̂1Ψτ , ∂̂2Ψτ

]
, and ∇̂⊥ :=

(
∂̂2,−∂̂1

)
. Hence,

K̂ (x̂, ŷ) = −
〈
Jτ (x̂)

(
∇̂⊥v̂

)
(x̂) , Jτ (ŷ)

(
∇̂⊥û

)
(ŷ)
〉 〈n̂ŷ, Ψτ (ŷ) − Ψτ (x̂)〉2

4π ‖Ψτ (ŷ) − Ψτ (x̂)‖3 ,

(4.4)

where n̂ŷ :=
(
∂̂1Ψτ × ∂̂2Ψτ

)
/
∥∥∥∂̂1Ψτ × ∂̂2Ψτ

∥∥∥.

4.1.1.2 Common edge We assume that τ , t have a common edge. With-
out loss of generality we may assume that Ψτ (ξ, 0) = Ψt(ξ, 0) holds for
ξ ∈ [0, 1] (in an implementation this property has to be ensured by locally
adapting the mappings Ψτ and Ψt).

The following coordinate transforms are taken from [7], [15]. We have

Iτ×t =
∫
(0,1)4

ξ3η2
1K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

ξη1η3

ξ (1 − η1η2)

ξη1 (1 − η2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ ξ3η2
1η2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ

ξη1

ξ (1 − η1η2η3)

ξη1η2 (1 − η3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

+K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ (1 − η1η2)

ξη1 (1 − η2)

ξ

ξη1η2η3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ (1 − η1η2η3)

ξη1η2 (1 − η3)

ξ

ξη1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ K̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ (1 − η1η2η3)

ξη1 (1 − η2η3)

ξ

ξη1η2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

dηdξ.
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4.1.1.3 Common Point We assume that τ , t have a common point. With-
out loss of generality we may assume that Ψτ (0, 0) = Ψt(0, 0) holds.

The following coordinate transforms are taken from [7], [15]. We have

Iτ×t =
∫
(0,1)4

ξ3η2

{
K̂ (ξ, ξη1, ξη2, ξη2η3) + K̂ (ξη2, ξη2η3, ξ, ξη1)

}
dηdξ. (4.6)

4.1.1.4 Positive distance In the case of positive distance dist(τ, t) > 0,
the integrand is regular. The transformation to the reference element and
application of Duffy coordinates results in

Iτ×t =
∫
(0,1)4

ξ1ξ2K̂ (ξ1, ξ1η1, ξ2, ξ2η2) dηdξ. (4.7)

4.1.2 Numerical quadrature

In [16], [12], [7], [18], [15], it was shown that all integrands in (4.2), (4.5), (4.6),
and (4.7) are analytic.

As numerical quadrature scheme, tensorised Gauß-Legendre formulae (scaled
to the interval (0, 1)) can be employed and will converge exponentially. We

denote by Q
(m)
τ×t the quadrature approximation to the general integral Iτ×t with

m Gaußpoints per coordinate direction. The required orders will be derived
from the error analysis which will be presented in Part II of this paper. The
numerical experiments in Section 5 indicate the minimal number of Gauß
points such that the optimal convergence order is preserved.

4.1.3 Efficient implementation

In this subsection, we give some remarks concerning the efficient implementa-
tion of the quadrature methods and start with the double layer potential.

The integral in (3.1) can be written as the difference

∫
Γ×Γ

v(x)

(
u(y)

∂G1

∂ny

(x, y) dsy

)
dsx −

∫
Γ
v(x)u(x)

(∫
Γ

∂G1

∂ny

(x, y) dsy

)
dsx.

(4.8)

Let K = (Kτt)τ,t∈G denote the stiffness matrix of the double layer potential
operator in the standard representation

Kτt :=
∫

τ

∫
t

∂G1

∂ny
(x, y) dsy dsx for all τ, t ∈ G.
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Note that the quadrature approximation K̃ is computed via our low order
quadrature scheme which would be too inaccurate when being used within
the standard representation.

The quadrature approximation D̃ for the difference of integral operators in
(4.8) may be expressed as D̃ = K̃ − diag(K̃1), where the non-trivial entries
of the diagonal matrix diag(K̃1) are given by the row sums of K̃. For the
implementation, this means that we compute a low-order quadrature approx-
imation of the standard double layer potential, determine the row sums, and
then modify the diagonal entries in order to guarantee that the spherical angle
condition D̃1 = 0 holds.

For the single layer operator, the remarks for the double layer potential apply
verbatim to the second term in (3.3). Note that the spherical angle ρ can be
computed analytically for piecewise flat surfaces (see, e.g., [11]).

4.2 Quadrature techniques for the kernel k3

Our goal is to approximate the bilinear form

a3(u, v) =
∫
Γ

∫
Γ
v(x)u(y)∆Γ,xyG2(x, y) dsy dsx, (4.9)

where

G2(x, y) =
‖x − y‖

4π
and ∆Γ,xy = −〈∇x,∇t

y〉.
The quadrature for the kernel k3 is based on polynomial approximations of G2

and the application of the operator ∆Γ,xy to these polynomials. Therefore, it
is essential that the the approximation is globally Lipschitz-continuous. The
latter property is obtained as follows: Let (xι)ι∈N denote the vertices of the tri-
angles in G and (χι)ι∈N the corresponding continuous, linear nodal basis (i.e.,
the well-known “hat functions”). These globally Lipschitz-continuous func-
tions form a partition of unity that can be used to combine local interpolants.

4.2.1 Multidimensional Chebyshev interpolation

The polynomial approximation of G2 is based on polynomial interpolation.
Let Im be an m-th order interpolation operator on [−1, 1], e.g., the Cheby-
shev interpolation operator, and let (xi)

m
i=0 be the corresponding interpolation

points and (Li)
m
i=0 the corresponding Lagrange polynomials. For each interval

J = [a, b], the transformed interpolation operator is defined by

IJ
m[u] :=

m∑
i=0

u(xJ
i )LJ

i ,
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where

xJ
i :=

b + a

2
+

b − a

2
xi, LJ

i (x) :=
m∏

j=0,j �=i

x − xJ
j

xJ
i − xJ

j

are the properly scaled interpolation points and Lagrange polynomials.

In order to construct a multi-dimensional interpolation operator, we fix a
minimal axis-parallel box Bι = J ι

1 × J ι
2 × J ι

3 ⊆ R
3 satisfying supp χι ⊆ Bι.

The tensor-product interpolation operator is then defined by

Iι
m := IJι

1
m ⊗ IJι

2
m ⊗ IJι

3
m

and can be evaluated by

Iι
m[u] :=

∑
ν∈K

u(xι
ν)Lι

ν

for xι
ν := (x

Jι
1

ν1 , x
Jι
2

ν2 , x
Jι
3

ν3 ), Lι
ν(x) := LJι

1
ν1 (x1)LJι

2
ν2 (x2)LJι

3
ν3 (x3) and K := {0, . . . , m}3.

4.2.2 Globally continuous approximation

For the product set Γ×Γ, we simply use tensorised version of the hat functions
and interpolation operators: (χκ ⊗ χι)ι,κ∈N and (Iκ

m ⊗ Iι
m)ι,κ∈N . Using these,

we introduce the global approximation

G̃2 :=
∑
ι∈N

∑
κ∈N

χκ ⊗ χι Iκ
m ⊗ Iι

m[G2] (4.10)

of G2. Note that the Lipschitz continuity of the functions χι, χκ is inherited
by G̃2.

Next, we apply the differential operator ∆Γ,xy = −〈∇Γ,x∇t
Γ,y〉 to the approxi-

mation G̃2:

∆Γ,xyG̃2 =
∑
ι∈N

∑
κ∈N

∑
ν∈K

∑
µ∈K

G2(x
κ
ν , x

ι
µ)∆Γ,xy(χ

κ ⊗ χι Lκ
ν ⊗ Lι

µ)

= − ∑
ι,κ∈N

∑
ν,µ∈K

G2(x
κ
ν , x

ι
µ)〈∇Γ(χκLκ

ν),∇t
Γ(χιLι

µ)〉.

The approximation of a3(·, ·) is defined by replacing G2 by G̃2

ã3(u, v) :=
∫
Γ

∫
Γ
v(x)u(y)(∆Γ,xyG̃2)(x, y) dy dx

=
∑

ι,κ∈N

∑
ν,µ∈K

G2(x
κ
ν , x

ι
µ)
〈
Vκ

ν (v),W ι
µ(u)

〉
, (4.11)

where the functionals V ι
ν(u), W ι

ν(u) ∈ R
3 are defined, for all ι ∈ N and all
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ν ∈ K, by

V ι
ν(u) :=

∫
Γ
∇Γ(χιLι

ν)(x)u(x) dx, W ι
ν(u) :=

∫
Γ
∇t

Γ(χιLι
ν)(x)u(x) dx.

Using this representation, we can approximate matrix entries A3
ij = a3(bi, bj)

by

Ã3
i,j := ã3(bi, bj) =

∑
ι,κ∈N

∑
ν,µ∈K

G2(x
κ
ν , x

ι
µ)
〈
Vκ

ν (bj),W ι
µ(bi)

〉
. (4.12)

4.2.3 Efficient implementation

To obtain an efficient implementation, we first compute the quantities

V ι
ν,i :=

∑
τ⊂supp bi∩supp χι

∫
τ
∇Γ(χιLι

ν)(x)bi(x) dx = V ι
ν(bi),

W ι
ν,i :=

∑
τ⊂supp bi∩supp χι

∫
τ
∇t

Γ(χιLι
ν)(x)bi(x) dx = W ι

ν(bi).

For flat panels, these quantities can be computed analytically. In our applica-
tions, the interpolation order m = O(1) is bounded independent of the number
of unknowns. Thus, a moderate order of quadrature will give us sufficiently
accurate values for these auxiliary values, and (4.12) can be written in the
form

Ã3
i,j =

∑
ι,κ∈N

∑
ν,µ∈K

G2(x
κ
ν , x

ι
µ)
〈
V κ

ν,j, W
ι
µ,i

〉
.

The algorithmic formulation is as follows.

for ι, κ ∈ N do

for ν, µ ∈ K do begin

s := G2(x
κ
ν , x

ι
µ);

for i ∈ {i : supp(bi) ∩ supp(χι) �= ∅} do

for j ∈ {j : supp(bj) ∩ supp(χκ) �= ∅} do

Ã3
i,j := Ã3

i,j + sV κ
ν,jW

ι
µ,i

end

In this algorithm, the number of kernel evaluations is (#N )2(#K)2, and this
is optimal for our approximation scheme. We emphasize that the interpolation
order m has not to be increased logarithmically with the number of unknowns
but is a small constant m ∼ 2.
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5 Numerical experiments

We have performed numerical experiments for all three types of boundary
integral equations related to Laplace’s equation. The ansatz and test spaces
are chosen as described in Section 2.

5.1 Double layer potential

For our numerical tests, we have chosen the unit cube Ω = (0, 1)3 and solve
the exterior Neumann problem

−∆u = 0 in R
3 \ Ω,

∂u

∂n
= gN on ∂Ω (5.1)

with gN := ∂/∂n‖x − x0‖−1 and x0 =
(

1
4
, 1

4
, 1

4

)ᵀ
. The exact solution is u(x) =

‖x − x0‖−1. Green’s representation formula leads to the boundary integral
equation (

1

2
I + K

)
u = V

∂u

∂n
(5.2)

almost everywhere on Γ. The operator V on the right-hand side was discretised
by the classical formulation.

In Table 5.1, we have listed the relative errors u− ũ� in the L2 (Γ)-norm, where
ũ� is the Galerkin solution by using our quadrature methods. The mesh size is
halved with each refinement level  and the corresponding boundary element
space is denoted by S�. We denote by DLPalt the alternative representation,
and the pair (m1, m2) contains the number m1 of Gauß points in each space
direction for the singular resp. m2 for the regular case. The number of Gauß
points was chosen such that the optimal rate of convergence is preserved over
the tested range of refinements. Note, that the discretisation of the classical
representation fails to converge with the expected linear rate of convergence if
the quadrature order is chosen constant independent of the refinement level.
The table gives the relative L2-errors on level 

e� =
‖u − ũ�‖L2(Γ)

‖u‖L2(Γ)

and the corresponding contraction rates ρ� := e�−1/e�.

We see that we can replace the nearfield integrals by zero and approximate
the farfield integrals by one-point quadrature while keeping the optimal linear
convergence order for piecewise constant approximations of the double layer
potential.
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Level n DLPalt(0,1) ρl

1 12 0.30704 —

2 48 0.14851 2.06

3 192 0.09517 1.56

4 768 0.04883 1.94

5 3072 0.02499 1.95

6 12288 0.01135 2.20
Table 1
Relative L2-errors for the Galerkin solution with constant order numerical quadra-
ture for the DLP.

5.2 Single layer potential

We have solved the boundary integral equation (5.2) on the boundary of the
unit cube for the unknown Neumann data when the Dirichlet data of u is
given.

In Table 5.2 the triple (m1, m2, m3) contains the number m1 of quadrature
points (per space dimension) for the singular integrals and the kernel k2, m2

denotes the number of quadrature points for the regular integrals and m3

denotes the order of interpolation which is used for the approximation of the
generator function G2.

Level n SLPalt(2,4,2) ρl SLPalt(2,4,1) ρl

1 12 0.27908 — 0.38572 —

2 48 0.43442 0.64 3.75139 0.10

3 192 0.33033 1.32 0.17385 21.58

4 768 0.13756 2.40 0.24419 0.71

5 3072 0.05031 2.73 0.15471 1.58

6 12288
Table 2
Relative errors in the energy norm of the Galerkin solution with constant order
quadrature and interpolation for the SLP.

We see that the minimal order of interpolation should be chosen equal to 2,
while the order 1 leads to reduced convergence rates.
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5.2.1 Hypersingular operator

For the hypersingular operator, we employed Green’s formula to transfer the
exterior Neumann problem onto the boundary Γ to obtain the boundary in-
tegral equation

Wu =
(

1

2
I + K ′

)
∂u

∂n
. (5.3)

Here, K ′ denotes the adjoint double layer potential. According to our smooth-
ness assumption for the domain Ω, we choose Γ to be the boundary of the unit
sphere. The solution is chosen to be u(x) = x2

1 +2x2
2 − 3x2

3 and the right-hand
side accordingly.

In Table 3 we compare the relative errors with different parameter choices. The
notation is the same as for the single layer potential. The optimal convergence
rate of O(h3/2) is related to the expected contraction rate 23/2 ≈ 2.828 with
increasing refinement level.

Level #panels n Walt(1, 4, 2) ρl Walt(1, 4, 1) ρl

1 8 6 1.02414 — 3.55884 —

2 32 18 2.98031 0.34 1.76776 2.01

3 128 66 0.704344 4.23 0.549386 3.22

4 512 258 0.180291 3.90 0.157188 3.49

5 2048 1026 0.053908 3.34 0.049123 3.20

6 8192 4098 0.018803 2.86 0.022313 2.20
Table 3
Relative errors in the energy norm of the Galerkin solution with constant order
quadrature and interpolation for the hypersingular operator.

We see that the interpolation with polynomials of degree m = 2 is sufficient
such that the Galerkin with quadrature converges with optimal order. For m =
1, the numerical results show that the converges order becomes suboptimal
with increasing refinement level.
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[16] S. A. Sauter. Über die effiziente Verwendung des Galerkinverfahrens zur
Lösung Fredholmscher Integralgleichungen. PhD thesis, Inst. f. Prakt. Math.,
Universität Kiel, 1992.

[17] S. Sauter. Variable order panel clustering. Computing, 64:223–261, 2000.

[18] T.v.Petersdorff and C. Schwab. Fully Discrete Multiscale Galerkin BEM. In
W. Dahmen, P. Kurdila, and P. Oswald, editors, Multiresolution Analysis and
Partial Differential Equations, pages 287–346, New York, 1997. Academic Press.

15


