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Abstract: We obtain a Gamma-convergence result for the
gradient theory of solid-solid phase transitions, in the case of
two geometrically linear wells in two dimensions. We consider
the functionals

1
]E[u]:/—W(Vu)+€\V2u\2
Q¢

where u : Q C R? — R?, W depends only on the symmetric
part of Vu, and W (F) = 0 for two distinct values of F, say
A and B. We show that, under suitable growth assumptions
on W and for star-shaped domains 2, as € — 0 I. converges,
in the sense of Gamma convergence, to a functional I;. The
limit I is finite only on functions u such that the symmetric
part of Vu is a function of bounded variation which takes only
values A and B. On those functions, the energy concentrates
on the jump set J of Vu, with a surface energy depending on
the normal v to J, and is given by

Iyu] = /J k(v)dH".

The interfaces can have, in general, two orientations.
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1 Introduction

The modeling of phase transitions in solids leads to the study of functionals
of the form

B, Q) = /QW(VU) + V2 (1.1)

where u : 2 C R®" — R” is the elastic displacement, W a free energy den-
sity with multiple minima, and ¢ a small parameter which sets the width of
domain walls [6, 11, 20, 25, 8]. For ¢ = 0 such functionals have no mini-
mum, since W is not quasiconvex; a large body of mathematical work has
aimed at understanding the behavior of minimizing sequences, and of the
corresponding relaxed problem.

The inclusion of the singular perturbation, i.e. the case £ > 0, permits
to study of the structure of domains and domain walls. Variational prob-
lems of the kind of (1.1) have often been proposed both for numerical and
analytical computations, but the presence of different length scales renders
the treatment difficult. At a heuristic level, various simplified forms of (1.1)
have been used in which the singular perturbation is replaced by a measure
of the length of the interface. The connection between the two formulations
has however been up to now not been clarified.

The method of choice for the study of the asymptotic behaviour of vari-
ational problems is Gamma convergence, as developed by De Giorgi and his
school in the 70s ([14]; see also [13, 10]). The first application of Gamma
convergence was obtained by Modica and Mortola [24], which considered the
problem

J. (v;Q) = éW('U) + €| Vv|* dz, (1.2)
Q
where W (v) = iff v € {a, b}, which arises in the van der Waals—Cahn-Hilliard
theory of fluid-fluid phase transitions. They have shown that

I'—lim J. (v;Q) =

0+ +00 otherwise.

{ kPer(E) if v =xga+ (1 —xg)b, v € BV (Q;{a,b}),
(1.3)
This shows that, in the case of fluid-fluid phase transitions, the limiting
problem corresponds to minimizing the area of the interface.
Generalizations of (1.2)-(1.3) were obtained by Bouchitté [9] and by Owen
and Sternberg [27] for the undecoupled problem, in which the integrand in J.
has the form 7! f(z,v(z),eVv(z)). We refer also to the work of Kohn and
Sternberg [21] where the study of local minimizers for (1.2) was undertaken.

The vector-valued setting was considered in [18, 7]. The case where W has



more than two wells was addressed by Baldo [5] (see also Sternberg [29]),
and later generalized by Ambrosio [1].

The inclusion of functionals of elastic problems, such as (1.1), into this
framework has defied a considerable mathematical effort during the past
decade. In general, one would like to understand the Gamma limit of

Liu, Q) = /Q éW(Vu) + |V (1.4)

where u : 0 — R" stands for the deformation, and taking into account
frame-indifference the free energy density W (F') vanishes for F' € SO(n)AU
SO(n)B, where SO(n) is the set of rotations in R™. In order to guarantee the
existence of “classical” (as opposed to measure-valued) non affine solutions
for the limiting problem, in view of Hadamard’s compatibility condition for
layered deformations (see also Ball and James [6]), the two wells must be
rank-one connected, in the sense that there must be rotations ), ' such
that QA — Q’'B is a rank-one matrix, say a ® v. The interfaces between a
region where Vu = QA and one where Vu = @' B then is necessarily planar,
with v giving the normal.

This shows that the limiting problem is expected to be much more rigid
than in the case of fluid-fluid phase transition, in accordance with experimen-
tal observations of very specific laminar structures in shape-memory alloys.
At first glance the analysis may seem to be greatly simplified as compared
with the problem (1.2) which requires handling minimal surfaces, and one is
tempted to define v = Vu and apply the same methods as above. However,
it turns out that the PDE constraint v = Vu (or, equivalently, curlv = 0)
imposed on the admissible fields presents numerous difficulties to the char-
acterization of the I'-limsup. Precisely, the main obstacle in the proof is as
follows. Given Vu with a layered structure with two interfaces, it is possible
to construct a “realizing” (effective) sequence nearby each interface, but the
task of gluing together the two sequences on a suitable low-energy interme-
diate layer is very delicate. It can be done only if an additional structure of
optimal sequences for the I'-liminf can be exploited. Typically, this requires
the proof of rigidity properties for low-energy deformations.

A first simplification of the problem, in which the frame-indifference con-
straint was completely neglected, and replaced with the assumption that
W(F)=0iff F € {A, B}, with A — B = a ® v, was recently studied in [12].
This work was based on a two-step construction for the upper bound, which
was made possible by the additional rigidity determined by the assumption
that only two matrices have zero energy. An intermediate case between (1.2)
and (1.4), where the nonconvex potential depends on u and the singular per-
turbation on VZu, has been studied by Fonseca and Mantegazza [17]. Also, if
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u is a scalar field on a two-dimensional domain, and W vanishes on the unit
circle, W(Vu) = (1 — |Vul*)?, (1.4) reduces to the so-called Eikonal func-
tional which arises in the study of liquid crystals [4] as well as in blistering of
delaminated thin films [26]. Recently, the Eikonal problem has received con-
siderable mathematical attention, but in spite of substantial partial progress
(see [2, 19, 15, 23]) its Gamma limit remains to be identified.

In this work, we consider the problem (1.4) in two dimensions, including
the requirement of rotational invariance within a geometrically linear frame-
work (see e.g. [8]). This means that we replace invariance under SO(2) by
invariance under the additive action of antisymmetric matrices

_ (0 —v
R, = ((,0 0 ) :
We require

W(F)=W (R, + F) for all ¢, L5
1.5
W(F)=0 iff, for some ¢, F=R,+Aor F=R,+B.

Further, we assume W to be continuous and to have quadratic growth, both
at infinity and close to the wells, as in Eq. (2.3). Then, we are able to prove
that on star-shaped sets Q C R? the functionals I, Gamma converge to

k(v)dH! if V™ € BV, Yut¥ul ¢ £ 4 B} ae.
Io[u,Q]:{fJWSV"‘ (v)dH' if Vu™™ € BV, x4 ¢ {A, B} ae (L6)

—+00 else,

where Jy,sym denotes the jump set of Vu™™, and v the normal to it. The

main ingredient of the proof is a rigidity estimate based on a self-similar
finite-element decomposition of the domain. It permits to show that for
every low energy deformation u. there are many cross-sections on which . is
close to an affine function in the H'/2-norm. This result allows one to modify
the sequence in order to obtain affine boundary data, and hence to use it in
the construction of the upper bound.

Our main result is

Theorem 1.1. Let W : R**2 — R be a nonnegative function which is in-
variant under linarized rotations and vanishes on two symmetric matrices A
and B, as in (1.5). We assume continuity and quadratic growth of W. Then
for any open, bounded, strictly star-shaped domain €2, we have

I'—limlI. = I,

e—0

with respect to the strong L' topology. The surface energy k(v) is defined in

(3.3).



Here and below, we say that an open set € is strictly star-shaped if there
is a point r € €2 such that for any s € 92 the segment (r, s) is contained in
Q2. Equivalently, any straight line through r intersects the boundary 02 at
exactly two points.

2 Preliminaries and compactness

We consider, for ¢ > 0,  a bounded, open, Lipschitz subset of R?, and
u :  — R2, the functionals

I [u, Q] =

{fﬂ LW (Vu) + e(MV?u, V) if u € W22 1)

else.

Here, W is the geometrically linear energy density of a two-well problem, i.e.,
W :R¥? — R, continuous, W >0, W(F) =W(F™™) (2.2)

where F™ = (F + FT)/2 denotes the symmetric part of F, and W (F)
vanishes for two distinct values of F*™  which we denote by A and B. We
further assume that W is continuous and has quadratic growth, both close
to the minima and at infinity, in the sense that there are constants C' and C’
such that

CWy(F) < W(F) < C'Wo(F), (2.3)

where Wy is the squared distance from the two wells,
Wo(F) = min (|F¥™ — A |F¥™ — B|*) .

The singular perturbation has been here generalized to an elliptic quadratic
form characterized by a symmetric linear map M such that

M R¥2 S RP*®2 0 (MF,F) > 0 for all F such that Fyj, = Fy;,
(2.4)
which means that there are C, C’ such that

C|V2ul* < (MV?u, V) < C'|Vul? (2.5)

for any smooth map u :  — R2.

Heuristically, one expects the gradient of the limit function to take only
values whose symmetric part equals A and B. Nontrivial maps of this kind
are possible only if the two wells are rank-one connected. To see this, we
consider an interface between a region where Vuy = A + S and one where



Vug = B+ T, with S and T antisymmetric (i.e. S¥™ = T%™ = 0). Then,
if enough regularity is present to define a tangent to the interface and traces
on both sides, the tangential parts of the gradient must coincide. Hence we
get that the difference of the two gradients (A + S) — (B + T') must be a
rank-one matrix a ® v, where v is the normal to the interface. As we show
belo, only special choices of S and T" permit to obtain this decomposition.
In the rest of this Section we make this argument precise, and explore its
consequences on the possible limits ug of finite-energy sequences u.. It is a
standard observation that given two symmetric 2 x 2 matrices A and B, the
equation
A=B+S+a®v (2.6)

with S antisymmetric has
e 10 solution if det(A — B) > 0,
e one solution if det(A — B) =0,
e two solutions if det(A — B) < 0.

To see this, consider C' = A—B. Condition (2.6) is equivalent to the existence
of an antisymmetric matrix S = s(e; ® ez — €5 ® e1) such that

0 =det(C — S) =detC + s?,

and the set of solutions has the same cardinality. The case det(A — B) > 0
is of no interest to us, since in that case the Gamma limit is finite only on
affine functions (see Theorem 2.2 and Proposition 2.3).

We now show that the problem can be reduced to a canonical form via
an affine change of variables; the star-shapedness of the domain is preserved
under this transformation. The other structural property to be preserved is
invariance of W under addition of antisymmetric matrices, growth conditions
are clearly unaffected. In particular, if we write u(r) = PTa(Pr) + Qr, with
an invertible matrix P, then the deformation gradient transforms according
to F = PTFP + Q. Setting W(F) = W(F), the first term of the energy
density is unchanged. The invariance of W under addition of antisymmetric
matrices follows from the decomposition

eym — PTFsymP + stm 7 [asym PTFasymP + Qasym )
The second gradient transforms according to

Viu = PV*uP" @ P,



and induces an affine change on M, which in components is given by ]\;[ijk Imn =
My ik v PZ-Z-/PjTj,Pka, PpPT  PT, and which leaves the ellipticity condition

U Y
(2.4) unaffected. We now characterize the set of possible canonical forms for
the matrices A and B.

Lemma 2.1. Let A, B € R?**2 be symmetric. Then, one can find an invert-
wble P and a symmetric () such that the change of variables

F=PFP"+Q
leads to A = 0 and
e B

Id if det(A — B) > 0,
® B =1 X e Zfdet(A—B) = O,

e B=e;®ey+e3®e; ifdet(A— B) <O0.

Proof. We first choose Q = A, so that A = 0 for any choice of P. B is
determined by B— A = PBPT. By the representation theorem for quadratic
forms, we can always find P; such that either B=1d,or B=¢; Qey, or
B=¢ ®e — ey @ ey For det(B — A) > 0 this concludes the proof with
P = P,. If instead det(B—A) < 0, we take P = P, P, where P; is a 45-degree
rotation. O

We now come to the compactness result. It exploits a combination of the
arguments used e.g. in [18, 12] for the case that W vanishes on a finite set,
and the additional rigidity which comes from Korn’s inequality. We recall
that Korn’s inequality states that for all maps v € WH2(Q, R?), where  is
a bounded set in R? with Lipschitz boundary, there is ¢ € R such that

L= %)

where ¢ depends only on €2, which is assumed to be a bounded Lipschitz
domain in R? (see e.g. Theorem 62.F in [30]).

2
< cq / Yt (V)P (2.7)
Q

Theorem 2.2 (Compactness). Let u;, €; be sequences such that €; — 0
and I, [u;, Q] < C < oo, and let assumptions (2.1)-(2.5) hold. Then there is
a subsequence of u;, and sequences a;, b;, @; such that

vi(z,y) = wi(x,y) - (Zj) * (421‘ —802‘) (z)

converges strongly in W2 to ug, with Vug™ € BV (Q,{A, B}).
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Proof. We first observe that
/ V™| < c/ (W(Vu;) + 1] < el [u] + ¢|Q|
Q Q

is uniformly bounded. By Korn’s inequality (2.7) the same is true for the
full gradient of u;, after subtracting a antisymmetric linear map. Therefore
we can choose a;, b;, ¢} and a subsequence such that (after relabeling)

a; — oLy .
v = U — (bz’ n :'ppgx) — U weakly in W2, (2.8)
We now show that the symmetric part of the gradient of v; converges strongly.

Let f; = Vo™, Since it has a weak limit in L?, it generates a Young measure
{vs}ueq. Since W(Vu;) = W(f;), we get that [ W(f;) — 0, and hence

i—00

0= lim W (fi) = / W(&)dv,(§)dx .
R2X2

This shows that the Young measure is supported on the null set of W, i.e.
=(1—-0(z))0a+0(x)ép forae ze€. (2.9)

Now we consider the geodesic distance dy (F,G) induced by the potential
W, which is given by

1
dw (F,G) = inf {/ VW (g(s)lg'(s)] : g(0) = F, g(1) = G, g piecewise C’l}

’ (2.10)
It is clear that dy (F, A) = 0 iff Y™ = A, and the same for B. On the other
hand, dy (A, B) > 0. We now claim that dy (f;(x), A) is uniformly bounded
in W' (and hence has a subsequence that converges weakly in BV). To see
this, we compute

/deﬁ |</\/ DIV < eLfus, @) < ¢

and exploit the quadratic growth of W for the L! estimate (for the compact-
ness argument, the growth requirements can be relaxed via a now standard
truncation argument, see e.g. [18, 12]. Note however, that Korn’s inequality
does not hold in Wb, hence p-growth from below with p > 1 is required in
this case). Therefore, dy (fi(x), A) has a subsequence which converges weakly
in BV and strongly in L' to some BV function g. This implies that the cor-
responding Young measure g is a Dirac mass almost everywhere. Equation
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(2.9) yields, however, p, = (1 — 60(x))dqy, (4,4) + 0(2)day, (B,4) for a.e. x € Q.
We conclude that 6(z) € {0,1} a.e., i.e. that f; converges strongly in L.
By the uniqueness of the weak limit and (2.8) it is also clear that f; —
Vug™. Now consider the sequence w; = v; — ug. By the previous arguments
the symmetric part of the gradient converges to zero strongly in L?, and with
a further application of Korn’s inequality we obtain that, for some sequence

o7
0 —yf
/Q Vi - (@2’ 0 )

The result follows, with ¢; = ¢} + ¢!. O

2
Sc/ V™2 — 0.
Q

The next statement is concerned with the structure of possible limits
u of finite-energy sequences. A more general result, for the geometrically
nonlinear case, can be found in [16].

Proposition 2.3. Let u € W'? obey Vu™™ € BV (Q, {A, B}). Then Vu is
constant in each connected component of Q\ J, where J = Jgysym is the jump
set of Vu™™, and the normal to J can take only the values, vy and +uvs,
as gwen by Eq. (2.6). The set J is the union of countably many disjoint
segments, normal either to vy or to vy, and whose endpoints belong to OS2.

Proof. We can assume A = 0, B = €] ® €3 + €3 ® €7, see Lemma 2.1 (the
case det(A — B) = 0 can be treated analogously). Consider a square ) =
(20, v0) + (0,8)? contained on Q2. Since Q is convex and d,u, = d,u, = 0 a.e.
in ), we can write

),y = ().

The symmetric part of the gradient becomes

svm e1®er+ea®e
Vut @, y) = [u,(y) + v (x)] TP

whence (u,(y)+u,(x))/2 is a BV function which takes values 0 and 1. Lemma
2.4 below shows that one of the functions u’, u?’J is constant, the other one
takes only two values. Therefore J N (@ is the finite union of either horizontal
or vertical segments whose endpoints are in Q).

This argument can be applied to any square contained in €2, hence J
is composed by disjoint horizontal and vertical segments whose endpoints
belong to 9S2. Since H!(J) < oo, there are at most countably many of them.
The set J is closed. The function Vu is constant in each square contained

in the open set Q2 \ J, and hence in each of its connected components. O



Lemma 2.4. Let f, g € L'((0,1)), and assume that

f(@) +g(y) € BV((0,1)*,{0,1}).
Then, one of them is constant.

Proof. Since f + g = xg for some Caccioppoli set E, and f, g are in L!, for
almost every pair (z,y) € (0,1)?, the following holds: (i) x is an approximate
continuity point of f; (ii) y is an approximate continuity point of g; (iii)
(x,y) is a point of density 0 or 1 of E (see e.g. [3], Sect. 3.6). Then, (i)
and (ii) imply that the approximate limit of f + g at (z,y) is the sum of
the approximate limits of f at « (call it f(z)) and of g at y (call it §(y)).
By the uniqueness of the approximate limit, (iii) implies than that for a.e.

(z,y) € (0,1)%, f(z) +g(y) € {0,1}.
Choose now two such pairs, (z1,y1) and (z2,y2). With obvious notation,
we get that

hi+ta, fi+tg, fotag, fot+ge,

are all in {0,1}. But if g; # go, then necessarily f; = f,, otherwise at least
three different values would be attained. It follows that if (away from a null
set) there are points such that ¢; # go, then f is constant almost everywhere,
and vice versa. This concludes the proof. O

3 Lower bound

This section provides a lower bound for the limiting energy of sequences u..
The lower bound is given by the functional Iy, which was defined in (1.6).
We recall that by Proposition 2.3 Iy[u, 2] is finite only on functions v whose
symmetrized gradient Vu®™™ is in BV (Q, {A, B}), with the jump set J of
Vu™™ consisting of straight lines with normals £+, and £ as in (2.6). On
those functions, I takes the form

Iy[u, Q) = /Jk(z/)dHl. (3.1)

Proposition 3.1 (Lower bound). Let Q2 be an open, bounded, Lipschitz
domain, and assume that (2.1)-(2.5) hold. Then, for all sequences € — 0
and uz. — ug in L', we have

lim iglf I [uc, Q] > Iylug, ], (3.2)
where
k(v) = inf {liminf I [u;, Q,] : &; — 0,u; — uf in L'} | (3.3)
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with k(v) = k(—v). Here, Q, is a unit square centered in the origin with
sides parallel to v and v*, and uf vanishes at the origin, Vul(r) = A if
r-v >0, and Vui(r) =B ifr-v <0.

In the case det(A — B) = 0 only the values vy appear; in the case
det(A — B) > 0 the jump set is empty.

The argument for the lower bound is similar to the one used for the case
of two matrices in [12], and is essentially composed of two main ingredients.
First, we characterize the lower bound for rectangular domains which contain
a single interface. Then, using the compactness and structure results of the
previous section, we show that if the liminf is finite, then an arbitrarily
large fraction of the limiting energy is contained in a finite union of disjoint
rectangles, each of which contains a single interface (see Figure 3.1). We
only discuss the proof for the case that two different rank-one connections
are present, the case of a single one is simpler and completely analogous
(one just has to drop all references to the v interfaces). Using the change of
variables discussed in Lemma 2.1, we can assume that

B-—A=e®e+e®e,
and that there are antisymmetric matrices S, and S, such that
(B+Sp) —A=a,®@uvy, (B+S,) —A=a,®u,, (3.4)

with v, = ey and v, = e;. The index shall remind us that the first are
horizontal interfaces, the latter vertical ones.

We now consider a rectangular domain (—d,d) x (—I,[l) and a function
up which contains a single horizontal interface in the center,

" B x Az, y)T if y <0
ulny) =5 (y) " {(B + ) ()" iy >0, 335)

where S is any antisymmetric matrix, and Sy, is as in (3.4). Now consider
the optimal energy needed to achieve this interface,

Fi(d,1,8) = inf {liminf I.,[u;, (—d,d) x (=1,1)] : & — 0,u; — v in L'} .

Let F, be defined analogously, with A and B swapped (more precisely, we
define u; as u;, but with the conditions y > 0 and y < 0 swapped, and
then F,  with u; replaced by u; ). We claim that there is a constant &y,
depending only on W and M, such that

Fif(d, 1, S) = 2dky, .

11



FIGURE 3.1: Example of a possible limit function with three interfaces. The
three rectangular boxes capture most of the energy. The letters denote the
value of the symmetric part of Vug in the different regions.

In other words, the limiting energy per unit interfacial length does not de-
pend on the orientation of the interface, on the domain size, and on the
superimposed rigid rotation.

The same holds for vertical interfaces. Let the domain be (—[,1) x (—d, d),
and the limiting functions

A T if +
uy (2,y) = S (x> 4 Ay , o hmest
y (B + S,)(x,y) if +2>0,

where S, is as in (3.4), and S is any antisymmetric matrix. The optimal
energy is

Fi(d,1,8) = inf {liminf . [u;, (=1,1) x (—=d,d)] : &; — O,u; — uj in L'} .

Note that we use d for lenghts along the interface and [ for lengths in the
orthogonal direction.

Lemma 3.2. There are constants ky, k, depending only on W such that
FE(d,1,S) = 2dky,, FE(d,1,S) = 2dk,.

Proof. Since W(F + S) = W(F), and V*(u + S(z,y)T) = V?u, it is clear
that the result does not depend on S, which can therefore be dropped from
the notation.

12



Now we show that the result does not depend on the orientation of the
interface, i.e., F© = F~. Indeed, the energy is clearly invariant under the
operation u — T'u defined by

(Tu)(r) = —u(—r).

To see that I.[Tu| = I.[u], we compute first (VTu)(r) = (Vu)(—r), hence
the integral of the first term is unchanged. Since (V2Tu)(r) = —(V2u)(—r),
and the second term is even, also the latter is unchanged. On the other hand,
if u; — u;, then Tu; — Tu) = u;,, and vice versa. This shows that for any
d and [ we have F,7(d,1) = F; (d,l), hence from now on we work with the
first one and drop the superscript.

It remains to consider the dependence on d and [. By restricting the
integration we see that F3(d, ) is nondecreasing in [. Considering sequences
v;(r) = au,;(r/a) and ag; we find

Frn(ad, al) = aF(d, 1)

for any @ > 0. By dividing the domain in n translated copies of (—d/n, d/n) x
(—1,1), and restricting u to the one where the energy is lowest, we get

1 1
Fn (—d, l> < —Fn(d,l)
n n
for n € N. Now,
1 1.1 1 1
—Fn (d, 1) = Fy (—d, —l) < Fn (—d, l) < —=Fn(d1),
n n o 'n n n

hence equality must hold throughout, and in particular, using the monotonic-
ity in I, Fp,(d, 1) does not depend on its second argument. The scaling derived
above gives then the result. The same argument works for F,(d, [). O]

We are now ready to prove the main result of this Section, the I'-liminf
inequality.

Proof of Prop. 3.1. If the liminf is infinite there is nothing to prove. Oth-
erwise, using the compactness result (Theorem 2.2) we obtain that the limit
has the structure given by Proposition 2.3, and that [ is finite. In the fol-
lowing we only need to consider such limits. Further, it is sufficient to show
that for any § > 0 the inequality holds up to an error term controlled by §.

The jump set of Vug™ is composed by the countable union of segments,
which are either normal to v, or normal to v,. We denote it by

J(Vug™) = U]zh x {yi} U U{xz} x I
i=1 i=1

13



(one or both unions can be finite, in which case the next step is not needed).
For each ¢, there is NV such that the first N segments of each of the sums
cover at least a 1 — § fraction of the total measure, i.e.,

N 00

SO > (1=0)) |

i=1 =1

for a € {h,v}. For each of those intervals, consider a compactly contained
subinterval J of length |J| > (1 — §)|I|. Then, there is h > 0 such that

N N

i=1 i=1

We claim that h can be chosen so that each of the rectangles above contains
only a single interface. Indeed, introducing the sets

N N (o) (o)
K= x v Jtady x 2, H=|J I'xqwiu U o} < 1.
i=1 i=1 i=N+1 i=N+1

we see that their closures, K and H, are disjoint. This follows from the fact
that interfaces can only meet in their end-points which belong to 02, that
K does not contain any point of 02, and that H has finite length, whence
cluster-points of H are necessarily in H U 9€). By compactness we conclude
that K and H have a positive distance. With A less than this distance, the
sets

wlh = J" x (y; — hyyi +h), w! = (z; — hyx; + h) x J}

(2

for 1 <4 < N are disjoint and each contains a single interface, i.e. the w!
are of the kind considered in the definition of F, and the w of the kind
considered in the definition of F,. It follows that

liminf I [u., 2] > Zliminf[s[us,wf‘]

Vv

N N

PR APAES Y APA

=1 =1

> (1=0)> " [knlI}] + k| IPl] = (1 — 6)*To[uo, 9 .

=1

Since this can be done for any 4, the proof is concluded. O
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4 Rigidity

Aim of this section is to show that, away from the interfaces, many cross-
sections of a small-energy deformation u are close to a linear profile in the
H'? norm. This rigidity result will be used in the next section to modify u
so that it becomes affine on part of the domain, which in turn will permit to
construct test functions for the upper bound and to show that the limit does
not depend on the sequence ¢;.

The H'/? estimate on a line would follow immediately from Korn’s in-
equality and a trace theorem if one could show that only one of the two phases
is present, at least on one side of the considered line. This is, however, not
true for generic small-energy functions, see Lemma 4.3 below. We instead
will show that u can be replaced, on one side of the chosen line, by a piece-
wise linear function, which achieves a similar elastic energy by using only one
of the two phases. The argument is based on compatibility conditions on a
self-similar grid.

The precise strategy is as follows. First (Section 4.1), we show that for
many of the admissible y the energy is locally as good as on average (up to
a constant) and it does not concentrate in any of the stripes (yo — dy, yo) for
d, = 27% (in the sense that each of those stripes has total energy controlled
by a universal constant times the global energy times the area of the strip).
Then, we show that we can construct a grid, that refines towards one of those
good y, such that on each grid segment the energy is small. This shows, by
the standard Modica-Mortola argument, that only one phase is used in the
all the edges of the grid.

The second step (Section 4.2) is a discrete analysis in a single parallelo-
gram of the grid. We derive a sharp rigidity result for the zero-energy case,
which is formulated using the discrete variables given by averages on seg-
ments and triangles. The discrete formulation permits by a straightforward
perturbation argument to go from the rigid case to the perturbed one, i.e., to
show that for small-energy deformations the result still holds up to a small
error term.

In a third step (Section 4.3) we then show that a piecewise bilinear in-
terpolation of the averaged values permits to construct a new continuous
deformation, whose energy is controlled by the original one, and which uses
only one well. Since the grid refines close to the chosen line, the two defor-
mations agree for y = y. This yields the desired H? bound.

Taken together, the following three subsections prove the following propo-
sition. Here and in the rest of this section we assume that A = 0, B =
e1 ® eg + e3 ® eg (the other case is treated in Remark 4.2 below).
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Proposition 4.1. Let u: Q = (—d,d) x (=1,1) — R? obey
Ié[ua Q] S n,

with n sufficiently small. Then there is a subset Y C [—l,1] of measure
LYY) > 1 such that for every slice ¥,, = (—d/2,d/2) x {yo} with yo € Y
there is an affine function wy, : (—d/2,d/2) x (=1,1) — R? such that

||U(,y0) - wyo('ayO)H?—Il/?(Zyo) < cen,

with Vwi™ € {A, B}, where ¢ can depend on d, I, and W, but not on u, €
and 7.

Remark 4.2. In the simpler case B = e; ® e; we immediately obtain control
of the stronger H' norm. Indeed, in this case

W (Vu) > c|0,ul?,

hence for each yo there is a constant wy, such that

d
ey 90) — wallZs s, ) < € / W(Tu)(a. o)

and for at least half of the yo the last integral is controlled by ne.

From the form of the energy it is clear that on most of the domain Vu is
close to either R, + A or R, + B for some ¢ = ¢(r); the main difficulty is to
show that on many lines one can choose ¢ to be a constant, and to obtain
the optimal scaling for the H'/2 norm with .

The first term in the energy controls e ™! [ min(|Vu™™ %, [Vu™™— BJ?). It
is natural to ask if there is a rigidity argument, in the sense of a generalization
of Korn’s inequality to two wells, that gives directly control of e ™! [ |[Vu—F?,
for some matrix F'. We now show with a concrete example that this is not
the case.

Lemma 4.3. Let Q = (—1,1)%. For any sequence ; — 0, there is a sequence
u;, such that u; =0 on 052,

[E [UZ,Q] — O, Hui”wl,Q — O,

i

and

1
/ —|VUZ —E|2 — OO
Q¢i

(2

for any sequence F; € R?*2,
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FIGURE 4.1: Subdivision of the domain for the construction of v; in Lemma,
4.3. The triangle PRQ is in the 'B’ phase, and has area h;d; of order 5§/2d12.
The rest in the A’ phase.

Proof. We write u; = p., * v;, where p,., is a standard mollification kernel on
the scale ¢; and v; is continuous and piecewise affine. Standard arguments
show that

E

A

[u;, Q] < c lW(VUZ-) +c/ V20,
Q Ei Q

where the second term has to be interpreted as the BV norm of Vu. In
the following we drop for simplicity the index ¢. The construction of v is as
shown in Figure 4.1. We set v = 0 outside the central quadrilateral, which has
corners P = (—d,0), @ = (0,—h), R = (d,0), S = (0,d). The quadrilateral
PQRS is divided into four triangles, with one side in common with PQRS
and one vertex in the origin. At the origin, we set v(0,0) = (2h;,0). In each
of the four triangles v is the linear interpolation between the values at the
three corners. Straightforward calculations show that

/W(V'U) <ch?, / V2| < ed, / |Vl > chd
Q 0 Q

for some universal ¢ > 0. We conclude that for any sequence ¢; — 0, one can
find a sequence d; which converges to zero slower than ¢; (e.g. d; = 52-1 /5 will

do) such that, setting h; = 53/2di, the thesis is satisfied. O

We now come to the definition of the grid. Our argument is basically
conceived on a square grid which refines geometrically towards the chosen
value of y, as shown in Figure 4.2a, and such that on all grid edges only one
of the wells is used. In order to obtain enough linear equations to uniquely
determine the averages on all grid segments, we need however to consider

17



(a) (b)

FIGURE 4.2: (a): Sketch of the simplified self-similar grid. (b): inclusion of
diagonals and subdivision of each stage into three.

also averages on diagonals, and to subdivide each refinement step into n
parts (n > 4), see Figure 4.2b.

In choosing the grid we exploit the smallness of the set {25 where Vu is
in the B-phase, and the smallness of its perimeter. We now show that it is
not possible to find a translation of a rigid grid (as in Figure 4.2b) whose
edges do not intersect Qp. In fact, by a result of Komjath [22] for any small
J there is a countable union of intervals F = U;(a; — r;, a; +1;) C (0, 1), with
|E| < § such that for any y € (0,1), there isa k > 0 with y —d " € E. Let
now E' = U;B(a;, ;) C (—1,1) x (0,1). The set E’ has perimeter and area
less than 7d. Nevertheless, every translation of the rigid grid of Figure 4.2b
hits E’. We shall therefore generalize to grids which are slightly tilted and
whose y-spacing fluctuates by a small amount, as shown in Figure 4.3. This
will give two degrees of freedom (tilt and spacing) at each refinement step.

We now give a precise definition of the grid, starting from the smallest
elements. A one-grid on a square consists of the union of the four sides and
the two diagonals,

GWY = {(z,y) €[0,1%: (z,y) € 90,1 or z =y or z =1 — y} (4.1)

(see Figure 4.4a). A n-grid on a square consists of the union of n? such grids
scaled and translated to the n? subsquares of side 1/n of the unit square,

namely,
! (| i g
GW=|]=gW4 (-2 4.2
U n + TL’ n ( )

i,j=0
(see Figure 4.4b). An n-grid on a parallelogram is the image of the n-grid
on a square under the affine transformation 7" that maps the square onto the
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(x04)

(%5,Y5)

(Xz¥2)

(x1,y))

FIGURE 4.3: Global structure of the grid constructed in Lemma 4.5.

parallelogram (see Figure 4.4c). We shall only use parallelograms with one
side parallel to the z axis, and parametrize them with the positions r and r/
of the leftmost points of the horizontal sides, which at stage k£ have length
dy = 27%. Let Ty(r,7") be the affine map that brings the unit square on such
a parallelogram. Then, the k-th stage of the grid is given by

G (r, 1) = To(r, 1) QU lGW + (g)} , (4.3)

1=0

see Figure 4.5.

Given a sequence of points r;, we construct the grid G as the union for
k € N of the subgrids Glgn)(rk, Tk+1). The discussion of the following sections
is formulated for a generic n larger than or equal to 4, but the index n is
suppressed in many expressions. The result is used only for the case n = 4.

For the proof of Proposition 4.1, we first remark that by standard ap-
proximation arguments it is sufficient to prove the estimate for smooth wu.
For the rest of this section we can therefore assume that the deformation u
is of class C?.

4.1 Construction of a small-energy grid

This section is written for a fixed domain. A standard scaling argument
permits to formulate the result in a (—d, d) x(—[, ) domain. The construction
is done for the case y > 0, the other case can be obtained by reflection.

Let f(z,y) = 2W(Vu)+¢|V2u|?. Without loss of generality we work in a
domain (—1,1)? and assume that the L' norm of f is small, [ f <. We first
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(a) (b) ()

FIGURE 4.4: Grids. (a): a 1-grid on a square. (b): a 3-grid on the same
square. (c): a 3-grid on a parallelogram.

derive some L*> bounds for the one-dimensional Modica-Mortola problem of
interest in the grid construction.

Lemma 4.4. For any small o > 0 there is a constant d = d(c) such that the
following holds:

(i). If 7y is a piecewise C* curve such that fvf < d, and there is vy € 7y
such that |Vu™™(r) — A| < 0/2, then |Vu™™ — A| < ¢ on the entire .
The same holds for B.

(ii). If v is a piecewise C* curve such that fw f < min(d, |y|d/¢e), then either
|[Vuy™ — A| < o on the entire curve v, or |Vu™™ — B| < o on the
entire curve -y.

Proof. The first statement is essentially the Modica-Mortola compactness
result. Indeed, let y(s) be a parametrization of 7, then with dy of (2.10) we
find

! d
12 [ VGGG |59t (6D)| ds = b (Tu(r), Tutr)
¥ 0
for all r, " € v. Now we set
d* = inf {dw(F,G) : |[F¥™ — A| < 0/2, |G¥™ — A| > o}
and analogously d”, which are positive since W is nonzero away from the

wells, and choose d < £ min(d*, d”).
To obtain the second statement, let

1
d" = Sinf {W(F) : [F¥" = A 2 0/2, [F*" = B| 2 0/2}
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Yk+17Yk WW

FIGURE 4.5: One step in the grid, for n = 3. The grid is composed by the
union of the sides and the diagonals of 3 layers of 3 - 2¥ equal parallelograms.
The horizontal side of each of them is di = 2%, the height (yx —yx_1)/3. The
lower-left corner of the whole grid is (xy, yx), the upper left one (xg41, Yk, )-
See Figure 4.3 for a picture of how the different layers relate to each other.

which is again positive, and choose d < d*. It is clear that there must be a
point on v where W (Vu) < d*. Then it suffices to apply part (i) to get the
result. O

The construction of the grid uses a covering lemma, which says that for
every family of balls {B;} of bounded diameter covering a measurable set
E C R"™, one can extract a disjoint sequence By, Bs, ...so that

SO 1B = 57 E). (4.4)
k

For a proof, see e.g. [28], page 9.

Lemma 4.5. Given any small positive 6 > 0, and any 0 € (0,1), there are
constants 0y, c > 0 such that if u is a C* function with

[E[u7 (_17 1)2] <N <o, and ”VU T A”%Q((—l,l)Q) <1 <o (45)

for small € < 1, for a O-fraction of the choices of yo € (0,1) we can find a
sequence of points ry, = (g, yr) such that with dy = 27% the following holds:

(7,) Y € [yo — dk,yo — dj, +5dk], ‘.’L’k — .%'k+1| < (52_k, 1<z, < -1 +3(5,
(ii)' For any k), IE[uv (_17 1) X (ykayO)] < C77|yk - y0|7

(11i). On each point on each grid Gy(ry, rp+1), we have |Vu¥™ — A| <6,
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(iv). The line energy satisfies

/ |Vu™ — APdH' < ene,
Gr(rik,Tk+1)

(v). The rectangle (—1+26,0) x (yo—1/2,y0) is contained in the set covered
by the grid, defined as the union of the convex envelopes of the Gy, ’s.

All constants above depend on the order n of the constructed grid.

Proof. The idea of the proof is the following. First, the integral of the energy
density f on most segments is small, due to the first inequality of (4.5).
Therefore, by Lemma 4.4 on each such segment only one phase can be used,
and if they form a connected set it is the same everywhere. The second
inequality of (4.5) then implies that this phase has to be A. The main
difficulty, which renders the proof rather technical, resides in the fact that we
need to choose an infinite number of segments, which satisfy simultaneously
a number of properties.

In the proof we often have to show that if a finite list of estimates is
satisfied on average, then - up to a constant - there are many points where
all of them are satisfied. More precisely, if ¢; : (0,1) - R, 1 < i < N
are finitely many nonnegative functions which obey [ < ¢;, and 6 is any
number in (0, 1), then there is £ C (0,1), with |E| > € such that for all
x € E and all i we have ¢;(x) < N¢;/(1 — 0). Indeed, if this were not the
case, then the set (0,1)\ E, on which the nonnegative function ¢ = >, ;/¢;
is larger than N/(1 — @), would be larger than 1 — 6, hence the integral of v
on (0,1) would be larger than N. On the other hand the assumption on the
Y; gives immediately f(o,1) > ¥i/ci < N, a contradiction.

Step 1. Choice of . We first show that there is a vertical line, {Z} x
(—1,1), such that

|Vu¥™(z,y) — A| < 06/4 for all y. (4.6)

We need a better estimate than ¢ here since this line will be the starting
point for applying Lemma 4.4(i) to all ’good’ horizontal lines, and they in
turn will be the starting point for for applying Lemma 4.4(i) to all ’good’
diagonal lines, and in each iteration the estimate deteriorates by a factor of
2.

To prove (4.6), observe that it follows from Lemma 4.4(ii), provided that
we choose T so that the quantities

1 1
/ dyf(z,y) and / dy|Vu(z,y) — AP

1 1
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are smaller than the appropriate constants, which depend only on §. Since
the integrals over Z of both quantities are controlled by (4.5), by choosing 7
sufficiently small there must be some Z for which this is true (note that 7,
here and in the following, depends only on ¢ and W).

Step 2. Choice of yy. We now show that for many y € (0, 1) the following
holds:

1Y !
for any k > 0, — dy'/ drf < cin, (4.7)
dk y—dy, —1

where d;, = 27% and ¢; depends only on . Consider the intervals (y — dy,y)
where (4.7) does not hold, and scale them up by (1 + 2¢), where ¢ is a small
positive quantity. Let F = {(y; —dy, (1+&), yi+&di,)N(0, 1)} be the resulting
family of intervals. The family of intervals F covers some subset I of (0,1),
which contains all y for which (4.7) does not hold. By the covering argument
of (4.4) there is a subfamily G C F of disjoint intervals covering at least one
fifth of I. Then we get

| ]| [|cx
n= / [z / f anz 5o
(—1,1)x1I Ijgg (—1,1)xI Z 1+2¢ 5(1 +2¢)

I;eG

which gives |I| < 5(1 + 2£)/c;. We now choose £ = 1/2 and ¢; such that
1—6 < 10/¢y. Then, we obtain that |I| < 1—#6, therefore at least a f-fraction
of the y’s in (0, 1) satisfy (4.7).

Since f is continuous we further obtain [ f(-,yo) < c1n. If we choose 7
small compared to d(§/2) (as defined in Lemma 4.4) we further have that

|VusY™ (z,y9) — Al < §/2 for any =, (4.8)

since this line intersects the one of equation (4.6) in the point (Z,yp).
Step 3. We now choose the horizontal lines. We seek y;. close to yo — di
such that

/ daf (z,yr) < cam. (4.9)
0

Further, if £ > 1 we also require the same bound for n — 1 intermediate lines
between y; and yi_1, namely,

/ dx f (xyk — i(yk — ykl)) < cam (4.10)
0 n

for i € {1,2,...,n — 1}. By close we mean the condition given in point
(i) of the statement. This is always possible, since by (4.7) the integral of
the quantity in (4.9) over the set of admissible yi, which has width d0dy, is
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controlled by ¢;ndy. Hence we can choose one y; so that (4.9) holds with
¢y = ¢1/0. The same argument applied to the sum of the n integrals appearing
above permits to chose the final y;, which satisfies (4.9) and (4.10) with a
larger value of cy. (it is here important that in selecting y; we only have to
enforce a finite number of conditions).

Step 4. We now choose the non-horizontal lines. To do this, we need
to consider the precise structure of the grid at level k. We denote by
Gi(x,y,2',y") the union of all segments of one refinement level, as defined in
(4.3), and by G*(z,y,2',y’) the union of all non-horizontal ones, which are
the only ones of interest here (the horizontal ones have already been treated
in Step 3). We remark that for all arguments satisfying condition (i) in the
proposition, a grid G is the union of ¢2* segments, whose total length is uni-
formly bounded, and which form an angle larger than 7/8 with the horizontal
axis. The points xj will be chosen in the intervals I, = x4+ (—dk_10, dx_10),
for k=1, 2y € I = (=1 +6,—1+ 26). At refinement level k, we need to
choose 1 such that

/ FdH' < eqn. (4.11)
G (g Yo Tt 1Yk +1)

The key observation is that, at any level k, and for any fixed ¢ in (—ddy, ddy),
we have

/ dxk/ fdH' < c/ f <cidgn.
I, G (@ Ui T+ bk Ykt 1) (=1L, 1)x (yk,Yr+1)

Hence by choosing c3 large compared to ¢y, for a given ¢, we find a large set
of xy € Ij such that (zy,zy + t) defines a low-energy strip in the sense of
(4.11) (here and below ’large set’ means a set of measure at least 8/9|Ix]).
Moreover, we will see that for a large set of xy there is a large set of t; such
that the couple (z, zg + tx) defines a low-energy strip.

We now make the inductive argument rigorous. Each z; must be in an
interval I, with |I| = 4dd;. We define the set of 'good’ values of x; as

Xy = {xp € Iy : (4.11) holds for at least two-thirds
of the xp1 = o + g, ty € (—(Sdk, 5dk)} , (4.12)

and show that X} covers at least two-thirds of the admissible interval I}.
To see this, let P be the set of pairs (xy, 1), seen as a subset of J = I} X
(—dy6,dy0), for which (4.11) holds. By the argument above each horizontal
section of P covers eight-nineth of the corresponding section of J, therefore
the area of P is at least eight-nineth that of J. Then also two-thirds of the
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vertical sections of P have one-dimensional volume larger than two-thirds. If
not, the total volume were |P| < (2/3)-1+(1/3)-(2/3) = 8/9, a contradiction.

At the first step, we choose freely one x; in the large set X;. Now, given
xr € X} we consider the next level, in which we choose xy, ;. Since x, € Xy,
for two-thirds of the choices of t, € (—ddg, ddy) the k-th grid, with z;,, =
zy + i, satisfies (4.11). On the other hand, since |Xyi1| > (2/3) - 20dg11,
Tr4+1 can be chosen to satisfy additionally ;41 € Xj1;. By induction we find
the sequence {xy}. O

4.2 The linear algebra lemma

In this section we consider a single element of the grid with aspectratio of
order 1. In the simplest case this is a unit square, subdivided into n X n
subsquares, and the grid is the union of all their sides and diagonals. We
will consider the discrete function that maps midpoints of horizontal edges
to the corresponding line averages of u. We shall prove that this map is
approximately affine. More precisely, the distance of this map from an affine
function is controlled by the average energy of u on the full square and on
the grid segments.

We want to study grids as defined in (4.1)-(4.3). Instead of working with
parallelograms, we shall transform back to a square. We next study the
transformation of a solution u on a parallelogram P with two sides parallel
to the x-axis, as they appear in the grid. Without loss of generality we
can assume, after scaling, that P has vertices in (0,0), (1/1,0), (¢,1), and
(t+1/1,1). The linear map given by

T— (%l 7;) (4.13)

maps the unit square onto P. Given u : P — R? we define the transformed
solution @ : (0,1)* — R?,

() = T u(Txr).

In the subsequent calculations we use the infinitesimal rotation

(0 -9
Rg,_(w O).

The energy of u controls the quadratic distance of Vu from the set {R,, :
e € R}U{B+ R, : ¢ € R}. Equivalently, for the transformed solution, we
have a control of the distance of Vu from the set
{T"R,T : o e R}YU{TT(B+ R,)T : p € R}
={Ry 1Y €ER}U{Bou + Ry : ¢ € R},
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with B2tl = TTBT =e1Q®ey+egRe; + Qtleg X es.

By construction of the grid the parameters ¢t and [ are close to 0 and
1, respectively. This fact implies the uniform equivalence of original and
transformed distance. Furthermore, we can use the number 2t/ as a new
variable, again denoted by .

Lemma 4.6. Let Q = (0,d) x (0,d) and n > 4. Let u € W**(Q,R?) be the
transformation of a low-energy solution, i.e. be such that

1 .
s / min (|[Vu¥™ %, |[Vu™™ — B,|*) < o (4.14)
Q

for small 0. Here, By = €1 ® €3 + €3 ® €1 + tes ® €9, and t is assumed to be
small. We further assume that the line energy on the grid lines is small, and
that only the A-phase is used there, in the sense that

1
> E/ Vu¥ 2 dH! < o, (4.15)
1 E€G™M) i

where ~y; are the edges of the n-grid on ).
Then the averages over top and bottom edges,

i+1d
+

UZ- = g idn U(l’,d)dl', U; = g

/ ' u(z,0)dx
Ld

for 0 <@ < n are approximately affine. More precisely, there exists ¢ € R
and wy € R? such that with

d i d
we get
n—1
Z ’uf - w;’}Q + ’u; - w;}Q < cod®. (4.16)
i=1

All constants depend implicitly on the order n of the used grid.

We recall that in proving Proposition 4.1 only the case n = 4 of the
statement is used.

Remark 4.7. An analogous statement holds for paralellograms T(0,d)?,
where T was defined in (4.13), with |t| + |l — 1| small. FEgs. (4.14) and
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(4.15) are unchanged, since the area and the length of the sides are close to
d? and d. The definition of u;t now reads

n  [tdterd/ n [/
uf = — u(z, dl)dz u; = —/ u(z,0)dx
d/l /thrde/l d/l Lq/

n

and that of wi

wh — wo+ Ry (td —i—;ld/nl) ’ w- = wo+ R, (z do/nl) .

The conclusion (4.16) is unchanged.

Proof of Remark 4.7. The result follows from the application of Lemma 4.6

to the function
w(x) = TTu(Tx),

where T' was defined in (4.13). O

We can phrase the assumptions of the lemma also in a different way. For
a matrix M € R*? the antisymmetric part M>¥™ = (M — M7) is of the
form R, for some angle ¢. We can therefore associate to r € €2 the angle
@(r) such that Vu(r)*¥™ = R,,y. Further, we define Qp as the subset of Q
where |[Vu»™ — B;| < |Vu®™|. Our assumptions then say that Vu is L*-close
to Ry(r) + Bixa,(r). Furthermore, on the edges of the grid the matrix Vu(r)
is close to R,y in the one-dimensional L?-sense.

In order to illustrate the conclusion of the lemma we consider once more
the rigid case 0 = 0. The assumptions of the lemma then imply

VU(T) = R@(r) + BtXQB (7“) . (4.17)

As in Proposition 2.3 we conclude that 925 N ) consists only of lines along
two prescribed directions. Assumption (4.15) implies that Qp does not in-
tersect the grid and we conclude that Q25 is empty. An application of Korn’s
inequality shows that u is affine with gradient R4 for some ¢ € R.

The lemma is a discrete and quantitative version of this conclusion.

Proof of Lemma 4.6. After scaling we can assume d = n so that the grid
is composed of unit squares. In order to prove the lemma we investigate
compatibility conditions for ¢. The general structure of the argument is the
following: we first define a finite number (depending only on n) of discrete
variables, which are averages of ¢ and of yq, over triangles of the grid.
Then we derive a finite number of linear compatibility equations that must be
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Qij2 Qij1

Qij4 Qij3

FIGURE 4.6: Labeling of vertices and of subtriangles in each square.

satisfied. This gives a system of linear equalities and inequalities. In the rigid
case 0 = 0 we show that there is no nontrivial solution to this system, i.e.,
the averages must coincide with the averages of an affine function. Finally,
since the finite-dimensional system of equalities and inequalities allows for a
small perturbation, we conclude for positive o the quantitative result.

In the subsequent calculations we use the set Qp and the angle ¢(x)
introduced before. We modify the set {2 such that edges do not intersect
Q5 and denote the corresponding characteristic function by xg. Assumptions
(4.14) and (4.15) state that

Vu— R, — Bixs = O(vo) (4.18)

in the L2-sense over volumes and in the L2?-sense over edges (this is exploited
in Egs. (4.35)-(4.36)). The result (4.34) on the finite dimensional system at
the end of this subsection implies that for some ¢ € R all integrals of ¢(x) —¢@
and of yp over subsquares );; are of order \/o. Once this is shown, (4.18)
implies
| (Vu-R)=0We) (4.19)
Qij

and therefore the lemma. O

4.2.1 The set of linear equations

In order to derive the linear equations for averages we study the case o = 0.
The square = (0,n)* C R? consists of squares Q;; = (5,4 4+ 1) x (4,7 +
1),i,5 =0, ...,n—1. The geometry is chosen such that on edges of squares and
on diagonals D;; = {(i,7) + (t,t)|t € (0,1)} and Dj; = {(i,5) + (t,1 —t)|t €
(0,1)} the gradient lies in the A-well, i.e. Vu = R,.
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Variables. In every square ();;, for 0 <, j < n, we define four triangles of
the form {(i+1/2+4x, j4+1/2+y)|(z,y) € (—1/2,1/2)%, (z,y)-(£eixes) > 0},
We order them positively such that triangle 1 is in the upper right and
triangle 4 is in the lower right (see Figure 4.6). In every triagle Q;;z we

define
Pijk I/ ©, bk Z/ XB-
Q Qijk

For brevity we do not separate the three indices of ¢ and b. For example,
©i+1;+413 refers to the 3-triangle of square (i+1, j+1). We use these 8 variables
per square for our calculations. In the squares along the left boundary of €2
we use only the triangles labelled 1 and 4, in squares on the right boundary
we use only the triangles labelled 2 and 3. The deformation gradient has the
form

ijk

0 —p+XB
Vu(r) = Ry + B = :
ulr) = Roy + Bixs(r) (90 +Xx8  txs >

Mass equations. By definition we have
Pij1 T Pij3 = Pij2 T Pijd, (4.20)
bij1 + bijz = bij2 + bija. (4.21)

in interior squares.

Volume averages. We calculate the difference of averages of u in two

ways.
1 1 1
Iy ::/ u(x, 1) d:p—/ u(l,y)dy:/ Vu - ( 1)
0 0 1

:/ﬂ&@+&m@W(?):C@f€FM)'

We now calculate the same term in a different way.

0 —1 —pg + by
Iy = : . _ .
o= [ () Lo (0) = (o2 )
We find
o1 — b1 = o — by (4.22)
o1+ (1 —=1)b1 = 4+ by — ty (4.23)

in interior squares. Equation (4.22) provides that averages of ¢ — b are the
same for indices 1 and 2. By the mass equations they are also the same for
indices 3 and 4. We can interpret this as a first result on rigidity: Within
squares, averages of ¢ — b are horizontally constant.
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Line averages on horizontal lines. We next compare volume averages
with line averages. For line averages we use the hat function ¢ : (=1,1) — R,
Y(x) =1 — |z| with integral 1. For 0 <i <n — 1 we get

i+2 i+1
[L:/ u(:c,j+1)dx—/ u(z,j+1) de
i+1 i

= 1 0
- w<x—<i+1>>w<x,j+1>-(0) dx:(¢),
where @ is the weighted average of ¢ over the horizontal line of length 2. We
can calculate the same difference I, with the help of two volume integrals.

IL:/ Vu. ( 11)+/ Vu. G)
Qij1 B Qit1j2

_ PYij1 — bijl + —(<Pi+1j2 - bi+1j2) .
wij1 + (1 = )b Pir1j2 + (1 + )by

Comparing the expressions for the first component of I yields

(= b)ij1 = (¢ = b)it1jo. (4.24)

In an analogous way we can calculate the value of I;, with volume integrals
over triangles lying above the line. We then find

(¢ = b)ija = (¢ — bit1js- (4.25)

Together with (4.22) we have an improved rigidity result: The quantity ¢ —b
is horizontally constant across the entire grid.

Line averages on vertical lines. We next do calculations for vertical
lines. We set

42 j+1
Iy :/ u(i, y) dy—/ u(i,y) dy
J J

- mw(y ~Gvuti- (3) a= (7).

J
where ¢ is a weighted average of ¢ over the vertical line of length 2. We now
evaluate with averages over volumes lying to the right of the vertical line.

Ig:/ Vu - G>+/ Vu - (_11)
Qij2 Qij+13
_ ( —©ijo + bijo > i ( —©ij+13 + bijy13 > '
@ijo + (1 +1)bijo —@iji13 — (1 = t)bsj113)
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The first representation of /7 implies that the second component vanishes,
therefore

@ij13 + (1 = 8)bijraz = pija + (1 +)bijo. (4.26)
In the same way one shows

i1 + (1 = t)bij1 = @ijrra + (L +)bijr1a. (4.27)
We read this as a first result for a vertical rigidity: For ¢ = 0 the quantity

@ + b is vertically constant.

Line averages on upward diagonals. We now calculate along the diag-
onal

I;;.—/ u—/lﬁu—/wx—qu(z—I—xj—i—x) G) dx

= [ (G = (7).

We now evaluate the same expression with volume averages.

I = Vu - ((1)) +/ Vu - ((1))
Qija Qi+153
+/ w@+/ Vu-((l))
Qit151 Qit1j+14

= (b - S0>Z'+1j1 + (b - gp)i+1j+14 '
(90 + b)ij4 + ((,0 + b)i+1j3 + tbi+1j1 + tbi+1j+14

From the first representation we see that the two components add to zero.
This results in

Qir1j1 — (L +1)biyjn + Qigrje1a — (L + )by 1414

4.28
= (@4 b)ija + (¢ + b)it1;s. ( )

We can do the same calculation with integrals over volumes above the diag-
onal to find

@ijo — (14 )bijo + @ijr13 — (1 4 ) bijqas

4.29
= (90 + b)ij—l—ll + ((,0 + b)z‘+1j+12. ( )
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Line averages on downward diagonals. An analogous calculation along
diagonals D~ leads to

wij2 — (1 = t)bijo + @ijr13 — (1 = 1)bijr13 = (0 + )13 + (¢ + b)iju (4.30)
and

Piv1j1 — (1 = O)biyijn + @ivijria — (L= )bir1j414

4.31
= (¢ + b)ijr11 + (¢ + b)it1jt12- (4.31)

4.2.2 The abstract form of the equations.
We can write equations (4.20)—(4.31) and the nonnegativity of the B-fraction

in the form
M, - (‘g) =0, b>0,

where ¢ and b are the vectors with components ;i and b;j;, respectively.

The case t = 0. Equation (4.28) with ¢ = 0 simplifies to

(@ = b)iv1j1 + (@ = b)iy1js14 = (@ +0)ija + (@ + b)ig1j3- (4.32)

The left hand side is independent of ¢ since ¢ — b is horizontally constant
in the grid. Moreover, the right hand side is independent of j, since by
equations (4.23), (4.26), and (4.27) the quantity ¢ + b is vertically constant.
We conclude that both sides in equality (4.32) are constant in all interior
cells. After a normalization of ¢ we can assume that both sides in (4.32)
vanish on all interior squares.

We now add up over four triangles with a common vertex,

0=(p=b)ij1 + (¢ = b)ij41a + (¢ = b)ir1j2 + (¢ — b)ir1j113
= (@ +b)ij1 + (o +b)iv1j2 + (0 + b)ijr1a + (0 +b)ig1j113
— 2[bjj1 + biy1j2 + bij1a + bit1j413]
= —2[bij1 + bir1j2 + biji1a + bit1jt13].

In this calculation we used once more that ¢ — b is horizontally constant and
that ¢ 4 b is vertically constant.

Since all b are non-negative, necessarily b vanishes in all interior squares.
Then with (¢ — b) also ¢ is horizontally constant and with (¢ + ) ¢ is also
vertically constant. Therefore ¢ vanishes identically in the interior of the
grid. With the help of the diagonal equalities we conclude that b and ¢
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vanish also in the triangles in boundary squares that meet an interior cell at
an edge. This shows that for £ = 0 the system

MO.(‘g)zo, b>0

has only the trivial solution (¢, b) = 0.

The case t # 0. Fort = 0 the discrete system has only the trivial solution.
We claim for the case ¢t # 0 with |¢| small:

Mt.(f)zo, b>0

has only the trivial solution (¢, b) = 0.

(). The system

(ii). With ¢ independent of ¢ every solution of

M, - ("bp) =f b>0 (4.33)

satisfies an estimate

(e, D)l < el f1I (4.34)

Both claims follow immediately by contradiction. (i). Assume that for
a sequence t, — 0 there are solutions z, = (¢n,b,) of M; z, = 0 with
|z, = 1 and Bz, := b, > 0. Since x, has finitely many components,
we can choose a convergent subsequence and conclude for the limit xy that
Moyzg = 0, Bxg > 0. A contradiction to ||xg| = 1.

(ii). We again assume the contrary. Then for a sequence t,, — t, there
are f, — 0 and solutions z,, of M; x, = f, with ||z,|| = 1 and Bz, > 0. We
choose a convergent subsequence and conclude for the limit xy that M;,z¢ =
0, Bxg > 0. Because of ||zg|| = 1 this contradicts the result of (i).

Conclusion. In order to conclude the proof of Lemma 4.6, it remains to
show that f in the finite dimensional equation (4.33) is of order \/o. In fact,
for o # 0, equations (4.20)—(4.31) hold up to error terms f that consists of
volume integrals and line integrals over F' = Vu — R, — ByxB.
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As an example we calculate the inhomogeneous version of equation (4.24).
Again, the two expressions for the difference of line-averages of u must coin-
cide,

0 = /iiwz/;(x—(i—irl))Vu(x,j—i—l)'(é) do (4.35)

—/ Vu-(11>—/ VUG)
Qij1 B Qit1j2

We insert Vu = R, + B;xp + F and consider only the first component to
find

0 = —(p—blijt+ (9 — Biyage + / @+ 1)F (4.36)

—/ (F11—F12)—/ (F11 + Fio).
Qij1 Qit152

Relation (4.18) for integrals of F yields f = O(y/0) in the finite-dimensional
system. With inequality (4.34) we have therefore shown (4.19).

4.3 Proof of the H'? bound

So far we have achieved the following. Given a function v with low energy
we found a grid such that along the edges of the grid Vu is in the A-phase
and such that the energy is small at all refinement stages. The linear algebra
lemma assures that averages of the function u are approximately affine in
every cell of the grid. We claim that this implies that u restricted to the
central part of the line ¥ = {(z,y) : ¥y = wo} is H'?-close to an affine
function. All we have to do is to construct an extension @ of u|y across the
entire grid which is H'-close to an affine function.

We use the grid constructed in Section 4.1, for n = 4, and assume yy = 0.
For d = 27% we have a sequence {y;} with y € (—dg, —(1 — &)d;.). The
corners of the grid have the coordinates (x;, yx), withi = 0, ..., 2¥ k > 1, and
2y, = T + idg. The grid parallelogram with vertices (z;, yx), (@i + di, Yx),
(k41,265 Ykr1) and (Tg412i + di, Yg+1) is denoted by @4, it has the height
Ik = |Yr+1 — k| and the width dy. Note that [ and dj are always comparable
in size.

The construction of @ is based on the fact that averages of u are approx-
imately affine. Let .

a h/k,i,l| Vk,i,1

Uk,q u
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be the average of u over the first part of the bottom edge of cell Qi, Vi,i1 =
(@kis T i + di/m) X {yr}, which was called u; in the previous section, and

E(u,Q) = / min (|Vu™™?, |[Vu™™ — BJ?) . (4.37)
Q

The linear algebra lemma (Lemma 4.6 and Remark 4.7) implies for vertical
finite differences that with an appropriate angle ¢ ;

Uk+1,20 — Uk, _R ) ($k+1 - 9Ck)/lk; ?
I Dk, 1

(u le Z/ |Vusym|2.

k,i,5

k;

We used that d and [, are comparable in size.

In order to derive the analogous estimate for horizontal finite differences
we first have to study variations of ¢y ; across the grid. To this end we apply
Lemma 4.6 three times; in two neighboring macrocells Q) ; and Qj;+1, and
in a collection of n x n cells that form a macrocell and overlaps the other
two. Since u is approximately affine in all the macrocells we find for angle
differences the same estimate as for finite differences,

i+1
1 1 .
|6k — Grisal* <€) <$E(U> Qri) + T Z/ [Vu |2> :
k k j Vi, il 5

=i

In particular, we find for horizontal finite differences

Uk,i+1l — Uki ' 1
dy, R¢k,i (O)

i+1
1 1 svm
<c) (d—zE(u, Qrir) + d—kZ/ |V |2> .
j Vi,il 5

=i

2

Since the grid refines for increasing k, we also have to compare the value
Uk+1,2i+1 With its counterpart on {y = y,}. We use that ¢;; and ¢y 41 are
close to conclude that the averages uy; ; are approximately affine also across
two neighboring cells Q) ; and @ i4+1. This yields

2

Uk+1,2i+1 — %(Um + Uk,it1) ) (($k+1 — 9Ck)/lk;)
' 1

c sym |2
gd—zE(u Qi) + Z/MH\Vuy 2.
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We now define an interpolation @ as follows. In the vertices (z;, yx) we
set U(xyi, yr) = ug;. We then define @ on the line ¥y := {(z,y) : vy = yx} as
the linear interpolation of these point-values. In the strip between ¥, and
k11 we consider segments with end-points (xy + ¢, yx) and (xg1 + ¢, Yps1),
and define u on each such segment as the linear interpolation between its
values in the end-points. This results in a bilinear interpolation, with respect
to deformed coordinates, in each half-cell Tl;tl We have here subdivided each
cell Q. into two parallelograms with common side joining (xy; + di/2, yi)
and (2x412i+1, Y1), and called them T, and T,jl

Lemma 4.8. Let u be as in Proposition 4.1, the grid as above, and let Q) be
the union of all the Qy;. Then, there are u € R* and ¢ € R such that the
interpolation u satisfies the estimate

[a(r) — @ — Ry - 7|7y < cen. (4.38)

Proof. In the single cell T,jfi the function u is the bilinear interpolation of
four values which are approximately affine with gradient Ry, .. Therefore,

with the approximate angle
=2 > draxay,(r)
ki ac{+,—}

we find the estimate

Vi = Ryl = / Vi - Ry,
ki, £t
2
U+1,2i — Uk (Tp1 — x) 1k
<ch2 ( — "~ Ba (
Uk4+1,2i+1 — _(Uk,i + Upiv1) The1 — k) /1
+ 2 . Rd),cz . (( k+1 k)/ k>

1
Iy 1
2)

2

+

Uk,itl — Ui (1
—a e (0)
< CZCF <d2 u, Qr;i) + —Z |vubym|2>
Vk,i,j
_CZEUQIH —l—Cde/ ‘VUSYm‘Q

k“?%] Tk,iog

< cE(u, Q) + chksn < cen.
k
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In the last line we used Lemma 4.5(iv) and the definition of I..
We have shown that V& is L*-close to the infinitesimal rotation R, in
particular,
V@™ |22y < cen.

An application of Korn’s inequality yields the desired estimate for @ € H'.
O

Proof of Proposition 4.1. We transform the domain to the square (—1,1)2
with a diagonal change of variables and a scaling of u to ensure that the
form of B is unchanged, and perform the corresponding redefinition of W.
We only do the proof for positive g, the other case is symmetric. By Lemma
4.5 we can construct, for most yo, a grid (with n = 4) entirely contained in
Q) and such that it covers the set Q = (—1/2,1/2) x (—=1/2, ). By Lemma

4.8 we find that the distance of v from an affine function on 2 is controlled
by its energy. An application of the trace theorem yields the result. O

5 Recovery sequence and uniqueness of the
limit

In this section we show that for any function uy on which the limiting func-
tional I is finite, and for any sequence ¢; — 0, we can find a sequence
u., — ug in L' such that I_,[u.,] converges, as g; — 0, to Iy[ue]. This is done
in several steps. By general arguments, we can reduce to the case that wug
has finitely many interfaces. Then, the construction uses modifications of an
optimal sequence for the liminf of single-interface problems as considered in
Section 3. In order to glue together several interfaces, we need to modify
the profile so that it achieves affine boundary conditions. This is done in
Proposition 5.2 combining the rigidity result of the previous section with an
explicit construction, which is given in Lemmas 5.4) and 5.5. However, at
his stage we only know that there is one sequence ¢; such that the construc-
tion is feasible. In order to show that one can do the construction for any
sequence ¢; — 0, we provide an additional argument which uses optimal se-
quences with affine boundary conditions in rectangles with large aspect ratio
(Proposition 5.6).

We start with the main result, and then give the various ingredients of
the proof.

Proposition 5.1. Let Q be an open, bounded, strictly star-shaped set in R?,
and u € WH2(Q,R?) be such that Vu™»™ € BV (Q,{A, B}). Then, for any
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sequence g; — 0, one can find a sequence u; — u in L'(SY), such that

lim I, [u;, Q) = Io[u, Q] ,

with Iy as in (3.3).

Proof. First, by the change of variables discussed in Section 2, we can assume
the interface normals to be v, = ey and v, = e;, with A and B of the form
discussed there. This will be tacitly assumed in the rest of this section.

The strategy of the proof is the following. First we exploit star-shapedness
to replace v with a scaled version u,, which has interfaces contained in finitely
many rectangles, with suitable additional properties (see below). Then we
use for each ¢; Remark 5.7 inside each of the rectangles, and an affine function
outside, to obtain a function that converges to u, and has comparable energy.
The conclusion follows by taking a diagonal subsequence.

Given 1 > 1, we consider the rescaling

(1) = nu (%) .

Since the domain is star-shaped, u,(r) is well defined for r € Q, and Iy[u,, Q] <
nlolu, Q). Let {S;} denote the segments composing the jump set of u. The
jump set of wu, is the union of the sets S = 1nS; N Q, each of which is a
(possibly empty) union of collinear segments. We now show that for ¢ # j,
dist(S, S7) > 0 if they are both nonempty. Indeed, by Proposition 2.3, the
closures S; and S; can intersect only in end-points 7;; € 0€2, and therefore,
by strict star-shapedness of €, the sets 7.5; and 7.S; can intersect only outside
Q.

We now show that only finitely many of the S} are nonempty. If not,
u had an infinite number of interfaces S; with S; N (2/n) # 0. We choose
points 7; € S; N (Q/n) and, taking a subsequence, we get r; — 19 € Q/7.
Since the total length of the interfaces is bounded, along any infinite sequence
the length of the interfaces S; converges to zero. Therefore ry € 0f2, a
contradiction to strict star-shapedness of €).

Finally, we construct rectangles wy*, such that each contains one of the
S7. and the sides orthogonal to it do not intersect 2. Here and below we
use o € {h,v} to label horizontal and vertical interfaces, and do the explicit
construction only for the horizontal interfaces, the vertical ones are treated
analogously. We consider the (finitely many) segments S; with S} = nS; N ()
nonempty. Let (:Ef,yz) be the endpoints of S;, which belong to 0€2. The
points (nai, ny;) are not contained in , and there are finitely many of them,
hence there is ¢ > 0 such that the segments {nz} x (ny; — o, ny; + o) do not
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intersect 2. We choose the latter as vertical sides of the rectangles, which
take the form
wi' = (i, ma) x (ny; = o,nyi + o). (5.1)
Analogously we construct the vertical ones, w!. If ¢ is small enough, the wy"
are all disjoint.
Now we show that a sequence u,,; can be found such that

Uy — upy in LYQ),  limsup I, [u,,, Q) < nlplu, Q) . (5.2)

To see this, consider the set
0=\ Jor.
7,0

In each connected component of {2; we define u; as u,, plus a suitable affine
function with skew-symmetric gradient; in each of the w{* we instead use the
adaptation of an optimal sequence for the lower bound discussed in Remark
5.7, also adding a suitable affine function. Here we use the fact that € is
star-shaped to guarantee that the affine connection can always be chosen
appropriately. This proves (5.2).

Finally, we choose a sequence n; — 1, n; > 1. Since u,, — ug in L' as
j — 00, taking a diagonal sequence we conclude the proof. O

We now give the main construction step, which permits to modify a small-
energy sequence for a single-interface problem to obtain one which still has
small energy and is affine close to the upper and lower boundaries in a smaller
domain.

Proposition 5.2. For any | > 0, d > 0, given sequences &; — 0, u; — u;

such that
lim I, [u;, (—2d,2d) x (=1,1)] = 4dk,, lim |lu; —u)f || =0,

where u) was defined in (3.5), one can construct a sequence v; : (—d, d) X
(—=1,1) — R? such that, for the same ;,

lim I, [v;, (—d,d) x (=1,1)] = 2dky, , lim [lv; — u;f|[zr =0,

1— 00

which obeys
A(z,y)" ify>1/2
U’i(l‘7 y) - T .
(B+ S+ 8)(z,y)" +a;  ify<—1/2

where Sy, the matriz of (3.4), S; is skew-symmetric, S; — 0, a; — 0. The
same holds for vertical interfaces, and for interfaces of the opposite orienta-
tion.
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Remark 5.3. By the definition of kj, (see Lemma 3.2) it is clear that for any
d, | there are sequences ¢;, u; such that

I, Ju;, (—2d,2d) x (=1,1)] — 4dky, , u; — v in L',

However, it is not clear that for any ¢; one can find a suitable u;. This will
be shown in Proposition 5.6 below.

Proof. By Lemma 3.2, we get
liminf I, [u;, (—2d,2d) x (—=1/8,1/8)] > 4dky,
and therefore
I, [u;, (—2d,2d) x (1/8,1)] — 0.

Let now

= I Jug, (=2d,2d) x (1/8, D] + [ — wf [Fri (—aa.2ayx a/s.y) -

By the compactness result of Theorem 2.2, n; — 0. By Proposition 4.1
applied to the domain (—2d,2d) x (1/8,1/3), for i sufficiently large, for at
least one-half of the yo € (1/8,1/3) there are a;, b;, ¢; (depending on ) such
that

o) (2) = ui(z, yo) — A (”“") - (‘“ - WO) . (5.3)

Yo bi + i

On the other hand, it is easy to see that there is ¢ > 0 such that for at least
two-thirds of all yo in ({/8,1/3) one has

2
vz(yo)

< cnig;
HI/Q((_dad)7R2) o T]Z b

where

1
<"5i”ui(’a90)1‘124/272((—(1,(1),1@2) + ;IEi[ui7 (=d,d) X (yo, yo + )] < cnm; .

Then, there is one gy such that both properties hold. Let now

z a; — ¥iyY
i\4Ly = Ui\L, —A - ’
atea) = ute) -4 (1) - (3 2)
where a;, b; and ; are as in (5.3). We can now apply the construction of
Lemma 5.5 to the function v; in the domain (—d,d) X (yo,%0 + {/3). The
resulting function is affine close to the upper boundary of the domain, hence

we can continue it to (—d, d) x (=, 1). Its energy is controlled by the one of u;
plus a constant times 7;. Exactly the same can be done in (—d, d) x (—[, —1/8),
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after exchanging A with B and a few signs. We have therefore constructed
a function w; : (—d, d) x (=, 1), such that

[E [wia (_da d) X (_la l)] + le - UZ”WM < Cn;

A

and
Wi\, = .
Y (B+ T+ Sp)(z,y)T +b;  ify<—21/3.
Subtracting the affine function S;(x,y)T + a; we get the result. O

We now give the explicit construction used in the proof of Proposition 5.2.
As in the two-step vertical matching used in [12] for the case of two matrices,
we interpolate separately the value of u (Lemma 5.4) and its gradient (Lemma
5.5). The treatment of the first interpolation in Fourier space permits to relax
the assumption of a good H! control of u on a cross section, which was used
in [12], to an assumption on the H'/? norm.

Lemma 5.4. Let ¢ <1 and u : (0,d) — R? be given, with

L2 2

= el + e llullg < - (5.4)
Then for any | > 0 there is v : (0,d) x (0,1) — R? such that v(x,0) = u(x),
v(z,y) = wug fory >1/2, where ug is the average of u on the line, and

1

—/ |Vv|2+€/ V20]* < cn.
€ J(0,d)x(0,1) (0,d)x (0,1)

Proof. For simplicity we give an explicit construction only for the case | =
d =1 (the other cases can be done by scaling, the constant will depend on 1
and d). Consider a Fourier representation of u,

Then the assumption (5.4) gives

k
> (|€_| +€Vf\4) url* <.

k

Consider now a smooth function ¢ : (0, 00) — R such that ¢(0) =1, ¢(t) =0
for t > 1, and [¢| + [¢'| 4+ [¢"| < ¢. We define

v(z,y) =uo + Z ure™p (ky) .

k0
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Note that v(z,y) = ug for y > 1/7, since the smallest nonzero k is w. Then,

1 c 1/k
! / wop < €% / dy [[6(ky)P + 1/ (k) P] B2laa?
(0.1)(0.1) e Jo

E
C

< Z kul| < 5.5

< eg\uk\_m? ( )

and

5/ |V2v|?
(0,1)x(0,1)

IN

1/k
e X [ dyknl? [+ [P+ 07) (k)
— Jo
< cgz\kg’uz
k
< CEZ‘k4ui|§C77
i

since |k| > 1. This concludes the proof. O

Lemma 5.5. Let € < 1 and u : (0,d) x (0,1) — R? be given. Assume that
there is yo € (0,1/2) such that

1 2 2
= w0l + € flul o)l <

and
1

—/ \Vu|2+€/ |V2ul? < 7.
€ J(0,d)x (yo,y0+¢) (0,1) X (y0,y0-+¢)

Then there is w : (0,d) x (0,2]) — R? such that w(-,y) = u(-,y) fory <1/2,
w(-,y) = ug fory>1, and

1
—/ |Vw|2—|—5/ |V2w|? < en.
€ J(0,d)x(0,21) (0,d) x (0,21)

Here ug denotes the average of u(-,yo).

Proof. Again, we prove the result by doing an explicit construction for the
case d = [ = 1. Let v be the function constructed in the Lemma 5.4, applied
to the set (0,1) X (yo, 40+ 1) with u = u(-,yp). Clearly we can continue it as
a constant for y > yo + 1.

Let now ¥ : R — R be a smooth interpolation function, i.e., a function
such that ¢(t) = 0 for t < 0, ¢¥(t) = 1 for t > 1, with [¢| + [¢']| + [¢"] < c.
Then, we define

w(z,y) =v(z,y)y (@) + u(z,y) [1 —¢ (M)] :

3
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We first estimate v—u in L. To do this, observe that for any z € (0,1) we
have, using Poincaré estimate in the y direction and the boundary condition

u = v for y = yo,
Yyo+e Yyo-+e
/ (v—u)® < 62/ (Dyv — Oyu)?.
Y Y

0 0

After integration, we see that the squared L? norm of the difference is con-
trolled by €2 times the sum of the squared H' norms,

/ (v —u)? < 52/ Vol? + |Vul?.
(Ovl)x(y07y0+€) (Ovl)x(y07y0+€)

Now, we compute

1
Vuw|* < ¢ (|Vv|2 + | Vul + 5 lu— v|2)

€

and

2,12 2,12 22, 1 2 2 1 2
(V2w|* < ¢ [ [V?0]? + [ V2ul® + = (|[Vul® + [Vo]*) + —u—o]? ).
€ €

Inserting from above and evaluating the integrals concludes the proof. O
We now show that the construction can be done for any sequence ; — 0.

Proposition 5.6. For any [ > 0, d > 0, and any sequence £; — 0, ¢; > 0,
there are sequences u; and u; such that

=0,

lim L, [uf, (—d,d) x (~1,1)] = 2dk,, lim [|uf —uf],,

where uf were defined in (3.5) and following. The same holds for vertical
interfaces.

Proof. We give a proof only for horizontal interfaces with positive orientation,
the others are clearly equivalent. Further, we drop the + from the notation.

Step 1. We first show that there is a sequence v; : (—d,d) x R — R? such
that
limsup I, [v;, (—d, d) x R] < 2dk, (5.6)

and

Vo™ =A  fory> L,

: 5.7
Vo™ =B fory<—L;. (5.7)

for each i, there is L; such that {
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To construct this sequence, start from &;, u; as given by Remark 5.3 and
v; as in Proposition 5.2 for the domain (—d,d) x (—[,1), and let

n; = Iz Jug, (—d, d) x (=1, 1)] — 2dk, — 0. (5.8)

By taking a subsequence we can assume the £; to be monotone. For each 7,
let j(i) be the smallest j > 4 such that £; < ¢;/i (this exists, since £; — 0).
Now we scale u; by €;/&;;). Namely, we set

- &g i
0i(7,y) = =—uja) ( ]()(l‘,y))

€5(i) i

for |y| < 1€;4)/ei, and continue it affinely for larger |y|. Since by a standard
scaling (5.8) gives

Iei [ﬁl, (—Ozz‘d, Oéld) X R] < QOzZ‘dk’h + CHOR

where o; = €;/&;;) > 1, it is clear that we can choose x, such that
3 cd
I [0, (w9 — d, xg + d) x R] < 2dky, 4+ n;q) + -

Hence the restriction of v; to (zg — d, 9 + d) x R, translated to (—d,d) x R,
satisfies (5.6)-(5.7), with L; = la;.

Step 2. We now show that we find h > 0, L > 2h, 6 > 0 (not depending
on i) and a sequence w; : (—d,d) x (=L, L) such that

lim sup I, [w;, (—d,d) x (=L, L)] < 2dky,, (5.9)

i—00

with the additional properties that

for half of the y € (L — h, L), %ng ; |Vw?™ (x,y) — B| >46  (5.10)
re(—d,
and
for half of the y € (y2,y2 + h) , i(ng ) Vw?™(z,y) — Al >4 (5.11)
xe(—a,

for some yo € (=L, L — 2h) (by inf we mean the essential infimum, i.e. we
require that | - | > § for a.e. = € (—d,d)).
To do this, choose § < |A — B|/4, and define for y € R
faly) =H ({z € (=d,d) : [Vo]™ — A| < 0})

(2
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and analogously

fey) =H' ({2 € (=d.d) : [Vo7™ = B| < 0}) .

(2

Qualitatively, we expect fa(y) to equal 2d for large positive y and 0 for large
negative ones, with a small transition layer across the interface, and fz to
be essentially 2d — f4. If this is true, we can cut from the large (—L;, L;)
domain in which v; is nonaffine a uniform region (of size 2L) where the same
holds, i.e. which still contains the interface.

In order to do this, first observe that since v; has energy bounded by
2dk, +n; < ¢, the set of y such that fa(y) + fe(y) < 3d/2 has measure
less than c;e; < ¢;. Further, the set of y such that f4, and fp are both
nonzero has measure less than co. It is also clear that fa(y) = 2d and
faly) =0 for y > L, and y < —L;, respectively. Further, if fa(y;) > 3d/2
and fp(ya) > 3d/2, then I [v;, (—d,d) x (y1,y2)] > cd, hence there can be at
most a finite number of such transitions (by (y1,y2) we mean the unoriented
interval whose endpoints are y; and ys).

These results show that, away from a set v of measure less than ¢y +co, fa
and fp are essentially characteristic functions of disjoint subsets. Precisely,
we can decompose (—2L;,2L;) into three disjoint subset «, /3, 7 such that

faly) 2 3d/2, fe(y)=0 ifye€a,

M <ate, {fA(y)IO, foly) >3d/2 ifyep,

and the number of interfaces between a and (3, i.e. of disjoint intervals (v, v;.)
with yx € o and vy, € 3, is bounded by c;.

Consider now the smallest y such that there is no point of 3 in a left
h-neighbourhood,

yr=inf{y: (y —h,y)NG=0}. (5.12)

We choose h > 2(c; + ¢3), so that (5.12) implies (5.10) in the interval (y; —
h,y1). We now fix some large L (the precise value is given below), and
consider the interval (y; — L,y; — h). We divide it into sections of size h.
By the definition of y;, each of them intersects 3. Now we show that, if L
is large enough, there is one that does not intersect a. Assume the contrary.
Then in each section there would be at least one interface between « and f.
But the number of interfaces is less than c3, hence this is impossible provided
that we choose L > (c3 + 2)h. We conclude that there must be

y2 € (y1 — L,y1 — 2h) such that (y2, 9o +h)Na=10.

This shows that the sequence w;(x,y) = v;(z,y — L +y1) satisfies (5.9-5.11).
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Step 3. We now have to show that we can restrict and translate the se-
quence w; further, to obtain u; — u; in (—d,d) x (—I,1). Consider the class
of admissible limits, which are obtained from u; by translation and addition
of a constant and a skew-symmetric linear map, i.e.

G = {wo(z,y) = uf (z,y — a) + S(z,y) + b} (5.13)
where a € (=L +h/2,L—h/2), S € R**? S%™ =( and b € R?. Define now
n; = inf {||w; — wol|z1 : wo € G}

as the distance to the closest translated and rotated copy of uy. We now
show that n; — 0.

If not, there would be a subsequence bounded from below, n; > ¢ > 0.
Consider now the w;,. By the compactness result (Th. 2.2), they have
a further subsequence which converges strongly in Wil to some g as in
Proposition 2.3. Since the domain is a rectangle, uy can have either only
horizontal or only vertical interfaces, but not both. By (5.10) one can show
that it can have no vertical interface, and therefore Vug™ = A+(B—A)g(y),
for some ¢ : (—=1,1) — {0, 1}. From (5.10) we further obtain that g(y) = 0 at
least for half of the y in (L — h, L), and analogously from (5.11) we get that
g(y) = 1 at least for half of the y in (ys, y2 + h), hence ug must contain some
horizontal interface. The only remaining case is that the limit has more
than one horizontal interface. But then, by the I'-liminf result of Section
3, the limiting energy would be at least 2ndky, with n > 1, which is also
impossible. We conclude that the limit uy has a single horizontal interface,
located in (—L + h/2,L — h/2), and hence belongs to G. This contradicts
the assumption that n; > c > 0.

Finally, the sequence u; is obtained from w; by elimination of the trans-
lation and the rotation. For each i we choose w} in G so that |w; — wj| — 0,
and define

ui(z,y) = wi(z,y +a) — S(x,y) — b
where a, S and b are as in (5.13), for wy. O

Remark 5.7. Given d, [ and a sequence ; — 0, we can first define u} as in
Proposition 5.6 on a larger domain (—2d,2d) x (l,1), and then modify it as
in Proposition 5.2, to obtain a sequence u; : (—d,d) — (—[,[) such that

lim I, [u;, (—d,d) x (=1,1)] = 2dky,, lim |Ju; — u} ||;r =0,

1—00

which obeys

wi(z,y) = Az, y)" ity 21/2 (5.14)
o (B+Sh+ S)(z,9)" +¢  ify<-—1/2. '
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6 A non one-dimensional interface

We now show that in some cases the optimal interfacial energy cannot be
reached by one-dimensional profiles. The construction is a generalization
to the case of linear elasticity of the one presented in [12] for the case of
potentials W vanishing on two matrices.

We choose the nonconvex potential

W(Vu) = (1 — (Ugy + Uy — 1)2 + O‘“sc,muy,y)2 + Uix + Uz,y ) (6.1)

where « is a constant to be chosen later, and the squared norm of the second
gradient for the singular perturbation. We observe that W (F') is invariant
under swapping the x and y coordinates (hence is compatible with square
lattice symmetry), and that it vanishes for the strains A = 0 and B =
e1 ® ey + e ® e1, as we assumed above. Application of a straightforward
truncation to the first term in W permits to obtain a potential W* with
quadratic growth at infinity such that W (F') = W*(F') whenever |F¥™| < M,
for any large M. The argument below applies to both with only notational
changes.

We work in the domain (—1,1)?, and consider sequences approaching the
limiting function ug(z,y) = (0,y + |y|), as in the definition of k(e,) in Eq.
(3.3). First consider one-dimensional interfaces, i.e., sequences u. — g such
that u.(z,y) = u-(y). Dropping for simplicity the index e, the energy takes
the form

1
1
IE[“? (_]‘7 1)2] = 2/ g [(1 - (umay - 1)2)2 + u'!2/7yj| + € [ui,yy + u;yy} :
-1

Along a minimizing sequence, we can clearly assume u, = 0. The remaining
problem is the standard Modica-Mortola functional [24], the limiting surface
energy is k!¢ = 8/3 and is realized by the sequence

ul(z,y) = (51}(8/5)) ) v(y) =y +1Incoshy. (6.2)

Now now consider a perturbation of this sequence, which is defined by

o= (M) e (22 e - (Fm)

with F(y) and f(y) smooth functions converging to 0 as |y| — oo, and A a
small parameter to be chosen later. Clearly u?¢ — wug as e — 0. We choose
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f(y) = F'(y) so that ¢, , + ¢, , = 0. Since ¢ is periodic in = with period
27, a straightforward scaling argument gives, for ¢ = ¢,, = 1/(nn),

1 1
IEn[uzga (_1a 1)2] = Ell [u%da (-TL?T,TLTI') ] < Il [ul 7( 7T77T) X R} :

We now compute the last term explicitly. We observe that the energy
W (Vu??) +|V2u?d|? is a polynomial in \, v(y), F(y), cos(z) and their deriva-
tives (up to order three). The precise form is

L[u*, (=7, 7) x R] = [}[u', (-7, 7) x R]

+/\/ /21}" F" )sinx
—7 JR

2 [ [ [r2alt- (=P ) o o
—|—F2 Yeos? x + F2(y)sin®z + (F")*(y) sin® x + 2F"(y)* cos® x
(f")2(y) cos? x+f2( ) cos® z + (f")*(y) cos® x + 2" (y)* sin® z]

//2F2 )2(y) cos’ x .

The integrations in the x direction are trigonometric and can be performed
explicitly. In particular, all terms containing odd powers of A\ integrate to
zero. Scaling with the interfacial length, the remaining ones give

1
%ll[qu,(—ﬂ,ﬁ)xR] = Kl

+;)\ U +2a/RF — (1= ()
b / P F2(y)(f"(y) (6.3)

where P(y) represents a quadratic polynomial in F' and its first three deriva-
tives, collecting all terms which do not depend on «a.
We now choose F' so that

¢= / F(y) ' (u)(1 - (1 — v)*(y)) # 0

(e.g. F(y) = 1/cosh(y), giving & = —4/5). Finally, we choose « large
enough (and with sign opposite than &) so that the coefficient of A? in (6.3)
is negative, and then A small enough so that the quadratic term in (6.3)
dominates the fourth-order one. We conclude that

hmlnf;] [u2?, (—1,1)% < k'.

n—oo

48



Since the sequence u?? is one of the sequences over which the infimum in the

definition of k(e,) in Equation (3.3) is taken, this shows that the surface en-
ergy k(e,) is strictly less than the one obtained restricting to one-dimensional
profiles. Due to the symmetry of W, the same will hold for k(e,).
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