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ENERGETICS AND SWITCHING OF QUASI-UNIFORM STATES
IN SMALL FERROMAGNETIC PARTICLES

FRANÇOIS ALOUGES, SERGIO CONTI, ANTONIO DESIMONE, AND YVO POKERN

Abstract. We present a numerical algorithm to solve the micromagnetic
equations based on tangential-plane minimization for the magnetization up-
date and a homothethic-layer decomposition of outer space for the computa-
tion of the demagnetization field. As a first application, detailed results on
the flower-vortex transition in the cube of Micromagnetic Standard Problem
number 3 are obtained, which confirm, with a different method, those already
present in the literature, and validate our method and code. We then turn to
switching of small cubic or almost-cubic particles, in the single-domain limit.
Our data show systematic deviations from the Stoner-Wohlfarth model due
to the non-ellipsoidal shape of the particle, and in particular a non-monotone
dependence on the particle size.

1. Introduction

Small magnetic particles have been the subject of intense theoretical and ex-
perimental research for many decades, and interest has recently been revived by
the increasing relevance for magnetic recording systems [16, 6]. At the same time,
improvements in experimental techniques have led to the possibility of observing in-
dividual particles [20, 9], while increased computational capabilities have permitted
numerical calculations in situations which are not amenable to complete analysis
by traditional theoretical methods.

We present here the first application to real micromagnetic problems of a new
finite-element scheme, which has been proposed by Alouges in [4]. Computing
micromagnetic equilibria amounts to solving a nonlocal, constrained minimization
problem. Our approach is based on computing the demagnetization field on a
homothetical decomposition of a finite portion of the outer space, whose mesh is
generated by scaling the surface mesh of the body (or of a convex set that contains
the magnetic body). The nonlinear update of the magnetization is then obtained by
minimization on the manifold tangent to the constraint. This is a linear problem,
at least for quadratic anisotropy. This update method has been already used in the
context of liquid crystals in [3].

Quasi-uniform states characterize the magnetic behavior of sufficiently small
particles. A precise determination of the critical size at which the assumption of
a quasi-uniform magnetization breaks down is, however, a nontrivial task. Indeed,
starting from the pioneering work of Shabes and Bertram [23], a large numerical
literature has developed on the subject [16, 21, 15, and references therein], and
a specific set of parameters has been chosen as Standard Problem No. 3 [18] for

Date: October 27, 2003.
1991 Mathematics Subject Classification. 65L60,82D40,78M10.
Key words and phrases. Micromagnetics, Finite elements.

1
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the validation of numerical micromagnetic algorithms. We discuss in Section 4 our
results for the transition from the quasi-uniform flower state to the vortex state in
this standard cube.

Switching in small particles analogously has a critical dependence on particle
size. Most studies on small particles are based, in one way or another, on the
Stoner-Wohlfarth (SW) model [24], which assumes uniform magnetization inside the
particle [16, 1]. One of the peculiarities of the SW model is that geometrical effects
(i.e. the shape of the particle) enter only through a quadratic form, or equivalently
that all small particles behave as ellipsoids. Using a Gamma-convergence argument,
it has been shown in [12] that micromagnetic equilibria converge to solutions of the
SW model when the size of the particle tends to zero. A question we wish to
address with our computational method is that of deviations from SW behavior for
particles which are small, but of finite size.

Ellipsoids have the property that a uniform magnetization is an exact equilibrium
of the micromagnetic equations. A large theoretical literature exists on rigorous
results for the linear stability of this uniform state in prolate or oblate ellipsoids,
and on the different instability channels, see e.g. [8, 14, 17, 1, 2]. Switching is
often associated with loss of linear stability. Even for ellipsoids, attention to the
predictions of the SW model in cases without rotational symmetry is much more
recent [7, 25], and a complete linear stability analysis is still missing. The question
of the validity of the ellipsoidal approximation for non–ellipsoidal particles has
attracted some attention [23, 19], but this issue is far from being fully understood
In Section 5 we present numerical results for particles of cubic or almost-cubic
shape, within the single-domain regime, which illustrate the leading corrections
to the SW model with increasing particle size. For small sizes our critical fields
reproduce the SW results. Larger particles have shape-dependent critical fields
with a non-monotone dependence on size and with a complex angular dependence,
which cannot be reproduced assimilating the particle to an ellipsoid.

2. Model, algorithm and convergence

We work in a quasistatic setting, and minimize the micromagnetic energy [16],
which after scaling takes the form

E[m] =
∫

Ω

A|∇m|2 +Kum
2
y − hext ·m− 1

2
hd ·m. (1)

Here |m| = 1 in Ω and 0 outside, hext is the (uniform) applied field, Ku is the
uniaxial anisotropy constant, A is the exchange constant and hd = H(m) is the
stray-field, which is defined as the L2−orthogonal projection of −m on gradient
vector fields. Precisely, the linear operator H satisfies

∀v, w ∈ L2(Ω,R3)
∫

R3
H(v) ·H(w) = −

∫
Ω

H(v) · w, (2)

and ∀v ∈ L2(Ω,R3)
∫

R3
|H(v)|2 ≤

∫
Ω

|v|2. (3)

Equivalently, one can first solve ∆ψ = ∇ ·m in R
3 and then compute hd = −∇ψ.
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The corresponding Euler-Lagrange equation can be obtained taking a smooth
variation φ ∈ C∞

0 (Ω) and writing

d

dλ
E

[
m+ λφ

|m+ λφ|
]∣∣∣∣

λ=0

= 0.

This gives

−A∆m+Ku

⎛
⎝ 0

my

0

⎞
⎠− hd + hext

2
=

(
A|∇m|2 +Kum

2
y − hd + hext

2
·m

)
m, (4)

which is understood in the sense of distributions. A magnetization distribution
that satisfies (4) will be called hereafter a critical point of the energy. As for
harmonic maps into spheres (see for instance [11]), critical points with finite energy
equivalently satisfy the following equation in the sense of distributions

−Adiv(∇m ∧m) +Ku

⎛
⎝ 0

my

0

⎞
⎠ ∧m− hd + hext

2
∧m = 0. (5)

Before dealing with discretization details, we explain the algorithm that is used.
It is essentially a one-step method in the sense that we build a sequence (m(n)) of
magnetizations satisfying the constraint |m(n)(x)| = 1 a.e. and such that for each
n

E
[
m(n+1)

]
≤ E

[
m(n)

]
. (6)

The construction of m(n+1) from m(n) is done in two steps
• Compute a descent direction w(n),
• Update the magnetization by setting

m(n+1)(x) =
m(n)(x) + λnw

(n)(x)
|m(n)(x) + λnw(n)(x)| ,

with a suitable value of λn.
The descent direction w(n) used in the first step of the algorithm is computed as

the H1−gradient of the energy. Precisely, if m is the magnetization, following [3]
we call

Tm =
{
w ∈ H1(Ω,R3), such that w(x) ·m(x) = 0 a.e.

}
,

the subspace of H1(Ω,R3) which contains variations tangent to the constraint
around m. It is easily seen that Tm is closed in H1(Ω,R3) with respect to weak
and strong convergence. We then seek w as the solution to the problem⎧⎨

⎩
w ∈ Tm,
d

dλ
E[m+ λφ]|λ=0 = −2A

(∫
Ω

∇w · ∇φ+
∫

Ω

w · φ
)
, ∀φ ∈ Tm.

(The minus sign on the right hand side directly gives w in the opposite direction
to the gradient of the energy.) Existence and uniqueness of w is a classical matter,
and we simply rewrite the equation as⎧⎪⎪⎨

⎪⎪⎩
w ∈ Tm,∫

Ω

[2A∇(m+ w) · ∇φ +2A(m+ w) · φ+ 2Kumyφy

−hext · φ−H(m) · φ] = 0, ∀φ ∈ Tm.

(7)
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As observed in [3] solving this equation acts like a preconditioner on the original
system and the convergence is therefore much better when compared to a classical
gradient method.

Remark 1. Taking φ = w in the expression above yields an estimate on the H1

norm of w. Indeed, we easily get

2A‖w‖2
H1(Ω) ≤

(
(2A+ 2Ku + 1)‖m‖H1(Ω) + |hext| |Ω| 12

)
‖w‖H1(Ω),

from which we deduce the following bound on ‖w‖H1(Ω) which will be useful in the
next part

‖w‖H1(Ω) ≤ α‖m‖H1(Ω) + β, (8)
where α and β are explicit constants. From (6) we then obtain a uniform bound
for the sequence (w(n)), ∥∥∥w(n)

∥∥∥
H1(Ω)

≤ C. (9)

Returning to the definition of the sequence, we have the following theorem.

Theorem 2. There exists λ0 > 0 which depends only on Ω, A, Ku, and hext such
that the sequence (m(n)) generated by the algorithm for any λ ≤ λ0 converges (up to
the extraction of a subsequence) weakly in H1(Ω) to a critical point of the energy.

The proof follows the strategy used in [3] which mainly consists in passing to the
limit in equation (7).

We start with the estimation of E[mλ] − E[m], where mλ =
m+ λw

|m+ λw| , and use

the following lemma.

Lemma 3. Let m ∈ H1(Ω, S2). If w ∈ H1(Ω,R3) is a vector field such that
w(x) ·m(x) = 0 a.e., then∫

Ω

|∇mλ|2 ≤
∫

Ω

|∇(m+ λw)|2 .

Proof. The statement follows pointwise from the following fact: if e ∈ S2, and
ρ ≥ 1, then |∇(ρe)|2 = ρ2|∇e|2 + |∇ρ|2 ≥ |∇e|2. �
Proof of Theorem 2. We estimate the energy decay

E[mλ] − E[m] = A

∫
Ω

|∇mλ|2 +Ku

∫
Ω

(mλ,y)2 −
∫

Ω

hext ·mλ

+
1
2

∫
R3

|H (mλ)|2 −A

∫
Ω

|∇m|2 −Ku

∫
Ω

m2
y

+
∫

Ω

hext ·m− 1
2

∫
R3

|H (m)|2

≤ A

∫
Ω

(
|∇(m+λw)|2 − |∇m|2

)
+Ku

∫
Ω

(my+λwy)2 −m2
y

−
∫

Ω

hext · (mλ −m) +
1
2

∫
R3

|H (mλ)|2 − |H(m)|2,

from the estimate given in Lemma 3. Using again (7) with φ = w, we get

A

∫
Ω

∇m · ∇w +Ku

∫
Ω

mywy = −A
∫

Ω

(|∇w|2 + |w|2) +
∫

Ω

hext +H(m)
2

· w,
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from which the estimate becomes

E[mλ] − E[m] ≤ (−2Aλ+Aλ2)
∫

Ω

|∇w|2 − 2Aλ
∫

Ω

|w|2 +Kuλ
2

∫
Ω

w2
y

−
∫

Ω

hext ·mλ(1 − |m+ λw|) +
1
2

∫
R3

|H (mλ)|2

−1
2

∫
R3

|H(m)|2 + λ

∫
Ω

H(m) · w.

Now we estimate the terms on the right hand side. First, due to w(x) ·m(x) = 0
a.e., we have ∣∣∣1 − |m(x) + λw(x)|

∣∣∣ ≤ λ2

2
|w(x)|2,

from which we deduce∣∣∣∣
∫

Ω

hext ·mλ(1 − |m+ λw|)
∣∣∣∣ ≤ λ2

2
|hext|

∫
Ω

|w|2. (10)

Now we consider the term involving the stray-field energy, and decompose it into
two terms

1
2

∫
R3

|H (mλ)|2 − |H(m)|2 + λ

∫
Ω

H(m) · w

=
1
2

∫
R3

|H (mλ)|2 − |H(m+ λw)|2

+
1
2

∫
R3

|H (m+ λw)|2 − |H(m)|2 + λ

∫
Ω

H(m) · w

=
1
2

∫
R3

|H (mλ)|2 − |H(m+ λw)|2

+
λ2

2

∫
R3

|H(w)|2.

From (3) we get
λ2

2

∫
R3

|H(w)|2 ≤ λ2

2

∫
Ω

|w|2.
The remaining term can be written as∫

R3
|H (mλ)|2 − |H(m+ λw)|2

=
∫

R3
(H (mλ) +H(m+ λw)) · (H (mλ) −H(m+ λw))

= −
∫

Ω

(H (mλ) +H(m+ λw)) · (mλ − (m+ λw)) ,

where we used (2). Using the Cauchy-Schwarz inequality and (3),∣∣∣∣
∫

R3
|H (mλ)|2 − |H(m+ λw)|2

∣∣∣∣
≤ ‖H (mλ) +H(m+ λw)‖L2(R3)‖mλ − (m+ λw)‖L2(Ω)

≤
(
|Ω| 12 + ‖m+ λw‖L2(Ω)

) λ2

2
||w||2L4(Ω)

≤ C2
1

(
|Ω| 12 +

1
2
λ‖w‖H1(Ω)

)
λ2‖w‖2

H1(Ω)
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where C1 is the continuity constant of the embedding H1(Ω) → L4(Ω).
Putting everything together leads to

E[mλ] − E[m] ≤ (−2Aλ+Aλ2)
∫

Ω

|∇w|2 − 2Aλ
∫

Ω

|w|2 +Kuλ
2

∫
Ω

w2
y

+
λ2

2
(|hext| + 1)

∫
Ω

|w|2 + C2
1

(
|Ω| 12 +

1
2
λ‖w‖H1(Ω)

)
λ2‖w‖2

H1(Ω)

≤
(
−2Aλ+

(
A+Ku +

|hext| + 1
2

)
λ2

)
‖w‖2

H1(Ω)

+C2
1

(
|Ω| 12 +

1
2
λ‖w‖H1(Ω)

)
λ2‖w‖2

H1(Ω)

≤
(
−2Aλ+

(
A+Ku +

|hext| + 1
2

+ C2
1 |Ω| 12

)
λ2 + C2λ

3

)
‖w‖2

H1(Ω)

where C2 depends on the constants |Ω|, A, Ku and ‖m‖H1(Ω) through the bound
(8). At the same time, ‖m‖H1(Ω) is controlled by the energy E[m].

From the signs of the coefficients, it is clear that the polynomial function of
degree three in λ that appears on the right hand side of the inequality is negative
for λ ∈ (0, λ0), for some λ0 > 0 which depends only on the parameters of the
problem and E[m]. That for small λ the energy is reduced was clear a priori,
since the first step of the algorithm is essentially a gradient method whereas the
renormalization stage only modifies the magnetization by a second order term in
λ. We have, additionally, obtained a quantitative relation between the reduction of
the energy and the norm of w.

If at each iteration step we choose λ < λ0, by (6) the energy is nonincreas-
ing. In turn, this implies that C2 above can be taken constant along the sequence,
estimating E[m(n)] ≤ E[m(0)]. Then, the polynomial is the same along the se-
quence. Choose now a single λ < λ0, and let Cλ be the corresponding value of the
polynomial. This gives a quantitative version of (6), namely,

E[mλ] − E[m] ≤ −Cλ‖w‖2
H1(Ω) (11)

(recall that the sequence is defined by m(n+1) = mλ, if m = m(n)). At the same
time, since the energy is bounded from below, the series

∑
n>0

∥∥∥w(n)
∥∥∥2

H1(Ω)

which is controlled by the total energy decay must converge.
We finish the reasoning by passing to the limit in (7), to show that the limit is

indeed a stationary point of the energy. Substituting m(n) and w(n) we get

A

∫
Ω

∇(m(n) + w(n)) · ∇ψ + A

∫
Ω

(m(n) + w(n)) · ψ +Ku

∫
Ω

m(n)
y ψy

=
∫

Ω

hext · ψ +
∫

Ω

H(m(n)) · ψ ∀ψ ∈ Tm(n) .

(12)
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We first notice that the sequence (m(n)) is uniformly bounded in H1(Ω) and we
may therefore extract a subsequence from it (still denoted by (m(n))) such that

m(n) ⇀m(∞), weakly in H1(Ω)

m(n) → m(∞), strongly in L2(Ω).

Since H is a continuous operator on L2(Ω) we deduce

H(m(n)) → H(m(∞)), strongly in L2(Ω),

and from the convergence of the series
∑

n ‖w(n)‖2
H1(Ω),

w(n) → 0, strongly in H1(Ω).

Now, take ψ = m(n) ∧ φ in (12). We obtain∫
Ω

A
[
∇(m(n) + w(n)) · (m(n) ∧∇φ) + ∇w(n) · (∇m(n) ∧ φ) + (m(n) + w(n)) · (m(n) ∧ φ)

]

+Ku

∫
Ω

(m(n)
y )(m(n) ∧ φ)y =

∫
Ω

hext · (m(n) ∧ φ) −
∫

Ω

H(m(n)) · (m(n) ∧ φ).

for all φ ∈ C∞
0 (Ω). All the terms pass to the limit, and we deduce

A

∫
Ω

∇m(∞) · (m(∞) ∧∇φ) + Ku

∫
Ω

m(∞)
y (m(∞) ∧ φ)y =

∫
Ω

hext · (m(∞) ∧ φ)

−
∫

Ω

H(m(∞)) · (m(∞) ∧ φ) ∀φ ∈ C∞
0 (Ω),

which means from (5) that m(∞) is a critical point of the energy. �

Remark 4. Several alternatives may be used to compute the descent direction w.
Instead of taking the H1−inner product, one may for instance add the anisotropy
term. It doesn’t change the convergence result but may help to decrease the energy
more quickly. In the numerical applications described in the next section, we use
this alternative.

3. Numerical method

The numerical minimization of E[m] is an optimization problem with a non-
convex constraint, which involves the computation of a quantity (the stray-field hd)
in the whole space R

3. Different methods have been proposed to treat each of these
issues, depending on the details of the problem at hand. For instance, the series
of papers by Fredkin and Koehler ([10, 13] and references therein) systematically
studied several discretization techniques in 2 dimensional and 3 dimensional cases.
Other numerical techniques mainly based on the fast Fourier transform technique
on regular grids have been employed (see e.g. [5, 22, 21]). Several benchmarks (one
of which is studied in the next section) may be found on the NIST webpage [18].

The algorithm we have used is the one described in the preceding section. It
is a preconditioned projected gradient method which iteratively builds a sequence
(m(n)) of magnetizations in two steps

• m(n) being known, compute a descent direction w(n),
• Update the magnetization by setting

m(n+1)(x) =
m(n)(x) + λnw

(n)(x)
|m(n)(x) + λnw(n)(x)| ,
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with a suitable value of λn.

The computation of the descent direction w(n) is done as the solution to the
minimization problem on Tm(n) (compare to (7))

min
w∈T

m(n)

∫
Ω

A|∇(m(n) +w)2|+Ku(m(n)
y +wy)2−hext · (m(n) +w)−h(n)

d · (m(n) +w) .

(13)
Here, we have called h(n)

d = H(m(n)) the stray field induced by m(n). This problem
is the minimization of a quadratic functional on a linear space. It therefore possesses
a unique solution. After discretization with e.g. finite elements, it can be solved
using a conjugate gradient method.

The new value for the magnetization is then obtained during the renormalization
stage of the algorithm. A trial value λn = 1 is chosen and the real energy E[m(n+1)]
is computed. If the real energy has decreased, i.e. E[m(n+1)] < E[m(n)], we accept
the update and proceed with the next iteration. Otherwise we reduce λn (by a
factor of 2), and determine a new m(n+1) (without having to recompute w(n)).
This is roughly equivalent to a λ-strategy in a Newton algorithm. Typically λn

oscillates between 1/2 and 1, only in a few cases it has gone down to 1
4 . The

algorithm stops when the update w(n) falls below a certain threshold (sum of the
squares of the entries less than 10−8 or 10−10).

For the discretization, we used the so-called P 1− finite element technique. The
domain Ω is meshed into tetrahedra and the magnetization is then represented
using affine functions for each component, with the unit-length constraint enforced
at the nodes.

We now turn to the computation of the stray field hd. To solve ∆φ = ∇ · m
in R

3 we use a technique recently proposed by Alouges [4] which appeared to be a
viable alternative to the classical boundary elements methods. The demagnetizing
potential is obtained by solving Poisson’s equation on a much larger domain (ideally,
R

3). This is done using the homothetic-layers construction of Ying [26, 4]. More
precisely, we first build a mesh (with tetrahedra) for the region contained between
Ω and a larger convex domain Ω̃, whose linear dimensions are approximately twice
those of Ω. This allows to refine selectively both meshes around the boundary of Ω,
and hence to resolve e.g. the singularities at the cube corners, without having to
resort to high resolution everywhere. At the same time we can construct the outer
grid starting from the convex domain Ω̃, without requiring the magnetic body Ω to
be convex itself. Then, following [4], the tetrahedral mesh on the outer boundary
of Ω̃ is scaled up homothetically. From each vertex xi ∈ Ω̃ we get a sequence
x

(j)
i = ξjxi, 1 ≤ j ≤ N . This gives a meshing of the volume contained in ξN Ω̃ \ Ω̃

with modified prisms. The outer mesh is obtained by carving up each of these
prisms into three tetrahedra. As remarked by [26, 4], the homothetic structure of
the mesh reflects into the matrix elements for the linear problem. The matrices
need to be computed (and stored) explicitly only for the first layer, the outer layers
are afterwards obtained by scaling. Following [4] we instead scale the unknowns
corresponding to the outer nodes, leading to an automatic pre-conditioning of the
Poisson problem, which significantly improves the performance of our Conjugate-
Gradient linear solver. As boundary conditions we impose φ = 0 on the boundary
of Ω̃. On the boundary of Ω the magnetization is discontinuous, leading to singular
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contributions to the right-hand side of ∆φ = divm, which have been treated as
surface integrals.

In practice, we have used grids with average edge length h ranging from 0.03 to
0.15 for the unit cube, which corresponds to 400 to 8000 nodes for the discretization
of the magnetization. The typical edge length ho for the mesh of Ω̃ was 2 to 3 times
larger. The outer mesh was then generated using ξ = 1+2ho, which corresponds to
fixing the aspect ratio of the homothetic tetrahedra. The number of layers N was
chosen so that the total volume had linear dimensions around 100 times larger than
Ω. This ensures that the finite-volume correction is negligible. The above algorithm
has been implemented in C++ on a parallel Sun machine. A typical minimization
requires a few dozen nonlinear iterations, and lasts a few hours.

4. Phase diagram of the standard cube

As a first application of our method, we consider the Micromagnetic Standard
Problem 3 [18, 15, 21]. This consists in estimating the size of a cube at which
the ground state changes from a quasi-uniform (flower) to a vortex state, in the
presence of uniaxial anisotropy with Ku = 0.1. The problem had been proposed
by A. Hubert, and a first solution has been published by Rave, Fabian and Hubert
(RFH) [21]. Hertel and Kronmüller (HK) [15] in a successive solution, with a
different method, discovered the presence of an additional “twisted flower” state,
which is a modification of the symmetric flower breaking inversion symmetry, with
lower energy than the flower in the region of interest. We shall study both the
flower-vortex and the twisted flower-vortex transitions.

To assess the different regions of stability we determined the total energy of each
state for various values of λ (defined as the cube edge divided by the exchange
length (A/2)1/2). Due to the observed energy differences being rather small, we
had to perform mesh-size extrapolation to obtain reliable results. This has been
done using a least-squares fit with E(h) = E(0) + ch2, where h is the average edge
length of the considered mesh. A typical extrapolation plot is displayed in Fig. 1.
Note that in refining h both the inner mesh (used to resolve the magnetization
pattern) and the outer mesh (used to resolve the demagnetization field) are refined.
The number of layers is determined for every mesh so that the total volume is kept
a cube of size around 100 times the unit cube of interest. The restriction to a finite
volume does not significantly affect the energy, since the dipolar energy decays as
1/L3. We checked with a uniformly magnetized cube that the chosen number of
layers does not affect the total energy by more than 10−5. Hence this effect is
neglected in the following. The largest source of error we expect is the uncertainty
in the mesh-size extrapolation. To estimate this error, for each set of data we
computed the standard deviation of the computed points from the fitted straight
line. The result was always around 10−4. As a check, we tried to remove in turn
one of the data points from each linear fit, and to compute the standard deviation
of the so-obtained set of extrapolated results. The resulting error estimate was
again around 10−4. Therefore, we take this value as the error on the extrapolated
values.

The phase diagram we obtain is given in Fig. 2, where the energies of the dif-
ferent states are compared. The intersection is determined by fitting a straight
line between the three computed points for each phase, and the error is given by
standard error propagation. We observe a transition from flower to vortex for
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Figure 1. Grid-size extrapolation for λ = 8.528. The dots mark
the computed points, the full lines the linear fit.

λF−V = 8.475 ± 0.004, whereas RFH had λF−V = 8.47 and HK λF−V = 8.52.
Results analogously close to those of RFH are obtained for other quantities, such
as the average magnetization, which are reported in Tables 1 and 2. We also
investigated the twisted flower state, which in agreement with HK we found to
have a lower energy than the symmetric flower in this range of λ’s. Our re-
sult for the transition between twisted flower and vortex, obtained with the same
method, is λTF−V = 8.503 ± 0.005, whereas HK had found the same transition at
λTF−V = 8.57. The magnetization and energy data for the twisted vortex are given
in Table 3.

In comparing with previous results, a note on the different methods used is
needed. Our results are based on finite elements on an unstructured tetrahedral
mesh of the interior and an explicit resolution of Laplace’s equation in the outside.
RFH instead used a regular grid in the cube with finite differences, and FFT to
evaluate the magnetostatic contributions. Although the method is completely dif-
ferent, we reproduce their results with very good precision. The approach of HK
on the other hand, was similar to ours for the interior mesh, but had a different
treatment of the outer-space problem, based on a nonlinear mapping to a finite
region, and a variational formulation based on optimizing over all solenoidal fields.
This can possibly explain the small but noticeable difference in evaluating the mag-
netostatic energies (our values are systematically lower by about 5 ·10−3 than those
reported by HK), which seems to be the main cause of the slight differences in the
localization of the critical values of λ.

In summary, our results lie well within the range of already published values,
being in particularly good agreement with those of Rave, Fabian and Hubert [21].
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Figure 2. Energy as a function of λ for the different states. The
points are the grid-size extrapolated results. The curves are a
linear interpolation used to determine the intersection.

λ εd εx εk εtot 〈mx〉 〈my〉 〈mz〉
8.528 0.2789 0.01776 0.00569 0.3023 0.000 0.970 0.000
8.489 0.2791 0.01772 0.00564 0.3024 0.000 0.971 0.000
8.450 0.2794 0.01768 0.00558 0.3027 0.000 0.971 0.000

Table 1. Partial energies per unit volume (demagnetization, ex-
change, anisotropy, and total) and average magnetizations for the
(symmetric) flower state. The energy results are extrapolated to
h = 0 as discussed in the text. No mesh-size extrapolation was
needed for the magnetization results. The last figure is likely to be
affected by numerical errors.

λ εd εx εk εtot 〈mx〉 〈my〉 〈mz〉
8.528 0.0771 0.1714 0.0520 0.3004 0.000 0.000 0.345
8.489 0.0778 0.1720 0.0521 0.3019 0.000 0.000 0.349
8.45 0.0788 0.1725 0.0522 0.3036 0.000 0.000 0.354

Table 2. Vortex state. Same data as Table 1.

5. Switching in small particles

As a second application, we considered switching of small particles. The cel-
ebrated Stoner-Wohlfarth (SW) model assumes the magnetization to be uniform
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λ εd εx εk εtot 〈mx〉 〈my〉 〈mz〉
8.528 0.2354 0.0443 0.0213 0.3011 0.000 0.89 0.000
8.489 0.2401 0.0418 0.0197 0.3016 0.000 0.90 0.000
8.42 0.2484 0.0370 0.0167 0.3022 0.000 0.91 0.000

Table 3. Twisted vortex state. Same data as Table 1. The point
at 8.42 has larger numerical errors (by a factor of 3 ÷ 5) than the
others.

Figure 3. Geometry. The left panel shows the standard cube.
The arrow parallel to the z axis indicates the easy axis. The two
cross-sections of the cube indicate the planes along which the crit-
ical field is plotted in the following Figures. The right panel rep-
resents the cube with smoothed edges. d is the fraction of the
original side length which is removed (i.e. one tetrahedron with
edge d/2 is removed from each vertex). For d = 1 we get a regular
octahedron.

inside the magnetic sample, and is valid in the limit of strong exchange, or equiv-
alently small particles. The magnetostatic energy is then a quadratic form in the
magnetization, which is a unit vector. For a cube, it is a constant (by symmetry),
for more general shapes it is the magnetostatic energy of a suitable ’reference ellip-
soid’. We investigate the geometric effects not captured by the SW approximation,
in that we analyze switching in small cubical particles along different directions.
We assume a small uniaxial anisotropy along the z axis. The geometry is illustrated
in Figure 3. The SW result is, both for the cube and for the smoothed cube,

hcrit(θ) = 2Ku

√
sin6(φ) + cos6(φ) (14)

where φ gives the direction of the equilibrium magnetization and is determined by
tan3 φ = tan θ, and Ku = 0.05 is the anisotropy factor. Angles are measured with
respect to the easy axis, which we take to be along one of the axes of the cube.

For each direction, we initialize the magnetization in the flower state (i.e. al-
most uniform magnetization along the easy axis) with orientation opposite to the
projection of the applied field on the easy axis, and slowly increase the field until
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Figure 4. Critical fields for cubes with λ = 4 (left panel) and 6
(right panel), compared with the SW model (full curve). The easy
axis is vertical. Circles correspond to points computed in a plane
parallel to two faces, crosses to points computed in a plane parallel
to two face diagonals (see Figure 3 for the geometry). The other
quadrants are symmetric. The dotted lines indicate the direction
selected for the plot in Figure 5.

an instability is observed numerically. States are labeled as stable if the residuum
decreases below the threshold we established for convergence, and unstable if at
some point along the minimization the projection of the average magnetization on
the easy axis changes sign (this avoids the unnecessary numerics which would opti-
mize the flipped state). To accelerate the convergence, not all fields are tested, but
a bisection method is used around the region where the critical value is expected.
Every time, the minimization is started from the most recent stable state with the
same orientation, which simulates the progressive increase of the applied field. Er-
rors in this procedure arise both from grid-size effects and from the finite threshold
we imposed for convergence. We checked both, by doubling the number of points
and dividing the threshold by 10, and results did not change significantly for λ up
to 6. For larger λ instead a much larger fluctuation has been observed, even if the
trend remains stable.

Figure 4 shows the critical field for different orientations. The difference between
the crosses and the circles indicates the dependence of the critical field on the
azimuth, which cannot be recovered by modeling the cubic particle with an ellipsoid.
This difference disappears for fields close to the easy (y) axis, since both planes
intersect the easy axis. For both the λ = 4 and the λ = 6 cube the critical fields at
small elevation are significantly larger than predicted by SW. On the other hand,
different behavior between the two planes is observed for fields close to orthogonal
to the easy axis (i.e. almost contained in the x− z plane).

Figure 5 shows the dependence of the critical field for a given angle (azimuth
0, elevation 3π/32) on the cube size λ. For small λ our results reproduce the
SW result. With increasing cube size the critical field becomes larger, reaches
a maximum for cube sizes around 7, then drops rapidly. The drop is associated
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Figure 5. Critical field in direction θ = 13π/32 as a function of
λ. The point at λ = 0 marks the SW result, hcrit/2Ku = 0.59. The
other points are the computational results, the lines are just a guide
for the eye. The highest curve (at intermediate λ) corresponds to
a cube, the other to modified cubes with d = 0.3, 0.5 and 0.9. Up
to λ = 6 the estimated discretization error is of the order of the
symbol size, for larger λ is grows up to 0.1 (in the scale of the
figure).

with the appearance of complex switching patterns. Indeed, for smaller λ the
total magnetization remains essentially constant to a value close to 1 during the
switch, whereas for larger λ it is strongly reduced in the intermediate stages of
the transition. We observe that the flower-vortex transition without external field
with the value of Ku used here takes place for λ ∼ 8.2, significantly larger than
the cube size where the critical fields drop. The non-monotonic behavior of the
critical field agrees qualitatively with the results of Shabes and Bertram [23]. The
ellipsoidal approximation on the other hand yields different results: the stability
field is constant up to a certain value, then decreases as 1/λ2.

To better elucidate the role of sample geometry in these computations, we plot in
the same figure the results obtained with a cube with smoothed edges, as illustrated
in Figure 3, with three different degrees of smoothing. The results for d = 0.3
are very similar to those of a cube. Instead for d = 0.9, which is the maximum
smoothing we included, we get an almost unnoticeable increase of hcrit with λ, and
hence much closer agreement with the ellipsoidal approximation.

In summary, we studied numerically the influence of non–ellipsoidal geometry
on switching fields in small particles. We obtain a significant dependence on az-
imuth for particle sizes below the multidomain transition, and a non-monotonic
dependence on particle size of the switching field for a given orientation.
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