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Abstract

A framework for modeling complicated global energy landscapes in a
piecewise manner is presented. Specifically, a class of strain-dependent
energy functions is derived for the triple point of Zirconia (ZrO2), where
tetragonal, orthorhombic (orthoI) and monoclinic phases are stable. After
presenting a simple two-dimensional framework to deal with this symme-
try breaking, an explicit energy is fitted to the available elastic moduli
of Zirconia in this two-dimensional setting. First, we use the orbit space
method to deal with symmetry constraints in an easy way. Second, we
introduce a modular (piecewise) approach to reproduce or model elastic
moduli, energy barriers and other characteristics independently of each
other in a sequence of local steps. This allows for more general results
than the classical Landau theory (understood in the sense that the en-
ergy is a polynomial of invariant polynomials), since the class of functions
considered here is strictly larger. Finite Element simulations with the
energy constructed here investigate the pattern formation in Zirconia at
the triple point.

1 Introduction

This paper provides a framework for modeling complex energetic landscapes,
such as atomistic potentials or energies describing materials that undergo phase
transitions. Until recently, typically only few physical parameters (such as elas-
tic moduli) were known in these cases, and a simple polynomial interpolation
scheme was sufficient to fit this data. Ab initio calculations and improved ex-
perimental techniques provide a much larger wealth of data which can typically
not be fitted easily by a polynomial approach. We present a simple framework
to model these energetic landscapes, including symmetry constraints and a pos-
sibly large number of parameters to fit. In particular, the framework presented
here allows for fitting important physical quantities like energy barriers, which
can be difficult to be resolved correctly with a polynomial approach.
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To be specific, we have chosen to demonstrate the modeling framework with
Zirconia (ZrO2) as a highly nontrivial example. From the point of view of
modeling, one of the specific difficulties of Zirconia (as well as any other ma-
terial undergoing phase transformations) is its complicated energy landscape,
which is invariant under the high symmetry point group in the space of sym-
metric strains. We provide a theoretical framework by proposing an (isother-
mal) phenomenological energy density for the tetragonal-orthorhombic (orthoI)-
monoclinic (t-o-m) triple point of Zirconia using piecewise functions. Numerical
simulations demonstrate the feasibility of this approach. In particular, the flex-
ibility of such a triple point material is compared to that of a two phase solid.
Modeling and simulation of martensitic transformations, i.e., diffusion-less first-
order solid-solid transformations, is known to be demanding even for two-phase
materials (Luskin, 1996; Swart and Holmes, 1992; Reid and Gooding, 1997).
We are not aware of comparable simulations of a triple point material.

Fadda et al. (2002) use the ansatz of lowest order invariant polynomials to
obtain an energy function and fit most of the elastic moduli. They show that it
is impossible to fit all elastic moduli of the tetragonal and the monoclinic phase
accurately within this framework. Two elastic moduli of the monoclinic phase,
Cm

25 and Cm
35, are too high by an order of magnitude respectively by about 150%

with respect to the closest available experimental and theoretical data (elastic
moduli for the orthorhombic phase were not considered; no experimental data
seems to be available here).

This is another manifestation of the fact that lowest-order polynomials are
often not suitable to describe the energetic landscape correctly. Gooding et al.
(1991) pointed out that the minimal set of order parameters may lead to un-
realistically high estimates for the thermal activation energy. To determine
the energy barrier correctly, they use non-symmetry-breaking order parameters
or, more specifically, invariant polynomials of higher order. This approach is
often difficult and results in steeply growing energy functions. We introduce
a related, but novel approach to define elastic energies in terms of piecewise
functions. Within the framework of piecewise defined functions, fitting elastic
moduli and other parameters reduces to solving local problems and interpolating
appropriately.

As demonstrated below for Zirconia, accurate fitting of the energy to given
values for the elastic moduli of the different phases (tetragonal, monoclinic and
orthorhombic) becomes in this framework a simple task. Since the derived phe-
nomenological energy will serve as input of the two-dimensional simulations
in Section 4, we limit ourselves to a suitable plane describing the tetragonal-
orthorhombic-monoclinic phase transition and can therefore only fit the moduli
visible in this plane. In particular, the moduli that cannot be fitted accu-
rately with the lowest order polynomial ansatz are invisible. We point out,
however, that the methods presented in Section 3 are also applicable in the
three-dimensional context. Also, the framework presented here is, due to its
locality, general enough to accommodate data obtained from ab initio calcula-
tions, for example energy barriers. Since in this case the representation of the
energy will only be substantially longer, we have chosen Zirconia as a suitable
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material for explaining the ideas, even if data from ab initio calculations for
Zirconia is not available.

Besides being advantageous when physical data needs to be fitted, the method
of deriving energy functions described here might also be of interest from a the-
oretical point of view. The Landau-Ericksen theory (Landau, 1967; Ericksen,
1980) commonly used was originally designed for a local analysis. There, the
aim is to catch the structure of the energy in the vicinity of the bifurcation
points only. Polynomials have proven to be an appropriate choice. However, we
aim here at reconstructing the global energy picture. In this case, there is no
justification to rely on polynomials alone. Rather, the ideas presented here seem
to be a natural extension of the original ideas of Landau. By gluing together
piecewise polynomials, which describe the local picture of the energy landscape
appropriately, one gains a global picture. From that point of view, the idea of
defining the energy as a piecewise function seems to be quite natural.

We point out that a purely polynomial approach may result in additional
stable phases, as reported by Fadda et al. (2002) for an additional orthorhombic
phase for Zirconia in a certain temperature regime. It is well possible that an
additional phase is just an artefact stemming from the rigidity of polynomials,
and will disappear in the piecewise framework described here. Since we focus
on the isothermal situation around the triple point, we will not pursue this
question here. However, the methods presented in Section 3 will facilitate such
an investigation.

The flexibility gained with this piecewise approach comes at a price, how-
ever. First, the there is a drop in smoothness from polynomials to the energy
function derived here, which will only be C1. In principle, however, one could
use Hermite splines of arbitrary order to obtain an arbitrarily smooth energy.
For the simulations, a continuously differentiable function will suffice (see for
example Balk et al. (2001); Huo and Müller (2003) for engineering and physics
literature with piecewise defined C0 or C1 energy densities). In our numerical
study of boundary value problems, no spurious effect stemming from the discon-
tinuity in the elastic moduli were ever observed. Second, the energy does not
have a representation as compact as a polynomial one, since the class of func-
tions considered here comprises the polynomials. However, one could express
it in a reasonably compact way by using base functions (e.g., splines). Since
we have no use for this here, we will refrain from doing so and consider the
energy just as input of the Finite Element simulation. For such simulations, the
complexity of the energy becomes largely irrelevant; the simulations in Section 4
will show that the energy derived here is well suited for scientific computations.
Third, the method comes with a huge number of parameters. We minimize the
arbitrariness of choosing parameters by fitting the elastic moduli of the differ-
ent variants and interpolating by solving the biharmonic equation. In that way,
essentially only the parameters in the biharmonic equation determine the in-
terpolation (e.g., energy barriers), while suitable variations of other parameters
such as the domain of the interpolation do not change the qualitative behavior
of the energy landscape.

We remark that these ideas not only apply to multiphase crystals, but also
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Figure 1: Schematic phase diagram (see Fadda et al. (2002); Ondik and Mc-
Murdie (1998). The triple point is near 1.8 GPa and 840oK.

carry over to much more complicated situations, for example energetic land-
scapes arising in molecular dynamics. Applications of the ideas presented here
in that context will be an area of future research. Zirconia has been chosen as a
prototype of a material with a triple point due to its relevance for applications.
Extraordinary mechanical properties like high corrosion resistance and a melting
point at high temperature make Zirconia a potentially very attractive material
in engineering ceramics. Zirconia exhibits several solid-solid phase transitions
which are responsible for the internal formation of microstructures. The phase
changes are also the source of transformation toughening, which is considered to
be a milestone in achieving high strength ceramics of high toughness. Zirconia
is the most important toughening agent for ceramics. The high pressure and
temperature at the triple point (see Figure 1), however, render experimental
investigations of the phase transformations difficult. Theoretical modeling and
numerical simulations as presented here can provide valuable insight.

Zirconia also proves to be particular challenging for the orbit space methods
described in Section 3 since the scaling of the orthorhombic phases as being
closer to the tetragonal phase than the monoclinic ones has to be resolved cor-
rectly.

The numerical simulations investigate the pattern formation and nucleation
in Zirconia. Precisely, we study a dynamic theory of phase transformations in
a two-dimensional elastic solid, where the phenomenological energy for Zirconia
developed before is used. The main purpose of the simulations is to show that
with the piecewise energy defined in Section 3, the three phases of Zirconia can
be recovered correctly in a numerical setup, while a lowest-order polynomial en-
ergy fails to exhibit clearly distinguishable phases. This is due to the different
heights of the energy barriers obtainable with these approach (Figure 3 and the
simulations in 4.4). A side theme of the simulation is to demonstrate the flexi-
bility of a three-phase material, as opposed to a two-phase material. It is shown
that the size of the boundary layer with high potential energy is significantly
smaller for a three-phase material, which indicates a higher flexibility of such a
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Figure 2: Tetragonal reference configuration. The axes c1, c2 and c3 of rotations
in the tetragonal point group are shown.

material (regarding the accommodation of boundary conditions). This suggests
that the set of recoverable strains might be larger for a three-phase material
than for a comparable two-phase material.

The article is organized as follows. In Section 2, it is shown that the phase
transition can be analyzed in a two-dimensional framework. In Section 3, an
energy function is derived and fitted to the elastic moduli of the different phases.
Numerical simulations using this energy are presented in Section 4. We close
with a discussion in Section 5.

2 Planar phase transformation

We follow Truskinovsky and Zanzotto (2002) in considering a transformation
path in Zirconia joining the tetragonal phase and certain orthorhombic and
monoclinic phases. We show that these phase transformations can be described
as an in-plane transformation, which justifies the two-dimensional simulations
in Section 4.

As usual, we take the high symmetry phase as reference configuration. (This
is justified by the observation that one can define a so-called Ericksen-Pitteri
neighborhood (Ericksen, 1980; Pitteri, 1984) of the lattice with the maximal
symmetry in such a way that it comprises the lattices with a subgroup sym-
metry.) For Zirconia, the tetragonal phase, denoted T3, is the high symmetry
phase. To fix the notation, we list the elements of T3 (Truskinovsky and Zan-
zotto (2002); the axes c1, c2, c3 are shown in Figure 2; Rα

a stands for the rotation
with angle α and axis a):

T3 =
{
1, Rπ

c1
, Rπ

c2
, Rπ

c3
, Rπ

c1+c2
, Rπ

c1−c2
, R

π
2
c3 , R

3π
2

c3

}
.

The orthorhombic subgroups of T3 are

O1,2,3 :=
{
1, Rπ

c1
, Rπ

c2
, Rπ

c3

}
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and
O3,1±2 :=

{
1, Rπ

c3
, Rπ

c1+c2
, Rπ

c1−c2

}
,

see Truskinovsky and Zanzotto (2002). Both orthorhombic groups form their
own conjugacy class in T3.

There are three conjugacy classes of monoclinic subgroups, from which we
list one representative each:

M1,2 :=
{
1, Rπ

c1

}
, M1±2 :=

{
1, Rπ

c1+c2

}
, M3 :=

{
1, Rπ

c3

}
.

Of course, there is also the trivial triclinic subgroup {Id}. A schematic rep-
resentation of the point groups is given by Truskinovsky and Zanzotto (2002,
Figure 3).

We assume the symmetry breaking in ZrO2 occurs along the path

T3 −→ O123 −→ M3.

This transformation path different from the one usually considered for the te-
tragonal-monoclinic transformation responsible for the transformation toughen-
ing (Fabris et al., 2000). It is the path suggested by Truskinovsky and Zanzotto
(2002); Fadda et al. (2002) based on experimental evidence collected there.

We study this phase transformation using a continuum theory by invoking
the Cauchy-Born rule (Ericksen in Gurtin, 1984). Let Ω ⊂ R

3 be the reference
configuration. The deformation of the crystal is given by y(x). The displacement
is defined as u(x) := y(x) − x. The deformation gradient is

Fij :=
∂yj

∂xi
.

According to the Cauchy-Born rule, this deformation gradient serves as a mea-
sure of the deformation of the lattice.

It is well known that there are several variants of the low-symmetry phases,
where the number of variants is given by the quotient of the order of the high
symmetry group and the order of the low symmetry group (see, e.g., Bhat-
tacharya, 2003, Section 4.3).

For the reader’s convenience, the deformation gradients for the different
variants are listed below; see Truskinovsky and Zanzotto (2002). In particular,
it can be seen that the symmetry breaking takes place in the c1c2-plane shown
in Figure 2, to which we therefore restrict ourselves. Consequently, the third
row and column of the deformation gradients are always given by (0, 0, 1 + u33)
and will be suppressed from notation. For O123, there are two variants,

F =
(

1 + u11

1 + u22

)
and F =

(
1 + u22

1 + u11

)
.

Similarly, for M3, there are four variants. It is easy to see that the corre-
sponding deformation gradients F are given by the four matrices(

1 + u11 ±u12

±u12 1 + u22

)
and

(
1 + u11 ±u12

±u12 1 + u22

)
.
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Finally, deformation gradients preserving the tetragonal symmetry are of the
form

F =
(

1 + u11

1 + u11

)
.

In the c1c2-plane depicted in Figure 2, the tetragonal phase T3 is character-
ized by a C4 symmetry (the symmetry of a square). This group is generated
by a counterclockwise rotation by 90o, which will be denoted by σ. The two
orthorhombic phases have a planar C2 symmetry, since their restriction to the
c1c2-plane is a rectangle. Finally, monoclinic variants reduce in the c1c2-plane
to parallelograms, which also have C2 as the planar point group. But for mon-
oclinic phases, three-dimensional rotations by 180 degrees along any axis in the
c1c2-plane are no longer a self-mapping. Restricted to the c1c2-plane, this means
that for monoclinic phases, reflections are no longer self-mappings.

3 Derivation of an phenomenological free en-
ergy density

The main input to the Finite Element simulation will be a phenomenological en-
ergy function modeling the relevant physical properties of Zirconia. Fadda et al.
(2002); Truskinovsky and Zanzotto (2002) have shown that, for the traditional
approach based on invariant polynomials of lowest order, it is not possible to fit
all available elastic moduli of Zirconia exactly. We will use the orbit space ap-
proach, where these problems are avoided and local geometrical considerations
allow for a comparatively simple construction. We refer the reader to Zimmer
(2003a) for a detailed presentation of the orbit space method. Here, it suffices
to know that ‘orbit space’ is a quotient, which can intuitively be seen as a map
identifying all variants of the same phase, while separating unrelated variants.
We introduce two new ideas to fit elastic moduli and control the growth of the
energy at the energy barriers and infinity. The first idea is to define the energy
as a piecewise function. This turns the problem of fitting elastic moduli and
other data into finding the solutions of several local problems which need to
be interpolated appropriately. The second idea is to interpolate between the
minima by solving the biharmonic equation with a Finite Element code. Again,
locality makes it easy to adjust the energy barriers between the minima to a
desired height. The biharmonic equation has been chosen for its resemblance to
the variational principle of minimal curvature. In this way, only few parameters
need to be controlled. Also, the Finite Element simulation of the biharmonic
equation automatically returns splines.

The axiom of frame indifference and the polar decomposition imply that the
energy function can be written as a function of E := 1

2

(
FT F − Id

) ∈ Sym(2, R).
Here, E is the Green-St. Venant strain tensor, and Sym(2, R) is the space of
symmetric real matrices, which will from here on be identified with R

3. Point
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groups act on this set by conjugation,

P × Sym(2, R) → Sym(2, R)
(P, E) �→ PEP−1.

The Green-St. Venant tensor E will be written in the Voigt notation, i.e.,

E =
(

e1
1
2e6

1
2e6 e2

)

with ei ∈ R. A short calculation shows that the representation of σ on R
3 = (e1,

e2, e6) is given by

σ̃ =

⎛
⎝ 0 1 0

1 0 0
0 0 −1

⎞
⎠ .

Since σ̃2 = Id, it is immediate that the action of the point group on E is
isomorphic to C2. The orthorhombic and monoclinic subgroups coincide on this
space and act both as identity.

The next step is to find invariant polynomials in e1, e2 and e6 under the
action of the high symmetry point group. It is a classic theorem due to Hilbert
that for compact Lie groups, the algebra of invariant polynomials (that is, mul-
tiplication of invariant polynomials is defined) is finitely generated. See, for
example, Theorem 2.1.3 in Sturmfels (1993), or Weyl (1997) as the classical ref-
erence. An invariant basis can easily be computed automatically, for example
with Singular (Greuel et al., 2001). Here it is even possible to guess a basis:

ρ1(e1, e2, e6) := e1 + e2 (the trace of E),
ρ2(e1, e2, e6) := e2

1 + e2
2 (the radius squared), (1)

ρ3(e1, e2, e6) := e2
6.

It is immediate that none of these invariants can be expressed as a combination
of the two remaining invariants. Therefore, they are independent. We need
to show that they form a basis. According to Chevalley (1955, Theorem (A)),
there is a basis of 3 invariants. Since the polynomials listed above are of the
lowest possible degree, they form such a basis.

The fact that these three polynomials form a basis of the algebra of poly-
nomials invariant under C2 means that every such polynomial ρ̃ = ρ̃(e1, e2, e6)
can be written as ρ̃ = P (ρ1, ρ2, ρ3), where P is a polynomial. Such polyno-
mial bases have been given by Smith and Rivlin (1958) for the different crystal
classes, where polynomial energy functions were considered. We proceed by
demonstrating how to use these bases to define more general multiphase energy
functions modeling given mechanical properties (such as location of minimizers
and elastic moduli). To do so, we introduce the Hilbert map ρ, which is defined
as

ρ :
{

R
3 → R

3

(e1, e2, e6) �→ (ρ1(e1, e2, e6), ρ2(e1, e2, e6), ρ3(e1, e2, e6)).
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Table 1: Locations of the minima. The minima in the e1e2e6-space are calcu-
lated from the data given by Fadda et al. (2002, Appendix). We used p = 1.8155
GPa and T = 838.9oK. The values in the orbit space follow by evaluating the
Hilbert map ρ = (ρ1, ρ2, ρ3) at these points.

tetragonal orthorhombic monoclinic
e1 0 0.01 0.0479
e2 0 0 0.0055
e6 0 0 0.1600

ρ1(e1, e2, e6) 0 0.01 0.0534
ρ2(e1, e2, e6) 0 0.0001 0.00232
ρ3(e1, e2, e6) 0 0 0.0256

The image of R
3 under the Hilbert map is the orbit space. See Zimmer (2003a)

for an explanation and more background.
Next, we locate the position of the different phases of Zirconia in the orbit

space ρ(Sym(2, R)). Consider, for example, the orthorhombic phase. In Table 1,
the data of one orthorhombic variant is given as e1 = 0.01, e2 = 0, e6 = 0. By
applying the tetragonal generator σ to this element, we find the other variant
as e1 = 0, e2 = 0.01, e6 = 0. Both variants are mapped to the same point in the
orbit space, namely (0.01, 0.0001, 0). This is a general property of orbit spaces,
see, e.g., Zimmer (2003a). Table 1 lists the location of the other minima.

We turn towards the construction of a function Φ on the orbit space such that
Φ(ρ) is a phenomenological energy function modeling the relevant mechanical
properties of Zirconia at the t-o-m triple point. Since the Hilbert map identifies
exactly the symmetry-related variants as one point in the orbit space, Φ can
be an arbitrary function. It will be chosen to be a piecewise function. In this
way, all available experimental and theoretical data of the elastic moduli can
be fitted accurately. The values for the elastic moduli and the locations of the
minima are taken from Fadda et al. (2002). No experimental data was available
for the orthorhombic phase, so orthorhombic data of a similar magnitude as at
the other phases was chosen before fitting the energy function. See Table 2 for
the elastic moduli.

The definition of Φ is done in two steps. First, a mesh on the orbit space
is created. The breaks are the locations where different pieces of the function
will be joined. They form boxes in a natural way. The breaks are listed in
Table 3. A comparison with the location of the minima on the orbit space in
Table 1 shows that every minimum is in the interior of one box. On those three
boxes, Φ is defined as Φt, Φo and Φm, respectively. These functions are listed in
Table 4; they are fitted in a straightforward manner to the elastic moduli given
in Table 2.

Second, Φ is extrapolated appropriately, here by a Finite Element approach.
We solve the biharmonic equation on the Finite Element space spanned by
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Table 2: Elastic Moduli (in GPa). The values for the tetragonal and monoclinic
phases are up to rounding errors in the parameters the same as in Fadda et al.
(2002, Tables II(b), IV(b)) (orthorhombic data seems to be unavailable). Note
also the re-labeling of the indices in the monoclinic phase in Table IV in Fadda
et al. (2002). Here, the tetragonal phase’s labeling is always used.

tetragonal orthorhombic monoclinic
C11 340 300 312
C22 340 350 350
C66 95.0 90.0 66.3
C12 33.0 33.0 35.2
C16 0 0 3.2
C26 0 0 4.3

Table 3: Location of the breaks for the mesh on the orbit space.

ρ1 ρ1 cont. ρ2 ρ2 cont. ρ3 ρ3 cont.
-0.05 0.0125 -0.0005 0.000225 -0.05 0.03
-0.035 0.03 -0.000045 0.001 -0.0015 0.045
-0.02 0.05 -0.00002 0.002 -0.001 0.06
-0.0025 0.056 -0.000005 0.0026 -0.0005
0.0025 0.07 0.000025 0.004 0.0001
0.005 0.085 0.00005 0.0055 0.0125
0.0075 0.1 0.000075 0.007 0.02
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Figure 3: Section of the energy landscape. Shown is the path from the tetragonal
phase (left corner) to an orthorhombic minimum. The scaling on the y-axes are
both times 10−3. Left: the piecewise energy defined in Section 3, with an energy
barrier modeled by the biharmonic equation. Right: A lowest order polynomial
ansatz determines the energy barriers via analyticity, and results in a much
shallower energy barrier.

continuously differentiable box elements with element boundaries coinciding
with the breaks of Table 3. These elements are three-dimensional tensor prod-
ucts of one-dimensional C1 cubic Hermite-interpolation elements, thus a three-
dimensional version of the Bogner-Fox-Schmitt element (Braess, 2001, Chapter
II, 5.10). All degrees of freedom of the three boxes containing the minima are
prescribed to ensure that the solution respects the data of Table 4. A boundary
of the Finite Element domain is introduced, and the boundary conditions are
set such that there is a C1 transition to a function Φlarge defining Φ for large
strains (see Table 4). Clearly, there is freedom in the choice of the boundary,
but as soon as it is sufficiently far away from the minima, this choice will be-
come immaterial for the simulations. We note that it would be easy to control
the energy barriers between the minima as well by adding a force term to the
biharmonic equation. In particular, the energy barrier is not determined via
analyticity like for a polynomial ansatz of a given degree. Rather, the energy
barrier can now be adjusted according to physical measurements (of ab initio
calculations, say). To demonstrate this, compare the energy barriers for the
energy defined here with those of a lowest order polynomial energy (Figure 3).
The low energy barrier of the polynomial ansatz makes the correct resolution
of stable phases sometimes impossible for computational investigations. See the
Finite Element simulations in Section 4.

We obtain in this way a C1 smooth energy function. Since this energy
density will enter equation of motion (3) in the Finite Element simulation of
Zirconia in Section 4 only in the weak formulation, we will not smoothen the
energy.

We mention some fine points in the procedure described above. To deal
with the nonlinear nature of the orbit space, the breaks and hence the element
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Table 4: Choice of functions to fit the elastic moduli.

Tetragonal Φt = 8.25ρ2
1 + 161.75ρ2 + 47.5ρ3

Orthorhombic Φo = 175(ρ1 − 0.01)2

+ 7.713 · 106(ρ2 − 0.0001)2 + 40ρ3

− 1.6675 · 105(ρ1 − 0.01)(ρ2 − 0.0001)
Monoclinic Φm = 222.9(ρ1 − 0.0534)2 + 43470(ρ2 − 0.00232)2

+ 323.7(ρ3 − 0.0256)2

− 4867(ρ1 − 0.0534)(ρ2 − 0.00232)
+ 6.942(ρ1 − 0.0534)(ρ3 − 0.0256)
− 20.27(ρ2 − 0.00232)(ρ3 − 0.0256)

Large Strains Φlarge = 150(x − 0.0267)4 + 500(y − 0.0012)2

+ 50(z − 0.0128)2 + 0.13

matrices are scaled according to the size of the elements on the strain space
rather than the orbit space. This means that in direction of ρ2 and ρ3, where
the Hilbert map is quadratic, the difference of the square roots of the coordinates
is used to scale the element matrix (see Table 3). This results in an essentially
equidistant scaling on the strain space. Also, it turns out to be useful to define
Φ on a neighborhood of the orbit space, rather than the orbit space itself. Here,
the boundaries of the domain of definition of Φ are given by ρ2 = 0 and ρ3 = 0.
It can be shown that the definition of Φ outside the orbit space is immaterial.
Indeed, all symmetry-related variants are mapped to one point in the orbit
space. In particular, the corresponding parts of the boundary of a fundamental
domain are identified; no further identifications on the orbit space are necessary
to obtain a smooth function. This greatly facilitates the construction of an
energy function.

There is arbitrariness in the definition of Φlarge (the values for large strains)
since the physically correct growth rate is unknown. For the simulations, it
is important to have a moderate growth for large strains to prevent numerical
instabilities (this is one of the reasons why we have chosen not to use a polyno-
mial energy function). The simulations will show that strains in these regions
of instability disappear after a sufficiently large relaxation time.

We are mainly interested in the behavior of Zirconia at the triple point and
will consequently not consider thermal effects. If one wants to do so, however, a
temperature dependence could be added in the same way as for the lowest order
polynomial method (Fadda et al., 2002). However, it seems advisable to pursue
the piecewise approach advocated here for the dependence on temperature as
well, since this might prevent the creation of additional stable phases reported
by Fadda et al. (2002) for the polynomial approach.

Figures 4 and 5 show the resulting function on different planes in the strain
space. We note that the energy captures the phenomenological structure of a
multiphase energy with minima and energy barriers quite well.
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the strain space.

13



4 Simulations

The simulations in this section will use the phenomenological energy defined in
Section 3 and the methods described in that section. The pattern formation in
Zirconia will be investigated and contrasted with that of a two-phase material.
We first demonstrate in 4.1 that it is theoretically possible for any two of the
three phases to share a phase boundary. The simulations in 4.3 will indeed ex-
hibit all three phases in a clearly distinguishable way, as well as all combinations
of neighboring phases, even with the interface penalization introduced in 4.2.

4.1 Compatibility of Phases

We first show that the three phases are mutually compatible. Two phases are
compatible if there is a continuous deformation exhibiting their gradients F1

and F2, say, in adjacent domains. It can be shown that this is equivalent to the
requirement that the matrix D := F−T

2 FT
1 F1F

−1
2 has three eigenvalues µ1 ≥ 1,

µ2 = 1 and µ3 ≤ 1 (Bhattacharya, 2003, Chapter 5.4). Since we work in the
two-dimensional framework presented in Section 2, we define compatibility as
the reduction of the full compatibility. That is, two phases are compatible if

µ1 ≥ 1, µ2 ≤ 1, or, equivalently, det(D − Id) ≤ 0. (2)

To show that two phases are compatible, it suffices to show that two ar-
bitrary deformation gradients reproducing the Green-St. Venant strain tensors
fulfill condition (2). The values Dt−o, Dt−m and Do−m, for the tetragonal-
orthorhombic, tetragonal-monoclinic and orthorhombic-monoclinic phases are
easily computed from the data for E = 1

2 (C − Id) in Table 1. It is a straightfor-
ward calculation to verify that the three phases are mutually compatible. We
remark that the compatibility depends in a sensitive way on the signs involved.
E.g., for a positive value of e2 of the orthorhombic phase, the orthorhombic and
the tetragonal phase are no longer compatible.

4.2 Equations of Motion and Numerical Setup

We investigate the dynamic behavior of martensitic phase transitions in Zir-
conia. The two-dimensional theory of phase transformations in Zirconia pre-
sented in the previous sections will be applied here. As mentioned in Section 2,
the martensitic transformation under consideration can be modeled within the
framework of continuum mechanics. The equations of motion are, as usual, given
by the inertial Hamiltonian dynamics of the elastic deformation field u : Ω → R

2,
where Ω ⊂ R

2 is the reference configuration. In the following, x will denote the
Lagrangian coordinate of a material point. The deformation gradient with re-
spect to the material coordinate x is given by F (x, t) := ∇u(x, t). As mentioned
before, we will not consider thermal effects. The non-viscous part of the Piola-
Kirchhoff stress tensor is defined as

σ(F ) :=
∂Φ(F )

∂F
(3)
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(to avoid confusion with the rotation σ defined in Section 2, we always write the
argument of the stress tensor). Here, Φ will be the phenomenological energy of
Section 3. The differentiation in Equation (3) is carried out in MATLAB. In
particular, the energy Φ defined in Section 3 is accessible for analytic manipu-
lations.

To resolve the non-uniqueness stemming from the non-convexity of the en-
ergy we introduce a strain-gradient term (compare Reid and Gooding (1997);
Klouček and Luskin (1994)). This term serves as a penalization of the forma-
tion of interfaces; it is often coined capillarity. In a variational setting, this
corresponds to an augmentation of the free energy density defined in Section 3
by a non-local Ginzburg term γ

2 |∆u(x, t)|2. This term prevents the formation of
infinitely fine microstructure by introducing a length scale (Kohn and Müller,
1993). The energy minimization problem reads

inf
∫

Ω

[
αΦ (∇u(x, t)) +

γ

2
|∆u(x, t)|2

]
x. (4)

with a constant α > 0.
The corresponding (deterministic) equations of motion, augmented by an

optional viscous stress µ∇ut, read

utt(x, t) = αDiv (σ (∇u(x, t))) − γ�2u(x, t) + µ�ut(x, t). (5)

They will be complemented by initial values u(x, 0) = u0, ut(x, 0) = v0 and
boundary values. We write u = (u1, u2)

T and x = (x1, x2)
T .

The term µ�ut(x, t) represents an artificial viscosity to stabilize the solution
scheme. It is easy to see that this term does not represent a physical viscosity
since it is not frame indifferent. However, it is widely used both in mathematical
analysis (Rybka, 1992; Friesecke and Dolzmann, 1997; Zimmer, 2003b) and in
numerical simulations of martensitic phase transitions. For the latter, it serves
as explicit augmentation of the orientation-dependent numerical viscosity. See,
e.g., Klouček and Luskin (1994) for a similar approach in two space dimensions
and Swart and Holmes (1992) for a purely viscous regularization in one space
dimension.

We remark that the existence of a solution of Equation (5) can be shown
for moderately growing C2 smooth energies; see Dondl (2002) for a semigroup
approach.

The integration of system (5) is based on the Finite Element Method. Inte-
gration in time is carried out with an explicit scheme. Rectangular conformal
Bogner-Fox-Schmitt elements are used to resolve the second order derivatives
in the weak formulation of the strain-gradient term correctly. See Klouček
and Luskin (1994) for a non-conforming approach for a two-phase material. It
is known that non-conforming elements are suitable for the treatment of the
related beam equation, and the results of Klouček and Luskin (1994) give nu-
merical evidence that the same might hold true for Equation (5). However,
at present, no proof of convergence seems to be available. We have chosen to
use conforming elements since Zirconia is particularly subtle to deal with in
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Figure 6: Relaxed state of the simulation in Section 4.3. White areas are mon-
oclinic, light gray orthorhombic, dark gray is tetragonal. Black parts are not
near an energy well.

numerical simulations. Besides having a triple point, which requires a correct
resolution of all phases, the phases also have a very different scaling, with the
tetragonal and the orthorhombic phases being close to each other, and the mon-
oclinic phase being far away. The code has been implemented in MATLAB; its
core is documented by Dondl (2002). We report some results.

4.3 Three Phases

The initial conditions in this experiment are chosen such that the strain is be-
tween the tetragonal and the monoclinic phase. Also, a small deviation from
this state is added to prevent a relaxation in an unstable equilibrium. Figure 6
shows that the relaxed state exhibits all three phases, with oscillations between
the monoclinic phase and the tetragonal and orthorhombic phases. The simu-
lation displays the nucleation of phases starting from the perturbation in the
center. The exact simulation parameters are given in Table 5. In Figure 7,
the potential energy in the relaxed state is shown. Figure 8 plots the time de-
pendence of the total, potential, kinetic, and surface energy. The orbit space
variables ρ1, ρ2 and ρ3 are shown in Figures 9, 10, and 11.

4.4 Orthorhombic-Tetragonal

Here we want to demonstrate once more the feasibility of the modeling approach
for energies advocated in Section 3. Zirconia has been chosen as an example
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Figure 7: Potential energy in the relaxed state of the simulation in Section 4.3.
One can see the higher energy (brighter) areas between the monoclinic and
tetragonal/orthorhombic phases.
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Figure 8: Evolution of total, potential, kinetic and surface (capillarity) energy
with time in the simulation in Section 4.3.
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Figure 9: Relaxed state of the simulation in Section 4.3. Shown is the orbit
space variable ρ1. The intermediate strain imposed by the boundary conditions
is accommodated by an oscillation between the higher strain monoclinic (ρ1 =
0.0534) and the lower strain tetragonal (ρ1 = 0) and orthorhombic (ρ1 = 0.01)
phases. Note that all three phases form plateaus.

Table 5: Simulation 4.3

Ω [−12.5, 12.5]× [−12.5, 12.5]
Grid 50 × 50 elements

Initial conditions u1(x1, x2, 0) = 1
2 (0.0479x + 0.08y) + 1 · 10−4e−x2−y2

u2(x1, x2, 0) = 1
2 (0.08x + 0.0055y) + 1 · 10−4e−x2−y2

u1,t(x1, x2, 0) = u2,t(x1, x2, 0) = 0
Boundary conditions Simply supported, values are initial conditions on ∂Ω

α 1.0
γ 8.0
µ 0.05
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Figure 10: Relaxed state of the simulation in Section 4.3. Shown is the orbit
space variable

√
ρ2. The intermediate strain imposed by the boundary condi-

tions is accommodated by an oscillation between the higher strain monoclinic
(
√

ρ2 ≈ 0.0482) and the lower strain tetragonal (
√

ρ2 = 0) and orthorhombic
(
√

ρ2 = 0.01) phases. Note that all three phases form plateaus.

Table 6: The data for the simulation in Section 4.4, piecewise energy.

Ω [−12.5, 12.5]× [−12.5, 12.5]
Grid 50 × 50 elements

Initial conditions u1(x1, x2, 0) = −0.01 · 25 · 2
π · cos

(
π
2

x+12.5
25

)
u2(x1, x2, 0) = 0
v1(x1, x2, 0) = v2(x1, x2, 0) = 0

Boundary conditions Simply supported, values are initial conditions on ∂Ω
α 1.0
γ 8.0
µ 0.05
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Figure 11: Relaxed state of the simulation in Section 4.3. Shown is orbit space
variable

√
ρ3. The values for the three minima are

√
ρ3 = 0.16 for the monoclinic

phase and
√

ρ3 = 0 for the orthorhombic and the tetragonal phase.
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Figure 12: Initial state of the simulation in Section 4.4 with the piecewise energy
function. Shown is ρ1.
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Figure 13: Relaxed state of the simulation in Section 4.4 with the piecewise
energy function. Shown is ρ1. Note the sharp phase boundary between the
tetragonal (ρ1 = 0) and the orthorhombic (ρ1 = 0.01) phase.

since its modeling proves to be particularly subtle. The orthorhombic and the
tetragonal phase are comparatively close to each other in the strain space, and
even more in the orbit space (see Table 1). We want to show that the energy
defined in Section 3 resolves the phenomenological structure of the landscape
correctly, while a polynomial energy of lowest order does, in a numerical simu-
lation, not yield distinguishable phases.

For the piecewise energy defined in Section 3, the initial conditions had a
soft and smooth transition from strains close to the tetragonal phase for x1 = 0
to strains close to the orthorhombic phase for x1 = 50 (Figure 12). Figure 13
shows these intermediate strains are, for this piecewise energy, relaxed via the
creation of exactly two phases. The parameters for this simulation are given in
Table 6.

We contrast these simulations with the piecewise energy of Section 3 with
simulations using the polynomial energy derived by Fadda et al. (2002). Pre-
cisely, we consider the restriction of their energy to the e1, e2, e6-space to allow
for an easy comparison of the results. Since an investigation of the energy
constructed by Fadda et al. (2002) suggests that they have obtained a slightly
different location of the orthorhombic phase, we modify the initial conditions
slightly to ensure a fair comparison. Initial and boundary conditions are given
in Table 7; the strains are close to the tetragonal phase in the lower left corner
and close to the orthorhombic phase in the upper right corner. Otherwise, the
data is the same as for the simulation with the piecewise energy. The results of
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Table 7: The data for the simulation in Section 4.4, polynomial energy.

Ω [−12.5, 12.5]× [−12.5, 12.5]
Grid 50 × 50 elements

Initial conditions u1(x1, x2, 0) = −0.0075x + 0.0085 · 25 · 2
π · cos(π

2
x+12.5

25 )
u2(x1, x2, 0) = −0.0075y − 0.0055 · 25 · 2

π · cos(π
2

y+12.5
25 )

v1(x1, x2, 0) = v2(x1, x2, 0) = 0
Boundary conditions Simply supported, values are initial conditions on ∂Ω

α 1.0
γ 8.0
µ 0.05
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Figure 14: Relaxed state of the simulation in Section 4.4 with the polynomial
energy. Shown is orbit space variable ρ1. The simulation demonstrates that for
this energy, the relaxed state does not exhibit clearly distinguishable phases.
The expected values would be ρ1 = 0 for the tetragonal and ρ1 = 0.01 for the
orthorhombic phase. Compare with the relaxed state for the piecewise function
(Figure 13).
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Figure 15: Relaxed state of the simulation in Section 4.5. Shown is ρ1.

the simulation for ρ1 are displayed in Figure 14. We notice that there are no
clearly distinguishable phases. Rather, there seems to be a continuum of stable
phases. This is probably a consequence of the shallow energetic landscape dic-
tated by the polynomial approach (see Figure 3), and therefore a consequence
of the insufficient height of the energy barriers. The results for the other or-
bit space variables ρ2 and ρ3 are similar to those for ρ1, and do not yield new
insights. We therefore refrain from reproducing them.

4.5 Two-phase material

We now come to the side theme mentioned in the Introduction. The previous
computations are contrasted with those where the three-well energy of Sec-
tion 3 is replaced by a two-well material, with wells in the tetragonal and the
orthorhombic phase. The simulation will show that a three-well material like
Zirconia is indeed more likely to accommodate boundary conditions by exploit-
ing the multitude of stable phases (see Figure 6). Figure 15 shows the relaxed
state for the two-phase material. Initial and boundary conditions are the same
as for the three-well simulation in 4.3. See Table 5. A comparison with Figure 9
shows that the two-phase material has a large boundary layer where no local
minimum is attained, while the three-phase material has few regions in locally
unstable states. This can also be seen from the energy plot in Figure 16, which
shows higher values than the corresponding plot for the three-phase material in
Figure 8. A plot of the spatial distribution of the potential energy is given in
Figure 17. It is noteworthy that the area of points with high potential energy is
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Figure 16: Evolution of total, potential, kinetic and surface (capillarity) energy
with time in the simulation in Section 4.5.
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Figure 17: Potential energy Φ for the two-well energy as a function of the posi-
tion. Light colors mean a high potential energy. This figure is to be contrasted
with Figure 7. There, the three wells allow for a much better accommodation
of the boundary conditions, having essentially only phase boundaries as regions
with high potential energy.
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significantly larger than for the corresponding three-well simulation (Figure 7).
These results suggest that the set of recoverable strains of a three-phase ma-
terial can be significantly larger that that of a material with two of the three
wells.

5 Discussion

The energy derived in Section 3 meets the symmetry requirements of the tetragonal-
orthorhombic-monoclinic phase transition in Zirconia, and it interpolates exper-
imental data that is available for this material in the two-dimensional frame-
works of Section 2. The Finite Element simulations in Section 4 show, among
others, the feasibility of this approach by exhibiting all three phases in a clearly
distinguishable manner.

One of our goal here is to present the orbit space method combined with a
piecewise approach as an alternative to the global polynomial ansatz commonly
used in Landau theory. In Section 1, it is explained that invariant polynomials
are very well suited for the local energetic description they were originally in-
tended for, but not do not necessarily describe the global picture of the energy
landscape appropriately. The approach presented here provides a natural ex-
tension of the local polynomial picture to a global one. Besides being simple, it
also comprises the results obtainable with a purely polynomial approach. The
Hilbert basis for a given symmetry can be computed automatically; the function
Φ of this symmetry base is defined in a local way by evaluating all available local
data and interpolating appropriately.

The idea to derive energy functions by using a Finite Element simulation
seems to be new. In geometric modeling, this method has been used successfully
to construct surfaces without unwanted minimizers (by solving Laplace’s equa-
tion), or surfaces with minimal curvature (by solving the biharmonic equation).
See, e.g., Bloor and Wilson (1991) for the use of partial differential equations in
geometric modeling.

The approach presented here allows the derivation of elastic energies that
faithfully reproduce the symmetry of the phases, the position of the phases and
their elastic moduli. This opens the way of studying the relaxation of these
energies in a systematic way. In particular, the orbit space might turn out
to be a useful tool. A success might eventually lead to the prediction of the
constitutive response for smart materials.

We stress that the methods of deriving energy functions presented here are
more general in scope, and offer the potential of fitting large numbers of param-
eters, such as atomistic potentials for molecular dynamics.
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