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PENGFEI GUAN, CHANG-SHOU LIN, AND GUOFANG WANG

1. Introduction

The main theme of this paper is the application of the method of moving planes to
conformally invariant fully nonlinear elliptic equations. Throughout this paper, we as-
sume that (M,g) is a smooth, compact locally conformally flat Riemannian manifold of
dimension n ≥ 3 and [g] denotes the conformal class of g. The Schouten tensor of the
metric g is defined by

Sg =
1

n − 2

(
Ricg − Rg

2(n − 1)
g

)
,

where Ricg and Rg are the Ricci tensor and scalar curvature of g respectively. We want
to investigate the following conformally invariant equation:

(1.1) f(λ(Sĝ)) = 1.

where ĝ ∈ [g], Sĝ is the Schouten tensor of ĝ, λ(Sĝ) is the set of the eigenvalues of Sĝ with
respect to ĝ, and f is a certain function on symmetric matrices we will specify. If we write
ĝ = u

4
n−2 g for some positive smooth function u, the Schouten tensor Sĝ can be computed

as

(1.2) Sĝ = − 2
n − 2

u−1 �2
g u +

2n
(n − 2)2

u−2 �g u ⊗�gu − 2
(n − 2)2

u−2| �g u|2g + Sg.

Equation (1.1) is indeed a second order nonlinear differential equation on u.
The most important case is f = σk, where σk is the k-th elementary symmetric function,

(1.3) σk(λ(Sĝ)) = 1,

for ĝ ∈ [g]. We note that if k = 1, equation (1.3) is the Yamabe equation. When k > 1, it
is fully nonlinear. By the fundamental work of Caffarelli-Nirenberg-Spruck [1], equation
(1.3) is elliptic in certain cone Γ+

k defined by Garding [7]. We recall

Γ+
k = {λ ∈ Rn |σ1(λ) > 0, · · · , σk(λ) > 0}.

Let
Ck = {ĝ ∈ [g] |λ(Sĝ)(x) ∈ Γ+

k ,∀x ∈ M.}
We say ĝ ∈ [g] is admissible to equation (1.3) if ĝ ∈ Ck.

The study of equation (1.3) was initiated in [24] by Viaclovsky. There have been many
activities recently (e.g., see [24, 25, 26, 2, 3, 11, 12, 19, 15, 16]). Except [2], all the existence
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results obtained so far for equation (1.3) are under the assumption of Ck �= ∅. In the case
n = 4, k = 2, Chang-Gursky-Yang [2] proved that C2 �= ∅ if the Yamabe constant Y1 and∫
M σ2(g−1Sg)dvol(g) (which is a conformal invariant when n = 4) are positive. Here we

generalize their result to higher dimensions for locally conformally flat manifolds.
Recall the Yamabe constant of [g] can be defined as

Y1([g]) = inf
g∈[g]

(vol(g))−
n−2

n

∫
M

σ1(g)dvol(g).

We define a sequence of conformal invariants for 2 ≤ l ≤ n/2 by letting

Yl =

⎧⎪⎨
⎪⎩

inf
g∈Cl−1

(vol(g))−
n−2l

n

∫
M

σl(g)dvol(g) if Cl−1 �= ∅,

−∞, if Cl−1 = ∅.
We note that if l ≥ n/2 and Cl �= ∅, then (M,g) is conformally equivalent to a spherical
space form by Theorem 1 in a recent paper jointly with Viaclovsky [10]. Also in view of
Theorem 1 in [13], only the case l ≤ n/2 is of interest to us as long as Yl is concerned on
the locally conformally flat manifolds.

Theorem 1.1. Let (M,g) be a compact locally conformal flat n-dimensional manifold
and k ≤ n/2. Assume that Yk([g]) > 0, then Ck �= ∅ and equation (1.3) has an admissible
solution g ∈ Ck. If Yk([g0]) = 0, then either there is g ∈ Ck such that σk(g) = 1, or there
is g ∈ C1,1 in C̄k such that σk(g) = 0.

Theorem 1.1 has the following consequence.

Corollary 1.1. Let (M,g) be an n-dimensional compact, oriented and connected locally
conformally flat manifold and n = 2m. If Cm−1 �= ∅ and

(1.4)
∫

M
σm(g)dvol(g) > 0,

then (M,g0) is conformally equivalent to S2m.

When n = 4, Corollary 1.1 was proved in [14]. A similar result was obtained for n = 6
in [14] under a weaker condition. Note that

∫
M σm(g)dvol(g) is a topological invariant.

The product metric g of Sn−1 × S is in Cm−1 with
∫

σm(g)dvol(g) = 0.

Theorem 1.1 is proved through the establishment of certain global a priori estimates
using the method of moving planes and the fundamental result on Schoen-Yau [23] on
developing maps for locally conformally flat manifolds. The key point of this paper is
that the method of moving planes is particularly appropriate for conformally invariant
equations. This leads us to consider a general equation (1.1). Let us first specify conditions
on f so that (1.1) is elliptic. Let Γ be an open symmetric convex cone in Rn, that is, for
λ ∈ Γ and any permutation σ, σ ·λ = (λσ(1), · · · , λσ(n)) ∈ Γ. It is clear that (1, 1, · · · , 1) ∈
Γ. Set Γ̃ = {S | S is a symmetric matrix whose eigenvalues (λ1, · · · , λn) ∈ Γ}. We assume

(1.5) Γ̃ is convex and Γ ⊆ Γ+
1 .

where Γ+
1 = {λ |∑n

j=1 λj > 0}.
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Since the regularity of f is not an issue here, throughout this paper, we assume that f
is a smooth function defined in Γ ⊆ Γ+

1 , and satisfies

(1.6)
∂f

∂λi
(λ) > 0 for i = 1, 2, . . . , n and λ ∈ Γ.

It is easy to check condition (1.6) implies that f is elliptic in Γ̃. A metric ĝ is called
admissible if ĝ−1Sĝ ∈ Γ̃ for every point in M . This is equivalent to say that λ(Sĝ) ∈ Γ for
every point in M . We further assume a concavity condition on f :

(1.7) f is concave in Γ.

From a result in section 3 in [1], f is concave in Γ implies f is concave in Γ̃. If there
is no confusion, we will also simply write Γ for Γ̃ in the rest of the paper. Since we are
concerned with equation (1.1), it is necessary that there is γ ∈ Γ such that f(γ) = 1. The
symmetry and the concavity of f imply f(t, · · · , t) ≥ 1 for some t > 0. Therefore, we
assume

(1.8) f(t0, · · · , t0) = 1, for some t0 > 0.

Our next result is concerned with a Harnack type inequality.

Theorem 1.2. Suppose that f satisfies (1.6), (1.7) and (1.8). Then there exists a constant
C > 0 such that for any admissible solution u

4
n−2 |dx|2 of (1.1) in a open ball B3R, we have

(1.9) max
BR

u(x) · min
B2R

u(x) ≤ C

Rn−2
.

As an application, the following global regularity and existence for equation (1.1) on a
general compact locally conformally flat manifold (M,g) will be proved via fundamental
work of Schoen-Yau on developing maps in [23]. Here, we need an additional condition:

(1.10) limt→+∞f(tγ) > 1, for all γ ∈ Γ and limλ→pf(λ) < 1, for all p ∈ ∂Γ.

We note that (1.10) implies (1.8).

Theorem 1.3. Let (M,g) be an n-dimensional smooth compact locally conformally flat
manifold with g admissible. Suppose that f satisfies (1.6), (1.7) and (1.10), and (M,g) is
not conformally equivalent to the standard n-sphere. Then there exists a positive constant
C > 0, such that

(1.11) ‖u‖C3 + ‖u−1‖C3 ≤ C.

Furthermore, there is a smooth admissible solution u
4

n−2 g satisfying equation (1.1).

Such type of inequality in Theorem 1.2 was first discovered by Schoen for the Yamabe
problem. A different proof was given by Chen and Lin [4]. We follow the argument of [4, 5]
by employing the method of moving planes here. The inequality was proved for f = σk by
Li-Li in [19]. They tried to generalize it under some cumbersome conditions, see Remark
2.1. Recently, Li-Li [20] announced similar results of Theorem 1.2 and Theorem 1.3.

The paper is organized as follows. In section 2, we prove the Harnack type inequality
via the method of moving planes. The method of moving planes indeed are our main
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theme in this paper. A global gradient estimate (Proposition 3.1) for locally conformally
flat manifolds not conformal to Sn is also obtained by this method in section 3. Here, we
make use of the fundamental work of Schoen-Yau [23] on the developing maps on locally
conformally flat manifolds. Theorem 1.1 and Theorem 1.3 will be proved in section 3.

Acknowledgement. Part of the work has been done while the third author was visiting
the National Center for Theoretical Science (CTS) in Taiwan. He would like to thank
CTS for the invitation and kind hospitality.

After this paper was completed, we received the preprint [17] of Gursky-Viaclovsky.
They treated a fully nonlinear equation in 4-manifolds and obtained various results.
Among them, they gave a more direct proof of the main result of [2].

2. A Harnack type inequality

Theorem 1.2 will be proved by contradiction. Before going to the proof, we want to
give a sketch of our idea first. Suppose that the inequality does not hold. Then there
exists a sequence of blowup solutions for equation (1.1). We then rescale the solutions.
The main step is to give C1 estimates for these rescaled solutions. Actually, the C1-norm
of the rescaled solution will be proved to be uniformly small, and then the C2 estimates
or higher-order derivatives follows by the concave assumption accordingly. Therefore, the
rescaled solutions converges to a constant in C2,α and that will yield a contradiction to
assumptions (1.6) and (1.8).

Obviously, the crucial step is the C1 estimate of those rescaled solutions. Here, the
method of moving planes will be employed to obtain a local gradient estimates. As in
previous works, we first extend our rescaled solutions to the whole space Rn, and obtain
a viscosity super-solution. Then, we apply the Kelvin transformation twice on those
extended super-solutions. Finally the local gradient estimates follow from the application
of the method of moving planes.

It seems a new idea to obtain the local gradient estimates via the method of mov-
ing planes for the fully nonlinear elliptic equation. For geometric fully nonlinear elliptic
equation with the concave assumption, the local gradient estimate is generally the crucial
step to obtain the a priori bound for solutions. Here, our proof relies on the conformal
invariance of the equation. This leads us to suspect that for conformally invariant fully
nonlinear elliptic equation, the concave assumption alone should be enough for the a priori
bound. This is partially confirmed in our proof of Theorem 1.2 here. We shall study this
problem for general manifolds later.

Since we use Kelvin transformations repeatedly in our proof, we shall keep our notations
as clean as possible.

Suppose u is a C2 function. Recall that the Schouten tensor S(u) related to the metric
u

4
n−2 |dx|2 is the matrix whose (i, j)-th component is defined by

Sij(x) = u− 4
n−2 (− 2

n − 2
u−1uxixj +

2n
(n − 2)2

u−2uiuj − 2
(n − 2)2

u−2| � u|2δij).
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Let λ(S(u))(x) = (λ1, . . . , λn) denote the eigenvalues of (Sij(x)). Assume that u satisfies

(2.1)
{

f(λ(S(u)))(x) = 1
λ(S(u))(x) ∈ Γ for x ∈ B3R(0),

where Br(p) is the open ball with center p and radius r > 0. Sometimes, we denote Br(p)
by B(p, r).

Proof of Theorem 1.2. By scaling invariance of the equation, we may assume R = 1.
Inequality (1.9) will be proved by contradiction. Suppose it does not hold. Then there
exists a sequence of solutions ui such that

(2.2) max
B1

ui · min
B2

ui ≥ i.

Let
Mi = max

B̄1

ui = ui(x̄i),

and xi ∈ B1 with B̄(xi, ri) ⊂ B̄1 and |xi − x̄i| = ri, where ri = M
− 2

n−2

i . By (2.2),
Mi → +∞ as i → +∞. Set

(2.3)

⎧⎨
⎩ vi(y) = M−1

i ui(xi + M
− 2

n−2

i y)

x̄i = xi + M
−2

n−2

i ȳi.

Then |ȳi| = 1 and vi satisfies

(2.4)
{

f(λ(S(vi))(x)) = 1,
λ(S(vi))(x) ∈ Γ,

for |x| < M
2

n−2

i .

For simplicity, we let Li = M
2

n−2

i and choose li → +∞ as i → +∞ such that

(2.5) l2i < Li,

and

(2.6) ln−2
i < i.

We extend vi to Rn via the Kelvin transformation, i.e., ṽi(y) is defined by

ṽi(y) =
(

li
|y|
)n−2

vi

(
l2i y

|y|2
)

for |y| ≥ li.

Then ṽi(y) also satisfies (2.4) for |y| ≥ li, since equation (2.4) is conformally invariant.

For |y| = Li, we have | l2i y
|y|2 | ≤ 1 and then, ṽi(y) ≤

(
li
Li

)n−2
. On the other hand, by

(2.6), vi(y) satisfies,

vi(y) ≥ M−1
i inf

B2(0)
ui ≥ i

M2
i

=
i

Ln−2
i

>

(
li
Li

)n−2

.



6 PENGFEI GUAN, CHANG-SHOU LIN, AND GUOFANG WANG

Therefore,

(2.7) vi(y) > ṽi(y) for |y| = Li.

Set

(2.8) ˜̃vi(y) =

⎧⎨
⎩

vi(y) |y| ≤ li,
min(vi(y), ṽi(y)) li ≤ |y| ≤ Li,

ṽi(y) |y| ≥ Li.

By (2.7), ˜̃vi is a continuous function defined in the whole space Rn and one may try to
prove that ˜̃vi is a viscosity super-solution. But, we will not pursue this fact in our proof.
We will rather keep both vi and ṽi(y) as solutions of (2.4) in the regions {y | |y| < Li} and
{y | |y| ≥ li} respectively.

In what follows, we want to prove the first derivatives of vi are uniformly small in the
ball B(ȳi,

1
2). In fact, we will prove for each j = 1, 2, . . . , n and δ > 0,

(2.9)
∣∣∣∣∂vi(y)

∂yj

∣∣∣∣ ≤ δ

⎧⎨
⎩1 +

∑
k �=j

sup
y∈B(ȳi,

1
2
)

∣∣∣∣ ∂vi

∂yk
(y)
∣∣∣∣
⎫⎬
⎭

for all i ≥ i0 = i0(δ), and |y − ȳi| ≤ 1
2 . Without loss of generality, we may assume j = 1,

and ȳi = (−1, 0, . . . , 0). To obtain (2.9), we apply the Kelvin transformation twice on ˜̃vi.
In the rest of the proof, in order to keep the simplicity, we will abuse some notations if
there is no confusion. For any small δ, we first make the inversion T1 with respect to the
ball B1(eδ) and denote the Kelvin transformation of ˜̃vi by ui, that is,

(2.10) ui(x) = |x − eδ|2−n ˜̃vi

(
x − eδ

|x − eδ|2 + eδ

)
,

where eδ = (δ2, 0, . . . , 0). From now on, ui will be the one defined in (2.10). So ui(x)
satisfies (2.4) except the small ball {x | |x − eδ| < 2l−1

i }. We choose i large so that the
small ball is contained in the ball B(eδ,

1
2δ2). We also denote Y and Ỹ as the image of

{y | li ≤ |y| ≤ Li} and {y | |y| ≥ Li} under the inversion T1. Next, we denote T2 to be the
inversion x → x

|x|2 , and u∗
i (y) to be the corresponding Kelvin transform, that is,

(2.11) u∗
i (y) = |y|2−n

∣∣∣∣ y

|y|2 − eδ

∣∣∣∣
2−n

˜̃vi

( y
|y|2 − eδ

| y
|y|2 − eδ |2 + eδ

)
.

We also denote Z and Z̃ to be the image of Y and Ỹ under T2 respectively. Clearly, Z and
Z̃ lie in a small ball with center ( 1

δ2 , 0, . . . , 0). Note that the composition T2 ◦ T1(y) → y

in C2 for B̄(ȳi,
1
2) as δ → 0. Hence

(2.12)
∂

∂y1

( y
|y|2 − eδ

| y
|y|2 − eδ|2 + eδ

)
= (1, 0, · · · , 0) + O(δ2),
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and

(2.13)
∂

∂y1

(
|y|2−n

∣∣∣∣ y

|y|2 − eδ

∣∣∣∣
2−n
)

= O(δ2)

for y ∈ B(ȳi,
1
2). Both (2.12) and (2.13) can be computed by straightforward way.

Now we fix i and δ and apply the method of moving planes to u∗
i . For any λ ∈ R

we set Σλ = {y | y1 > λ} and yλ to denote the reflection of y ∈ Σλ with respect to the
hyperplane y1 = λ. u∗

i (y) has a harmonic expansion at ∞. We list here for the convenience
of reference (see [8]).

(2.14)

u∗
i =

1
|x|n−2

(a0 +
ajxj

|x|2 +
ajkxjxk

|x|4 ) + o(
1

|x|n ),

(u∗
i )j =

−a0(n − 2)xj

|x|n +
aj

|x|n − n(
∑

l alxl)xj

|x|n+2
+

2
∑

l ajlxl

|x|n+2

−(n + 2)(
∑

alkxlxk)xj

|x|n+4
+ o(

1
|x|n+1

).

Set y = x − x0, where x0 = (− a1
(n−2)a0

, · · · ,− an
(n−2)a0

). Then (2.14) is reduced to

u∗
i (x) =

a0

|y|n−2
+

ãjkyjyk

|y|n + o(|y|−n), (u∗
i )xj (x) =

−a0(n − 2)yj

|y|n + O(|y|−n−1).

As a consequence of the previous expansion, we have (for the proof see [8])

Lemma 2.1. For any λ < a1
(n−2)a0

, there exists R = R(λ) depending only on min(1 +
|a1|, λ) such that for x = (x1, y

′) and y = (y1, y
′) satisfying

x1 < y1, x1 + y1 ≤ 2λ, |y| ≥ R

we have
u∗

i (x) < u∗
i (y).

Before we start the process of moving planes by using Lemma 2.1, we note that a0, aj and
R in the Lemma could be large, because it also depends on i and δ. By our construction,
u∗

i (y) is a positive C2 function except at Z ∪ Z̃. But u∗
i (y) is a super-harmonic function

in the distribution sense. Therefore, for any small neighborhood N of Z ∪ Z̃,

(2.15) u∗
i (y) ≥ inf

∂N
u∗

i ≥ c0 = c0(i, δ) > 0

for y ∈ N̄ . Thus, by Lemma 2.1, λ can be chosen negatively large so that

(2.16) u∗
i (y

λ) < u∗
i (y) for y ∈ Σλ.

As usual, we set

λ0 = sup{λ | u∗
i (y

λ′
) < u∗

i (y) for y ∈ Σλ′ and λ′ < λ}.
We claim if δ is small enough, then

λ0 ≥ min
(
−1

4
,

a1

(n − 2)a0

)
.
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Clearly, by the continuity, we have

(2.17) wλ0(y) := u∗
i (y) − u∗

i (y
λ0) ≥ 0 for y ∈ Σλ0.

We claim

(2.18) wλ0(y) > 0 for y ∈ Σλ0 .

Recall that wλ0(y) is continuous in Σ̄λ0 and is C2 in Σλ0\(Z∪Z̃). Now suppose y0 ∈ Σλ0

such that

(2.19) wλ0(y0) = 0.

If y0 �∈ Z ∪ Z̃, by the strong maximum principle wλ0(y) ≡ 0 for y �∈ Z ∪ Z̃. Let v∗i (y)
denote the double Kelvin transformation of vi(y) through the conformal mapping T2 ◦ T1.
Note that

v∗i (y) = u∗
i (y) for y ∈ Rn\Z ∪ Z̃,

where Rn\Z̃ is connected. Since wλ0(y) ≡ 0 for y �∈ Z ∪ Z̃, by the unique continuation,
we have

(2.20) v∗i (y
λ0) = v∗i (y) for y ∈ Σλ0\Z̃.

For y ∈ Z, by (2.20) and (2.17),

(2.21) v∗i (y
λ0) = v∗i (y) ≥ u∗

i (y) ≥ u∗
i (y

λ0) = v∗i (y
λ0).

Thus, v∗i (y) = u∗
i (y) for y ∈ Z, which implies

(2.22) vi(y) ≤ ṽi(y) for li ≤ |y| ≤ Li.

By (2.7), this is a contradiction. Thus, y0 ∈ Z ∪ Z̃.
If y0 ∈ Z and vi(y0) ≤ ṽi(y0), then vi(y0) = vi(yλ0

0 ) and by (2.17), v∗i (y) ≥ u∗
i (y) ≥

u∗
i (y

λ0) = v∗i (y
λ0) for y ∈ Σλ0\Z̃. Thus, the strong maximum principle again yields

v∗i (y) = v∗i (y
λ0) for y ∈ Σλ0\Z̃.

And it is reduced to the previous case. Thus, vi(y0) > ṽi(y0). Set ṽ∗i (y) be the corre-
sponding double Kelvin transformation of ṽi. Clearly, ṽ∗i (y) is defined only on Z ∪ Z̃. By
(2.17), ṽ∗i (y) ≥ u∗

i (y
λ0) for y ∈ Z̃ and the equality holds at y0, which implies

(2.23) ṽ∗i (y) = u∗
i (y

λ0) in Z̃.

Therefore
ṽi(y) ≤ vi(y) for li ≤ |y| ≤ Li.

But ṽi(y) = vi(y) for |y| = li. Hence (2.23) yields u∗
i (y) = u∗

i (y
λ0) for y ∈ ∂(Z̃ ∪Z), which

is reduced to the previous case. Therefore y0 �∈ Z. But y0 ∈ Z̃ also leads to (2.23) by the
strong maximum principle, which in turn yields a contradiction again. Hence the claim
(2.18) is proved.

Once (2.18) is established, it is easy to see λ0 ≥ min(−1
4 , a1

(n−2)a0
) follows from Lemma

2.1 by the standard argument of the method of moving planes. We omit the details here.
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By the Hopf boundary lemma, we have
∂

∂y1
u∗

i (y) ≥ 0 for y1 ≤ min(−1
4
,

a1

(n − 2)a0
).

We want to prove ∂
∂y1

u∗
i (y) > 0 for y1 ≤ −1

4 . If not, then there exists y0 = (y0,1, y
′
0)

such that y0,1 ≤ −1
4 and ∂

∂y1
u∗

i (y0) = 0. Then we do the Kelvin transformation u∗∗
i as,

(2.24) u∗∗
i (y) =

(
r0

|y|
)n−2

u∗
i

(
r2
0y

|y|2 + y0

)
,

where r0 = 1
2 |y0|. Obviously, the singular set of u∗∗

i is in the half-space {y | y1 > 0}. Then
we can apply the method of moving planes to show

(2.25) u∗∗
i (yλ) < u∗∗

i (y) for y ∈ Σλ and λ < 0,

by Lemma 2.1 and by the fact ∂u∗
i

∂y1
(y0) = 0. The same argument as the proof of (2.18)

yields that (2.25) holds for λ = 0 too. This implies

u∗
i (y

λ) < u∗
i (y) for y ∈ Σλ and λ = y0,1.

But it yields a contradiction to ∂
∂y1

u∗
i (y0) = 0. Hence ∂

∂y1
u∗

i (y) > 0 for y1 ≤ −1
4 .

By the expression of (2.11), using (2.12) and (2.13), we then have

(2.26) − ∂

∂y1

˜̃vi(y) ≤ O(δ2)˜̃vi(y) + O(δ2)
n∑

k=2

∣∣∣∣ ∂

∂yk

˜̃vi

∣∣∣∣
for |y − ȳi| ≤ 1

2 . We can repeat the process by taking eδ = (−δ2, 0, . . . , 0). In this case, u∗
i

has singularity near (− 1
δ2 , 0, . . . , 0). So, we can move the plane from the right-hand side

and obtain the following inequality,

(2.27)
∂

∂y1

˜̃vi(y) ≤ O(δ2)˜̃vi(y) + O(δ2)
n∑

k=2

∣∣∣∣ ∂

∂yk

˜̃vi

∣∣∣∣
for |y − ȳi| ≤ 1

2 . Note that vi(ȳi) = max|y|≤1 vi(y) = 1. Since u∗
i is increasing in y1, we

obtain

(2.28) vi(y) ≤ 2 for |y − ȳi| ≤ 1
2
.

Thus, together with (2.26) and (2.27), (2.28) yields∣∣∣∣ ∂

∂y1
vi(y)

∣∣∣∣ ≤ O(δ2)

(
1 +

n∑
k=2

∂

∂yk
vi(y)

)

for |y − ȳi| ≤ 1
2 . Therefore (2.9) is proved.

After (2.9) is established, we have vi(y) uniformly converges to the constant 1 in C1 for
|y − ȳi| ≤ 1

2 . This gives σ1(S(vi)) convergent weakly to 0 in |y − ȳi| ≤ 1
2 . On the other

hand, by (3.11) in Lemma 3.1, σ1(S(vi)) ≥ C > 0 in |y − ȳi| ≤ 1
2 as f(S(vi)) = 1. This

yields a contradiction. The proof of Theorem 1.2 is complete.
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We note that we only used (3.11) in our proof, not the full concavity condition (1.7).
Though (1.7) implies (3.11) by Lemma 3.1. �
Remark 2.1. In [19], Li-Li proved the Harnack type inequality in Theorem 1.2 under some
further complicated conditions. The main reason for Li-Li to impose these conditions is
that their proof of the inequality relies on local gradient estimates for equation (1.1). Such
kind of local gradient estimates was established in [11] for f(Sg) = σk(Sg) prior to [19].
The proof of the local gradient estimates for σk was deduced to Claim (18) in [11]. The
implication of Claim (18) to local gradient estimates is simple, and that part of deduction
can be easily adapted for general elliptic f . The main part of [11] is to prove Claim (18)
for σk, which is quite delicate. Claim (18) in [11], together with some other conditions,
was renamed as Hα condition in [19].

Remark 2.2. The local gradient estimates for quotient σk
σl

have also been established in
[13, 9] recently. In the locally conformally flat case, we suspect that the concave assump-
tion (1.7) and the conformal invariance of f should be sufficient to get the local gradient
estimates. This is partially confirmed in the proof of Theorem 1.2, where a local gradient
estimate for a sequence of solutions is obtained via the method of moving planes.

3. Global a priori bounds and the existence

In this section, we will establish the global gradient estimate of log u via the method of
moving planes. We first state the main estimates in the following proposition.

Proposition 3.1. Let (M,g) be an n-dimensional smooth compact locally conformally flat
manifold with g admissible. Suppose that f satisfies (1.6), (1.7) and (1.10), and (M,g) is
not conformally equivalent to the standard n-sphere. Then there exists a positive constant
C > 0, such that

(3.1) max
M

u ≤ C, ‖∇ log u‖L∞ + ‖∇2 log u‖L∞ ≤ C.

Theorem 1.3 is a consequence of the proposition.

Proof of Theorem 1.3. First we prove the C2 bound of the solutions. By Proposition
3.1 we only need o prove u has a positive lower bound. It is sufficient to prove maxM u
has a positive lower bound. We now use an observation from Viaclovsky [25]. We would
like to note that this is the only place where the admissible condition of Sg is used. At
any maximum point x0 of u, u− 4

n−2 Sĝ(x0) ≥ u− 4
n−2 Sg(x0). Therefore,

1 = f(u− 4
n−2 (x0)g−1(x0)Sĝ(x0)) ≥ f(u− 4

n−2 (x0)g−1(x0)Sg(x0)).

Since g−1 · Sg(x0) is admissible, and K = {g−1 · Sg(x)|x ∈ M} is compact, by (3.12),
u− 4

n−2 (x0) ≤ C0 for some constant C0. Therefore, the C0 and C1 estimates are proved.
By Lemma 3.2, we have C2 estimates. Then it follows from the second condition in (1.10)
that f is uniformly elliptic. The higher-derivatives follow from the Krylov-Evans Theorem
and standard elliptic theory. So, the a priori estimate (1.11) is proved for the case when
M is not comformally equivalent to Sn.
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The existence of solutions can be obtained by using the degree theory following the
argument of Li-Li in [19]. We define a deformation

ft(λ) =

{
f((1 − t)λ + tσ1(λ)e), for t ∈ [0, 1],
(2 − t)f(σ1(λ)e) + t−1

nt0
σ1(λ), for t ∈ [1, 2]

with the corresponding cone

Γt =

{
{λ ∈ Γ+

1 | (1 − t)λ + tσ1(λ)e ∈ Γ}, for t ∈ [0, 1],
Γ+

1 , for t ∈ [1, 2],

where e = ( 1
n , 1

n , . . . , 1
n) in Γ. Obviously, ft in the deformation satisfies the assumptions

of Theorem 1.3 and ft(t0, . . . , t0) = 1, where t0 as in (1.8). By a priori estimates (1.11),
the C3-norms of solutions are uniformly bounded. Therefore, the degree remains the same
during the deformation. Since the degree for the Yamabe problem (i.e. for f2) is −1 (see
[22]), the degree for our equation is −1. The existence of solutions follows. �

Now we prove Theorem 1.1. The idea to prove Theorem 1.1 is to seek an admissible
solution of the following fully nonlinear equation:

(3.2) σk(g) = constant,

for g in the conformal class. In [2], Chang-Gursky-Yang proved that if Y1 and Y2 (note that
Y1 positive implies C1 �= ∅, and in the case n = 4,

∫
M σ2(g) = Y2 for all g in the conformal

class) are positive, then equation (3.2) is solvable for n = 4, k = 2. This is an important
result because the existence is obtained without the assumption on Ck �= ∅. Here we will
deal with the case for higher dimension, but on the locally conformally flat manifolds.
The key is to obtain some appropriate a priori estimates for (3.2) using Proposition 3.1
and a result in [13] concerning a sharp Sobolev type inequality. We list it in the following
proposition, which is a special case of Theorem 1 in [13].

Proposition 3.2. Let (M,g0) be a locally conformally flat manifold with g ∈ Cl for some
l < n/2. Then there is a constant CS(M) > 0 such that for any metric g ∈ Cl.∫

M
σl(g)vol(g) ≥ CS(M)vol(g)

n−2l
n .

The equality holds if and only if σl(g−1Sg) = c for some positive constant c. Moreover,

CS(M) ≤ CS(Sn) =
(

n

l

) 1
n−2l

(
ω2

n

2n
)

l
n(n−2l) ,

where ωn is the volume of the standard sphere Sn.

Proof of Theorem 1.1. Let g = e−2vg0 ∈ Γ+
k−1. We modify the approaches in [15] and

[19] to consider the following equation

(3.3) ft(v) = σk(tg−1Sg + (1 − t)σ1/(k−1)
k−1 (g−1Sg)g) = 1.

Let
Γt = {Λ ∈ Γ+

k−1 | tΛ + (1 − t)σ1/(k−1)
k−1 (Λ)I ∈ Γ+

k }.
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It is clear that Γ0 = Γ+
k−1 and Γ1 = Γ+

k . And for any t ∈ [0, 1], ft satisfies the conditions
in Proposition 3.1 uniformly in t. From the proof of Theorem 1.3, we may take g0 ∈ Ck−1

with σk−1(g0) = 1 and the degree of σk−1(g) = 1 is −1. From degree argument (e.g., see
[19]), we only need to show a priori bound on solutions of equation (3.3) for all 0 ≤ t ≤ 1.

For g = e−2vg0, and for any local orthonormal frame (with respect to g0), we let Sij be
the Schouten tensor of g0 and let Wv = (vij + vivj − |∇v|2

2 δij + Sij). Equation (3.3) then
can be expressed as:

(3.4) σk(tWv + (1 − t)σ1/(k−1)
k−1 (Wv)I) = e−2kv.

By (3.1) in Proposition 3.1, there is C independent of t such that

(3.5) inf
M

v ≥ C, max
M

|∇v| ≤ C, and max
M

|∇2v| ≤ C.

We now only need to obtain an upper bound of v. Set ṽ = v−maxM v. We have Wṽ = Wv.
By (3.5), ‖ṽ‖C2(M) ≤ C̃ for some C̃ independent of t. ṽ satisfies equation

(3.6) σk(tWṽ + (1 − t)σ1/(k−1)
k−1 (Wṽ)I) = e−2k maxM ve−2kṽ.

Expand

(3.7) σk(tWṽ + (1 − t)σ1/(k−1)
k−1 (Wṽ)I) =

k∑
i=0

(
n − i

n − k

)
ti(1 − t)k−iσi(Wṽ)σ

k−i
k−1

k−1 (Wṽ).

Since Wṽ ∈ Γk−1, we have

e−2k maxM ve−2kṽ = σk(tWṽ + (1 − t)σ1/(k−1)
k−1 (Wṽ)I) ≥ tkσk(Wṽ) + (1 − t)kσ

k
k−1

k−1(Wṽ).

That is

(3.8) e−2k maxM v ≥ tkσk(g̃−1Sg̃) + (1 − t)kσ
k

k−1

k−1 (g̃−1Sg̃).

Since ṽ is bounded, integrating the above formula over M with respect to the metric
g̃ = e−2ṽg0, together with the Hölder inequality, yields

(3.9) e−2k maxM v ≥ c(tkYk + (1 − t)k(
∫

M
σk−1(g̃−1Sg̃)dvol(g̃))

k
k−1 )

for a positive constant c > 0 independent of t. By Proposition 3.2, for l < n/2,

inf
g∈Cl

(V ol(g))
2l−n

n

∫
M

σl(g−1Sg)dvol(g) ≥ CS > 0.

This gives

(
∫

M
σk−1(g̃−1Sg̃)dvol(g̃))

k
k−1 ≥ (CS)

k
k−1 (V ol(g̃))

k(n−2l)
k−1 ≥ C > 0,

since ṽ is bounded. It follows that v has an upper bound independent of t. Hence ‖v‖C2(M)

is bounded independent of t. By the Krylov-Evans theorem and standard elliptic theory,
‖v‖Cm(M) is bounded for any m. The Theorem is proved for the case Yk > 0.

If Yk = 0, By (3.5), v is bounded from below, and the first and second derivatives of v
are bounded independent of t. By (3.9), for any t < 1, v is bounded from above (depending
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on t). If sup v → ∞ for some sequence tj → 1, from (3.6) we obtain a C1,1 solution g ∈ Γ̄+
k

with σk(g) = 0. If for some sequence tj → 1, sup v stay bounded, we obtain a solution
g ∈ Γ+

k with σk(g) = 1. These two cases can not be happen at the same time by Lemma
2 in [13]. �
Proof of Corollary 1.1. Note that

∫
M σm(g)dvol(g) is a topological invariant. We have

Ym > 0. By Theorem 1.1, Cm �= ∅. Hence (M,g) is conformally equivalent to S2m, by
Theorem 1 in [10]. �

Finally, we prove Proposition 3.1. It is well-known that once gradient estimates are
available, C2 estimates of log u will follow easily. And higher-order derivatives follow
readily the Krylov-Evans theory. Though in [11] we dealt only with f = σ

1/k
k and estimated

∆u + |∇u|2, but the argument works for general concave elliptic operator f and second
derivative bounds can be obtained easily just by considering T 2u + |Tu|2 for any unit
vector field T . This was noted in [19]. For the completeness, we will include the local C2

estimates here following the same lines of proof in [11].
We list some properties stemmed from concavity assumption on f .

Lemma 3.1. Suppose that f satisfies (1.7) and (1.8). Set F ij(U) = ∂f(U)
∂Uij

for U = (Uij) ∈
Γ.

1. Let t0 be the number in (1.8), then for all U ∈ Γ with f(U) ≤ 1,

(3.10)
∑
i,j

F ij(U)Uij ≤ t0
∑

i

F ii(U).

2. Suppose further that f satisfies (1.6), then there is C > 0 such that ∀U ∈ Γ with
f(U) ≥ 1, the following is true:

(3.11) σ1(U) ≥ Cf(U).

3. If in addition, f satisfies condition (1.10), then
∑

i,j F ij(U)Uij ≥ 0 for all U ∈ Γ.
And for any compact set K in Γ, there is a tK > 0, such that

(3.12) f(tγ) > 1, for all γ ∈ K, t ≥ tK .

Moreover there is δ > 0 such that for all U ∈ Γ with f(U) ≤ 1, the following is
true

(3.13) δ ≤ δ +
∑
i,j

F ij(U)Uij ≤ 2t0
∑

i

F ii(U).

Proof. Let I be the identity matrix. By the concavity of f ,

(3.14) f(tI) ≤ f(U) +
∑
i,j

F ij(U)(tδij − Uij).

By (1.8), f(t0I) ≥ 1. Since f(U) ≤ 1, (3.10) follows from (3.14).
To prove (3.11), we note σ1(U) is invariant under symmetrization (i.e., symmetrization

of eigenvalues of U), while f(U) is non-decreasing under symmetrization by the concavity
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of f . So we only need to check that if f(t, · · · , t) ≥ 1, then σ1(t, · · · , t) ≥ Cf(t, · · · , t).
By (1.6), f(t, · · · , t) ≥ 1 implies t ≥ t0. From the concavity of f ,

f(t, · · · , t) ≤ f(t0I) + (t − t0)
∑

i

fλi
(t0, · · · , t0) ≤ Aσ1(t, · · · , t),

if we pick A ≥ f(t0I)
σ1(t0,··· ,t0) +

∑
i fλi

(t0, · · · , t0).
We note that by concavity assumption on f and the first condition in (1.10), for any

γ ∈ Γ, f(tγ) is an increasing function for t > 0. This implies
∑

i,j F ij(U)Uij ≥ 0. By the
monotonicity of f(tγ) and the first condition in (1.10), for any γ ∈ Γ, there is tγ < ∞ such
that f(tγ) > 1 for all t ≥ tγ . Then (3.12) follows from the continuity of f and compactness
of K in Γ.

By the first condition in (1.10) again, there exists δ > 0 such that f(2t0I) ≥ 1 + δ (this
also follows from the monotonicity condition (1.6)). Since f(U) ≤ 1, (3.13) follows from
(3.14). �

Set v = −2
n−2 log u, then v satisfies equation

(3.15) f(e2v(∇2v + dv ⊗ dv − |∇v|2
2

g + Sg)) = 1.

Lemma 3.2. Suppose that f satisfies conditions (1.6), (1.7), and (1.8), and suppose that
v ∈ C4 is an admissible solution of (3.15) in Br. Then, there exists a constant c > 0
depending only on r, ‖g‖C4(Br) and ‖∇v‖L∞(Br), such that

(3.16) |∇2v|(x) < c, for x ∈ Br/2.

Proof. Choose r′ small such that there is a local orthonormal frame in each geodesic ball
Br′(x) for all x ∈ B 2r

3
. We only need to verify (3.16) for such Br′(x), which we will still

denote Br. We may also assume r = 1. Let ρ be a smooth nonnegative cut-off function
in B1, ρ = 1 in B 1

2
and ρ = 0 in B1 \ B 2

3
. We only need to get an upper bound for

ρ(T 2v + |Tv|2) for any unit vector field T . Since B̄ 2
3
× Sn−1 is compact, we may assume

that the maximum is attained at some point y0 ∈ B 2
3

and T = e1 for some orthonormal
frame {e1, · · · , en} in B1. Set G = ρ(v11 + |v1|2). So y0 is a local maximum point of G. By
the C1 bound assumption, we may assume v11 ≥ 1 + |v1|2 and v11(y0) > 1

4n |vij(y0)|,∀i, j.
Now at y0, we have

(3.17) 0 =
ρj

ρ
G+ρ(v11j +2v1v1j), (

ρρij − 2ρiρj

ρ2
G+ρ(v11ij +2v1iv1j+2v1v1ij)) ≤ 0.

For any fixed local orthonormal frame, we may view Sg and Sĝ as matrices. We denote
Sij and Uij the entries of g−1Sg and ĝ−1Sĝ respectively. By the ellipticity assumption on
f , (F ij) is positive definite at U = ĝ−1Sĝ. Since y0 is a maximum point of G,

(3.18) 0 ≥
∑
i,j≥1

F ij{ρρij − 2ρiρj

ρ2
G + ρ(vij11 + 2v1iv1j + 2v1vij1)} − CG

∑
i

F ii,
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where the last term comes from the commutators related to the curvature tensor of g and
its derivatives. From the construction of ρ, |∇ρ(x)| ≤ Cρ

1
2 (x) for all x ∈ B1. We have∑

i,j≥1

F ij ρρij − 2ρiρj

ρ2
G ≥ −C

∑
i≥1

F ii 1
ρ
G.

By (3.17), (3.10), (3.18) and the concavity of f ,

(3.19)

0 ≥ ρ
∑
i,j≥1

F ij(vji11 + 2v1iv1j + 2v1v1ij) − C
G

ρ

∑
i≥1

F ii

= ρ
∑
i,j≥1

F ij{(e−2vUij − vivj +
1
2
|∇v|2δij − Sij)11

+2ρv1iv1j + 2ρv1(e−2vUij − vivj +
1
2
|∇v|2δij − Sij)1} − C

G

ρ

∑
i≥1

F ii

= ρ
∑
i,j≥1

F ij{e−2v(Uij)11 − 2v1e
−2v(Uij)1 + (

1
2
|∇v|2δij − Sij)11 − 2v11e

−2vUij

−vivj11 − vjvi11 + 2v1(−vivj +
1
2
|∇v|2δij − Sij)1} − C

G

ρ

∑
i≥1

F ii

≥ ρe−2v(f11 − 2v1f1) +
∑
i≥1

F ii[ρv2
11 − C(

1
ρ

+
|∇ρ|

ρ
)G] − Ct0ρv11

∑
i

F ii,

where t0 is the number in (1.8).
As f is a constant, f1 = f11 = 0. By assumption v11 ≥ 1

2ρG at y0. It follows from (3.19)
that at y0, G ≤ C. �

Proof of Proposition 3.1. The second derivative estimates have been proved in Lemma
3.2 assuming the gradient boundedness. We only need to get an upper bound of u and a
gradient estimate for log u. We should first use the theory of Schoen-Yau in [23] to set up
the situation where the method of moving planes can work. Let (M̃ , g̃) be the universal
cover of M with τ : M̃ → M be a covering and g̃ = τ∗(g) is the pull-back metric of g.
By applying the theory of Schoen-Yau on locally conformally flat manifold, there exists a
developing map Φ : (M̃ , g̃) → (Sn, σ) where σ is the standard metric on Sn. The map Φ
is conformal and one to one. Let

(3.20) Ω = Φ(M̃).

Then Ω is an open set of Sn. In our case, the scalar curvature of g is positive. Then
Schoen-Yau’s Theorem tells us that the Hausdorff-dimension of ∂Ω is at most n−2

2 .
If Ω = Sn, then M has an unique conformal structure, and solution always exists, which

can be derived from the solutions on Sn. Hence we consider ∂Ω is not empty. Now fix a
point p ∈ M and choose p̃ = Φ ◦ τ−1(p) such that dist(p̃, ∂Ω) ≥ δ0 > 0. By composing
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a conformal transformation on Sn and identifying Rn = Sn\{North pole} through the
stereographic projection, we may assume p̃ = (−1, 0, . . . , 0) and ∂Ω ⊂ {x | |x| ≥ 1

δ } for
some δ > 0. For the simplicity, we assume ∞ �∈ ∂Ω. We still denote the conformal map:
(M̃ , g̃) → (Rn, |dx|2) by Φ. Set v(x) to be the conformal factor:

Φ∗(|dx|2) = v(Φ−1(x))
4

n−2 g̃.

Then ũ(x) = v(Φ−1(x))u(τΦ−1(x)) for x ∈ Ω is a solution of

(3.21)

{
f(λ(S(ũ))(x)) = 1 and λ(S(ũ))(x) ∈ Γ for x ∈ Ω,
lim

x→∂Ω
ũ(x) = +∞.

Note that the boundary condition of (3.21) follows from [23], because M is compact. By
composition with a rotation, we may assume

∂ũ

∂xi
(−1, 0, . . . , 0) = 0 if i �= 1(3.22)

∂ũ

∂x1
(−1, 0, . . . , 0) > 0

Let u∗ be the Kelvin transformation with respect to the unit ball, that is,

u∗(y) = |y|2−nũ

(
y

|y|2
)

.

Then u∗(y) satisfies equation (3.21) in Ω∗, where Ω∗ is the image of Ω under the in-
version y → y

|y|2 , and ∂Ω∗ ⊂ B(0, δ). Since ∞ �∈ ∂Ω, u∗(x) is C2 at the origin and
limx→∂Ω∗ u∗(x) = +∞. Because u∗(x) has a harmonic expansion at ∞, by Lemma 2.1, we
can start the method of moving planes. Since the argument is essentially the same as in
section 2, we won’t repeat it here. Hence, we may conclude that u∗(y) is increasing in y1

as long as y1 ≤ −1
2 . Thus,

∂u∗

∂y1
(−1, 0, 0, . . . , 0) > 0,

which, together with (3.22), implies

(3.23) | � ũ(−1, 0, . . . , 0)| =
∂ũ

∂y1
(−1, 0, . . . , 0) < (n − 2)ũ(−1, 0, . . . , 0).

By noting ũ(x) = v(x)u(τ ◦ Φ−1(x)), we then obtain

(3.24) | � log u(p)| ≤ c for p ∈ M.

Clearly, the gradient estimate (3.24) yields

(3.25)
maxM u

minM u
≤ C.

Together with Theorem 1.2, we get

max
M

u ≤ C.

�
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