Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften
Leipzig

Adaptive Recompression of H-Matrices
for BEM

(revised version: July 2004)
by

Lars Grasedyck

Preprint no.: 17 2004

Adaptive Recompression of H-Matrices for BEM

L. Grasedyck, Leipzig

Abstract

The efficient treatment of dense matrices arising, e.g., from the finite
element discretisation of integral operators requires special compression
techniques. In this article we use a hierarchical low-rank approximation,
the so-called H-matrix, that approximates the dense stiffness matrix in ad-
missible blocks (corresponding to subdomains where the underlying kernel
function is smooth) by low rank matrices. The low rank matrices are as-
sembled by the ACA+ algorithm, an improved variant of the well-known
ACA method. We present an algorithm that can determine a coarser
block structure that minimises the storage requirements (enhanced com-
pression) and speeds up the arithmetic (e.g., inversion) in the H-matrix
format. This coarse approximation is done adaptively and on-the-fly to
a given accuracy such that the matrix is assembled with minimal storage
requirements while keeping the desired approximation quality. The ben-
efits of this new recompression technique are demonstrated by numerical
examples.

AMS Subject Classification: 65F05, 65F30, 65F50
Key words: hierarchical matrices, data-sparse approximations, formatted
matriz operations, fast solvers, preconditioning, boundary elements.

1 Introduction

The efficient treatment of dense matrices arising, e.g., from the finite element
discretisation of integral operators requires special compression techniques to
avoid the quadratic cost for the assembly and storage.

The standard techniques in this field of research include but are not limited
to panel clustering [15, 19], multipole expansions [17, 11], interpolation [5] or
(adaptive) cross approximation [20, 1, 3]. All of these methods yield a matrix
that consists blockwise of low-rank matrices.

A convenient format to store these matrices is the H-matrix format [12, 13,
9, 10] which is at the same time useful to construct an efficient preconditioner
or even an accurate inverse. However, the (hierarchical) partition of the matrix
into blocks that allow for a low-rank approximation is not unique. Even the
question whether or not a single block is suitable for a low-rank approximation
is non-trivial [14]. Typically, one demands that the singular values of the matrix

block decay exponentially and ensures this by sufficient conditions (standard
admissibility, weak admissibility).

For a rather coarse approximation of a matrix block an exponential decay of
the singular values is not necessary. Therefore, standard (or weak) admissibility
conditions for the blocks are too restrictive. The partitions generated by these
sufficient conditions serve as input for our algorithm that coarsens the structure.
The coarsening process is compatible with the assembly of the low-rank blocks
by the standard methods and can thus be done on-the-fly, i.e., the input matrix is
not generated as a whole but only for single blocks. The output of the algorithm
is a recompressed matrix of reduced storage complexity with a coarser block
structure.

The coarse block structure is especially useful to construct coarse precon-
ditioners, e.g., by LU or Cholesky decomposition or the approximate inversion
based on the formatted H-matrix arithmetic.

The rest of this article is organised as follows: in Section 2 we introduce
a simple model problem, describe in short the H-matrix format and introduce
a new variant of ACA for the assembly for the low rank blocks. In Section 3
the recompression algorithm is presented along with numerical experiments for
realistic surface geometries in three space dimensions. In the last Section 4 we
comment on the solution of the discrete system.

2 The H-Matrix Format

2.1 Model Problem: Integral Equation

We consider a Fredholm integral operator of the form
Gtula) = [gta)uta) dy (21)

on a submanifold or subdomain € of R? with a kernel function
g:R*xR3 SR,

The kernel function might be (but is not limited to) the single layer or double
layer kernel for the Laplacian on a manifold $2:

o 1 DLP) 0 1

SLP (

! o, Axlle — yI
‘H-matrices are based on the fact that, at least for typical kernel functions g(-, -),
singularities only occur at the diagonal and the function is smooth everywhere
else. This is described by the asymptotic smoothness: the kernel function g(,-)
is called asymptotically smooth, if there exist constants C,s1 and Caso and a
singularity degree s > 0 such that for all z € {z;,y;} the inequality

1079(x,y)| < Cas1(Casa|lx — yl|) ™" 0! (2.2)

holds. This kind of operator occurs, e.g., in the integral equation formulation
of the Poisson problem in R3, where ¢ is the single layer or double layer kernel
gSLP gDLP.

A standard Galerkin discretisation of G for a basis (p;)icr, I = {1,... ,n},
Vi :=span{p1, ... ,¢n}, yields a matrix G with entries

Gij ::/Q/Qsai(:v)g(:c,y)saj(y) dz dy. (2.3)

Since the support of the kernel g is in general not local, one expects a dense
matrix G. The algorithmic complexity for computing and storing a dense matrix
is quadratic in the number of degrees of freedom, therefore different approaches
have been introduced to avoid dense matrices: for translation-invariant kernel
functions and simple geometries, the matrix G has Toeplitz structure, which
can be exploited by algorithms based on the fast Fourier transformation. If
the underlying geometry can be described by a small number of smooth maps,
wavelet techniques can be used in order to compress the resulting dense matrix
[7].

2.2 Low Rank Approximation by ACA+

Hierarchical matrices [12, 13, 6, 10, 5] are based on the idea of replacing the
kernel function locally by degenerate approximations. On the discrete level this
means that blocks of the matrix are approximated by low rank matrices.

Definition 2.1 (R(k)-Matrix Format) Let M € R™™™, k € N and M of
rank at most k. An R(k)-matriz representation of M is a factorisation of the
form

M = AB”

I
with matrices A € R"™k B € R™**. Sometimes it is convenient to write
M = Zle a,bl for the column vectors a;,b; of A, B.

The storage requirements for an R(k)-matrix are k(n + m) instead of the
quadratic cost nm for standard full matrices. Since the rank k is expected to
be k = log(n) this is a data-sparse representation of the matrix M. Moreover,
the matrix-vector multiplication v — Mwv can be split into two multiplications
v+ BTy A(BTv) so that only 2k(n+m)—k—n additions and multiplications
of real numbers are necessary to perform the exact matrix-vector multiplication.

Here, we compute each of those low rank blocks by the adaptive cross ap-
proxzimation (ACA) [20, 1, 3]. However, our method is not restricted to ACA
but works equally well for Taylor expansion, multipole expansion or interpola-
tion. Any method that yields a blockwise low rank approximation can serve as
an input for our coarsening algorithm.

Let t xs C I X1, Q= U;jesuppys, s := Ujes; and By, B, axially parallel
boxes that contain Q, Qs (cf. Figure 1) and fulfil the n-admissibility condition

Figure 1: The block t x s C I x I corresponds to a subset ; x Qg of €2 x .

min{diam(By), diam(Bs)} < 2ndist(By, Bs). (2.4)

Then the sub-matrix G|ixs := (Gij)iet,jes of G from (2.3) allows for a low rank
approximation up to a relative error of € where the rank k depends logarith-
mically on 1/e [5]. A good heuristic (proofs exist for Nystrém methods and
asymptotically smooth kernels) to generate a low rank approximation follows.

Construction 2.2 (ACA with full pivoting) The construction of an approz-
imation of the form fo:l a,bl to a matric M € R™™™ up to a relative error
||M — Zle a bl |2 = e||M||2 is done in k steps p=1,... ,k:

INPUT: A FUNCTION THAT RETURNS THE MATRIX ENTRY M;; FOR AN INDEX
PAIR (i, 7).
STEP p=1,... k:
1. DETERMINE A PIVOT INDEX (i*,j*) THAT MAXIMISES 0 := |M;; —
pn—1
> =1 (aw)i(by);]-
2. Stop IF § = 0.
3. COMPUTE THE ENTRIES OF THE TWO VECTORS a, € R",b, € R™

BY
p—1 1 p—1
(ap)i = Mij — Z(au)i(by)j*; (b.); = 5 (Mi*j - Z(“”)i*(b”)J) :
v=1 v=1
STOP 1F |ay|[2[|bull2 < €llasll2([by]2-
OuTPUT: THE FACTORISATION ABT ~ M.
In each step p =1,... , k of Construction 2.2 we have to determine the pivot

index (i*,5*) = (i}, ;). In order to avoid the quadratic cost for assessing all
entries M;;, one has to come up with a decent strategy. The state of the art
partial pivoting approach used in [3] is to choose the first row index i} := 1
(or at random) and determine the column index j§ by

. -
Ji = argmaszlw’m|MqJ|.

In the later steps p = 2,... , k, the row index 7}, is the maximiser of the column
corresponding to the index jj_; from the previous step p — 1,

pn—1
i = argmax;_y o [Mis =Y (a,)i(b)jr
v=1
and jj, is the corresponding row maximiser
p—1
Jp = argmax;_y | Misj — > (a)iz (by);].
v=1

For matrix entries M;; that stem from the evaluation of an asymptotically
smooth function, as it is the case for the Nystrom method, Theorem 4 from
[1] states

d
|M;; — (ABT)5| < en V%,

i.e., exponential convergence. The above mentioned partial pivoting strategy
from [3] fails, if the kernel function is not asymptotically smooth with respect
to both variables or if we use a Galerkin discretisation. In order to illustrate
this, we give a simple example.

Example 2.3 (Counterexample for Partial Pivoting) Let M be a matriz
with entries

M (n(z:), zi —y;)

1] Qx
s — u;
i € Q. CR3 i=1,...,n <n, o o
. X
r, € QCR di=n +1,...,n, y

y; € Q,CR} j=1,...,n,
where n(z;) s the outer unit normal vector to Qy U QL in x; as it typically
arises in the discretisation of the double layer potential. The domains), and
Q, are parallel. Thus, all entries M;; with x; € Q, and y; € Q, are zero. In
Algorithm 4.2 from [3] the first k row indices are i¥ = v forv =1,... k and
since M, ; = 0 for all j, the generated approzimation is zero, while M; ; # 0 for
x; € Q;

Obviously, one can circumvent the above counterexample by taking an initial
row and column of the matrix and determine a row or column pivot index from
these. In the further steps, the initial row and column can be reused. Thereby,
we replace the above mentioned “look-back” strategy by the following “look-
ahead” strategy in order to obtain the AC A+ algorithm:

Construction 2.4 (Partial Pivoting in ACA+) 1. In a setup phase we
choose two reference indices (r,c) at random and compute the row r and
column ¢ of the matrix M .

n=v72/2 n=+v?2 n=2v2
5 SVD ACA+ ACA | SVD ACA+ ACA | SVD ACA+ ACA
10~ 1 1 2 3 2 4 4 3 7 9
10~2 3 5 6 5 6 14 7 13 14
1073 5 9 7 8 14 16 14 19 27
10—* 8 11 12 14 17 20 23 30 37
1078 | 12 15 16 18 24 25 31 41 44

Table 1: A comparison of ACA,ACA+ and SVD. The table contains the rank
necessary in order to get a relative approximation error less than e.

2. In each step p=1,... ,k of Construction 2.2 we determine the row index

*

* as the column maximiser
pn—1

= argmax;_; ’n|MZ—C — Z(a,,)i(b,,)c|
v=1

and the column index j* as the row maximiser

p—1

7= argmaxy_y [Meg =D (an)r (b))l

v=1

We choose the index pair (i*,¢) or (r,j*) that yields the larger matriz
entry. The missing pivot index j* or i* is chosen by

pn—1

§* = argmaxi_y | Miej = Y ()i (b)) or
v=1
p—1

,m,n|Mij* - Z(au)i(by)j* .

v=1

1 = argmax;_

8. If one of the pivot indices i* or j* coincides with r or ¢, then we choose
a new reference index (at random) and compute the corresponding row or
column of the matriz.

The behaviour of AC A+ compared to AC A is investigated for a model prob-
lem in Section 2.4. Even for matrices generated by an asymptotically smooth
function the new pivoting pays, as is demonstrated by the next example.
Example 2.5 We consider the matriz M € R™"*™, n = 81, with entries

1
My =
s = y;ll

where the vertices x;,y; are chosen as in the following figure, i.e., a uniform
20 x 20 grid for a square. For the two squares we consider three model situations:

1. Admissibility with n = v/2/2.

2. Admissibility with n = /2. Im

3. Admissibility with n = 2/2. — —~<——>

In Table 1 we have denoted the rank necessary in order to obtain a relative
accuracy of € = 1077, j = 1,...,5. Except for two cases, where ACA requires
rank 4 (7) and ACA+ requires rank 4 (9), the new pivoting needs to compute at
least one matriz cross less than ACA, which compensates for the extra reference
row and column. For large n the savings are the most.

2.3 Clustering and Standard H-Matrix Compression

The low rank approximation of Construction 2.2 applies for matrix blocks ¢t xs C
I x I that are admissible with respect to (2.4). Therefore, we have to subdivide
the matrix into blocks that are admissible, preferably large blocks in order to
compress the matrix by a maximal factor. The standard way to choose the
blocks (testing all blocks would be too expensive) is to cluster the index set
I hierarchically in a cluster tree 77 and use a canonical construction for the
partition of the matrix.

Notation 2.6 (Tree) Let T = (V, E) be a tree with vertex set V and edge set
E. The unique vertex v € V with (w,v) €V for all w # v is called the root of
T and denoted by root(T). The levels of the tree are defined by

T° := {root(T)}, T ={weV|IeT": (v,w) € E}.

The set of successors of a node v € T* is defined as Sons(v) := {w € T |
(v,w) € E}. The set of leaves (Sons(v) = 0) is denoted by L(T). The depth
of the tree is p(T) := 1 + maxpi,gi or for a fived tree T' simply p. We use the
short notation “v € T” instead of “v € V7.

Definition 2.7 (Cluster Tree T7) A clus- {N}
ter tree Ty for an index set I is a tree with {0,...,3} {4,...,7}
root root(Tr) = I that fulfils AN "\
) {0,1} {2,3} {4,5} {6,7}
VieTy: t= Us and t # 0.
s€S(t) {0} {1} {2} {3} {4} {5} {6} {7}

For all practical cases the cluster tree T7 is a binary tree (each node has exactly
two successors or it is a leaf), the depth p is O(log #I) and the cardinality of
Ty is O(#I). Next, we want to construct the cluster tree T; with underlying
index set I = {1,... ,n}. Each index i € I corresponds to one of the basis func-
tions ¢; € V,, (cf. (2.3)). The geometric location of the index 4 is given by the
Chebyshev centre z; of the support of ; (the Chebyshev centre is the centre of
the smallest ball containing the support of ¢;). Instead of the Chebyshev centre
one could choose any point x; from the support of ;.

Construction 2.8 (Geometrically Balanced Clustering) Let

B =
J

[, B]

3
=1

be an axially parallel box containing the domain €. The cluster tree Tt is built
from root to the leaves by the procedure split defined next. We call this pro-
cedure with the parameters split (1,(x;)icr,B,Nmin), where Ny, is the size of
clusters that will not be split further, e.g. npin = 1.

split({: NODE OF THE CLUSTER TREE,
(2;)icr: VECTOR OF CHEBYSHEV CENTRES,
B: BOX CONTAINING THE CENTRES,
Nmin: MINIMAL LEAF SIZE)

1. IF #t < Nyin THEN Sons(t) := {} AND RETURN, OTHERWISE

2. DETERMINE THE COORDINATE j SUCH THAT (3j —cj IS THE LARGEST;
DEFINE §q1 := {Z et | (l‘l)j < (Oéj + 6]')/2},82 =1 \ S1;
SET Sons(t) := {s1,s2} \ {0};
DEFINE B,, AS B BUT REPLACE 3; BY (o + 3;)/2;
DEFINE B,, AS B BUT REPLACE «; BY (a; + (5)/2;
FOR EACH s € Sons(t) CALL split(s,(z;)ies,Bs;Mmin);
RETURN.

Construction 2.8 terminates if and only if the number of points x; with the same
geometric position is less than nyi,, but this can be determined a priori with
complexity O(#I).

Pairs of clusters (t,s) € Ty x Tt are candidates for blocks of the matrix
that we want to approximate in the R(k)-matrix format (Definition 2.1) by
Construction 2.2. The number of possible pairs is too large, therefore we test
only pairs of clusters on the same level of the tree. This motivates the definition
of a so-called block cluster tree T« that stores the admissible pairs of clusters
in a hierarchical form.

Definition 2.9 (Block Cluster Tree Tjx;) A block cluster tree Trx; based
on the cluster tree Tt is a cluster tree for I x I such that (cf. Figure 2)

VoeTl,, 3t,scTi: v=1tXSs.

Remark 2.10 (Cluster Tree yields Partition) The leaves of a cluster tree
T7 form a partition of the index set I. As a consequence, the leaves of a block
cluster tree Trxy yield a partition of the product index set I x I. On each level
0 of a cluster tree Tt there holds

= Uv]u U e]ool U v

veTf weL(Tr)NTE ! vweL(T)NT?

0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 1 0 1 2 3 4 5 6 7

4o w s W
4w s W

Figure 2: Depicted are four levels of a block cluster tree based on the cluster
tree from Definition 2.7. On level 2 of the tree there are six leaves (shaded),
e.g., the block {0,1} x {6, 7}.

If the underlying tree 77 is a binary tree, then the block cluster tree Trx;
is a quad-tree. Based on the cluster tree T; (Construction 2.8) and the -
admissibility condition (2.4), we construct the canonical block cluster tree Ty
as follows.

Construction 2.11 (Canonical Block Cluster Tree Ty;) Let the cluster
tree Tr be given. We define the block cluster tree Trxy by root(T) : =1 x I and
for each vertex t x s € T the set of successors by

S(tx 8) = 0 if min{#t, #s} < nmin ort X s is n-admissible (2.4)
8= S(t) x S(s) otherwise.

The block cluster tree Tr« g is the basis for hierarchical matrix format. It
defines the partition of the matrix into sub-matrices that are represented in the
R(k)-matrix format.

Definition 2.12 (H-Matrix) Let T := Trx; be a block cluster tree and k :
L(T) — Ny a rank distribution. We define the set H(T, k) of hierarchical ma-
trices (H-matrices) by

H(T, k) == {M € R"" | Vt x s € L(T) : rank(M|sxs) < k(t x s)} .

A matrix M € H(T, k) is said to be given in H-matrix representation, if for
all leaves t x s with #t < nmin or #s < nmin the corresponding matrix block
M]ixs is given in full matrix representation and in R(k)-matrix representation
for the other leaves.

The result of Construction 2.8 followed by Construction 2.11 is a block clus-
ter tree Ty for which we can estimate the depth and the sparsity C, defined
next. The sparsity is needed to estimate the storage requirements and complex-
ity of the matrix-vector multiplication of an H-matrix.

Definition 2.13 (Sparsity) Let Ty« be a block cluster tree. We define the
sparsity (constant) Csp of Trxr by

Cop :=max#{s €Ty |t xse&Tixr}
teTr

So far, we have not posed any condition on the locality of the supports of
the basis functions ;. If all the supports cover the whole domain €2, then the
only admissible block ¢t x s C I x I is t x s = (). Therefore, we demand the
locality of the supports.

Assumption 2.14 (Locality) We assume that the supports are locally sepa-
rated in the sense that there exist two constants Csep and nmin such that

max #{j € I | dist(suppy;, suppy;) < C’S;Il)diam(suppcpi)} < Pmin- (2.5)
1€
The left-hand side is the maximal number of basis functions with ‘relatively

close’ supports (see Figure 3). Note that we will apply Construction 2.8 with a
parameter Ny that satisfies (2.5).

Figure 3: The triangle €2; := suppy; under consideration is dark grey. The area
with a distance of Cgldiam(€;) is light grey (Csep := 4v/2). Here, 15 triangles
(including ;) are ‘rather close’ to ;.

Based upon Assumption 2.14 the sparsity constant Cyp, as well as the depth
p of the block cluster tree Ty« is estimated in [10, Lemma 4.5]. It should be
noted, that Csp, = O(n~3) and thus the choice of 7 in the admissibility condition
(2.4) enters the estimate in a critical way.

The estimates for the storage requirements and the complexity of the matrix-
vector multiplication of an H-matrix depend only on the cardinality of I and
the depth and sparsity of the block cluster tree T

Lemma 2.15 (Storage, Lemma 2.4 in [10]) Let T be a block cluster tree
based on the cluster tree Tr with sparsity constant Cs, (Definition 2.13) and
minimal block size nmin. Then the storage requirements Ny s¢(T, k) for an H-
matric M € H(T, k) are bounded by

Ny, 5:(T, k) < 2(1 + depth(T))Csp max{k, nmin }#1.

10

Lemma 2.16 (Matrix-Vector Product) Let T be a block cluster tree. The
complezity Ny, (T, k) of the matriz-vector product in the set of H-matrices can
be bounded from above and below by

Ni,si(T, k) < Nogoo (T, k) < 2Ngq 54(T', k).

2.4 Numerical Test: ACA and ACA+

In order to illustrate the compression by using the H-matrix format and also
to underline the advantages of the new ACA+ algorithm to assemble the R(k)-
matrix approximation we consider the model problem from Section 2.1 with
the kernel function gP“" of the double layer potential. The geometry is the
surface of a (three-dimensional) crank shaft (Figure 4) and stems from the
NETGEN package of Joachim Schoberl. We use n = 28288 panels for the

Figure 4: The surface of the crank shaft from NETGEN with n = 28288 panels.

discretisation and constant basis functions ¢; on each panel. The stiffness matrix
G from (2.3) is compressed in the H-matrix format by use of the ACA algorithm
(Construction 2.2) with the standard partial pivot search and the new ACA+
pivot search. Both use € := 1073 in the stopping criterion, and the ACA+
algorithm switches to ACA as soon as the stopping criterion is fulfilled with 3¢,
so that both algorithms terminate with almost the same target accuracy. The
nearfield integration uses the automatic quadrature of Erichsen and Sauter [8].
For the admissibility parameter 7 we choose the values n € {0.5,1.0,2.0,4.0}.
The minimal blocksize is n,,;, = 20 for the geometrically balanced clustering
(Construction 2.8). The results are contained in Table 2 and were obtained by
the HLIB package [4] on a SUN UltraSPARC machine with a 900 MHz CPU. We
conclude that n should be taken large enough. For the geometrically balanced
clustering the maximal ratio diam/dist that can occur is ~ 6 so that n = 4
is effectively the maximal parameter for the admissibility condition. Smaller
values of 7 result in higher computational complexity and increased storage
requirements.

11

Time Storage Accuracy

[feRel] lz—(&) ' Ga|l 2
[Sec.] [KB/DoF] el Ll

n=05 ACA | 248.7 24.3 2.1x1073 5.3x10™%
ACA+ | 259.8 23.9 2.4x107% 2.7x107°
n=1 ACA | 1742 16.7 6.3x1073 6.7x107%
ACA+ | 174.3 16.2 1.1x1073 6.8x107°

n=2 ACA | 1438 13.6 6.1x1073 9.6x107°
ACA+ | 140.5 13.1 9.8x107* 1.2x107%
n=4 ACA 140.2 13.2 1.6x1073 1.4x107%
ACA+ | 136.8 12.7 5.5x107% 1.3x107%

Table 2: Comparison of ACA and ACA+ for the crank shaft example and
different values of 7.

3 Recompression of H-Matrices

The standard H-matrix compression by blockwise low rank approximation (via
interpolation, ACA, etc.) yields a matrix G where we still have to store a large
amount of data per degree of freedom. For the crank shaft example from Section
2.4 we need approximately 12.7 KB per degree of freedom. This can be reduced
by applying a recompression scheme. The first recompression is done for each
R(k)-matrix block of the matrix separately, the second recompression changes
the entire block structure. The benefit is twofold: the amount of data to be
stored is reduced (hence the name) but also the H-matrix arithmetic (addition,
multiplication, inversion) is sped up.

3.1 Blockwise Recompression

The first recompression method is commonly used when applying sub-optimal
rank revealing algorithms. Each assembled block in the R(k)-matrix format is
immediately decomposed by the SVD. Since the block is already given in the
factorised form ABT, A € R"** B € R™** the SVD of such a matrix can be
computed in O(k?(n +m)) [10]. All singular values o; with

0; < g0

are discarded and the rank thereby reduced. Here, we choose a parameter
g := 2 x 1073 different from the one in Construction 2.2 (the stopping criterion
in Construction 2.2 is just a heuristic).

We demonstrate the effect of this first recompression by the crank shaft
example from Section 2.4. Here, we consider only the case 7 = 4 and the new
ACA+ approximation. The results are contained in Table 3.

The first recompression reduces the storage requirements per degree of free-
dom from 12.7KB down to 8.9KB and retains the same approximation quality.

12

Time Storage Accuracy
Sec] [KB/DoF] 1G=Cl lz=() “Cull.

[Ell Izl 2
ACA+ 136.8 12.7 5.5x10% 1.3x1074
Recompression | 13.5 8.9 5.8x107% 1.1x1074

Table 3: The first recompression applied the the crank shaft example with n = 4.

Since this is blockwise a best approximation, the result is (almost) a best approx-
imation in the given block structure. After the first recompression, it doesn’t
matter where the initial approximation stems from (e.g., ACA or interpolation).

The recompression can be applied “on-the-fly”, i.e., after the assembly of
each R(k)-matrix block by ACA+ we immediately apply the SVD and store
only the recompressed block. Therefore, only the time needed to generate the
initial approximation is crucial.

3.2 Coarsening of the Block Structure

While the first recompression reduces the blockwise rank of the H-matrix ap-
proximation, the second recompression aims at a coarsening of the entire block
structure of the H-matrix. The reason why the block structure from Construc-
tion 2.8 and 2.11 does not necessarily yield the optimal partition is threefold:

First, the parameter n from the admissibility condition (2.4) might be too
small (and it enters the complexity estimates in the power 6). For the discretisa-
tion this is not crucial but for the H-matrix arithmetic it is. Our recompression
scheme will automatically choose the right blocks, so that only the extra time for
the assembly of the stiffness matrix is increased, but the storage requirements
stay the same independently of 7.

Second, blocks that are not admissible might be regarded as admissible,
because the admissibility condition (2.4) is sufficient but not necessary. This
was first observed in [14] under the name weak admissibility.

Third, the block cluster tree T7«; based on the given cluster tree T7 does
not take the accuracy of the discretisation and ACA+ compression into account.
Asymptotically (k large enough or e small enough) the optimal block structure
might be that from the standard admissibility (2.4), but for all practical pur-
poses the optimal structure is coarser.

The block cluster tree T}, ; that we construct corresponds to an optimal
admissibility with respect to the storage requirements. The tree T7«; from
Construction 2.11 serves as a fine initial guess from which we construct the
optimised tree.

Remark 3.1 (Weak Admissibility and Optimal Admissibility) The weak
admissibility condition is an a priori condition, this means one can construct
the block cluster tree Ty« based on this condition and use this tree for the H-
matriz arithmetic. This is important for FEM applications, because there the

13

initial stiffness matrix is sparse and only the inverse, which has to be computed,
is a dense matriz. Therefore the matriz entries of the inverse to be stored in
the H-matriz format are not known.

The situation is different for BEM applications. Here, the matrix entries are
known and one can construct an (almost) optimal block cluster tree T;, ; a pos-
teriori. For the purpose of discretisation this reduces the amount of storage, but
for the purpose of the H-matriz arithmetic (addition, multiplication, inversion)
this also reduces the computational time. This is a pure algebraic construction
and no knowledge of the continuous problem is needed.

Construction 3.2 (H-Matrix Recompression) Let Tr«; be a block cluster
tree with admissible leaves in the sense that either (2.4) holds for the corre-
sponding clusters or the block is small enough (c.f. Mmin in Definition 2.12).
Let € > 0 be a prescribed accuracy (later we will comment on the choice of €).

We call the procedure coarsen with parameters coarsen(l x I). Implicitly,
we also use the son-relation Sons(-) for the tree Trx; and Son’(-) := Sons(+) for
the tree T}, ; to be constructed, as well as the matriz G and the desired accuracy
€.

coarsen(t X $: NODE IN THE BLOCK CLUSTER TREE)

1. CALL coarsen(t' X s’) FOR ALL SONS t’ X s’ OF ¢ X s.

2. IF AT LEAST ONE OF THE SONS Sons’(f X §) IS NOT A LEAF THEN
RETURN, OTHERWISE

3. COMPUTE A SVD OF THE SUBMATRIX é|t><s§
DISCARD ALL SINGULAR VALUES 0; < €07 AND STORE THE RESULT
R IN THE R(k)-MATRIX FORMAT;

4. IF THE STORAGE REQUIREMENTS OF G|,.» s ARE LARGER THAN THOSE

OF R THEN

SET C~T‘|t><S = R;

SET Sons’(t x s) := {};
RETURN.

The computation of the singular value decomposition in step 3 of Construc-
tion 3.2 is simple, because we have verified in step 2 that the successors of ¢t x s
are all leaves. Therefore we have to decompose an R(k)-matrix C~¥|th of rank
at most k = Zt’Xs’ESOIls(txs) rank(@|t/X5/), where each of the leaves é|t/X5/ is
given in the R(k)-matrix format.

The effect of the recompression with regard to the storage requirements can
be seen in Table 4, where we were able to reduce the storage requirements per
degree of freedom from the crank shaft example of Section 2.4 from 8.9KB after
the first recompression down to 6.4KB by Construction 3.2. Even if the initial
compression is done by tensor interpolation of the underlying kernel function
[5] with a small parameter 7 = 0.5, the matrix after the second recompression
is almost the same and requires only 6.4KB storage per degree of freedom, cf.
Table 4.

14

le—(C) ' G| 2

‘ Time [Sec.] Storage [KB/DoF] [lekle]l

GT M=l .2
ACA+ 136.8 12.7 5.5x107% 1.3x107%
1st Rec. 13.5 8.9 5.8x107% 1.1x10™4
2nd Rec. 85.6 6.4 6.0x10~4 2.2x107%
Interpol. 694.9 189.5 4.6x107% 1.3x1074
1st Rec. 433.5 18.0 4.6x10~4 1.2x10~4
2nd Rec. 188.0 6.4 5.3x107% 3.3x107%

Table 4: The first recompression (with ¢ = 2 x 1073) and second recompression
(with e = 2 x 1073) applied to the crank shaft example. On top the ACA+
approximation with 7 = 4, below a tensor interpolation with n = 0.5.

The block structure (with parameter n = 1.0) before and after the coarsening
is depicted in Figure 5. The effect of the coarsening can best be seen when

& % alnm
i .
11 .
B il i i ﬂ
i | Pl
E===mmm| RS
RS E= = I | — ==
- Mt G
A 1 2 ﬂu }
Al e =
ik =
iHiNE 4
[Eapuy
I P

Figure 5: The block structure of the H-matrix G before and after the second
recompression for the crank shaft example with n = 1.0.

applying the formatted H-matrix arithmetic [12, 13, 10]. Here, we just add,
multiply, invert or decompose the BEM stiffness matrix G in the H-matrix
format for the purpose of illustrating the speed-up-factor achieved by the second
recompression. The example is again the crank shaft from Section 2.4 (n = 4)
and we use the formatted arithmetic defined in [10] with fixed rank as it is
given by the recompressed matrix G. The results are contained in Table 5.
The multiplication and inversion are sped up by a factor of 3 for an accurate
recompression. Even the matrix-vector multiplication is two times faster for the
coarsened matrix. The last column contains the times for the computation of
an LU decomposition of G within the H-matrix format (this was first proposed

15

| M-v M+M M-M M' M=LU

1st Rec. 0.53 15 1233 1258 391
2nd Rec., e =2x 1073 | 0.27 17 421 407 155
2nd Rec., e =2x 1072 | 0.15 6.1 143 137 57
2nd Rec., e =6 x 10~ | 0.02 0.5 4.9 5.3 2.2

Table 5: Time (in seconds) for the formatted H-matrix arithmetic before and
after the second recompression from Construction 3.2 for the crank shaft exam-
ple.

in [16] and later used in [4, 2]). In the next section we consider the efficient
solution of the discrete system in more detail.

4 Solution of the Discrete System

In the previous section we were concerned with the discretisation of the integral
operator in the H-matrix format and the fast matrix-vector multiplication. In
order to solve the discrete system efficiently, we need the formatted H-matrix
arithmetic. The algorithms that perform this arithmetic as well as their com-
plexity estimates for general cluster trees are already published in [10], especially
the formatted addition and multiplication of H-matrices. The word “format-
ted” in this context means that the result of the arithmetic operation A + B or
A - B has to be projected onto the set H(Trxy, k). For a fixed target tree T' and
rank k£ we denote the formatted addition by & and the formatted multiplication
by ©. Both are of complexity O(k*nlog®n), where k is the (maximal) rank for
the R(k)-matrix blocks.

4.1 Direct Solution

For a direct solver (up to the initial compression error), we do not need extra
memory. Instead, we overwrite the memory allocated for the stiffness matrix
G in H-matrix format by the two factors L,U of an LU decomposition. The
matrix G is not needed anymore since the solution x for a right-hand side f is
given by x := (LU)~!f without any iterative process. The disadvantage of this
approach is that the time for the setup of the two factors L, U is of complexity
O(k*nlog®n), where k is the average rank in the R(k)-matrix blocks. Since
no evaluations of the kernel and thus no integration is involved this might still
be faster than the assembly of the stiffness matrix. Once the two factors are
computed, we can solve the system in O(knlogn), such that for several right-
hand sides the overall complexity of this approach might be less than for an
iterative solution of the system. The results for the crank shaft example are
contained in Table 6.

As a second example we consider the single layer potential operator on the
same crank shaft surface as before (discretised with constant basis functions).

16

‘ Assembly & Rec. G = LU le-@0) " Gallyz (LU)™L - f

(=12
DLP 236 220 4.6x1073 0.32
SLP 125 79 4.0x1073 0.27

Table 6: Time (in seconds) for the setup and solution of the crank shaft example
for the double layer and single layer potential.

Here, the system matrix is ill-conditioned and a simple iterative solution (e.g.,
by the conjugate gradient method) requires many evaluations of the stiffness
matrix G. The results for an - up to the initial compression error - exact
Cholesky decomposition of G in the H-matrix format are contained in Table 6.

4.2 TIterative Solution and Coarse Preconditioning

If the solution of the discrete system is only needed for few right-hand sides,
then it is advantageous to compute only a coarse preconditioner. In order to
reduce the arithmetic complexity, we first generate a coarse approximation G’
of the stiffness matrix G by use of Construction 3.2 with parameter ¢ larger
than for the assembly of the stiffness matrix, e.g., ¢ = 0.3. In Figure 6 we have
depicted the structure of the coarsened H-matrix for different parameters e.

mu‘mk
o

AN

Figure 6: The block structure of the lower triangular part of G' recompressed
with € = 0.01 and € = 0.3 for the crank shaft example. In each block the rank
of the approximation is denoted.

For this coarse approximation we compute a Cholesky / LU decomposition in
the H-matrix format with a complexity of O(n log? n). The results are contained
in Table 7. We observe that the setup of a coarse preconditioner (¢ = 0.1) takes
less than 5% of the time for the assembly and initial compression of the stiffness

17

SLP Assembly & Cholesky GMRES

n = 28288 Recompression Decomposition Time [Sec.] Steps
e=3x1073 125 47.0 4.1 5
e=1x1072 125 29.8 5.1 7
e=3x10"2 125 16.0 7.8 12
e=1x10""1 125 5.0 11.7 20
e=3x10""! 125 1.0 15.3 28
no precond. 125 0 103.7 180

Table 7: Time (in seconds) for the setup and iterative solution (Cholesky-
preconditioned GMRES until relative residual < 107°) of the crank shaft ex-
ample.

matrix, so that the system can be solved in 20 iterative steps, again less than
10% of the time for the assembly. For this small problem an unpreconditioned
GMRES [18] is able to compute the solution in 180 steps (104 seconds).

Since the discretisation in the compressed H-matrix format is of complexity
O(nlogn) while the setup of the preconditioner has a complexity of O(n log2 n),
one could expect that for large enough problems the setup will exceed the time
for the assembly. However, the compression has to be accurate up to the dis-
cretisation error while the preconditioner can be much coarser. We illustrate
this by refining the surface triangulation of the crank shaft from Section 2.4
regularly to obtain a grid with n = 113152 panels. The time for the setup is
reported in Table 8, and we observe that for the larger problem the setup and
solution for one right-hand side can be done in 10% of the time for the assembly
of the (compressed) stiffness matrix. An unpreconditioned solve by GMRES for
a single right-hand side takes 242 steps (649 seconds), i.e., longer than the setup
of the stiffness matrix.

SLP Assembly & Cholesky GMRES

n = 113152 Recompression Decomposition Time [Sec.] Steps
e=3x10"3 542 290.7 15.9 6
e=1x10"2 542 193.2 18.8 8
e=3x10"?2 542 127.0 26.4 13
e=1x10""! 542 40.3 41.7 24
e=3x10"" 542 6.3 50.2 32
no precond. 542 0 648.8 242

Table 8: Time (in seconds) for the setup and iterative solution (Cholesky-
preconditioned GMRES until relative residual < 107°) of the crank shaft ex-
ample.

18

References

1]

2]

[10]

[11]

M. Bebendorf. Approximation of boundary element matrices. Numer.
Math., 86(4):565-589, 2000.

M. Bebendorf. Hierarchical LU decomposition based preconditioners for
BEM. Technical Report 28, Max Planck Institute for Mathematics in the
Sciences, 2004.

M. Bebendorf and S. Rjasanov. Adaptive Low-Rank Approximation of
Collocation Matrices. Computing, 70:1-24, 2003.

S. Bérm and L. Grasedyck. HLIB - a library for H- and H2-matrices, 1999.
Available at: http://www.hlib.org.

S. Borm and L. Grasedyck. Low-rank approximation of integral operators
by interpolation. Computing, 72:325-332, 2004.

S. Borm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical
matrices with applications. Engineering Analysis with Boundary Elements,
27:405-422, 2003.

W. Dahmen and R. Schneider. Wavelets on manifolds I: Construction and
domain decomposition. SIAM Journal of Mathematical Analysis, 31:184—
230, 1999.

S. A. Sauter, S. Erichsen. Efficient automatic quadrature in 3-d Galerkin
BEM. Comput. Meth. Appl. Mech. Eng., 157:215-224, 1998.

L. Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. PhD
thesis, Universitat Kiel, 2001.

L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-
matrices. Computing, 70:295-334, 2003.

L. Greengard and V. Rokhlin. A new version of the fast multipole method
for the Laplace in three dimensions. In Acta Numerica 1997, pages 229-269.
Cambridge University Press, 1997.

W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I:
Introduction to H-matrices. Computing, 62:89-108, 1999.

W. Hackbusch and B. Khoromskij. A sparse matrix arithmetic based on H-
matrices. Part II: Application to multi-dimensional problems. Computing,
64:21-47, 2000.

W. Hackbusch, B. Khoromskij, and R. Kriemann. Hierarchical matrices
based on a weak admissibility criterion. Technical Report 2, Max Planck
Institute for Mathematics in the Sciences, 2003. submitted to Computing.

19

[15]

[16]

W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the
boundary element method by panel clustering. Numerische Mathematik,
54:463-491, 1989.

M. Lintner. The eigenvalue problem for the 2d Laplacian in H-matrix
arithmetic and application to the heat and wave equation. Computing,
72:293-323, 2004.

V. Rokhlin. Rapid solution of integral equations of classical potential the-
ory. Journal of Computational Physics, 60:187-207, 1985.

Y. Saad, M. Schultz. GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput.,
7:856-869, 1986.

S. A. Sauter. Variable order panel clustering (extended version). Technical
Report 52, Max-Planck-Institut fiir Mathematik, Leipzig, Germany, 1999.

E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton
method. Computing, 64:367-380, 2000.

Lars Grasedyck

Max Planck Institut fiir Mathematik in den Naturwissenschaften
Inselstrasse 22-26

D-04109 Leipzig

Germany

lgr@mis.mpg.de

20

