
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Approximation of integral operators by

H2-matrices with adaptive bases

(revised version: December 2004)

by

Steffen Börm

Preprint no.: 18 2004

Approximation of integral operators by
H2-matrices with adaptive bases

Steffen Börm, Leipzig

December 10, 2004

H2-matrices can be used to construct efficient approximations of discretized
integral operators. The H2-matrix approximation can be constructed effi-
ciently by interpolation, Taylor or multipole expansion of the integral kernel
function, but the resulting representation requires a large amount of storage.

In order to improve the efficiency, local Schur decompositions can be used
to eliminate redundant functions from an original approximation, which leads
to a significant reduction of storage requirements and algorithmic complexity.

1 Introduction

We consider an integral operator

K[u](x) =
∫

Ω
κ(x, y)u(y) dy (1)

defined by a domain or manifold Ω ⊆ R
d and a kernel function κ : R

d × R
d → R.

Discretizing K by Galerkin’s method with finite element basis functions (ϕi)i∈I leads to
a matrix K ∈ R

I×I given by

Kij = 〈ϕi,K[ϕj]〉L2 =
∫

Ω
ϕi(x)

∫
Ω

κ(x, y)ϕj(y) dy dx.

In many applications the support of κ is a superset of Ω × Ω, so the matrix K will be
dense. Treating K directly leads to a dense matrix that requires O(n2) units of storage,
where n := #I is the number of degrees of freedom.

Since the quadratic complexity of a simple approach is not acceptable if the problem
dimension becomes large, a variety of alternative representations have been introduced:
If the kernel function is asymptotically smooth (cf. [7]), it can be approximated by
panel-clustering (cf. [14, 17, 16]) or multipole expansion (cf. [15, 11, 12]) methods. A
similar effect can be achieved by replacing the finite element basis functions (ϕi)i∈I by
wavelet-like functions (cf. [8]).

1

The algorithm presented here creates an approximation of the kernel function by
means of a panel-clustering algorithm based on interpolation [9, 3]. The expansion
systems corresponding to interpolation contain a certain degree of redundancy that has
to be eliminated in order to improve the efficiency. A simple way of doing this is to
orthogonalize the discrete expansion systems [4]. These techniques take into account the
effect of the discretization, but not the influence of the discrete operator that is being
approximated.

An alternative approach is the algebraic approximation algorithm presented in [2],
which constructs locally optimal discrete expansion systems for arbitrary operators. If
the operator is already approximated by a suitable panel-clustering approach, the algo-
rithm can take advantage of this more efficient representation in order to reach linear
complexity in time and storage requirements.

2 H2-matrix approximation by interpolation

We will now introduce the basic notations for H2-matrices and demonstrate how inter-
polation can be used to construct an approximation of an integral operator (cf. [3]).

2.1 Local interpolation of the kernel function

In order to be able to approximate the kernel function κ by interpolation, we have
to ensure that κ restricted to the domain of interpolation is sufficiently smooth. For
asymptotically smooth kernel functions, i.e., if there are c0 ∈ R>0, g ∈ N0 such that

|∂α
x ∂β

y κ(x, y)| � c
|α+β|
0 (α + β)!

|x − y|g+|α|+|β| (2)

holds for all α, β ∈ N
d
0, a simple criterion can be found: Let Bt, Bs ⊆ R

d be axis-parallel
bounding boxes and let It

m and Is
m be stable m-th order interpolation operators on Bt

or Bs, respectively. If the admissibility condition

diam(Bt × Bs) ≤ η dist(Bt, Bs) (3)

holds, then an error estimate of the form

‖κ − (It ⊗ Is)[κ]‖∞,Bt×Bs � 1
dist(Bt, Bs)g

(
c2η

c2η + c1

)m

(4)

can be proven for stable interpolation schemes (like Chebyshev interpolation, cf. [5]), so
the interpolation converges exponentially if the order m is increased.

Remark 1 In many applications, derivatives of the kernel function κ are used instead
of κ, e.g., when treating the double layer potential operator. Using techniques similar to
those used in [6, Lemma 6.1], we can prove that the derivatives of κ and its interpolant
also satisfy an estimate similar to (4) and therefore will also converge exponentially.

2

The idea of most panel-clustering and multipole techniques is to split the domain
Ω × Ω into a hierarchy of subdomains that satisfy the admissibility condition (3) and
a small remainder of subdomains that still contain the singularity, but can be handled
by a sparse matrix. On the admissible domains, a separable approximation is used to
derive a more efficient representation.

In order to construct the admissible subdomains efficiently, we introduce a hierarchy
of subdomains corresponding to subsets of the index set I: Let TI be a labeled tree with
root r, i.e., a tree in which each node t ∈ TI is associated with a label t̂. TI is a cluster
tree if the following conditions hold:

• The root of TI is I, i.e., r̂ = I.

• If t ∈ TI has sons, then the labels of the sons form a partition of the label of the
father, i.e., t̂ =

⋃̇{ŝ : s ∈ sons(t)}.
• For all t ∈ TI , we have # sons(t) 	= 1 and #t̂ > 0.

The nodes t ∈ TI of a cluster tree TI are called clusters, and the level of a cluster t ∈ TI
is defined inductively by level(r) = 0 and level(t′) = level(t) + 1 for t′ ∈ sons(t). The
number of all clusters is denoted by c := #TI and satisfies c ≤ 2n − 1.

Typically, we will assume that the leaves of TI correspond to small subsets of I, i.e.,
that there is a constant Cleaf ∈ N such that #t̂ ≤ Cleaf holds for all leaves of TI .

Using the cluster tree, we can construct the desired partition: For each cluster t, we
fix a bounding box Bt ⊆ R

d, i.e., an axis-parallel box satisfying suppϕi ⊆ Bt for all i ∈ t̂.
For a given pair (t, s) ∈ TI × TI , we proceed as follows:

• If Bt and Bs satisfy the admissibility condition (3), we add (t, s) to the set Pfar.

• If t and s are leaves, we add (t, s) to the set Pnear.

• Otherwise, we repeat the procedure for pairs formed by the sons of t and s (if only
one of the clusters has no sons, we use the cluster itself instead).

Starting with Pfar = Pnear = ∅ and (t, s) = (r, r), we get a partition P = Pfar ∪̇ Pnear of
I × I such that all pairs in Pfar correspond to admissible subdomains and all pairs in
Pnear correspond to leaf clusters.

In standard situations, it can be shown that #P ∈ O(n) holds (cf. [10]).

2.2 Approximation of the matrix

The approximation of the matrix K can now be constructed block by block: For each
(t, s) ∈ Pfar, we interpolate κ on Bt × Bs and set

K̃t,s
ij :=

{∫
Ω ϕi(x)

∫
Ω(It

m ⊗ Is
m)[κ](x, y)ϕj(y) dy dx if i ∈ t̂, j ∈ ŝ

0 otherwise.

for all i, j ∈ I. Since (t, s) ∈ Pfar, we know that K̃t,s
ij will converge rapidly to Kij if the

interpolation order m is increased.

3

All nearfield entries are collected in a matrix K∗ ∈ R
I×I

K∗
ij :=

{
Kij if there is a pair (t, s) ∈ Pnear with i ∈ t̂, j ∈ ŝ

0 otherwise.

for all i, j ∈ I. Since P = Pfar ∪̇ Pnear describes a partition of I × I, the matrix

K̃ := K∗ +
∑

(t,s)∈Pfar

K̃t,s (5)

is an approximation of K.
We can handle K∗ efficiently since it is a sparse matrix. The farfield matrices K̃t,s

require a different storage format that we will introduce now. For all t ∈ TI , we denote
the interpolation points in Bt by (xt

ν)kν=1 and the corresponding Lagrange polynomials
by (Lt

ν)kν=1. For i ∈ t̂, j ∈ ŝ, we find

K̃t,s
ij =

∫
Ω

ϕi(x)
∫

Ω

⎛⎝ k∑
ν=1

k∑
µ=1

κ(xt
ν , xs

µ)Lt
ν(x)Ls

µ(y)

⎞⎠ ϕj(y) dy dx

=
k∑

ν=1

k∑
µ=1

κ(xt
ν , xs

µ)
∫

Ω
ϕi(x)Lt

ν(x) dx

∫
Ω

ϕj(y)Ls
µ(y) dy,

so we can store K̃t,s in the factorized form

K̃t,s = V tSt,s(W s)� (6)

with the row cluster basis matrix V t ∈ R
I×k, the column cluster basis matrix W s ∈ R

I×k

and the coefficient matrix St,s ∈ R
k×k defined by

V t
iν = W t

iν :=

{∫
Ω ϕi(x)Lt

ν(x) dx if i ∈ t̂

0 otherwise.
(7)

St,s
νµ := κ(xt

ν , xs
µ). (8)

In the case of integral operators of the form (1), the row and column cluster basis
matrices V t and W t are identical. In more general applications they may differ, e.g., if
the operator is based on derivatives of κ.

The factorized representation of K̃t,s requires only (#t̂ + #ŝ + k)k units of storage.

2.3 Nested cluster bases

We call the families V = (V t)t∈TI and W = (W s)s∈TI of row and column cluster basis
matrices row and column cluster bases. Storing all V t as dense matrices leads to a storage
complexity of O(nkp), where p is the depth of the cluster tree. Usually, p ∼ log n will
hold, so the storage requirements will not scale linearly in n. We will now introduce an
alternative representation of V t that allows us to reach the optimal order of complexity.

4

Let t ∈ TI be a cluster with sons(t) 	= ∅, and let t′ ∈ sons(t). The interpolation
operator It′

m is a projection into the space of m-th order polynomials. Since any Lagrange
polynomial Lt

µ for the cluster t is in this space, we have

Lt
µ = It′

m[Lt
µ] =

k∑
ν=1

Lt
µ(xt′

ν)Lt′
ν ,

i.e., we can express each Lagrange polynomial of the father cluster t in terms of the
Lagrange polynomials of the son cluster t′. We introduce the transfer matrix T t′ ∈ R

k×k

by setting
T t′

νµ = Lt
µ(xt′

ν) (9)

and notice that

Lt
µ =

k∑
ν=1

T t′
νµLt′

ν

implies

V t
iν =

k∑
µ=1

V t′
iµT t′

µν = (V t′T t′)iν

for all i ∈ t̂′ ⊆ t̂. Since the index sets corresponding to the sons of t are a disjoint
partition of t̂, we can sum over all sons in order to get

V t =
∑

t′∈sons(t)

V t′T t′ . (10)

This relation between father and son clusters implies that we have to store the cluster
bases V t only for leaves t ∈ TI of the cluster tree and can use the small k × k transfer
matrices T t to describe the bases for all other clusters.

This alternative representation of the matrix K̃ requires O(ck2 +nk) units of storage.
By truncating the cluster tree, we can ensure c ∼ n/k and reach a complexity of O(nk).

An approximation of the form (5) with blocks defined by (6) is called a uniform H-
matrix. If the cluster bases are nested, it is called an H2-matrix [13, 2, 3].

Since we are using d-dimensional interpolation of order m, we require a rank of k ∼ md.
In many applications, this is not optimal: If the kernel function is the Newton kernel
κ(x, y) = 1/(4π‖x − y‖) in R

3, a multipole expansion [15, 12] requires only k ∼ m2

spherical harmonics instead of O(m3) polynomials.
In order to improve the efficiency, we will now remove redundant functions from the

expansion system, i.e., we will use interpolation only as an “initial guess” and reduce
k by algebraic methods while keeping the good approximation properties and general
applicability.

3 Orthogonalization

A simple approach to reducing redundancy is to compare the dimension of the range
of the cluster basis matrices V t with the number of columns of V t, i.e., the number of

5

expansion functions involved. If the dimension is lower than the number of columns,
the expansion system obviously contains superfluous functions that can be eliminated
without changing the quality of the approximation.

Seen from this point of view, an orthogonal cluster basis matrix, i.e., a matrix satisfying
(V t)�V t = I, is optimal: Since the columns are pairwise perpendicular, no column can
be eliminated without changing the range of V t.

3.1 Leaf clusters

A viable strategy for eliminating redundant functions from the expansion system is to
perform a Gram-Schmidt orthogonalization: We are looking for a matrix Zt ∈ R

k×kt

such that the new cluster basis matrix

Ṽ t := V tZt

is orthogonal, i.e., satisfies the equation

(Ṽ t)�Ṽ t = (V tZt)�V tZt = I ∈ R
kt×kt

.

Using Gt = (V t)�V t, this equation takes the form

(Zt)�GtZt = I. (11)

Different methods can be used to find a suitable Zt: One possibility is to compute a rank-
revealing Cholesky decomposition of Gt, which would be equivalent to the classical Gram-
Schmidt procedure. In order to be able to detect redundant functions in a more direct
fashion, we will use the Schur decomposition Gt = PDP� of Gt instead, i.e., we will
compute an orthogonal matrix P containing the eigenvectors of Gt and a diagonal matrix
D = diag{λ1, . . . , λk} containing the corresponding eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0.

We fix a rank kt ∈ {1, . . . , k} such that λi > 0 holds for all i ∈ {1, . . . , kt}, define the
matrix D̃ ∈ R

k×kt
by D̃ij := δij√

λi
and set Zt := PD̃. Since

(Zt)�GtZt = D̃�P�PDP�PD̃ = D̃�DD̃� = I

holds, we have found a suitable solution Zt of problem (11).
Creating the matrix Gt requires O(k2#t̂) operations, solving the symmetric eigenvalue

problem takes O(k3) operations, and Zt can be constructed in O(k2kt) operations, so
the total complexity is bounded by O(k2(k + kt + #t̂)).

Any choice of kt ∈ {0, . . . , rank(V t)} will give us a matrix Zt satisfying (11). Using
kt < rank(V t) implies that the range of Ṽ t = V tZt will be a proper subspace of the
range of V t, so the quality of the approximation may be reduced. Since we are using
the Schur decomposition to construct the approximation, we have all eigenvalues of Gt

at our disposal and can derive the following error estimate:

6

Lemma 2 (Local truncation error) We have

inf{‖V t − Ṽ tR‖2
F : R ∈ R

kt×k} = ‖V t − Ṽ t(Ṽ t)�V t‖2
F = εt

F :=
k∑

i=kt+1

λi and

inf{‖V t − Ṽ tR‖2
2 : R ∈ R

kt×k} = ‖V t − Ṽ t(Ṽ t)�V t‖2
2 = εt

2 := λkt+1.

Proof. Since Ṽ t is orthogonal, Ṽ t(Ṽ t)� is an orthogonal projection in both the Euclidean
and the Frobenius norm, so the best approximation of V t is given by Ṽ t(Ṽ t)�V t.

By definition of Zt, we have

V t − Ṽ t(Ṽ t)�V t = V t(I − Zt(Zt)�(V t)�V t) = V t(I − Zt(Zt)�Gt)

= V t(I − PD̃D̃�P�PDP�) = V tP (I − D̃D̃�D)P�.

A simple computation reveals

(D̃D̃�D)ij =

{
δij if i ≤ kt

0 otherwise,

so we find

‖V t − Ṽ t(Ṽ t)�V t‖2
F = ‖V tP (I − D̃D̃�D)P�‖2

F

= trace
(
(I − D̃D̃�D)�P�(V t)�V tP (I − D̃D̃�D)

)
= trace (diag{0, . . . , 0, λkt+1, . . . , λk}) =

k∑
i=kt+1

λi.

The estimate for the operator norm can be derived by replacing the trace operator by
the spectral radius, since �(X�X) = ‖X‖2

2.
In practical applications, it is sometimes a good idea to choose the original rank k to

be larger than #t̂. In this case, the rank of Gt would be bounded by m := min{k,#t̂}
and computing the Schur decomposition of Gt would give us at least k−m > 0 vanishing
eigenvalues that are irrelevant to the orthogonalization process.

In order to avoid this, we can use Householder transformations to compute a decom-
position V t|t̂×k = LQ of V t|t̂×k into a lower triangular (with respect to an arbitrary,
but fixed, ordering of t̂) matrix L ∈ R

t̂×k and a unitary matrix Q ∈ R
k×k that can be

represented by a product of m elementary reflectors.
Since L is lower triangular, only its first m columns will differ from zero, so only the

upper left m × m block of the transformed Gram matrix QGtQ� = L�L will contain
non-zero entries. In order to find the relevant eigenvalues and eigenvectors of Gt, we can
therefore transform by Q, compute the Schur decomposition of the upper m × m block
and reverse the transformation.

Computing the LQ decomposition requires O(km2) operations, solving the reduced
eigenvalue problem requires O(m3) operations, transforming the kt relevant eigenvectors
requires O(mkkt) operations and creating Zt requires O(mkkt) operations, so we can
construct the matrix Zt by a total of O(m2k +m3 +mkkt) ⊆ O(m2(k +m)) operations,
which is significantly better than the original O(k2#t̂+ k3 + k2kt) if k is larger than #t̂.

7

3.2 Non-leaf clusters

Applying the Gram-Schmidt procedure directly to all clusters V t will yield orthogonal
cluster bases Ṽ t, but these bases will no longer be nested. Since this property is very
important for the efficiency of the algorithm, we will now modify the construction in
order to ensure that the orthogonalized cluster bases are again nested.

We assume that orthogonal cluster bases have already been constructed for all t′ ∈
sons(t) (e.g., by a recursive procedure). A nested cluster basis is characterized by (10),
so we have to be able to find transfer matrices T̃ t′ for all t′ ∈ sons(t) such that

Ṽ t =
∑

t′∈sons(t)

Ṽ t′ T̃ t′

holds. This implies that the range of Ṽ t is a subspace of

V̂t :=
⊕

t′∈sons(t)

range Ṽ t′ ⊆ R
I .

Therefore, we replace V t by the best approximation satisfying this condition, i.e., by its
orthogonal projection

V̂ t :=

⎛⎝ ∑
t′∈sons(t)

Ṽ t′(Ṽ t′)�

⎞⎠V t. (12)

Since V t is already nested, we can use (10) in order to get

V̂ t =

⎛⎝ ∑
t′∈sons(t)

Ṽ t′(Ṽ t′)�

⎞⎠V t =
∑

t′∈sons(t)

Ṽ t′(Ṽ t′)�V t′T t′ =
∑

t′∈sons(t)

Ṽ t′P t′T t′ ,

where the matrices P t′ := (Ṽ t′)�V t′ describe the transformation from the original to
the new bases.

For any matrix Zt ∈ R
k×kt

, a cluster basis defined by Ṽ t = V̂ tZt will still satisfy

Ṽ t = V̂ tZt =
∑

t′∈sons(t)

Ṽ t′P t′T t′Zt =
∑

t′∈sons(t)

Ṽ t′ T̃ t′

with
T̃ t′ := P t′T t′Zt. (13)

This means that we can proceed as in the case of leaf clusters and choose a matrix Zt

satisfying
(Zt)�ĜtZt = I (14)

for the modified Gram matrix

Ĝt =
∑

t′∈sons(t)

(Ṽ t′P t′T t′)�(Ṽ t′P t′T t′) =
∑

t′∈sons(t)

(P t′T t′)�(Ṽ t′)�Ṽ t′(P t′T t′)

8

=
∑

t′∈sons(t)

(P t′T t′)�(P t′T t′).

This matrix Zt defines the transfer matrices of the orthogonal nested cluster basis we
are looking for by equation (13).

In order to form Ĝt, we need the matrices P t′ = (Ṽ t′)�V t′ . For the leaf clusters, they
can be constructed directly. For non-leaf clusters, we can use the nested structure of
both original and new cluster bases to derive the following update equation:

P t = (Ṽ t)�V t =

⎛⎝ ∑
t′∈sons(t)

Ṽ t′ T̃ t′

⎞⎠� ⎛⎝ ∑
t′∈sons(t)

V t′T t′

⎞⎠ =
∑

t′∈sons(t)

(T̃ t′)�P t′T t′ . (15)

For leaf clusters, we applied an LQ-decomposition in the case #t < k in order to reduce
the complexity. We can do the same in the case of non-leaf clusters: Let s := # sons(t)
and let sons(t) = {t1, . . . , ts}. Then Ĝt can be written in the form

Ĝt = (Xt)�Xt

with

Xt :=

⎛⎜⎝P t1T t1

...
P tsT ts

⎞⎟⎠ . (16)

The auxiliary matrix Xt has q := kt1 + . . . + kts rows and k columns. If q < k holds, we
can again use Householder transformations to compute an LQ-decomposition Xt = LQ
of Xt and solve an m-dimensional eigenvalue problem with m := min{q, k} instead of a
k-dimensional one.

We can compute Ĝt in O(qk2), find the matrix Zt in O(m2k+m3+mkkt) ⊆ O(m2(k+
m)), and construct P t in O(q(k +kt)k) ⊆ O(qk2) operations, so the total complexity for
orthogonalizing V t is O(qk2 + m2(k + m)).

Lemma 3 (Local truncation error) Let λ1 ≥ . . . ≥ λk ≥ 0 be the eigenvalues of Ĝ.
Then we have

inf{‖V̂ t − Ṽ tR‖2
F : R ∈ R

kt×k} = ‖V̂ t − Ṽ t(Ṽ t)�V̂ t‖2
F = εt

F :=
k∑

i=kt+1

λi and

inf{‖V̂ t − Ṽ tR‖2
2 : R ∈ R

kt×k} = ‖V t − Ṽ t(Ṽ t)�V̂ t‖2
2 = εt

2 := λkt+1.

Proof. Apply Lemma 2 to V̂ t.

3.3 Global properties

We define the set of descendants of a cluster t ∈ TI by

sons∗(t) := {s ∈ TI : ŝ ⊆ t̂}

9

and corresponding transfer matrices by

T s,t :=

{
I if sons(t) = ∅
T s,t′T t′ if t′ ∈ sons(t) with ŝ ⊆ t̂′

for all s ∈ sons∗(t). Due to the definition of sons∗(t) and the cluster tree TI , T s,t is
well-defined.

We can combine the local estimates to get a global bound for the truncation error:

Theorem 4 (Truncation error) We have

‖V t − Ṽ t(Ṽ t)�V t‖2
F ≤

∑
s∈sons∗(t)

εs
F ‖T s,t‖2

2 and (17)

‖V t − Ṽ t(Ṽ t)�V t‖2
2 ≤

∑
s∈sons∗(t)

εs
2‖T s,t‖2

2 (18)

for all t ∈ TI . Here, εs
F , εs

2 are defined as in Lemma 2 for leaf clusters and as in Lemma 3
for non-leaf clusters.

Proof. The proof is split into three parts: We start by proving that the local error in a
cluster is perpendicular with respect to all of its ancestors, then we represent the global
error in terms of the local errors, and we conclude by demonstrating that we can apply
Pythagoras’ equality in order to get a bound for the global error.

Step 1: We denote the local errors by

Et :=

{
V t − Ṽ t(Ṽ t)�V t if sons(t) = ∅
V̂ t − Ṽ t(Ṽ t)�V̂ t otherwise

for all t ∈ TI . We will start by proving that

〈Ṽ tx,Esy〉 = 0 (19)

holds for all s, t ∈ TI with ŝ ⊆ t̂ and all x ∈ R
kt

, y ∈ R
k. We do this by induction over

level(s) − level(t) = n ∈ N0. The case level(s) = level(t) is trivial, since it implies s = t.
Let n ∈ N0. We assume that (19) holds for all s, t ∈ TI with level(s) − level(t) = n

and ŝ ⊆ t̂. Let s, t ∈ TI with level(s) − level(t) = n + 1 and ŝ ⊆ t̂. The assumption
implies sons(t) 	= ∅, so there is a t′ ∈ sons(t) with ŝ ⊆ t̂′, and level(s)− level(t′) = n. We
apply the induction assumption to get

〈Ṽ tx,Esy〉 =
∑

t′′∈sons(t)

〈Ṽ t′′ T̃ t′′x,Esy〉 = 〈Ṽ t′ T̃ t′x,Esy〉 = 0,

which completes the induction.
Step 2: We denote the global errors by

Êt := V t − Ṽ t(Ṽ t)�V t.

10

By definition, we have Êt = Et for all t ∈ TI with sons(t) = ∅, i.e., for all leaf clusters.
For non-leaf clusters, we can use

(Ṽ t)�V t = (Zt)�(V̂ t)�V t = (Zt)�
∑

t′∈sons(t)

(P t′T t′)�(Ṽ t′)�V t′T t′

= (Zt)�
∑

t′∈sons(t)

(P t′T t′)�P t′T t′ = (Ṽ t)�V̂ t

in order to prove

Êt = V t − V̂ t + V̂ t − Ṽ t(Ṽ t)�V t

=
∑

t′∈sons(t)

(V t′ − Ṽ t′(Ṽ t′)�V t′)T t′ + V̂ t − Ṽ t(Ṽ t)�V̂ t

=
∑

t′∈sons(t)

Êt′T t′ + Et,

so the recurrence relation

Êt =

{
Et if sons(t) = ∅
Et +

∑
t′∈sons(t) Êt′T t′ otherwise

holds for all t ∈ TI . A simple induction using the definitions of T s,t and Êt yields

Êt =
∑

s∈sons∗(t)

EsT s,t (20)

for all t ∈ TI .
Step 3: In order to be able to apply Pythagoras’ equality to the norm of (20), we have

to establish that the ranges of the terms EsT s,t appearing in this sum are orthogonal,
i.e., that

〈Es1x,Es2y〉 = 0 (21)

holds for all s1, s2 ∈ sons∗(t) with s1 	= s2 and all x, y ∈ R
k.

If ŝ1 ∩ ŝ2 = ∅ holds, this follows directly from the definition of V s1, Ṽ s1, V s2 and Ṽ s2:
For all i ∈ ŝ1, we have i 	∈ ŝ2, so the i-th row of V s2 and Ṽ s2 vanishes, and therefore the
entire inner product also vanishes.

If ŝ1 ∩ ŝ2 	= ∅ holds, we have either s1 ∈ sons∗(s2) or s2 ∈ sons∗(s1). Since both cases
are similar, we consider only the latter one. Our assumptions imply sons(s1) 	= ∅, i.e.,

Es1x = V̂ s1x−Ṽ s1(Ṽ s1)�V̂ s1x = V̂ s1x−V̂ s1Zs1(Ṽ s1)�V̂ s1x = V̂ s1(I−Zs1(Ṽ s1)�V̂ s1)x.

Now we can apply (19) to prove (21), and Pythagoras’ equality yields

‖Ês‖2
F =

∑
s∈sons∗(t)

‖EsT s,t‖2
F and ‖Ês‖2

2 =
∑

s∈sons∗(t)

‖EsT s,t‖2
2.

11

Using the submultiplicativity of the norms and the error bounds from Lemma 2 and
Lemma 3 concludes the proof.
In order to apply this general error estimate to our case, we need a bound for the operator
norm of the matrices T s,t. By a simple induction based on the definition (9), we find

T s,t
νµ = Lt

µ(xs
ν).

If the interpolation operator is stable with stability constant Λ, we have ‖Lt
ν‖∞ ≤ Λ,

i.e., |T s,t
ij | ≤ Λ for all i, j ∈ {1, . . . , k}. This implies ‖T s,t‖2

2 ≤ k2Λ2.

Theorem 5 (Matrix error) Let V = (V t)t∈TI and W = (W s)s∈TI be cluster bases
and let Ṽ = (Ṽ t)t∈TI and W̃ = (W̃ s)s∈TI be orthogonal cluster bases satisfying

‖V t − Ṽ t(Ṽ t)�V t‖2
F ≤ εt and ‖W s − W̃ s(W̃ s)�W s‖2

F ≤ εs

for all t, s ∈ TI . For each (t, s) ∈ Pfar, we define

S̃t,s := (Ṽ t)�V tSt,s(W s)�W̃ s.

Then we get the following error bound:

‖V tSt,s(W s)� − Ṽ tS̃t,s(W̃ s)�‖2
F ≤ εt‖St,s(W s)�‖2

2 + εs‖V tSt,s‖2
2.

Proof. By Pythagoras’ equality, we have

‖V tSt,s(W s)� − Ṽ tS̃t,s(W̃ s)�‖2
F

= ‖V tSt,s(W s)� − Ṽ t((Ṽ t)�V tSt,s(W s)�W̃ s)(W̃ s)�‖2
F

= ‖V tSt,s(W s)� − Ṽ t(Ṽ t)�V tSt,s(W s)�‖2
F

+ ‖Ṽ t(Ṽ t)�V tSt,s(W s)� − Ṽ t(Ṽ t)�V tSt,s(W s)�W̃ s(W̃ s)�‖2
F

≤ ‖V t − Ṽ t(Ṽ t)�V t‖2
F ‖St,s(W s)�‖2

2

+ ‖Ṽ t(Ṽ t)�V tSt,s‖2
2‖(W s)� − (W s)�W̃ s(W̃ s)�‖2

F

≤ εt‖St,s(W s)�‖2
2 + ‖V tSt,s‖2

2εs.

This general error estimate implies that we need bounds for ‖St,s(W s)�‖2
2 and ‖V tSt,s‖2

2

in order to find error bounds for the approximated matrix. We will consider only the
second case, since the first follows directly due to symmetry. For each of the matrix
entries of V tSt,s with (t, s) ∈ Pfar, we get

|(V tSt,s)iµ| =

∣∣∣∣∣
k∑

ν=1

V t
iνSt,s

νµ

∣∣∣∣∣ =

∣∣∣∣∣
k∑

ν=1

∫
Ω

ϕi(x)Lt
ν(x) dx κ(xt

ν , xs
µ)

∣∣∣∣∣
=

∣∣∣∣∫
Ω

ϕi(x)It[κ(·, xs
µ)](x) dx

∣∣∣∣ ≤ ‖ϕi‖L1‖It[κ(·, xs
µ)]‖L∞(Bt)

12

≤ Λ‖ϕi‖L1‖κ(·, xs
µ)‖L∞(Bt).

Since κ is asymptotically smooth (cf. (2)) and since (t, s) is admissible, we find

‖κ(·, xs
µ)‖L∞(Bt) � dist(Bt, Bs)−g � diam(Bt)−g.

For quasi-regular grids with grid parameter h, we can expect h � diam(Bt) and ‖ϕi‖L1 ∼
hdΩ , where dΩ is the dimension of the sub-manifold Ω, so combining the estimates gives
us

|(V tSt,s)iµ| � ΛhdΩ−g

and therefore
‖V tSt,s‖2

2 � Λ2h2(dΩ−g)k#t̂.

Lemma 6 (Complexity) For a general cluster tree with c clusters, the orthogonaliza-
tion algorithm requires O(ck3) ⊆ O(nk3) operations.

Proof. Using the LQ decomposition, we can perform all operations for a leaf cluster in
O(m2(k+m)) and for a non-leaf cluster in O

(
k2

∑
t′∈sons(t) kt′ + m2(k + m)

)
operations.

Since m ≤ k and kt ≤ k hold, we have

∑
t∈TI

⎛⎝k2
∑

t′∈sons(t)

kt′ + m2(k + m)

⎞⎠ ≤
∑

t′∈TI

k2kt +
∑
t∈TI

2k3 ≤ 3ck3

and get the desired bound for the total complexity.

Remark 7 For balanced cluster trees, the above complexity estimate can be improved.
In order to keep the argument simple, we assume that n = 2p holds and that TI is a
balanced binary tree. This implies that #t̂ = 2p−level(t) holds for all t ∈ TI. Then the
improved bound of O(nk2(log2 k + 1)) for the complexity can be derived as follows: We
split the set of clusters into

Tlarge := {t ∈ TI : #t̂ ≥ k} and Tsmall := {t ∈ TI : #t̂ < k}

and define
�∗ := min{� : 2p−� < k}.

For all t ∈ Tlarge, we have 2p−level(t) = #t̂ ≥ k, i.e., level(t) < �∗. The minimality of �∗

implies

#Tlarge ≤ 2�∗ = 2 2�∗−1 = 2
2p

2p−(�∗−1)
≤ 2

2p

k
= 2n/k.

The orthogonalization requires not more than O(k3) operations for each cluster t ∈ Tlarge,
so summing over all of these clusters gives us a complexity of O(nk2).

Now let us consider the clusters in Tsmall. For each t in this set, we have 2p−level(t) =
#t̂ < k, i.e., level(t) ≥ �∗. By definition, we have m = min{k,#t̂}, so we need not

13

more than O(m2(k + m)) ⊆ O(k2#t̂) operations for leaf clusters and not more than
O(m2(k + m) + (kt1 + kt2)k2) ⊆ O(k2#t̂) operations for non-leaf clusters. Due to∑

t∈Tsmall

k2#t̂ ≤ k2
p∑

�=�∗

∑
{t,level(t)=�}

#t̂ = k2
p∑

�=�∗
n

= k2n(p − �∗ + 1) ≤ k2n(log2(k) + 1),

the total complexity for all clusters in Tsmall is in O(nk2(log2(k) + 1)). Combining the
estimates for Tlarge and Tsmall, we get the desired bound for the complexity of the entire
algorithm.

Remark 8 In [18], a similar approach is used in the context of multipole expansions
and wavelet bases: The matrix V t is created by discretizing harmonic polynomials and
then orthogonalized by using a singular value decomposition.

4 Recompression

The orthogonalization process uses only the cluster basis and transfer matrices. These
matrices depend only on the discretization and the geometry, but not on the kernel
function. This means that we cannot expect the process to reach the efficiency of multi-
pole methods, since these use expansions that are designed for a specific type of kernel
function.

If we aim for optimal cluster bases, we therefore have to take the kernel function into
account. After polynomial approximation, all the information on the kernel function is
contained in the coefficient matrices St,s (cf. (8)), and we can use this information to
construct better cluster bases.

Our approach is based on the algorithm presented in [2]. By modifying the computa-
tion of the Gram matrices used in the eigenvalue problems, we can derive a variant that
requires only O(ck3) operations.

4.1 Efficient computation of Gram matrices

The fundamental step in the adaptive algorithm is the efficient computation of Gram
matrices describing the interaction of the basis vectors.

We apply this algorithm to an H2-matrix approximation K̃ that can be constructed
by interpolation or similar techniques.

For the adaptive algorithm, we will need restrictions of matrices to subsets. We
introduce the notation

A|0
t̂×ŝ

:=

{
Aij if i ∈ t̂, j ∈ ŝ

0 otherwise

for matrices A ∈ RI×I and clusters t, s ∈ TI . The basis construction algorithm from [2]
requires the cluster Gram matrix

Gt :=
∑

s∈P t+
far

K̃|0
t̂×ŝ

(K̃|0
t̂×ŝ

)�. (22)

14

for
P t+

far := {s ∈ TI : there exists t+ ∈ TI with t̂ ⊆ t̂+ and(t+, s) ∈ Pfar}
(compare [2, eq. (5.4)]). The basic idea for building Gt efficiently is to split P t+

far into
tree levels and use the recursive representation

Gt =

{∑
s∈P t

far
K̃|0

t̂×ŝ
(K̃|0

t̂×ŝ
)� + Gt∗ |0

t̂×t̂
if t has a father t∗ ∈ TI∑

s∈P t
far

K̃|0
t̂×ŝ

(K̃|0
t̂×ŝ

)� otherwise,

with
P t

far := {s ∈ TI : (t, s) ∈ Pfar}.
Using the special structure (6) of the terms in the sum, we get

∑
s∈TI ,(t,s)∈Pfar

K̃|0
t̂×ŝ

(K̃|0
t̂×ŝ

)� = V t

⎛⎝ ∑
s∈P t

far

St,s(W s)�W s(St,s)�

⎞⎠ (V t)�.

Since the cluster basis V is nested, we have

(V tX(V t)�)|0
t̂′×t̂′ = V t′T t′X(T t′)�(V t′)�,

for any matrix X ∈ R
k×k, so a simple induction shows that

Gt = V tCt(V t)� (23)

holds for all t ∈ TI , where Ct is given by

Ct :=

{∑
s∈P t

far
St,s(W s)�W s(St,s)� + T tCt∗(T t)� if t has a father t∗ ∈ TI∑

s∈P t
far

St,s(W s)�W s(St,s)� otherwise.
(24)

We can use the nested structure of the cluster basis W in order to prepare the auxiliary
matrices Y s := (W s)�W s for all s ∈ TI by a recursive procedure in O(ck3). Using Y s,
the matrices Ct for all t ∈ TI can be computed in O(ck3) operations.

4.2 Construction of adaptive bases

According to [2], the optimal cluster basis matrix Ṽ t ∈ R
t̂×kt

for a leaf cluster t ∈ TI is
orthogonal and maximizes the quantity∑

s∈P t+
far

‖(Ṽ t)�K̃|0
t̂×ŝ

‖2
F ,

and the solution of this maximization problem can be constructed by using an orthogonal
basis of the eigenvectors corresponding to the kt largest eigenvalues of the matrix Gt

defined in (22).

15

Due to (23), Gt can be computed in O((k + #t̂)kt̂) operations, and the eigenvalue
problem can be solved in O(#t̂3) operations. Equation (23) implies that the rank of Gt

cannot exceed m := min{k,#t̂}.
If t ∈ TI is not a leaf cluster, we again have to ensure that the new cluster basis is

nested. As in the case of orthogonalization, we do this by projecting V t into the space
spanned by the cluster bases of the sons of t, i.e., by replacing V t by its orthogonal
projection V̂ t defined in (12). This leads to a modified Gram matrix

Ĝt := V̂ tCt(V̂ t)�.

This matrix differs in one important point from the one used in the orthogonalization
procedure: Since V̂ t appears “outside” of the product, we would have to solve an eigen-
value problem of dimension #t̂. This would be too expensive for large clusters, so we
have to find a way of reducing the dimension.

For sons(t) = {t1, . . . , ts}, we can split the projected matrix V̂ t into an orthogonal
rectangular matrix and a remainder with q := kt1 + . . . + kts rows:

V̂ t =
∑

t′∈sons(t)

Ṽ t′P t′T t′ =
(
Ṽ t1 . . . Ṽ ts

) ⎛⎜⎝P t1T t1

...
P tsT ts

⎞⎟⎠ .

If we set
Qt :=

(
Ṽ t1 . . . Ṽ ts

)
and recall the definition of Xt in (16), we can rewrite Ĝt in the form

Ĝt = QtXtCt(Xt)�(Qt)�.

Since the matrix Qt is orthogonal, the non-zero eigenvalues of the matrices XtCt(Xt)�

and Ĝt are identical, and the eigenvectors of the latter can be computed from those of
the former by applying Qt. This means that we can solve the eigenvalue problem by
only O(q3) operations instead of the O((#t̂)3) operations of the direct approach.

We construct the orthogonal matrix Zt ∈ R
q×kt

from an orthogonal eigenvector basis
corresponding to the kt largest eigenvalues of XtCt(Xt)�. Then Ṽ t = QtZt contains
the eigenvectors of Ĝt corresponding to its kt largest eigenvalues. Since t is not a leaf
cluster, we have to compute the transfer matrices T̃ t′ satisfying

Ṽ t =
∑

t′∈sons(t)

Ṽ t′ T̃ t′ =
(
Ṽ t1 . . . Ṽ ts

) ⎛⎜⎝T̃ t1

...
T̃ ts

⎞⎟⎠ = Qt

⎛⎜⎝T̃ t1

...
T̃ ts

⎞⎟⎠ .

Due to the definition of Ṽ t and the orthogonality of Qt, this implies⎛⎜⎝T̃ t1

...
T̃ ts

⎞⎟⎠ = (Qt)�Ṽ t = (Qt)�QtZt = Zt,

and we can extract the transfer matrices directly from Zt.

16

4.3 Complete algorithm

We have seen that we can compute adaptive row cluster bases efficiently if the matrices
Ct have been prepared in advance. In order to do this efficiently, we need the additional
auxiliary matrices Y s := (W s)�W s.

Since W is nested, we have

Y s =

{∑
s′∈sons(t)(T

s′)�Y s′T s′ if sons(s) 	= ∅
(W s)�W s otherwise,

so all matrices Y s can be computed by a recursive procedure in O(ck3) operations.
Using the recursive definition (24), we can compute all matrices Ct in O(ck3) opera-

tions.

Lemma 9 (Complexity) Let Cleaf , Csp, Csons ∈ N such that #t̂ ≤ Cleaf holds for all
leaf clusters t ∈ TI , that sons(t) ≤ Csons holds for all non-leaf clusters t ∈ TI, and that

{s : (t, s) ∈ Pfar} ≤ Csp and {s : (s, t) ∈ Pfar} ≤ Csp (25)

holds for all clusters t ∈ TI . Then the adaptive construction of a row or a column cluster
basis requires O(ck3) operations.

Proof. We start be noticing that column cluster bases can be computed by applying our
algorithm to K̃� instead of K̃, so we only have to consider the case of row cluster bases.

Due to (25), the construction of Ct can be accomplished in O(k3) operations by using
the equation (24). Computing all matrices Ct recursively requires O(ck3) operations.

Forming the matrices Xt requires O(k2kt) operations for each cluster, leading to a
total of O(ck3) operations.

Using Csons and Cleaf , we can show that each eigenvalue problem can be solved in
O(k3) operations, giving us again a total of O(ck3).

Using the recursive equation (15), the matrices P t can also be computed in O(ck3)
steps, which concludes the proof.

In our case, the error analysis of [2] takes the following form:

Theorem 10 (Truncation error) For leaf or non-leaf clusters t ∈ TI, denote the
eigenvalues of Gt or Ĝt, respectively, by λt

1 ≥ . . . ≥ λt
m and set

εt
F :=

m∑
i=kt+1

λt
i.

The matrix K̂ ∈ R
I×I defined by

K̂|0
t̂×ŝ

:=

{
Ṽ tS̃t,s(W s)� if (t, s) ∈ Pfar

K|0
t̂×ŝ

otherwise
with S̃t,s := (Ṽ t)�V tSt,s = P tSt,s

for (t, s) ∈ P satisfies
‖K̃ − K̂‖2

F ≤
∑
t∈TI

εt
F .

17

Proof. See [2, Remark 5.1, Lemma 7.1].
Of course, a similar estimate holds for the column cluster bases, so that the approx-

imation error for orthogonalized row and column bases can be bounded by [2, Lemma
5.2].

Remark 11 (Adaptivity) We can control the approximation error by choosing kt ap-
propriately. This has to be done carefully, since we have to balance three sources of
errors: The discretization error of the Galerkin method, the error introduced by interpo-
lating the kernel function, and the approximation error of the algebraic compression.

If the discretization error is large, choosing a high-order interpolation scheme is not a
good idea. And if the interpolation order is low, using a high rank in the recompression
algorithm will only approximate the “numerical garbage” introduced by the inaccurate
interpolation.

Remark 12 (Variable rank) For special kernel functions, it is possible to choose the
order of the interpolation for each box Bt depending on the size of Bt. If the size of the
box and the order are carefully balanced, the H2-matrix constructed by interpolation will
require only O(n) units of storage and matrix-vector multiplication can be accomplished
in O(n) operations ([16, 17, 5]).

We can apply both the orthogonalization and the recompression algorithm presented
here to these modified approximations, and a careful analysis shows that they will also
require only O(n) operations.

5 Numerical experiments

We test the algorithms by applying them to the trace of the classical double layer po-
tential operator

KDLP[u](x) :=
∫

Γ
u(y)

∂

∂n(y)
1

4π‖x − y‖ dy

for x ∈ Γ, discretized by piecewise constant or linear basis functions on a quasi-regular
triangulation of the unit sphere ΓS := {‖x‖2 = 1} or the unit cube ΓC := {‖x‖∞ = 1}.

The matrices of the approximation are defined by

V t
iν :=

∫
Γ

ϕi(x)Lt
ν(x) dx, W s

jµ :=
∫

Γ
ϕj(y)

∂

∂n(y)
Ls

µ(y) dy, St,s
νµ :=

1
4π‖xt

ν − xs
µ‖

,

where the Lagrange polynomials Lt
ν correspond to tensor Chebyshev interpolation for

the minimal axis-parallel box Bt containing the support of all piecewise constant basis
functions ϕi with i ∈ t̂.

We construct the cluster tree by recursive bisection stopping if a cluster contains not
more than 32 degrees of freedom, and use the simple admissibility condition

max{diam(Bt),diam(Bs)} ≤ η dist(Bt, Bs)

with η = 2 instead of (3) to create a block partition.

18

n Build Bld/n Memory Mem/n MVM Error
2048 8 4.0 34.0 17.0 0.06 6.1−4

8192 35 4.3 168.6 21.1 0.31 6.0−4

32768 150 4.6 703.1 22.0 1.34 6.8−4

131072 773 5.9 2810.2 22.0 5.44 7.2−4

524288 3262 6.2 11281.7 22.0 21.85 7.5−4

Table 1: Orthogonalization of cluster bases on the sphere ΓS with cubic interpolation

n Build Bld/n Memory Mem/n MVM Error
2048 11 5.4 7.5 3.7 0.01 5.9−4

8192 46 5.6 34.9 4.3 0.11 6.5−4

32768 186 5.7 147.4 4.5 0.47 6.9−4

131072 760 5.8 607.9 4.6 2.15 7.0−4

524288 3245 6.2 2685.9 5.2 9.46 7.4−4

Table 2: Recompression of cluster bases on the sphere ΓS with cubic interpolation and
recompression tolerance ε = 10−3

In order to reduce the storage requirements, the original H2-matrix approximation
constructed by interpolation is not stored, but created in temporary storage whenever
the orthogonalization or recompression algorithms require it. All computations were
performed by HLib [1] on UltraSPARC IIIcu processors running at 900 MHz.

In the first example, we apply the orthogonalization algorithm to an intermediate
approximation constructed by cubic interpolation. The results of the experiment are
reported in Table 1. The first and second column give the time for the construction of the
approximation: The first column contains the total time in seconds, the second contains
the time per degree of freedom in milliseconds. The third and fourth column give the
amount of storage needed, again the total in MB and per degree of freedom in KB. The
fifth column contains the time in seconds required for one matrix-vector multiplication,
and the sixth column gives the relative approximation error in the operator norm. We
can see that the relative error is bounded by 10−3 and that time and storage requirements
grow linearly in the number of degrees of freedom.

The second example is the recompression algorithm. Comparing the results in Table 2
to those of the orthogonalization procedure, we see that the storage requirements and
the time per matrix-vector multiplication are significantly reduced, while the time for
building the approximation is only slightly increased.

The storage requirements can be reduced significantly by increasing the admissibility
parameter η. In order to reach a sufficient accuracy despite of the resulting weaker
admissibility condition, we would have to increase the interpolation order, and this
implies a higher computational complexity.

There are applications that require an approximation error below the value 10−3 use
in Table 2. In order to reach the range of 10−4, we have to use quartic instead of cubic

19

n Build Bld/n Memory Mem/n MVM Error
2048 28 13.9 9.0 4.5 0.02 8.3−5

8192 138 16.9 42.2 5.3 0.13 8.2−5

32768 577 17.6 183.8 5.7 0.56 1.1−4

131072 2450 18.7 781.3 6.1 2.50 1.2−4

524288 9789 18.7 3296.5 6.4 10.68 1.2−4

Table 3: Recompression of cluster bases on the sphere ΓS with quartic interpolation and
recompression tolerance ε = 10−4

n Build Bld/n Memory Mem/n MVM Error
3072 27 9.08 12.8 4.3 0.03 2.9−4

12288 113 9.16 46.6 3.9 0.14 4.3−4

49152 452 9.19 168.0 3.5 0.51 5.6−4

196608 1791 9.11 609.4 3.2 1.91 6.4−4

786432 7097 9.02 2245.3 2.9 6.96 7.0−4

Table 4: Recompression of cluster bases on the cube ΓC with quartic interpolation and
recompression tolerance ε = 10−3

interpolation (i.e., five interpolation points per coordinate direction) and reduce the
tolerance for the recompression algorithm to 10−4. The results are listed in Table 3: The
computation time is increased significantly, since each coefficient matrix now has 56 =
15625 entries instead of 46 = 4096, but the storage requirements grow only moderately.
The relative approximation error is close to the desired value of 10−4, increasing the
interpolation order further would reduce it below this mark.

Experiments carried out on the unit sphere ΓS do not provide us with information
about the behaviour of our method for domains with edges. In order to verify that
the recompression algorithm can cope with this type of domain, we consider the unit
cube ΓC . Table 4 shows that we can reach a relative error below 10−3 by using quartic
interpolation. Compared to the unit sphere, the storage requirements are reduced, but
the quartic interpolation leads to a 50% increase of the time required for building the
approximation.

References

[1] S. Börm and L. Grasedyck, HLib – a library for H- and H2-matrices, 1999.
Available at http://www.hlib.org/.

[2] S. Börm and W. Hackbusch, Data-sparse approximation by adaptive H2-
matrices, Computing, 69 (2002), pp. 1–35.

[3] , H2-matrix approximation of integral operators by interpolation, Applied Nu-
merical Mathematics, 43 (2002), pp. 129–143.

20

[4] , Approximation of boundary element operators by adaptive H2-matrices, Foun-
dations of Computational Mathematics, 312 (2004), pp. 58–75.

[5] S. Börm, M. Löhndorf, and J. M. Melenk, Approximation of integral op-
erators by variable-order interpolation, Tech. Rep. 82, Max Planck Institute for
Mathematics in the Sciences, 2002. To appear in Numerische Mathematik.

[6] S. Börm and S. A. Sauter, BEM with linear complexity for the classical boundary
integral operators, Tech. Rep. 15, Institute of Mathematics, University of Zurich,
2003. To appear in Mathematics of Computation.

[7] A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and fast solu-
tion of integral equations, J. Comput. Phys., 90 (1990), pp. 348–370.

[8] W. Dahmen and R. Schneider, Wavelets on manifolds I: Construction and do-
main decomposition, SIAM Journal of Mathematical Analysis, 31 (1999), pp. 184–
230.

[9] K. Giebermann, Multilevel approximation of boundary integral operators, Com-
puting, 67 (2001), pp. 183–207.

[10] L. Grasedyck and W. Hackbusch, Construction and arithmetics of H-matrices,
Computing, 70 (2003), pp. 295–334.

[11] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Jour-
nal of Computational Physics, 73 (1987), pp. 325–348.

[12] L. Greengard and V. Rokhlin, A new version of the fast multipole method
for the Laplace in three dimensions, in Acta Numerica 1997, Cambridge University
Press, 1997, pp. 229–269.

[13] W. Hackbusch, B. Khoromskij, and S. Sauter, On H2-matrices, in Lectures
on Applied Mathematics, H. Bungartz, R. Hoppe, and C. Zenger, eds., Springer-
Verlag, Berlin, 2000, pp. 9–29.

[14] W. Hackbusch and Z. P. Nowak, On the fast matrix multiplication in the
boundary element method by panel clustering, Numerische Mathematik, 54 (1989),
pp. 463–491.

[15] V. Rokhlin, Rapid solution of integral equations of classical potential theory, Jour-
nal of Computational Physics, 60 (1985), pp. 187–207.

[16] S. Sauter, Variable order panel clustering (extended version), Tech. Rep. 52, Max-
Planck-Institut für Mathematik, Leipzig, Germany, 1999.

[17] , Variable order panel clustering, Computing, 64 (2000), pp. 223–261.

[18] J. Tausch and J. White, Multiscale bases for the sparse representation of bound-
ary integral operators on complex geometries, SIAM J. Sci. Comput., 24 (2003),
pp. 1610–1629.

21

Steffen Börm
Max-Planck-Institut für Mathematik in den Naturwissenschaften
Inselstrasse 22–26
04103 Leipzig
Germany
sbo@mis.mpg.de

22

