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Abstract

In [8], a class of (data-sparse) hierarchical (H-) matrices is introduced that can be used to efficiently
assemble and store stiffness matrices arising in boundary element applications. In this paper, we develop
and analyse modifications in the construction of an H-matrix that will allow an efficient application
to problems involving adaptive mesh refinement. In particular, we present a new clustering algorithm
such that, when an H-matrix has to be updated due to some adaptive grid refinement, the majority
of the previously assembled matrix entries can be kept whereas only a few new entries resulting from
the refinement have to be computed. We provide an efficient implementation of the necessary updates
and prove for the resulting H-matrix that the storage requirements as well as the complexity of the
matrix-vector multiplication are almost linear, i.e., O(n log(n)).

AMS Subject Classification: 65F05, 65F30, 65N38, 65N50
Key words: Hierarchical matrices, data-sparse approximation, adaptive mesh refinement, boundary ele-
ments

1 Introduction

In the following, we want to treat boundary element matrices in an efficient way using the format of hier-
archical matrices (as explained below). The modern approach to discretisation methods is an adaptive one.
Given an intermediate boundary element triangulation on the surface, the problem is solved approximately
and an error estimator or indicator is used to predict where to refine the triangulation (cf. [4]). Often, the
refinement is only local (e.g., along edges of the surface). As a result, the boundary element matrices before
and after the refinement coincide in most of the matrix entries which therefore need not be recomputed.
Since the format of hierarchical matrices uses a particularly defined block partitioning, the question arises
whether this partitioning has to be redefined completely or whether it can be repaired locally. It is the
purpose of this paper to show that, indeed, the internal format requires only local changes, so that also the
work for the overhead is proportional to the percentage of newly introduced degrees of freedom.

The construction of an H-matrix M ∈ R
I×I is based on a hierarchical block partitioning of the product

index set I × I which itself is based on a hierarchical partitioning of the index set I. These hierarchical
partitionings are organised in so-called block cluster trees. In this paper, we introduce a geometrically
balanced (regular) clustering algorithm to build a cluster tree and block cluster tree for which we can prove
that the resulting H-matrix has a storage and matrix-vector multiplication complexity of O(n log n). We
describe how the addition or removal of a relatively small number of indices (due to adaptive mesh refinement)
can be efficiently realised for this type of (block) cluster tree, and, most importantly, we show that in this
case most matrix entries of the original matrix can be kept and only few entries have to be recomputed for
the updated matrix.

The rest of the paper is organised as follows: in Section 2, we introduce the model integral equation and the
general concept of H-matrices. In Section 3, we provide the new construction of a geometrically balanced
cluster tree and derive estimates for the complexities of storage and matrix-vector multiplication for the
resulting H-matrices. In Section 4, we then illustrate how an H-matrix is updated after an adaptive mesh
refinement. In Section 5, we provide numerical results for our proposed update scheme.
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2 Preliminaries

2.1 Model Problem: Integral Equation

We consider a Fredholm integral operator of the form

G[u](x) =
∫

Ω

g(x, y)u(y) dy (1)

on a submanifold or subdomain Ω of R
d with a kernel function

g : R
d × R

d → R.

H-matrices are based on the fact that, at least for typical kernel functions g(·, ·), singularities only occur
at the diagonal and the function is smooth everywhere else. In order to describe this property precisely,
we introduce a special notion of asymptotic smoothness : the kernel function g(·, ·) is called asymptotically
smooth, if there exist constants Cas1 and Cas2 and a singularity degree σ ≥ 0 such that for all directions
z ∈ {xj , yj} there holds the inequality

|∂ν
z g(x, y)| ≤ Cas1(Cas2‖x − y‖)−ν−σν!. (2)

This kind of operator occurs, e.g., in the integral equation formulation of the Poisson problem in R
3, where g

is the singularity function g(x, y) = 1
4π‖x−y‖−1. A standard Galerkin discretisation of G for a basis (ϕi)i∈I ,

I = {1, . . . , n}, yields a matrix G with entries

Gij :=
∫

Ω

∫
Ω

ϕi(x)g(x, y)ϕj(y) dx dy. (3)

Since, in general, the support of the kernel g is not local, G is a dense matrix.

The algorithmic complexity for computing and storing a dense matrix is quadratic in the number of degrees of
freedom, therefore different approaches have been introduced to handle this kind of matrices: for translation-
invariant kernel functions and simple geometries, the matrix G has Toeplitz structure, which can be exploited
by algorithms based on the fast Fourier transformation.

If the underlying geometry can be described by a small number of smooth maps, wavelet techniques can be
used in order to compress the resulting dense matrix [3].

Our approach is a refined combination of the panel clustering method [10] and hierarchical matrices [2, 8, 9],
which are based on the idea of replacing the kernel function locally by degenerate approximations. On the
discrete level this corresponds to the approximation of certain matrix blocks by low rank matrices. This
method is especially well suited to treat non-quasiuniform grids that arise due to an adaptive refinement.

2.2 Low Rank Approximation

The success of low rank approximations of certain matrix blocks depends on the smoothness properties of
the given kernel function (cf. (2)) together with a particular clustering of the index set as described next.
We will use the following notation: let t× s ⊆ I × I be a sub-block of the product index set I × I. We define
the corresponding domains Ωt, Ωs as the unions of the supports of the respective basis functions ϕi, i.e.,

Ωt := ∪i∈tsupp(ϕi), Ωs := ∪i∈ssupp(ϕi). (4)

Let Bt, Bs be axially parallel boxes containing Ωt, Ωs, resp. (see Figure 1). We assume that dist(Bt, Bs) > 0
holds, which implies that g|Bt×Bs is smooth. In order to ensure a uniform smoothness independent of the
sets Bt and Bs, we impose the admissibility condition

min{diam(Bt), diam(Bs)} ≤ η dist(Bt, Bs) (5)
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Figure 1: Each block t × s ⊆ I × I corresponds to a subset Ωt × Ωs of Ω ⊆ R
d.

for some parameter η > 0. On Bt×Bs, we then replace the kernel g(x, y) by a tensor Lagrange interpolation
polynomial with respect to the x-variable (analogously for the y-variable)

g̃(x, y) :=
∑

ν∈{0,...,m}d

g(xν , y)Lν(x). (6)

The approximation error (using the stable Chebyshev interpolation scheme) is estimated in

Lemma 1 (Lemma 4.1 in [1]) Let Bt, Bs be admissible with respect to (5) and let the kernel g be asymp-
totically smooth as defined in (2). Then there exists a constant Cg such that for each m ∈ N the matrix
M := G|t×s can be approximated by a matrix M̃ of rank at most (m+1)d such that the error in the Frobenius
norm is bounded by

‖M − M̃‖F ≤ Cg

√
#t #s(m + 1)d+1dist(Bt, Bs)−σ max

i∈t∪s
‖ϕi‖2

L1(1 + 2Cas2η
−1)−(m+1).

The exponential convergence with respect to the parameter m in Lemma 1 allows us to approximate each
admissible block by a matrix of very low rank (as compared to the sizes #t, #s). The key tool for the data
sparse representation of this type of matrices is the R(k)-matrix format defined in the next section.

2.3 R(k)-matrices

Definition 2 (R(k)-matrix representation) Let k, n, m ∈ N0. Let M ∈ R
n×m be a matrix of at most

rank k. A representation of M in factorised form

BTA

M = ABT , A ∈ R
n×k, B ∈ R

m×k, (7)

with A and B stored in full matrix representation, is called an R(k)-matrix representation of M , or, in short,
we call M an R(k)-matrix.

Throughout this paper the storage is measured by the number of floating point numbers to be stored, while
the cost of an operation is given by the number of elementary operations +,−, ·, /.

Remark 3 (Storage and matrix-vector product) The storage requirements NF,St(n, m) for a matrix
M ∈ R

n×m in full matrix representation is NF,St(n, m) = nm. The storage requirements NR,St(n, m, k) for
an n×m R(k)-matrix M is NR,St(n, m, k) = k(n + m). The complexities NF ·v(n, m) and NR·v(n, m, k) for
the computation of the matrix-vector product of M in full matrix and R(k)-matrix representation are

NF ·v(n, m) = 2nm− n, NR·v(n, m, k) = 2k(n + m) − n − k.
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If the rank k is small compared to the matrix size given by n and m, we therefore obtain considerable savings
in the storage and work complexities of an R(k)-matrix compared to a full matrix.

2.4 H-matrices

An H-matrix approximation to a given (full) matrix is obtained by replacing certain blocks of the matrix by
R(k)-matrices. The formal Definition 8 of an H-matrix depends on appropriate partitionings of the index
set and also the product index set which are organised in a so-called (block) cluster tree as defined next.
Instead of fixed partitionings, these trees will provide hierarchies of partitionings which is the reason why
the resulting matrices are called Hierarchical matrices.

Definition 4 (Cluster tree) Let I be a finite index set and let TI = (V, E) be a tree with vertex set V and
edge set E. For a vertex v ∈ V we define the set of sons of v as S(v) := {w ∈ V | (v, w) ∈ E}. The tree TI

is called a cluster tree of I if its vertices consist of subsets of I and satisfy the following conditions:
1. I ∈ V is the root of TI and v ⊂ I, v 	= ∅, for all v ∈ V .
2. For all v ∈ V there either holds S(v) = ∅ or v =

⋃̇
w∈S(v)w.

In the following we identify V and TI , i.e., we write v ∈ TI instead of v ∈ V. The nodes v ∈ V are called
clusters.

For regular grids one can construct the cluster tree TI in a cardinality balanced way, i.e., an index cluster is
divided into a certain number of sons of approximately the same size with respect to the number of indices
(see [8, 9]). For locally refined grids the results from [7] indicate that the cardinality balanced clustering
is not optimal. Instead, the geometrically balanced approach looks advantageous, which will be used in an
adapted version in Section 3.

Definition 5 (Leaf, father, level, depth) Let TI be a cluster tree. The set of leaves of the tree TI is
L(TI) = {v ∈ TI | S(v) = ∅}. The uniquely determined predecessor ( father) of a non-root vertex v ∈ TI is
denoted by F(v). The levels of the tree TI are defined by

T
(0)
I := {I}, T

(�)
I := {v ∈ TI | F(v) ∈ T

(�−1)
I } for � ∈ N,

and we write level(v) = � if v ∈ T
(�)
I . The depth of T is defined as depth(T ) := max{� ∈ N0 | T

(�)
I 	= ∅}.

The leaves on level � = 0, . . . , depth(T ) are

L(TI , �) := L(TI) ∩ T
(�)
I .

In the above definition of a cluster tree the nodes are labeled by subsets of the index set I. This implies that
a node v cannot have exactly one son w since part 2 of the definition would yield v = w. If, however, such
a case is desired, we can denote a vertex of a cluster tree by a tuple (v, �) where v ⊂ I and � is the level of
the node.

Remark 6 For any cluster tree TI and � ∈ {0, . . . , depth(T )} there holds

I =
⋃̇

{v | v ∈ T
(�)
I ∪ L(TI , � − 1) ∪ · · · ∪ L(TI , 0)}, in particular I =

⋃̇
{v | v ∈ L(TI)}.

A hierarchy of block partitionings of the product index set I × I is based upon a cluster tree TI and is
organised in a block cluster tree:

Definition 7 (Block cluster tree) Let TI be a cluster tree of the index set I. A cluster tree TI×I is called
a block cluster tree (based upon TI) if for all v ∈ T

(l)
I×I there exist t, s ∈ T

(l)
I such that v = t × s. The nodes

v ∈ TI×I are called block clusters.
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A canonical construction of a block cluster tree TI×I from a given cluster tree TI will follow in Construction
12.

Definition 8 (H-matrix) Let k, nmin ∈ N0. The set of H-matrices induced by a block cluster tree TI×I

with blockwise rank k and minimum block size nmin is defined by

H(TI×I , k) := {M ∈ R
I×I | ∀t × s ∈ L(T ) : rank(M |t×s) ≤ k or min{#t, #s} ≤ nmin}.

A matrix M ∈ H(TI×I , k) is said to be given in H-matrix representation if the blocks M |t×s with
rank(M |t×s) ≤ k are in R(k)-matrix representation (and the remaining blocks with min{#t, #s} ≤ nmin

are stored as full matrices). The set of indices (i, j) ∈ I × I that belong to R(k)-matrix blocks is called the
farfield while the complement is called the nearfield.

Both the accuracy and (storage) complexity of an H-matrix approximation to a given matrix depend on the
construction of an appropriate cluster tree, i.e., a hierarchy of index set partitionings. Lemma 1 provides
the approximation error for blocks that satisfy the admissibility condition, i.e., for blocks that have a large
distance compared to their diameters, whereas Remark 3 provides the storage requirements for full as well
as R(k)-matrices. Therefore, the intuitive objective in the construction of a cluster tree is to partition the
index set into clusters of vertices that are geometrically close to each other. As a result, relatively large
blocks become admissible and we obtain an accurate H-matrix approximation that is inexpensive to store.
In the following section we provide a new algorithm for the construction of a cluster tree. Results on storage
and work complexities for the resulting H-matrices will follow in Section 3.4.

3 Geometrically Balanced Clustering and H-matrix Properties

3.1 Construction of the Cluster Tree TI

In previous papers (e.g., [9], [2], [7]), a cluster tree has been constructed in a cardinality balanced way.
In Example 17, we show why this construction is not suitable in the case of adaptively refined grids. In
particular, the addition of only a few new indices might lead to a completely new and different partition
and therefore require the costly (re-) computation of all matrix entries in the farfield (and not only those
corresponding to the new indices).

Here, we will provide the construction of a geometrically balanced (regular) cluster tree, which is a modifi-
cation of the construction introduced in [7] in order to estimate the complexity of the H-matrix arithmetic.
In subsequent sections we will illustrate why these trees are well-suited for the case of adaptively refined
grids: individual indices can be efficiently inserted or removed from a given tree, and as a result only very
few matrix entries have to be computed for the update whereas most of the previously assembled entries can
be kept.

In the following construction, mi denotes the Chebyshev centre of the support of the basis function ϕi

associated with the index i (the Chebyshev centre of a set is the centre of the smallest ball containing the
set).

Construction 9 (Geometrically balanced clustering) Without loss of generality we assume that the
domain Ω is contained in the cube [0, hmax)d. We repeatedly subdivide this cube into 2d, 22d, . . . , 2pd regular
subcubes, and we denote the resulting cubes by C�

j where � indicates the level of refinement and the multiindex
j ∈ N

d refers to their positions as illustrated below:

C�
j := I�

j1 × · · · × I�
jd

with I�
i :=

[
(i − 1)2−�hmax, i2−�hmax

)
.
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The sons (successors) S(C�
j ) of a cube C�

j are defined as the 2d cubes on level � + 1 that are contained in
C�

j . This hierarchy of cubes is then used to define a cluster tree with
∑p

j=0 2dj vertices corresponding to the

subcubes where for each index subset t ∈ T
(�)
I the corresponding Chebyshev centres mi, i ∈ t, will be included

in exactly one cube C�
j =: Ct. Let root(TI) := I with corresponding cube C0

(1,...,1). For a vertex t ∈ TI with
corresponding cube Ct, the set S(t) of successors is defined by

S(t) :=
{ {sC | C ∈ S(Ct)} \ {∅} : #t > nmin

S(t) = ∅ : otherwise
where sC := {i ∈ t | mi ∈ C}.

Remark 10 The above geometrically balanced construction can lead to a vertex having exactly one successor
if, e.g., all Chebyshev centres of basis functions in C0

(1,1) are also in C1
(1,1) (see illustration above). If each

cube on the finest level contains at least one Chebyshev centre, then Construction 9 will yield a cluster tree
where each node is either a leaf or has exactly 2d successors.

3.2 Admissibility by Bounding Boxes

In Section 2.2 we have imposed the admissibility condition

min{diam(Bt), diam(Bs)} ≤ η dist(Bt, Bs)

for axially parallel boxes Bt, Bs containing the supports Ωt, Ωs of the respective basis functions (4).

Since the cube Ct that corresponds to the index set t contains only the Chebyshev-centres of Ωi for i ∈ t
(but possibly Ωi 	⊂ Ct), the bounding box for the cluster must be larger than the associated cube, and to
guarantee Ωt ⊂ Bt we define the local meshwidth ht and bounding box Bt depending on a parameter ρ ≥ 1
by

ht := max
i∈t

diam(Ωi), Bt := Ct +
ρ

2
[−ht, ht]

d
. (8)

Lemma 11 For any two nodes t, s ∈ T
(�)
I there holds

Ωt ⊂ Bt

diam(Bt) =
√

d(2−� + ρht)hmax (9)

dist(Bt, Bs) ≥ dist(Ct, Cs) − ρ

2

√
d(ht + hs). (10)

Proof: Let i ∈ t. By Construction 9 we get mi ∈ Ct. The elements in the support Ωi have a distance of
at most 1

2diam(Ωi) from the centre mi which implies Ωi ⊂ Bt. The second and third part follow from the
definition of Bt.

Using axially parallel bounding boxes will allow us to use a tensor product interpolation scheme for the
approximation of the kernel function [1]. The parameter ρ has been introduced to enlarge the bounding
boxes such that a later insertion of indices (arising from adaptive mesh refinement) does not require an
update of the bounding box (see Section 4).
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3.3 Construction of the Block Cluster Tree TI×I

Based on the cluster tree TI from Construction 9 and on the admissibility condition (5) we define the block
cluster tree TI×I as follows.

Construction 12 (Canonical block cluster tree) Let the cluster tree TI be given. We define the block
cluster tree TI×I by root(T ) := I × I and for each vertex t × s ∈ T the set of successors

S(t × s) :=
{ ∅ if min{#t, #s} ≤ nmin or t × s admissible

{t′ × s′ | t′ ∈ S(t), s′ ∈ S(s)} otherwise.

Construction 9 followed by Construction 12 yields a block cluster tree TI×I , and its leaves determine the block
partition used for an H-matrix. The estimates for the storage requirements and matrix-vector multiplication
complexity for this H-matrix depend on the depth (see Definition 5) and the sparsity Csp of the underlying
block H-tree TI×I .

Definition 13 (Sparsity) Let TI×I be a block cluster tree. We define the sparsity (constant) Csp of TI×I

by
Csp := max

t∈TI

#{s ∈ TI | t × s ∈ TI×I}. (11)

Up to now we have not posed any condition on the locality of the supports of the basis functions ϕi, which
is necessary for a successful H-matrix construction. If the basis ϕi is refined adaptively, we cannot assume
a uniform meshwidth h. Instead, we assume the following locality of the supports which, however, does not
impose a severe restriction to a typical adaptive refinement scheme.

Assumption 1 (Locality) We assume that the supports are locally separated in the sense that there exist
two constants Csep and nmin such that

max
i∈I

#{j ∈ I | dist(Ωi, Ωj) ≤ C−1
sepdiam(Ωi)} ≤ nmin. (12)

The left-hand side is the maximal number of basis functions with ‘relatively close’ supports (see Figure 2).
Note that the bound nmin is the same as in Definition 8, i.e., the choice of nmin has to satisfy (12).

Figure 2: The triangle Ωi under consideration is dark grey. The area with a distance of C−1
sepdiam(Ωi) is

light grey (Csep := 4
√

2). Here, 15 triangles (including Ωi) are ‘rather close’ to Ωi.

The next lemma is a generalisation of Lemma 4.5 in [7] where the respective estimates were obtained for an
admissibility condition based upon the actual supports Ωt instead of the (enlarged) bounding boxes Bt.

7



Lemma 14 Let Assumption 1 be satisfied, and let TI×I be the block cluster tree obtained from Constructions
9 and 12. Let hmin := mini∈I diam(Ωi). Then the following statements hold:
(a) All leaves t × s ∈ L(TI×I) are either admissible with respect to (5) or min{#t, #s} ≤ nmin.
(b) The depth of the tree is bounded by

depth(TI×I) ≤ 1 + log2

(
(1 + ρCsep)

√
dhmaxh

−1
min

)
.

(c) The sparsity constant is bounded by

Csp ≤
(
4 + 8η−1

(√
d(1 + ρCsep) + ηρCsepd

))d

.

Proof: (a) holds by Construction 12. (b): let t ∈ T
(�)
I be a non-leaf node. Then #t > nmin such that

diam(Bt)
(9)
=

√
d(2−� + ρht)hmax

(12)

≤
√

d(2−� + ρCsepdiam(Ct))hmax =
√

d(1 + ρCsep)2−�hmax (13)

while diam(Bt) ≥ diam(Ωi) ≥ hmin. This yields 2� ≤ √
d(1 + ρCsep)hmaxh

−1
min.

(c): we exploit the structure of the regular subdivision of [0, hmax)d into the cubes Ct. Let t ∈ T
(�)
I be a

cluster with #t > nmin. The number of cubes Cs on level � that touch Ct is at most 3d. By induction it
follows that the number of cubes on level � with a distance less than j2−�hmax to Ct is bounded by (1+2j)d.
Let s ∈ T

(�)
I with #s > nmin and dist(Ct, Cs) > j2−�hmax. The diameters of the respective bounding boxes

and their distance can be estimated by

diam(Bt)
(13)

≤
√

d(1 + ρCsep)2−�hmax,

dist(Bt, Bs)
(10)

≥ dist(Ct, Cs) − ρ

2

√
d(ht + hs)

> j2−�hmax − ρ

2

√
dCsep(diam(Ct) + diam(Cs))

= j2−�hmax − ρCsepd2−�hmax.

If t × s is not admissible, then (5) yields the estimate
√

d(1 + ρCsep)2−�hmax > η(j2−�hmax − ρCsepd2−�hmax)

which implies
j < η−1

(√
d(1 + ρCsep) + ηρCsepd

)
=: jmax.

Therefore, the number of clusters s ∈ T
(�)
I for which t× s is not admissible is bounded by (1 + 2jmax)d. The

number of successors of s is bounded by 4d such that on level � + 1 there are at most 4d(1 + 2jmax)d cluster
s′ with t′ × s′ ∈ TI×I for any son t′ of t.

The estimates in Lemma 14 show that the sparsity of the tree is independent of the cardinality of I. In
practice the sparsity should be smaller than 100 while the depth of the tree is typically proportional to
log(#I). In the following section we will show that the estimates for the storage requirements and the
complexity of the matrix-vector multiplication of an H-matrix depend only on the cardinality of I and the
depth and sparsity of the block cluster tree TI×I .

3.4 Data-Sparsity of the H-matrix Format

In this section we estimate the storage requirements of an H-matrix and the complexity of the matrix-vector
multiplication based on the sparsity Csp (11) of the block cluster tree TI×I .
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Lemma 15 (Storage, Lemma 2.4 in [7]) Let TI×I be a block cluster tree based on TI with sparsity con-
stant Csp (11) and minimal block size nmin. Then the storage requirements NH,St(TI×I , k) for an H-matrix
M ∈ H(TI×I , k) are bounded by

NH,St(TI×I , k) ≤ 2(1 + depth(TI×I))Csp max{k, nmin}#I

where bounds for the depth and sparsity, in turn, are given in Lemma 14.

Lemma 16 (Matrix-Vector Product) Let TI×I be a block cluster tree. The complexity NH·v(TI×I , k) of
the matrix-vector product in the set of H-matrices can be bounded from above and below by

NH,St(TI×I , k) ≤ NH·v(TI×I , k) ≤ 2NH,St(TI×I , k).

Proof: According to Remark 3 there holds

NR,St ≤ NR·v ≤ 2NR,St, NF,St ≤ NF ·v ≤ 2NF,St.

The proposition follows since an H-matrix consists blockwise of full matrices and R(k)-matrices.

4 Adaptive Refinement and Clustering

In the previous section we described a method for the data-sparse approximation of the stiffness matrix
arising in the Galerkin discretisation of an integral operator with asymptotically smooth kernel function.
Given a fixed set of basis functions ϕi,

Bn := {ϕ1, . . . , ϕn}, (14)

which span the n-dimensional space Vn, we seek an approximation un ∈ Vn to the solution u of the equation∫
Ω

g(x, y)u(y)dy = f(x). (15)

The goal is to find a small n ∈ N such that the approximation error ‖u−un‖ in a suitable norm is smaller than
a desired (given) accuracy ε > 0. In order to achieve this, we start with a small set Bn0 of basis functions,
compute a coarse approximation un0 , estimate the approximation error ‖u − un0‖ by some (local) error
estimator (see, e.g., [4, 13]) and replace the set Bn0 by a larger set of basis functions Bn1 := {ϕ1, . . . , ϕn1}.
This process is repeated until the error estimator gives a reliable upper bound ε̄ that is below the desired
accuracy ε.

Each step of this adaptive scheme yields a linear system of equations involving the matrix Gnj (3). For a
matrix given in full matrix representation, the removal of n′ and addition of n′′ entries require n′ rows and
columns of Gnj to be removed while n′′ rows and columns have to be added and their respective entries have
to be computed. All the previously computed entries can be retained. If the matrix Gnj is given in an H-
matrix representation, we might be forced to reassemble most of the matrix entries if a cardinality balanced
cluster tree has been used to determine the H-matrix partition (see Example 17). The geometrically regular
Construction 9 has been designed to avoid this drawback (as will be illustrated in the following sections).

Example 17 (The problem of a cardinality balanced tree) For simplicity, we consider a uniform
grid on the unit interval [0, 1] with n = 2p piecewise constant basis functions and corresponding index
set I = {1, . . . , n}. Let the tree TI be constructed in a cardinality balanced way (cf. [7]) with the two
clusters {1, . . . , n/2}, {n/2 + 1, . . . , n} on the first level. If the index set I is extended by two indices to
I ′ = {1, . . . , n + 1, n + 2} (subdividing the two rightmost basis functions each into two parts), then the
clusters on the first level are {1, . . . , n/2 + 1}, {n/2 + 2, . . . , n + 1, n + 2} which are both different from
the clusters on the first level of the original tree TI, and the resulting clusters on the higher levels of the
cardinality balanced tree will almost all be different from the clusters in TI . This will result in an H-matrix
for the index set I ′ = {1, . . . , n + 1, n + 2} with a completely different block partition than the one for I such
that most entries have to be recomputed instead of being copied over from the H-matrix obtained for I.
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In the following subsections, we show that a geometrically balanced clustering as in Construction 9 leads
to H-matrix partitions where previously computed entries can be copied over whereas only entries that
correspond to the refined set of basis functions have to be computed for the update.

Remark 18 (adaptively expandable H-matrices) If, as for this paper, we store the two factors A, B of
an R(k)-matrix M = ABT of size O(n) as arrays, then the expansion by one index requires us to reallocate
the arrays and to copy the entries. If we use linked lists for the full matrices A, B, then the detection of a
row or column corresponding to an index i would require to run through the whole list of indices. In both
cases, the removal or addition of one index results in a complexity of O(n). In [6], we developed adaptively
expandable H-matrices where each degree of freedom stores the information about its location in the matrix
blocks. This leads to an optimal complexity with respect to storage allocation and data copying. In practice,
however, it is the computation of the matrix entries which is the bottleneck, whereas the storage allocation
and data copying are negligible.

In Sections 4.1 - 4.2, we consider for simplicity the necessary updates of the cluster tree, the block cluster
tree and the matrix entries when only a single index is added. In Section 4.3, we then provide details on
an implementation that includes the addition or removal of several indices (as a result of an adaptive mesh
refinement or coarsening).

4.1 Updating the Cluster Tree TI

The creation of the cluster tree TI described in Construction 9 depends exclusively on the Chebyshev centres
mi of the supports of the basis functions ϕi. Let Bn := {ϕ1, . . . , ϕn} denote the set of basis functions with
index set I = {1, . . . , n} and an already constructed (geometrically regular) cluster tree TI . We now describe
how the cluster tree TI will be updated to a cluster tree TI′ for the index set I ′ := {1, . . . , n + 1} when a
single basis function ϕn+1 is added to the basis.

On each level � = 0, . . . , depth(TI), the Chebyshev centre mn+1 of the new basis function ϕn+1 is contained
in at most one of the cubes Ct that corresponds to one of the clusters t ∈ T

(�)
I . We define the nodes of the

tree TI′ for the index set I ′ as

t′ :=
{

t ∪ {n + 1} if mn+1 ∈ Ct

t otherwise.

In addition, we have to distinguish the following three cases to decide whether further nodes have to be
added. For this purpose, let t be the node in TI with the highest level number � which is enlarged by the
index n + 1, i.e., t is the node with the highest level number � such that Ct contains the Chebyshev centre
mn+1 of the new basis function ϕn+1.

• If the cluster t is a leaf with a blocksize smaller that nmin, then no further nodes have to be added.

• If the cluster t is a leaf with blocksize nmin, then the cluster t′ has to be further subdivided according
to Construction 9, see Figure 3.

• If the node t is not a leaf (since mn+1 is contained in a cube C�+1
j on the next finer level � + 1 that

contains no other Chebyshev centre mi, i = 1, · · · , n), then t′ will have a new successor in TI′ (not
present in TI) that contains only the index n + 1.

Similarly, when an index is removed from I to obtain I ′ := {1, . . . , n− 1}, the cluster tree for I ′ is obtained
from TI by eliminating the index n from all nodes of TI . If the father of the leaf that contains the index n
has cardinality nmin + 1, then its subdivision has to be undone.

In practice we will typically remove and/or insert several indices at once after a refinement of the grid. The
cost to remove or insert a single index in the tree TI is O(depth(TI)). Therefore, the adaptive construction
of the tree TI (inserting the indices one by one) has the same complexity as Construction 9.
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Figure 3: Left: the grid (constant basis functions on each panel) is refined by replacing one of the panels by
the two dark panels. Right: in the tree TI the two new panels are inserted in one cluster on each level. The
area marked “new” originates because nmin = 1.

4.2 Updating the Block Cluster Tree TI×I and the Matrix Entries

The next step is to update the block cluster tree TI×I according to the changes in the tree TI . Here, we
again assume that the index set I is enlarged (or reduced) to the set I ′ only by a single index.

The block cluster trees TI×I and TI′×I′ are defined in a canonical way according to Construction 12. Since
in the tree TI only q = O(depth(TI)) nodes were changed, we have to consider at most Cspq nodes in the
tree TI×I that differ from the ones in the tree TI′×I′ (cf. Definition 11 and see Figure 4). The update of the

Figure 4: Left: the block cluster tree TI×I corresponding to the cluster tree TI in Figure 3. Right: in the
tree TI′×I′ the shaded parts differ from TI×I .

block cluster tree TI×I is done along with the update of the matrix entries. In the optimal case (a minimum
of work) only the entries corresponding to the row and column of the new index have to be assembled (the
shaded parts in Figure 4) while all previously computed entries can be kept. This optimum is typically not
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reached, but the cases where we have to reassemble whole blocks are rare. The parameter ρ in the definition
of the bounding box (8) enables us to reduce their number. A modified admissibility condition would make
a reassembly completely unnecessary (but has other drawbacks).

Remark 19 (Modification of the admissibility) For theoretical purposes one could use the admissibil-
ity condition

min{diam(Ct), diam(Cs)} ≤ (1 + Csep + ηCsep)−1ηdist(Ct, Cs)

instead of (5), or in other words replace η by η̃ := (1 + Csep + ηCsep)−1η and use the admissibility for the
regular cubes. Since (1 + Csep + ηCsep) is a constant, the statements of Lemma 14 can even be simplified
and the bounding boxes fulfil the standard admissibility (5) for the parameter η. The advantage is that the
admissibility and the bounding boxes are independent of the basis functions ϕi (as long as they fulfil the
local separability with the constant Csep). Therefore, admissibility of blocks does only change if the insertion
or removal of indices breaks the minimal blocksize nmin. As a result of the more restrictive admissibility
however, the sparsity Csp is typically increased which is not desirable in practice.

For each of the nodes t × s ∈ TI×I that need to be updated since t ∈ TI and/or s ∈ TI are updated to
t′ ∈ TI′ and/or s′ ∈ TI′ , resp., we have to distinguish four cases:

1. t × s and t′ × s′ correspond to R(k)-matrix blocks (see Subsection 4.2.1).

2. t × s and t′ × s′ correspond to full matrix blocks (see Subsection 4.2.2).

3. t × s corresponds to a full matrix block whereas t′ × s′ does not, or vice-versa (see Subsection 4.2.3).

4. t×s corresponds to an R(k)-matrix block whereas t′×s′ does not, or vice-versa (see Subsection 4.2.4).

For simplicity, we will consider blocks t × s and t′ × s where the nodes t, t′ differ only by one index. In
practice, the removal and addition of several indices is performed in a single step; an algorithm that performs
the update of the trees TI and TI×I as well as the matrix entries for a set of indices will be presented in
Section 4.3.

4.2.1 Updating R(k)-matrix Blocks

Let the blocks t × s ∈ TI×I and t′ × s ∈ TI×I be admissible and large enough (i.e., ≥ nmin) such that the
corresponding blocks M, M ′ of the stiffness matrix G from (3) are stored as R(k)-matrices:

Mij
(6)
=

∫
Ω

∫
Ω

ϕi(x)
∑

ν∈{0,...,m}d

g(xν , y)Lν(x)ϕj(y) dx dy

=
∑

ν∈{0,...,m}d

∫
Ω

ϕi(x)Lν(x) dx︸ ︷︷ ︸
Aiν

∫
Ω

g(xν , y)ϕj(y) dy︸ ︷︷ ︸
Bjν

=
∑

ν∈{0,...,m}d

AiνBjν .

If t′ is obtained after removing an index from t, i.e., t = t′∪̇{µ}, then the matrix M ′ is the restriction of M
to the subblock t′ × s, i.e.

M ′
ij = Mij for all (i, j) ∈ t′ × s,

and the entries of the matrix A only have to be copied into the respectively smaller matrix A′.

If t′ is obtained from adding an index µ ∈ I ′ to t, i.e., t′ = t∪̇{µ}, we need to distinguish the case where the
bounding box Bt′ is included in Bt from the case where Bt′ 	⊆ Bt since the polynomial Lν in (6) depends on
the bounding box Bt.
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In the first case, Bt′ ⊆ Bt, the matrix M ′ is given by

M ′ = A′BT ,

A′
iν =

{
Aiν if i ∈ t∫
Ω

ϕi(x)Lν(x) dx if i = µ, ν ∈ {0, . . . , m}d, BT BTA A’

i.e., we have to compute k = (m + 1)d new entries.

In the second case, Bt′ 	⊆ Bt, we compute an R(k)-matrix approximation with a bounding box Bt′ for an
increased parameter ρ (e.g., ρnew = 2 · ρold). However, since we expect the supports to shrink in the context
of adaptive refinement this case is unlikely to occur.

The key observation is that the entries of the two factors A, B in the R(k)-matrix representation of admissible
matrix blocks can be computed independently of each other.

4.2.2 Updating Full Matrix Blocks

Let the blocks t × s ∈ TI×I and t′ × s ∈ TI×I be inadmissible leaves so that
the corresponding blocks M, M ′ of the stiffness matrix G are stored as full
matrices. In this case the addition or removal of the index µ corresponds to
the addition or removal of one row of the matrix and all other entries can be
kept.

4.2.3 Subdivision of Inadmissible Leaves

Let the block t × s ∈ TI×I be an inadmissible leaf with #t = nmin, #s > nmin, and an index is added to t
to obtain t′ = t ∪ {µ} such that t′ × s has to be subdivided. Then the following two cases may occur:

Case 1: Inadmissible descendants of t′ × s that are leaves are stored as full matrices and the previously
assembled entries of the block t × s (which was stored as full matrix) can be copied.

Case 2: Admissible descendants of t′ × s that are leaves of the form t′ × s� are stored as R(k)-matrices,
and a low rank approximation for the block t′ × s� has to be computed for bounding boxes with
parameter ρ := 2. The number of newly computed entries of the entire block is k(#t′ + #s�) =
k(nmin + 1 + #s�) which is just a constant (nmin + 1) times more than the average number of entries
per row (k(#t′ + #s�)/#t′).

4.2.4 Subdivision of Admissible Blocks

Let the block t × s ∈ TI×I be an admissible leaf and let t′ = t ∪ {µ} such that t′ × s is inadmissible and
has to be subdivided. This case might occur when the bounding box Bt′ is not included in Bt such that the
admissibility condition is now violated for t′ × s.

Case 1: Descendants t�×s� of t′×s where t� does not contain the index µ are admissible with the respective
bounding boxes Bt, Bs. The corresponding matrix block is a submatrix of the respective one from the
block t × s and we inherit the bounding box.

Case 2: Descendants t′� × s� of t′ × s that are leaves and where t′� contains the index µ have to be newly
assembled (cannot inherit the bounding box from t because Ωµ is not contained in it), either as full
matrices or as R(k)-matrices.

Again, we point out that in the context of adaptive refinement we do not expect the block t′ × s to be
inadmissible (if t × s was admissible), since the support Ωµ is supposed to shrink and be smaller than the
supports Ωi of the basis functions ϕi that correspond to the indices i ∈ t.
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If, on the other hand, an index is removed from t to obtain t′, then t′ × s might be admissible even though
t × s was not admissible and therefore further subdivided. In this case, an R(k)-matrix representation for
the block t′ × s has to be computed.

4.3 Implementation of the Update

In this section we present the algorithms for the update of the cluster tree TI , the block cluster tree TI×I

and the matrix G from (3). Here, the index set I, the corresponding trees and the stiffness matrix are given.
The indices in the set Iout ⊂ I are to be removed from the trees while the indices in Iin have to be inserted
yielding the new index set

I ′ = (I \ Iout) ∪̇ Iin.

Construction 20 (Update of the cluster tree TI) We construct the new cluster tree TI′ from the root
to the leaves as follows:

1. Remove all indices from Iout by t′ := t \ Iout for all t ∈ TI. Mark all changed clusters t′ by a flag.
Empty clusters may appear.

2. Add the new indices from Iin by t′ := t′ ∪ t′′, t′′ := {i ∈ Iin | mi ∈ Ct}. If #t′′ > 0 then mark t′.

3. Subdivide the leaves t′ ∈ L(TI′) with #t′ > nmin, mark these new clusters and discard all empty clusters.

If the clusters are stored as an array, it is advantageous to store the retained indices in the first part of the
array and the new (removed) indices in the second part of the array. A counter q for the number of retained
indices allows an easy access to the second part:

t = [ i1, . . . , iq︸ ︷︷ ︸
kept indices

, iq+1, . . . , i#t︸ ︷︷ ︸
removed indices

] t′ = [ i1, . . . , iq︸ ︷︷ ︸
kept indices

, iq+1, . . . , i#t′︸ ︷︷ ︸
new indices

]

Construction 21 (Update of the block cluster tree TI′×I′ and matrix) The update of the block
cluster tree TI′×I′ and the hierarchical matrix is done from the root I ′ × I ′ to the leaves blockwise for each
t × s ∈ TI×I with corresponding block t′ × s′ ∈ TI′×I′ :

1. If t × s = t′ × s′ then nothing is to be done (t′, s′ unmarked).

2. If t × s 	= t′ × s′ and both are not leaves: update the number of successors of t × s to those of t′ × s′.
Since matrix entries are only stored for each leaf of the tree, nothing has to be assembled.

3. If t× s 	= t′ × s′ and at least one of the two is a leaf: update the number of successors of t× s to those
of t′ × s′. We distinguish three cases:

(a) Both are admissible so that the update from Section 4.2.1 applies. First we check whether the old
bounding box is still valid (contains the supports of the basis functions). If not, the block has to
be reassembled with parameter ρ := 2 for the bounding box. Otherwise, we define

M ′ = A′BT ,

A′
iν =

{
Aiν if i ∈ t∫
Ω ϕi(x)Lν(x) dx otherwise.

B′
iν =

{
Biν if i ∈ t∫
Ω

ϕi(x)g(xν , y) dy otherwise.

q q

BTA

(b) Both are inadmissible so that either the update from Section 4.2.2 applies (both leaves) or the new
block has to be reassembled in parts (cf. Section 4.2.3).

(c) One of the two is admissible, the other one not. Then the new block is reassembled.
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The result of the previous constructions is the stiffness matrix G for the refined grid using the geometrically
balanced (regular) clustering. The matrix format is not changed at all, the H-matrix arithmetic established
in [7] can be applied for the purpose of preconditioning or solving the discrete system.

5 Numerical Results

In our numerical test we illustrate the efficiency of our update procedure for (local) grid refinement. The
model problem that we consider is

G[u](x) = f(x), x ∈ Γ := ∂Ω, Ω := [−1, 1]3

where u|Γ are the Dirichlet data of a harmonic function u in the domain Ω, G is the double layer potential
operator

G[u](x) :=
1
2
u(x) +

1
4π

∫
Γ

〈n(y), x − y〉u(y)
‖x − y‖3

dΓy

and the right-hand side is given by the single layer potential operator V applied to the Neumann data
f := V∂nu,

V [u](x) :=
1
4π

∫
Γ

∂nu(y)
‖x − y‖dΓy.

The harmonic function u is
u(x) :=

1
‖x − x0‖ , x0 := (1, 1, 1.001).

For the discretisation in the H-matrix format we choose nmin := 32 for the minimal cluster size, η := 2.0 in
the admissibility condition and k := 8 for the blockwise rank.

Remark 22 (Update for full matrices and H-matrices) For an n × n matrix in full matrix represen-
tation the addition of nnew degrees of freedom means that 2nnewn−n2

new entries have to be newly assembled,
i.e., p% new degrees of freedom result in (2p − p2/n)% new entries. This is different for R(k)-matrices.
There, p% new degrees of freedom result in p% new entries. Therefore, H-matrices, which consist blockwise
of R(k)-matrices, allow for an even more efficient update than full matrices. If p% degrees of freedom are
new then we expect between p% and 2p% of the matrix entries to be newly assembled while the others are
kept.

In the adaptive scheme we refine 1%, 5% or 25% of the three-dimensional grid where the discretisation error
is the largest, such that roughly 2%, 10% or 50% of the degrees of freedom on the refined grid are new.

The time for an adaptive update is compared to the time it takes to reassemble the whole stiffness matrix.
The starting grid has n0 = 3072, n0 = 12288 or n0 = 49152 degrees of freedom and is a uniform triangulation
of Γ := ∂Ω. The interpolation scheme is linear (m = 1) and for the nearfield entries (entries in inadmissible
leaves) we use Gaussian quadrature with q = 2 points per axis.

In Figure 5 we have visualised the update of a small H-matrix. One can see that the reassembled blocks are
just the ones corresponding only to new degrees of freedom, while the rest is updated efficiently.

The numerical results are presented in Table 1 and were produced on a Sun UltraSparc III with 900
MHz CPU clock rate and 150 MHz memory clock rate. We conclude that for a moderate size of the grids
the local update of p% of the grid can be done in almost p% of the time for the assembly of the stiffness
matrix by use of the update procedure.
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Figure 5: The stiffness matrix with n0 = 3072 degrees of freedom (left) and the updated stiffness matrix
with n1 = 3108 degrees of freedom (right). The grey blocks are updated blocks of the matrix and the black
blocks are reassembled parts.

n0 = 3072 n1 = 3108 n1 = 3254 n2 = 3986
new 2.3% 11.2% 45.9%
reassembly 5.45s 5.69s 6.99s
update 0.38s 1.14s 4.71s
relative 7.0% 20.0% 67.4%

n0 = 12288 n1 = 12422 n1 = 13002 n1 = 15806
new 2.2% 11.0% 44.5%
reassembly 29.5s 31.7s 40.8s
update 1.0s 5.8s 23.1s
relative 3.4% 18.3% 56.6%

n0 = 49152 n1 = 49682 n1 = 51880 n1 = 62544
new 2.1% 10.5% 42.8%
reassembly 169.0s 209.6s 252.7s
update 6.1s 31.8s 121.8s
relative 3.6% 15.2% 48.2%

Table 1: Time (in seconds) for the update of the H-matrix compared to reassembly starting with n0 = 3072,
n0 = 12288 and n0 = 49152 degrees of freedom, resp.
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