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MORTAR METHODS WITH CURVED INTERFACES

B. FLEMISCH∗, J.M. MELENK† , AND B.I. WOHLMUTH‡

Abstract. We analyze a nonoverlapping domain decomposition technique with curvilinear
boundaries. The weak coupling at the curved interfaces is carried out in terms of Lagrange multiplier
spaces. We use the abstract framework of mortar and blending elements to obtain a priori results
for this nonconforming discretization scheme. Introducing a mesh dependent jump on the curved
interfaces based on piecewise linear approximations of the interfaces, the consistency error for the
piecewise linear approximation can be decomposed into a consistency error for blending elements
and a variational crime. Numerical results illustrate the performance of the method.
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1. Introduction. Nonconforming domain decomposition methods provide an
efficient and flexible tool for the numerical approximation of partial differential equa-
tions. Here, we consider a nonoverlapping decomposition into subdomains with curvi-
linear boundaries. The characteristic idea of many nonconforming methods is to re-
place the strong pointwise continuity across the interior interfaces by a weak integral
condition or to penalize the jump in the discrete solution across the interfaces. To
obtain optimal discretization schemes, the consistency error has to be small enough.
The coupling of different discretization schemes or of nonmatching triangulations can
be analyzed within the framework of mortar methods. These nonconforming domain
decomposition techniques provide a more flexible approach than standard conform-
ing approaches. We generalize well-known mortar formulations [4, 5] to the case of
curvilinear boundaries and non-matching triangulations. The a priori analysis can be
carried out in terms of blending elements [9–11] and within the abstract mortar set-
ting. Of crucial importance are norm equivalences and uniform inf-sup conditions [2].
Recently, a lot of work has been done to analyze mortar settings and the coupling
of different model equations. However, most approaches are restricted to straight or
planar interfaces. In the special case of two subdomains without crosspoints and one
curvilinear interface, a first theoretical result can be found in [13]. There, a piece-
wise constant Lagrange multiplier space is used, which does not guarantee a uniform
inf-sup condition, and a priori estimates for the H1-norm of the discretization error
are given. In the present paper, we work with discrete Lagrange multiplier spaces
for which uniform inf-sup conditions hold and consider many subdomains. We focus
on the analysis of the variational crime which enters by using piecewise linear ap-
proximations of the curvilinear interfaces. According to these approximations, we use
piecewise linear interpolations to map the non-matching meshes on the master and
slave sides onto a reference segment, in order to define the jump of a finite element
function across the curved interface.
In the rest of the introduction, we consider the model problem, provide some notation
and discuss the discrete saddle point problem. In Section 2, we carry out the conver-
gence analysis and provide optimal a priori results for the discretization error in the
H1-norm for the primal variable and in the H−1/2-norm for the Lagrange multiplier.
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Numerical results are given in Section 3. In a test series, we show the stability and
flexibility of the approach and consider the influence of the number of subdomains on
the discretization errors.

1.1. Problem formulation. We consider the classical model problem

−∆u = f on Ω ⊂ R
2, u = 0 on ∂Ω, (1.1)

where f ∈ L2(Ω) is piecewise Lipschitz continuous. We assume that Ω ⊂ R
2 is a

polygon; this assumption is not necessary and merely done in order to concentrate on
the curved interfaces. Let NΓ smooth (C2 is sufficient) curves Γi, i = 1, . . . , NΓ, be
given in terms of the parametrizations

γi ∈ C2(Î , R2), (1.2a)

where

Î := [0, 1] (1.2b)

is the closed reference interval. We assume furthermore that the parametrizations γi

are injective and satisfy, for some c > 0,

|γi(t) − γi(t′)| ≥ c|t − t′| ∀ t, t′ ∈ Î . (1.2c)

Remark 1.1. The above setting excludes closed curves Γi; however, closed curves
can be incorporated into our theory by taking as the reference configuration Î the
torus instead of the unit interval.
We assume that the interior of Γi is contained in Ω, i.e., no part except possibly
the endpoints of Γi lies on ∂Ω. We allow these curves to meet at NC ∈ N0 cross
points. Without loss of generality, we will assume that the curves Γi are selected
such that cross points can only occur at their endpoints. These curves divide the
domain Ω into NΩ subdomains Ωj , j = 1, . . . , NΩ, which we assume to be Lipschitz
domains, see Figure 1.1. We require the number of interfaces Γi belonging to one
subdomain Ωj to be bounded. Each curve Γi is shared by two domains Ωm(i), Ωn(i),
i.e., Γi ⊂ ∂Ωm(i) ∩ ∂Ωn(i), where Ωm(i) is called the master side of Γi, and Ωn(i) is
called the slave side. In what follows, we will frequently omit the argument i in m(i)
and n(i). We employ usual Sobolev spaces and norms, [1], and introduce the space
X =

∏NΩ
j=1 H1(Ωj) with the corresponding broken H1-norm given by

‖u‖2
X :=

NΩ∑
j=1

‖u‖2
H1(Ωj). (1.3)

1.2. Formulation of the numerical method.

1.2.1. Spaces. We will restrict our attention to piecewise linear discretizations
for the domain parts; the Lagrange multiplier can be discretized by means of any of
the standard stable spaces, [4–6, 15, 16]. For each subdomain Ωj , we have a quasi-
uniform, shape-regular simplicial triangulation Tj with mesh size hj of a domain Ωj,h

that approximates Ωj in the sense that ∂Ωj,h is a piecewise linear interpolation of
∂Ωj . We insist on the endpoints of the curves Γi, i = 1, . . . , NΓ, being interpolation
points. For each curve Γi, we obtain in this way two piecewise linear approximations
that we denote by Γn

i,h and Γm
i,h. The superscripts n and m indicate that Γn

i,h and Γm
i,h
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are parts of ∂Ωn(i),h, ∂Ωm(i),h, respectively. Since Γn
i,h and Γm

i,h are piecewise linear
interpolations of Γi, we can parametrize them in the standard way by continuous
piecewise linear functions

γn
i,h, γm

i,h : Î → R
2, (1.4)

as illustrated in the right picture of Figure 1.1.

Γi

Ωn(i)

Ωm(i)

Γi

γiγn
i,h

Î

Γn
i,h

Fig. 1.1. Decomposition of Ω into six subdomains and three cross points given by eight curves
(left) and interface Γi and its piecewise linear interpolation Γn

i,h (right).

In particular, the endpoints of Î are mapped to the same points under these two map-
pings. The set Ni of nodes, Ni := {x ∈ Î : γn

i,h(x) = p, where p is an interpolation
point on Γn

i,h}, forms a mesh on Î. Since the triangulation Tn(i) is assumed to be
shape regular and the parametrizations γi satisfy (1.2), the nodes Ni form a shape
regular mesh on Î with mesh size ĥ. Moreover, we can find constants Cj such that
C−1

j hj ≤ ĥ ≤ Cjhj, j = 1, . . . , NΩ.
We work with two different dual spaces

M0 :=
NΓ∏
i=1

H−1/2(Γi), H−1/2(Γi) :=
(
H

1/2
00 (Γi)

)′
,

M :=
NΓ∏
i=1

(
H1/2(Γi)

)′
and equip the spaces H1/2(Γi) and H

1/2
00 (Γi) with the “intrinsic” norms, i.e., the

Slobodecki norms:

‖v‖2
H1/2(Γi)

= ‖u‖2
L2(Γi)

+
∫

Γi

∫
Γi

|v(x) − v(y)|2
|x − y|2 dx dy, (1.5a)

‖v‖2

H
1/2
00 (Γi)

= ‖v‖2
H1/2(Γi)

+
∫

Γi

1
dist(x, ∂Γi)

|v(x)|2 dx. (1.5b)

The duality pairings for a curve D between H1/2(D) and its dual, and between
H

1/2
00 (D) and its dual are denoted by 〈·, ·〉D and 〈·, ·〉H−1/2 ;D, respectively. We note

that in case of v ∈ H
1/2
00 (D), µ ∈ (H1/2(D))′, the two duality pairings coincide. More-

over, it holds that (H1/2(∂Ωj))′ = H−1/2(∂Ωj), 1 ≤ j ≤ NΩ. On the spaces M0 and
M , we define the norms ‖ · ‖M0 and ‖ · ‖M by

‖µ‖2
M0 :=

NΓ∑
i=1

‖µ‖2
H−1/2(Γi)

, µ ∈ M0, ‖µ‖2
M :=

NΓ∑
i=1

‖µ‖2
(H1/2(Γi))′ , µ ∈ M,
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respectively. It is easy to see that M ⊂ M0 and ‖ · ‖M is the stronger norm, i.e.,
‖µ‖M ≥ ‖µ‖M0 , µ ∈ M . By assumption f is in the dual space of H1

0 (Ωj), 1 ≤ j ≤ NΩ,
and thus the normal flux of the weak solution u|Ωj on ∂Ωj can be identified with a
unique element σj ∈ H−1/2(∂Ωj). Let the interface Γi be a subset of ∂Ωj. Then we
can define the restriction of σj to Γi by

〈v, σj |Γi〉H− 1
2 ;Γi

:= 〈v, σj〉
H− 1

2 ;∂Ωj
, v ∈ H

1
2
00(Γi),

where the trivial extension of v onto ∂Ωj is still denoted by v. By definition, we find
σj |Γi ∈ H−1/2(Γi). In what follows, we assume that σj |Γi ∈ Ĥ−1/2(Γi) ⊂ H−1/2(Γi)
and that σn(i)|Γi = −σm(i)|Γi , 1 ≤ i ≤ NΓ. We then define the Lagrange multiplier
λ ∈ M ⊂ M0 by

λ|Γi
:= − 1

gi
∇u · �nn(i) = − 1

gi
σn(i)|Γi

=
1
gi

σm(i)|Γi

, i = 1, . . . , NΓ; (1.6)

here �nn(i) denotes the outer normal vector of Ωn(i) on Γi and the functions gi are
defined in (1.11) ahead.
The nonconforming discretization is based on a saddle point problem, and we have
to discretize the spaces X and M0. The space of piecewise linear functions on Tj is
denoted by Xj,h, and we set Xh :=

∏NΩ
j=1 Xj,h. We denote by FK the element map

from the reference element K̂ associated with the element K ∈ Tj . Additionally, we
need to introduce discrete spaces of Lagrange multipliers associated with the curves
Γi, i = 1, . . . , NΓ. Here, we exploit the fact that the curves Γi, Γn

i,h, and Γm
i,h can

be identified with the reference interval Î via the maps γi, γn
i,h, γm

i,h. On Î, we take
for each i any one of the standard Lagrange multiplier spaces [4–6, 15, 16] that are
based on the mesh on Î determined by the nodes Ni, and we denote this space by
M̂i,h ⊂ L2(Î). Via γi, we define on Γi the space

Mi,h := M̂i,h ◦ γ−1
i , Mh :=

NΓ∏
i=1

Mi,h. (1.7)

One of the key properties of the discrete Lagrange multiplier spaces M̂i,h is the exis-
tence of a projection Π̂i,h : H

1/2
00 (Î) → Ŵi,h satisfying

(v, µ)Î = (Π̂i,hv, µ)Î ∀µ ∈ M̂i,h, (1.8a)

‖Π̂i,hv‖
H

1/2
00 (Î)

≤ C
bΠ‖v‖H

1/2
00 (Î)

, ‖Π̂i,hv‖L2(Î) ≤ C
bΠ‖v‖L2(Î) ∀v ∈ H

1/2
00 (Î), (1.8b)

where (·, ·)Î is the L2-scalar product on Î, and Ŵi,h is the pull-back to Î of the
trace of Xn(i),h on Γn

i,h, i.e., Ŵi,h := {u|Γn
i,h

◦ γn
i,h : u ∈ Xn(i),h}. The continuity

constant C
bΠ of the projections Π̂i,h is assumed to be independent of the discretization

parameters. Another important property of the mortar space Mh is that it contains
the characteristic functions χΓi of the interfaces Γi (cf. Lemma 2.2).
Remark 1.2. The assumptions (1.2) imply that γi and γ−1

i are C1. A direct cal-
culation with the involved norms implies the existence of C > 0 such that for each
i = 1, . . . , NΓ

C−1‖u‖L2(Γi) ≤ ‖u ◦ γi‖L2(Î) ≤ C‖u‖L2(Γi) ∀u ∈ L2(Γi), (1.9a)

C−1‖u‖
H

1/2
00 (Γi)

≤ ‖u ◦ γi‖H
1/2
00 (Î)

≤ C‖u‖
H

1/2
00 (Γi)

∀u ∈ H
1/2
00 (Γi). (1.9b)
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Moreover, for a curve Γ and a function g ∈ W 1,∞(Γ) that is bounded away from 0,
we obtain

C−1‖gu‖H1/2(Γ) ≤ ‖u‖H1/2(Γ) ≤ C‖u/g‖H1/2(Γ) ∀u ∈ H1/2(Γ), (1.9c)

C−1‖gu‖
H

1/2
00 (Γ)

≤ ‖u‖
H

1/2
00 (Γ)

≤ C‖u/g‖
H

1/2
00 (Γ)

∀u ∈ H
1/2
00 (Γ). (1.9d)

We note that the constant C in (1.9) depends on the length of the corresponding
interface Γi. In this particular case, we will not rigorously analyze the dependence
of the constant on the decomposition into subdomains. However, in all the following
proofs, we will exploit the fact that the number of interfaces Γi belonging to one
subdomain Ωj is bounded, and demonstrate that the constants depend on this bound,
and not on the total number of subdomains NΩ. Moreover, in Section 3, we provide
a numerical example illustrating this independence.

1.2.2. Bilinear forms and finite element method. To define our saddle
point formulation, we also need to define the jump across the interface Γi. For a
function u ∈ X , the jump across Γi is given in the standard way and denoted by [u]i.
For u ∈ Xh, we exploit the fact that Γn

i,h, Γm
i,h can be identified with Î in order to

define the discrete jump across Γi as

[u]i,h := u|Ωn(i),h ◦ γn
i,h ◦ γ−1

i − u|Ωm(i),h
◦ γm

i,h ◦ γ−1
i .

γ−1
i

γ−1
i

γn
i,h γm

i,h

Î

Γn
i,h

Γm
i,h

Fig. 1.2. The mappings involved in the definition of the discrete jump.

In Figure 1.2, we illustrate the mappings which are involved in the above definition
of the discrete jump, and their action on an arbitrary point of the interface Γi. We
finally define the following domain bilinear forms

a(u, v) :=
NΩ∑
j=1

∫
Ωj

∇u · ∇v dx, (1.10a)

ah(u, v) :=
NΩ∑
j=1

∑
K∈Tj

∫
K

∇u · ∇v dx. (1.10b)

Related to the jump across the interfaces Γi are the bilinear forms

b(u, µ) :=
NΓ∑
i=1

〈gi[u]i, µ〉Γi , (u, µ) ∈ X × M,

bh(u, µ) :=
NΓ∑
i=1

( gi[u]i,h, µ )L2(Γi), (u, µ) ∈ Xh × Mh,
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where the weight functions gi ∈ C1(Γi) are given by

gi :=
1

|γ′
i ◦ γ−1

i |
, i = 1, . . . , NΓ. (1.11)

It is then possible to check that the pair (u, λ) ∈ X ×M satisfies the following saddle
point problem:

a(u, v) + b(v, λ) = l(v) :=
∫
Ω

fv dx ∀v ∈ X,
b(u, µ) = 0 ∀µ ∈ M,

Correspondingly, the approximate solution uh ∈ Xh and the approximation to the
Lagrange multiplier, λh ∈ Mh, are given as the solution of

ah(uh, v) + bh(v, λh) = lh(v) ∀v ∈ Xh,
bh(uh, µ) = 0 ∀µ ∈ Mh.

(1.12)

Here, the approximation lh to the linear functional l is given by

lh(v) =
NΩ∑
j=1

∫
Ωj,h

fjv dx,

where we assume that fj is a Lipschitz continuous function on Ωj ∪ Ωj,h such that

fj = f in Ωj ∩ Ωj,h, (1.13a)
‖fj‖W 1,∞(Ωj∪Ωj,h) ≤ Cf , (1.13b)

and the the constant Cf is independent of mesh parameters. We note that the bilinear
form b on X × M is continuous but does not yield a inf-sup condition with respect
to the norms ‖ · ‖X and ‖ · ‖M . This also holds true for the discrete space Xh × Mh

where no uniform inf-sup condition can be shown. Of crucial importance will be to
establish a uniform discrete inf-sup condition for the weaker norm ‖ · ‖M0 .

2. Convergence analysis. We do not analyze problem (1.12) directly. To ob-
tain a priori bounds for the discretization error, we proceed in two steps. In the first
step, we introduce and analyze a new discrete variational problem based on blending
elements, where the curved interfaces are resolved in an exact way. In the second step,
we interprete (1.12) as a perturbed blending approach, and estimate the perturbation
terms obtained from the first Strang lemma.

2.1. Error analysis using blending elements.

2.1.1. Spaces of blending elements. We start with the simpler case where
the subdomains Ωj , j = 1, . . . , NΩ, are represented exactly by the triangulations.
Since Ω is a polygon, only the elements that have two vertices on one of the interfaces
Γi, i = 1, . . . , NΓ, require a treatment as a blending element, [10, 11]. We assume
that the blending function for elements that have an edge lying on Γi is taken as
the parametrization γi of Γi. The triangulation of Ωj using blending elements will
be denoted by T̃j with element maps F̃

eK , K̃ ∈ T̃j . The triangulations Tj and T̃j are
illustrated in Figure 2.1.
We define the spaces

X̃j,h := {u ∈ H1(Ωj) : u|
eK ◦ F̃

eK ∈ P1 ∀K̃ ∈ T̃j and u|∂Ω = 0},
6



Tj T̃j

Fig. 2.1. Triangulations Tj and eTj.

where P1 denotes the classical space of polynomials of degree 1 on the reference
element K̂. We introduce the problem: Find (ũh, λ̃h) ∈ X̃h × Mh such that

a(ũh, v) + b(v, λ̃h) = l(v) ∀v ∈ X̃h,
b(ũh, µ) = 0 ∀µ ∈ Mh.

(2.1)

In order to analyze the error u − ũh and the error of the Lagrange multiplier λ − λ̃h,
we introduce the constrained space

Ṽh := {v ∈ X̃h : b(v, µ) = 0 ∀µ ∈ Mh}. (2.2)

Additionally, we require, as is standard for blending elements (see, e.g., the more
detailed construction in the Appendix A):

h−1
eK
‖F̃ ′

eK
‖L∞( bK) + h

eK‖
(
F̃ ′

eK

)−1

‖L∞( eK) ≤ Cγ , (2.3a)

‖F̃ ′′
eK
‖L∞( bK) ≤ Cγh2

eK
, (2.3b)

where F̃ ′
eK

and F̃ ′′
eK

denote the Jacobian and the Hessian of F̃
eK , respectively. Of

essential use to us will be the following observation that stems from using blending
elements based on the parametrizations γi:
Lemma 2.1. Let Xj,h and Ŵi,h be defined as in Section 1.2.1. Then for each interface
Γi, i = 1, . . . , NΓ, we have

X̃n(i),h|Γi ◦ γi = Ŵi,h.

Furthermore, there exists a constant C > 0, which depends solely on the parametriza-
tions γi, the subdomains Ωj, and the shape-regularity constant Cγ , and there exists a
lifting operator Zi : Ŵi,h ∩ H

1/2
00 (Î) → X̃n(i),h such that

‖Ziv̂h‖H1(Ωn(i)) ≤ C‖v̂h‖H
1/2
00 (Î)

,

(Ziv̂h)|∂Ωn(i)\Γi
= 0,

(Ziv̂h)|Γi ◦ γi = v̂h.

Proof. Let v̂h ∈ Ŵi,h ∩ H
1/2
00 (Î) be given. Define vh on Γi via vh := v̂h ◦ γ−1

i . By
Remark 1.2 we then get ‖vh‖H

1/2
00 (Γi)

≤ C‖v̂h‖H
1/2
00 (Î)

. Next, we extend vh to ∂Ωn(i)

by zero. The thus extended function (still denoted vh) satisfies ‖vh‖H1/2(∂Ωn(i))
≤

C‖v̂h‖H
1/2
00 (Î)

(see, for example, [12, Thms. 1.5.1.3, 1.5.2.3]). Next, let Evh be the

harmonic extension into Ωn(i) of vh. Finally, let IC : H1(Ωn(i)) → X̃n(i),h be a
Clément type interpolation operator on T̃j that is continuous and preserves piecewise
polynomial boundary conditions; such operators have been constructed in [3,14]. We
finally set Ziv̂h := ICEvh.
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2.1.2. A priori results for blending elements. In this subsection, we estab-
lish optimal a priori bounds for the discretization errors u− ũh and λ− λ̃h. Of crucial
importance are the best approximation property of the constrained space and a uni-
form inf-sup condition. Using classical compactness arguments, we have the following
ellipticity result on the space

Xχ := {u ∈ X : b(u, µ) = 0 ∀µ ∈ span{χΓi | i = 1, . . . , NΓ}} , (2.4)

where χΓi ∈ M0 is the function that is identically 1 on Γi and vanishes on all other
interfaces.
Lemma 2.2. There exists a constant C > 0 such that for all v ∈ Xχ there holds

C‖v‖2
X ≤ a(v, v).

Proof. The coercivity assertion is well-known within the framework of mortar methods
with straight interfaces [4]. Moreover, in the case of straight interfaces, the ellipticity
constant is independent of the number of subdomains [8].
For the moment, we do not show the existence of a unique solution (ũh, λ̃h) of (2.1).
Since (2.1) corresponds to a square system of linear equations, existence follows from
uniqueness. For all standard Lagrange multiplier spaces span{χΓi | i = 1, . . . , NΓ} ⊂
Mh and thus the bilinear form a is coercive on the constrained space Ṽh. To ob-
tain uniqueness of the solution, it is sufficient to establish a suitable uniform inf-sup
condition, see, e.g., [7], the proof of which will be given in Proposition 2.7.
Concerning the approximation we have the following classical result:
Proposition 2.3. Let u be the weak solution of (1.1), and assume that λ ∈ M is
defined by (1.6). Let ũh be the solution of (2.1). Then

‖u − ũh‖X ≤ C inf
vh∈eVh

‖u − vh‖X + C sup
wh∈eVh

b(wh, λ)
‖wh‖X

, (2.5)

for some C > 0 that is independent of h. Moreover, if the Lagrange multiplier λ is in∏NΓ
i=1 L2(Γi), we find

‖u − ũh‖X ≤ C inf
vh∈eVh

‖u − vh‖X + C

{
NΓ∑
i=1

hn(i) inf
µh∈Mi,h

‖λ − µh‖2
L2(Γi)

} 1
2

,(2.6)

for some C > 0 that is independent of h.
Proof. The first estimate (2.5) is a standard result for nonconforming finite elements.
We note that the second term measures the consistency error. For the second error
bound, (2.6), we employ the following approximation property of typical Lagrange
multiplier spaces, which we obtain from the case of straight interfaces via the equiv-
alence (1.9a):

‖w − Πiw‖L2(Γi) = inf
z∈Mi,h

‖w − z‖L2(Γi) ≤ Ch
1/2
n(i)|w|H1/2(Γi), (2.7)

where Πi denotes the L2-projection onto Mi,h. Given this approximation property
and using the definition of Ṽh, we can bound the consistency error by

b(wh, λ) =
NΓ∑
i=1

∫
Γi

gi[wh]i(λ − Πiλ)dx =
NΓ∑
i=1

∫
Γi

(gi[wh]i − Πi(gi[wh]i))(λ − Πiλ)dx

≤ Ch
1/2
n(i)|gi[wh]i|H1/2(Γi)‖λ − Πiλi‖L2(Γi).
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Estimate (1.9c) and the trace theorem then imply

sup
wh∈eVh

b(wh, λ)
‖wh‖X

≤ C

(
NΓ∑
i=1

hn(i) inf
µh∈Mi,h

‖λ − µh‖2
L2(Γi)

)1/2

.

Next, we estimate the infimum and the supremum in the a priori bound (2.5). This
is done in two steps. In a first step, we provide an upper bound for the best approxi-
mation error in X̃h.
Lemma 2.4. Let u ∈ H2(Ωj). Then there exists C > 0 depending only on Cγ of
(2.3), and there exists a unique element Ĩju := vh ∈ X̃j,h such that vh and u coincide
in the nodes of T̃j and

‖u − vh‖H1(Ωj) ≤ Chj

[
‖∇2u‖L2(Ωj) + ‖∇u‖L2(Ωj)

]
, (2.8)⎧⎨⎩∑

e∈eEj

‖u − vh‖2

H
1/2
00 (e)

⎫⎬⎭
1/2

≤ Chj

[
‖∇2u‖L2(Ωj) + ‖∇u‖L2(Ωj)

]
, (2.9)

where we denote by Ẽj the set of all edges of the triangulation T̃j. The H
1/2
00 (e)-norm

is defined as in (1.5) (with Γi replaced with e).
Proof. Let K̃ ∈ T̃j be an element. Then for any function w ∈ H2(K̃), we obtain from
(2.3), denoting by I

bK : C(K̂) → P1 the nodal linear interpolant and by ŵ := w ◦ F̃
eK ,

‖ŵ − I
bK ŵ‖H1( bK) ≤ C‖∇2ŵ‖L2( bK) ≤ Ch

eK

[
‖∇2w‖L2( eK) + ‖∇w‖L2( eK)

]
.

Transforming the left-hand side back to the element K̃, and indicating by I
eK the

nodal linear interpolant on K̃, we get

h−1
eK
‖w − I

eKw‖L2( eK) + ‖∇(w − I
eKw)‖L2( eK) ≤ Ch

eK

[
‖∇2w‖L2( eK) + ‖∇w‖L2( eK)

]
.

This proves (2.8), and Ĩj is given elementwise by I
eK . The bound (2.9) is obtained by

similar reasoning exploiting that on the reference element K̂ we have for the edges ei,
i = 1, . . . , 3 of K̂:

‖ŵ − I
bKŵ‖

H
1/2
00 (ei)

≤ C‖∇2ŵ‖L2( bK), i = 1, 2, 3.

Transforming now to the physical element K̃ allows us to infer (2.9).
As a consequence of the upper bound (2.9), we find that

‖(u − vh)|Ωk
‖2

H
1/2
00 (Γi)

≤ Chk

[
‖∇2u‖L2(Ωk) + ‖∇u‖L2(Ωk)

]
, (2.10)

for k ∈ {n(i), m(i)}. Here, we have exploited the fact that the square of the H
1/2
00 (Γi)-

norm is bounded by a constant times the sum of the square of the H
1/2
00 -norm restricted

to the edges of Γi. This is not true for the H1/2(Γi)-norm.
Proposition 2.5. Let u ∈ H1

0 (Ω) ∩
∏NΩ

j=1 H2(Ωj). Then

inf
vh∈eVh

‖u − vh‖X ≤ C

⎛⎝NΩ∑
j=1

h2
j

{
‖∇2u‖2

L2(Ωj)
+ ‖∇u‖2

L2(Ωj)

}⎞⎠1/2

. (2.11)
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Proof. The techniques involved in the proof are known from standard mortar element
methods, [2]. We note that the assumptions on u guarantee that u is continuous. The
construction is done in two steps: first, we define the function wh ∈ X̃h subdomainwise
by wh|Ωj := Ĩju, where Ĩj is the piecewise linear interpolant on Ωj introduced in
Lemma 2.4. This leads to

‖u − wh‖X ≤ C

⎛⎝NΩ∑
j=1

h2
j

{
‖∇2u‖2

L2(Ωj) + ‖∇u‖2
L2(Ωj)

}⎞⎠1/2

.

Since the endpoints of the curves Γi are nodes, we have that the jump ιi := [wh]i
across the curve Γi satisfies ιi ∈ H

1/2
00 (Γi), and we obtain from (2.10)

‖ιi‖2

H
1/2
00 (Γi)

≤ C
∑

j∈{n(i),m(i)}
h2

j

{
‖∇2u‖2

L2(Ωj)
+ ‖∇u‖2

L2(Ωj)

}
.

In a second step, we correct this jump using the mortar projection Π̂i,h associated
with the curve Γi. More precisely, we define the pull-back ι̂i := ιi ◦ γi and set
zi := Zi(Π̂i,h ι̂i), where the lifting operator Zi is defined in Lemma 2.1. We may think
of zi as being extended by zero outside of Ωn(i). Proceeding in this fashion for each
interface Γi, we can construct a function z :=

∑NΓ
i=1 zi ∈ X̃h such that

‖z‖2
X =

NΩ∑
j=1

‖
NΓ∑
i=1

zi‖2
H1(Ωj) ≤ C

NΩ∑
j=1

NΓ∑
i=1

‖zi‖2
H1(Ωj)

= C

NΓ∑
i=1

‖zi‖2
H1(Ωn(i))

,

with C independent of the number of subdomains. Therefore, by Lemma 2.1, together
with (1.8b) and (1.9b),

‖z‖2
X ≤ C

NΓ∑
i=1

‖ιi‖2

H
1/2
00 (Γi)

≤ C

NΩ∑
j=1

‖u − wh‖2
H1(Ωj)

.

We now check that the function vh := wh − z is an element of Ṽh. For µ ∈ Mi,h we
calculate

b(vh, µ) =
NΓ∑
i=1

∫
Γi

gi[ιi − zi]iµ ds =
NΓ∑
i=1

∫
Î

(ι̂i − Π̂i,h ι̂i) µ̂ dŝ = 0

by definition of Π̂i,h since µ̂ ∈ M̂i,h.
Remark 2.6. Due to the appearance of ∇u in (2.11), an affine solution u will in
general not be reproduced by the numerical scheme (2.1). However, this term only
stems from the blending elements, the number of which is considerably smaller than
the total number of elements involved. In typical meshes, curved elements are used
only near the boundary so that (2.11) can be sharpened: If Sj ⊂ Ωj denotes the
region where blending elements are used (and affine elements are used on Ωj \ Sj),
then we obtain the error bound

inf
vh∈eVh

‖u − vh‖X ≤ C

⎛⎝NΩ∑
j=1

h2
j

{
‖∇2u‖2

L2(Ωj)
+ ‖∇u‖2

L2(Sj)

}⎞⎠1/2

. (2.12)
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If Sj is contained in a strip of width O(hj) near ∂Ωj and if the function u is smooth,
then this improved bound yields an error bound O(maxj=1,...,NΩ h

3/2
j ); we will illus-

trate this effect in a numerical example in Section 3.
The error in the Lagrange multiplier is given as follows:
Proposition 2.7. Let u be the weak solution of (1.1), and assume that λ ∈ M

is defined by (1.6). Assume that (ũh, λ̃h) are given by (2.1). Then there exists a
constant C > 0 depending only on the interfaces Γi, the stability constants of the
mortar projections Π̂i,h, and the constant Cγ of (2.3) such that

‖λ − λ̃h‖M0 ≤ C

(
inf

µ∈Mh

‖λ − µ‖M0 + ‖u − ũh‖X

)
. (2.13)

Proof. The key step of the proof consists in establishing continuity of the bilinear
form b together with with an inf-sup condition for it on finite dimensional spaces.
This is the purpose of the first two steps. The final step then uses these properties via
standard arguments. Of crucial importance is the following observation: By definition
the bilinear form b is continuous on X×M with respect to the norms ‖ ·‖X and ‖ ·‖M

but not on X ∩ X0 × M0 ∩ M with respect to the norms ‖ · ‖X and ‖ · ‖M0 . On the
other hand, we cannot establish a uniform inf-sup condition with respect to the norms
‖ · ‖X and ‖ · ‖M . A uniform inf-sup condition can be only established with respect
to the norms ‖ · ‖X and ‖ · ‖M0 .
1. step: We define

X0 := {u ∈ X : [u]i ∈ H
1/2
00 (Γi) i = 1, . . . , NΓ}.

and equip the space X0 with the stronger norm

‖u‖2
X0

:= ‖u‖2
X +

NΓ∑
i=1

‖[u]i‖2

H
1/2
00 (Γi)

. (2.14)

The bilinear form b is continuous on X0 ×M0 ∩M , i.e., there exists Cb > 0 such that

|b(v, µ)| ≤ Cb‖v‖X0‖µ‖M0 ∀v ∈ X0, µ ∈ M0 ∩ M. (2.15)

This follows from (1.9a):

|b(v, µ)| ≤
NΓ∑
i=1

|〈gi[v]i , µ〉Γi | ≤
NΓ∑
i=1

‖gi[v]i‖H
1/2
00 (Γi)

‖µ‖H−1/2(Γi)

≤ C

{
NΓ∑
i=1

‖[v]i‖2

H
1/2
00 (Γi)

}1/2

‖µ‖M0 ≤ Cb‖v‖X0‖µ‖M0 .

We note that in contrast to standard mortar formulations, we have included a weight-
ing factor g to define the bilinear form b. This weighting factor depends on the
parametrization.
2. step: The existence of the mortar projections Π̂i,h implies that the bilinear form
b satisfies a discrete inf-sup condition of the following type: There exists a constant
C > 0 (depending only on the interfaces Γi, the stability constants of the mortar
projections Π̂i,h, and the constant Cγ) such that

C‖µ‖M0 ≤ sup
z∈ eXh∩X0

b(z, µ)
‖z‖X0

∀µ ∈ Mh. (2.16)
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In order to see this, let µ ∈ Mh. We set µi := µ|Γi and use (1.9) to obtain

‖µi‖H−1/2(Γi) = sup
v∈H

1/2
00 (Γi)

〈v, µi〉Γi

‖v‖
H

1/2
00 (Γi)

≤ C sup
v∈H

1/2
00 (Γi)

〈v̂|γ′
i|, µ̂i〉Î

‖v̂‖
H

1/2
00 (Î)

= C sup
v∈H

1/2
00 (Γi)

〈v̂, µ̂i〉Î
‖ v̂/|γ′

i| ‖H
1/2
00 (Î)

≤ C sup
v∈H

1/2
00 (Γi)

〈v̂, µ̂i〉Î
‖v̂‖

H
1/2
00 (Î)

,

where the superscript̂ indicates the pull-back to Î. Employing the stability properties
of mortar projection Π̂i,h, we arrive at

‖µi‖H−1/2(Γi) ≤ C sup
v∈H

1/2
00 (Γi)

〈v̂ , µ̂i〉Î
‖v̂‖

H
1/2
00 (Î)

≤ C sup
v∈H

1/2
00 (Γi)

〈Π̂i,hv̂ , µ̂i〉Î
‖Π̂i,hv̂‖

H
1/2
00 (Î)

≤ C sup
z∈cWi,h∩H

1/2
00 (bI)

〈z , µ̂i〉Î
‖z‖

H
1/2
00 (Î)

≤ C〈ẑi, µ̂i〉Î , (2.17)

for an element ẑi ∈ Ŵi,h ∩H
1/2
00 (Î) with ‖ẑi‖H

1/2
00 (bI)

= 1. We extend ẑi to zi ∈ X̃n(i),h

by means of the lifting operator from Lemma 2.1, and define z :=
∑NΓ

i=1 b(zi, µ)zi. We
then obtain:

(ẑi , µ̂i)bI = (gizi , µi)Γi = b(zi, µi),

and, therefore,

‖µ‖2
M0 ≤ C

NΓ∑
i=1

(b(zi, µ))2 = b(z, µ) ≤ Cb‖z‖X0‖µ‖M0 , (2.18)

where, in the last step, we employed the continuity of b stated in (2.15). This allows
us to estimate

‖z‖2
X =

NΩ∑
j=1

‖
NΓ∑
i=1

b(zi, µ)zi‖2
H1(Ωj) ≤ C

NΓ∑
i=1

b(zi, µ)2 = Cb(z, µ),

NΓ∑
i=1

‖[z]i‖2

H
1/2
00 (Γi)

≤ C

NΓ∑
i=1

b(zi, µ)2 = Cb(z, µ).

so that we arrive, by summing these last two bounds, at

‖z‖2
X0

≤ Cb(z, µ). (2.19)

From (2.18) we infer ‖µ‖M0 ≤ C‖z‖X0; inserting this in (2.19) then allows us to
conclude (2.16).
3. step: We now turn to estimating ‖λ−λ̃h‖M0 . To that end, let λ′

h ∈ Mh be arbitrary.
Then, by the continuity of b (cf. (2.15)), the Galerkin orthogonality, and (2.19), we
have

‖λ′
h − λ̃h‖M0 ≤ C sup

z∈ eXh∩X0

b(z, λ′
h − λ̃h)

‖z‖X0

≤ C sup
z∈ eXh∩X0

b(z, λ′
h − λ)

‖z‖X0

+
b(z, λ − λ̃h)

‖z‖X0

≤ C‖λ′
h − λ‖M0 + C sup

z∈ eXh∩X0

a(u − ũh, z)
‖z‖X0

≤ C‖λ′
h − λ‖M0 + C‖u − ũh‖X .

The standard argument using the triangle inequality then gives the desired result.
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2.2. Convergence analysis on straight elements. We now turn to the analy-
sis of the method proposed in Section 1.2. Given the triangulations Tj , j = 1, . . . , NΩ,
with affine elements, we denote by T̃j , j = 1, . . . , NΩ, triangulations with blending
elements as analyzed in the preceding section. These blending elements are chosen
such that there is a one-to-one correspondence between the elements K ∈ Tj and the
elements K̃ ∈ T̃j , i.e., the vertices of the two triangulations coincide. The particular
construction of the blending method then implies that the mappings FK and F̃

eK of
two elements K ∈ Tj , K̃ ∈ T̃j corresponding to each other satisfy

F̃
eK = FK + RK , ‖RK‖L∞( bK) + ‖R′

K‖L∞( bK) + ‖R′′
K‖L∞( bK) ≤ Ch2

K , (2.20)

where the constant C > 0 depends only on the parametrizations γi, i = 1, . . . , NΓ. We
will give a detailed proof of this fact in Appendix A. In particular, the assumptions
(2.3) follow from those for the affine element maps FK .
Having established a one-to-one correspondence between the elements of the triangu-
lations Tj and T̃j , we can construct a one-to-one correspondence between the elements
of Xh and X̃h as follows: a function vh ∈ Xh corresponds to ṽh ∈ X̃h if for every
element K ∈ Tj , we have ṽh ◦ F̃

eK = vh ◦ FK . This mapping exists and is denoted by

S : Xh → X̃h, vh �→ ṽh (2.21)

with the inverse map

C := S−1 : X̃h → Xh, ṽh �→ vh. (2.22)

In particular, for every element K we have that vh|K is the linear nodal interpolant
of ṽh on K̃. Considering the mapping GK from K̃ to K, given by

GK := FK ◦ F̃−1
eK

= Id + O(h2
K), (2.23)

which follows from property (2.20), we can ascertain that

ah(Cṽh, Cṽh) ∼ a(ṽh, ṽh) ∀ṽh ∈ X̃h, (2.24)

where the constants hidden in the ∼-notation are independent of h.
Using the bijection S we can reformulate the problem (1.12) as a perturbation of a
problem of the form analyzed in Section 2.1. On X̃h× X̃h, we define the bilinear form

a′
h(wh, vh) := ah(Cwh, Cvh). (2.25)

In view of (2.24) and Lemma 2.2, we have ellipticity of the bilinear form a′
h on X̃h∩Xχ,

with the space Xχ defined in (2.4):

a′
h(vh, vh) ≥ C‖vh‖2

X ∀vh ∈ X̃h ∩ Xχ. (2.26)

We write u′
h = Suh for the solution uh of (1.12) and can rewrite the problem (1.12)

as

a′
h(u′

h, v) + b(v, λh) = lh(Cv) ∀v ∈ X̃h, (2.27a)
b(u′

h, µ) = 0 ∀µ ∈ Mh. (2.27b)
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Here, we exploited in an essential way the fact that the space X̃h is based on blending
elements associated with the parametrization of the interfaces Γi, which implies the
important relation [uh]i,h = [Suh]i, so that we have

b(u, λ) = bh(Cu, λ) ∀(u, λ) ∈ X̃h × Mh. (2.28)

From the first Strang Lemma, we can now assess the error u − u′
h:

‖u − u′
h‖X ≤ C

{
inf

vh∈eVh

(
‖u − vh‖X + sup

w∈eVh

a(vh, w) − a′
h(vh, w)

‖w‖X

)

+ sup
w∈eVh

b(w, λ)
‖w‖X

+ sup
w∈eVh

l(w) − lh(Cw)
‖w‖X

}
.

The first and the third term have already been estimated in Section 2.1. For the
second term, we have
Lemma 2.8.

sup
v∈ eXh

sup
w∈ eXh

a(v, w) − a′
h(v, w)

‖v‖X‖w‖X
≤ C max

1≤j≤NΩ
hj .

Proof. On each element K̃, the difference a(v, w) − a′
h(v, w) can be written as∫

eK

∇v(Id − AK)∇w, (2.29)

where the matrix AK is given by

AK := G′
K

−�
G′

K
−1detG′

K ,

with GK defined in (2.23). The properties (2.20) of the functions RK imply

GK = Id + O(h2
K) and detG′

K = 1 + O(hK). (2.30)

Hence,

‖Id − AK‖L∞( eK) ≤ ChK ∀K ∈ Tj .

Summation of (2.29) over all involved triangles gives

a(v, w) − a′
h(v, w) =

∑
K

∫
eK

∇v(Id − AK)∇w

≤ max
K

‖Id − AK‖L∞( eK)

∑
K

∫
eK

|∇v| |∇w|

≤ C max
1≤j≤NΩ

hj

⎛⎝NΩ∑
j=1

∫
Ωj

|∇v|2
⎞⎠1/2⎛⎝NΩ∑

j=1

∫
Ωj

|∇w|2
⎞⎠1/2

≤ C max
1≤j≤NΩ

hj‖v‖X‖w‖X ,

which yields the desired result.
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We now turn to estimating the error introduced by the right-hand side l(w̃h)−lh(Cw̃h).
Lemma 2.9.

sup
ewh∈ eXh

l(w̃h) − lh(Cw̃h)
‖w̃h‖X

≤ C

NΩ∑
j=1

h2
j .

Proof. For each element K̃ ∈ T̃j , we have∫
eK

fw̃h dx −
∫

K

fjCw̃h dx =
∫

eK

fw̃h dx −
∫

eK

fj ◦ GKw̃h detG′
K dx

=
∫

eK

(f − fj ◦ GK detG′
K)w̃h dx.

Our assumptions (1.13) on the choice of the functions fj together with the fact that
GK(x) = x for the vertices of the triangle K̃ give

‖f − fj ◦ GK‖L∞( eK) ≤ ‖f − fj‖L∞( eK) + ‖fj − fj ◦ GK‖L∞( eK)

≤ Ch
eK + C‖Id − GK‖L∞( eK) ≤ ChK , (2.31)

where the constant C is determined by the Lipschitz constant Cf of the functions f ,
fj . We therefore conclude

‖f − fj ◦ GK detG′
K‖L∞( eK) ≤ ChK .

Hence, ∣∣∣∣∫
eK

fw̃h dx −
∫

K

fjCw̃h dx

∣∣∣∣ ≤ ChK‖w̃h‖L1( eK) ≤ Ch2
K‖w̃h‖L2( eK).

The above considerations allow us to conclude

‖u − u′
h‖X ≤ C max

j=1,...,NΩ
hj , (2.32)

if the exact solution u satisfies u ∈ H1
0 (Ω) ∩

∏NΩ
j=1(Ωj).

It remains to estimate the error in the Lagrange multiplier. Here, we proceed as in
Section 2.1.
Proposition 2.10. The error of the Lagrange multiplier is bounded by

‖λ − λh‖M0 ≤ C

[
inf

µ∈Mh

‖λ − µ‖M0 + ‖u − u′
h‖X + (1 + ‖u‖X) max

1≤j≤NΩ
hj

]
Proof. The proof follows the lines of the proof of Proposition 2.7. We have the discrete
inf-sup condition (2.16). The approximation u′

h = Cuh and the discrete Lagrange
multiplier λh satisfy by (2.27) for arbitrary µ ∈ Mh and v ∈ X̃h ∩ X0

b(v, µ − λh) = b(v, µ − λ) + b(v, λ − λh)
= b(v, µ − λ) + l(v) − lh(Cv) + a(u, v) − a′

h(u′
h, v)

≤ C‖v‖X0

(
max

1≤j≤NΩ
hj + ‖λ − µ‖M0 + ‖u − u′

h‖X +
a(u′

h, v) − a′
h(u′

h, v)
‖v‖X0

)
≤ C‖v‖X0

(
(1 + ‖u′

h‖X) max
1≤j≤NΩ

hj + ‖λ − µ‖M0 + ‖u − u′
h‖X

)
.
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The triangle inequality allows us then to estimate ‖u′
h‖X ≤ ‖u−u′

h‖X+‖u‖X. Finally,
from the discrete inf-sup condition (2.16), arguments as in the proof of Proposition 2.7,
Lemmata 2.8, 2.9 we get the desired result.
Using Proposition 2.5, Lemmata 2.8, 2.9 and Proposition 2.10 in combination with
the best approximation property of Mh, we find for u ∈ H2(Ω)

‖u − uh‖Xh
+ ‖λ − λh‖M0 ≤ C(u) max

1≤j≤NΩ
hj ,

where the mesh dependent norm ‖ · ‖Xh
is defined by ‖v‖2

Xh
:=
∑NΩ

j=1 ‖v‖2
H1(Ωj,h). In

the last step, we have used the triangle inequality, the norm equivalence of ‖vh‖Xh

and ‖Svh‖X , vh ∈ Xh, Lemma 2.4 and the fact that Ĩhu = SIhu, where Ĩh and Ih

are the global nodal interpolation operators on X̃h and Xh, respectively.

3. Numerical results. We present various numerical examples. In Subsec-
tion 3.1, we consider the case of two subdomains sharing one curved interface. In
Subsection 3.2, a decomposition into eight subdomains with straight as well as curved
interfaces is investigated. We give numerical evidence of the independence of the con-
stants from the number of subdomains in Subsection 3.3, where we vary the number
of subdomains from 4 to 25. Finally, we consider a domain with reentrant corner in
Subsection 3.4.

3.1. Two subdomains. In a first test, we consider the case of the domain
Ω = (0, 2)× (0, 1) divided into two subdomains Ω1 and Ω2 as illustrated in Figure 3.1.
Dual basis functions with respect to the grid on Ω2 are used to span the Lagrange
multiplier space M̂1,h. We solve the model problem (1.1) with Dirichlet boundary
conditions and source term f derived from the exact solution u(x, y) = x2 − 2y2,
starting with the initial triangulation displayed in Figure 3.1.

Ω1

Ω2

Γ

Fig. 3.1. Left: Decomposition into subdomains Ω1, Ω2. Right: initial grid.

The error decay of the finite element solution uh, measured in the H1- and in the
L2-norm, as well as the behavior of the error in the Lagrange multiplier, are plotted
in Figure 3.2. We note that in order to evaluate the error in the Lagrange multiplier,
we mimick the H−1/2-norm by

(∑
e he‖λ − λh‖2

0,e

)1/2, where the sum is taken over
all edges e on the slave side of the interfaces, and he denotes the length of e. For the
H1-norm, the results are in perfect agreement with the theory presented in Section 2.
Moreover, the numerical convergence order for the Lagrange multiplier is better than
predicted from the theory. This can be explained by the following observation. The
weighted L2-norm of the error in the Lagrange multiplier can be bound by the sum of
the best approximation error and the discretization error in the H1-norm restricted
to a strip of width h around the interface. Once the solution is H5/2-regular, the best
approximation error of the Lagrange multiplier space is of order O(h3/2). If, moreover,
the discretization error can be assumed to be equidistributed over the domain, the
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overall order O(h3/2) can be derived, as is experienced in this example, as well as in
the next examples 3.2 and 3.3.
An interesting special case is the approximation of a linear solution. In contrast to
straight interfaces, the finite element solution does not coincide with the exact one,
as pointed out in Remark 2.6. Numerical evidence of this behavior is illustrated
in the right picture of Figure 3.2, where the error decays are plotted for the same
geometrical setting as before with the exact solution u(x, y) = y. The error measured
in the H1-norm is of order h3/2 as shown in Remark 2.6.
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Fig. 3.2. Error decays. Quadratic solution (left), linear solution (right).

In a further test, we start from a conforming triangulation consisting of two elements
on each subdomain, and refine the right subdomain Ω2 1 (2, 3) time(s). Thus, a ratio
ql
r = 2:1 (4:1, 8:1) of the number of element edges on the left side of the interface to

the number of edges on the right side is obtained. We test the stability of our method
choosing first the Lagrange multiplier with respect to the finer (left) grid, and then
with respect to the coarser (right) grid, so that the ratio qn

m of the number of slave
edges to master edges is out of {2:1, 4:1, 8:1, 1:2, 1:4, 1:8}.
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Fig. 3.3. Different ratios of the number of slave edges to the number of master edges.

In the left picture of Figure 3.3, the error λ−λh, measured in the L2-norm, is plotted
against the total number of slave and master edges. Looking at the exact solution,
it is not surprising that the error decreases as the ratio qn

m tends to 1. What is
more interesting and demonstrates the stability of our approach, is the very moderate
influence of whether to choose the fine grid as master side or the coarse one. Of
course, this also depends on the characteristics of the exact solution. Especially
in the case of discontinuous coefficients, it might be important to choose the discrete
Lagrange multipliers on the correct side. In the right picture of Figure 3.3, we provide
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a comparison of the H1-error decays for the ratios 1 : 4 and 4 : 1, where once, dual
Lagrange multipliers are taken, and in the other case, standard Lagrange multipliers
are chosen. All approaches yield qualitatively the same and quantitatively almost the
same results.

3.2. Eight subdomains. We investigate the behavior of our method on the
domain Ω = (−1, 1)2, subdivided into eight subdomains sharing twelve interfaces,
four of which are curved, and five crosspoints. The exact solution is chosen to be
u(x, y) = (sin πx)(sin 2πy). The initial triangulation is displayed in the right picture
of Figure 3.4. The Lagrange multiplier spaces are defined with respect to the finer
grids, again spanned by the corresponding dual linear basis functions. The various
error decays shown in Figure 3.4 (right) illustrate the same qualitative behavior as in
the case of two subdomains.
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Fig. 3.4. Eight subdomains: initial triangulation (left), error decays (right)

3.3. Many subdomains. In this example, the global domain Ω = (0, 1)2 is
divided into NΩ = 4, 9, 16, 25 subdomains. Figure 3.5 displays the domain decom-
positions and the initial triangulations. The discrete Lagrange multiplier spaces are
always chosen with respect to the finer triangulations. As exact solution, we use
u(x, y) = exp(−2((x − 0.5)2 + (y − 0.5)2)). We run a test for each of the decom-

Fig. 3.5. Many Subdomains: initial triangulations.

positions, measuring the error decay under uniform refinement of the triangulations.
In the left picture of Figure 3.6, the discretization error measured in the H1-norm
is plotted versus the number of elements. Only very slight differences can be seen
between the considered decompositions, which illustrates nicely the independence of
the constants appearing in the a priori analysis from the total number of subdomains.
In order to achieve comparable results for the error in the Lagrange multiplier, the
weighted L2-norm was divided by the corresponding total length of the interfaces.
Also here, it becomes hard to distinguish between the various decompositions, as
illustrated in the right picture of Figure 3.6.
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Fig. 3.6. Many subdomains: H1-error (left), weighted LM-error (right).

3.4. Reentrant corner. We consider the domain Ω being three quarters of the
unit circle with reentrant corner (0, 0), and choose the harmonic exact solution to
be u(r, φ) = r2/3 sin 2/3φ, having H5/3−ε-regularity. Figure 3.7 shows that the error
decays are optimal with respect to the regularity of the solution. Here, we cannot
expect the behavior of the Lagrange multiplier error to be better than O(h2/3).
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Fig. 3.7. Reentrant corner: initial triangulation (left), error decays (right).

Appendix A. Element maps of blending maps. We provide a proof of (2.20),
restated in the following lemma.
Lemma A.1. Under Assumption (1.2), the mappings FK and F̃

eK of two elements
K ∈ Tj, K̃ ∈ T̃j corresponding to each other satisfy

F̃
eK = FK + RK , ‖RK‖L∞( bK) + ‖R′

K‖L∞( bK) + ‖R′′
K‖L∞( bK) ≤ Ch2

K , (A.1)

where the constant C > 0 depends only on the parametrizations γi, i = 1, . . . , NΓ.
Proof. Without loss of generality, we consider the situation illustrated in Figure
(A.1). All other configurations involving one curved edge can be achieved by trans-
lations, rotations, and deformations of K̃ with parameters independent of the diam-
eter h. Additional edges can be taken into account by summing up the contribu-
tions from each edge. The function FK(ξ, η) = (hξ, hη)T maps the reference element
K̂ = ((0, 0), (1, 0), (0, 1)) onto the element K = ((0, 0), (h, 0), (0, h)). The blending
element K̃ has one curved edge given by γ ∈ C2([0, h]), which is twice continuously
differentiable as a consequence of Assumption (1.2) by transforming the subinterval
of Î corresponding to the curved edge onto the interval [0, h].
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Fig. A.1. Element mappings

We denote the pull-back of γ onto the reference configuration by γ̂ ∈ C2([0, 1]), defined
by γ̂(ξ) = γ(hξ). The element mapping F̃

eK is given by F̃
eK = FK + RK , where

RK =
(

0,
1 − ξ − η

1 − ξ
γ̂(ξ)

)T

.

We note that RK is discontinuous in (1, 0), but nevertheless well-behaved, since on
K, η tends to 0 as ξ tends to 1, and γ̂(1) = 0. In order to estimate the terms involved
in RK , R′

K , R′′
K , we develop γ̂ into its Taylor series around 1, yielding

γ̂(ξ) = γ̂(1) + (ξ − 1)γ̂′(1) + r(ξ),

with

r(ξ) =
∫ ξ

1

(ξ − t)γ̂′′(t) dt.

By differentiating r, we obtain

|r(ξ)| ≤ (ξ − 1)2‖γ̂′′‖∞, |r′(ξ)| ≤ (ξ − 1)‖γ̂′′‖∞, |r′′(ξ)| ≤ ‖γ̂′′‖∞. (A.2)

Considering the fact that γ̂(1) = 0, we can give RK as

RK =
(

0, (ξ + η − 1)hγ′(h) +
1 − ξ − η

1 − ξ
r(ξ)

)T

.

The term hγ′(h) is bounded by Ch2, since γ̂(0) = γ̂(1) = 0, and the mean value
theorem guarantees the existence of h� ∈ [0, 1] such that γ′(h�) = 0. Thus, using
(A.2), we see that ‖RK‖L∞( bK) is bounded by Ch2

K . For the Jacobian R′
K , we obtain

R′
K =

(
0 0

hγ′(h) − η
(1−ξ)2 r(ξ) + 1−ξ−η

1−ξ r′(ξ) hγ′(h) − 1
1−ξ r(ξ)

)
,

which can be bounded such that ‖RK‖L∞( eK) ≤ Ch2
K . The coefficients of the Hessian

R′′
K involve the following terms:

1
(1 − ξ)2

r(ξ),
1

1 − ξ
r′(ξ), r′′(ξ),

which can be handled as before, and

2η

(1 − ξ)3
r(ξ),

η

(1 − ξ)2
r′(ξ),

η

1 − ξ
r′′(ξ).
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Regarding again the fact that η tends to 0 as ξ tends to 1, since 0 ≤ η ≤ 1− ξ, these
terms also pose no difficulty.
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