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Abstract. We prove global existence for a simplified model of one-dimensional thermo-
elasticity. The governing equations satisfy the balance of momentum and a modified
energy balance. The application we wish to study by investigating this model are shape-
memory alloys. They are a prominent example of solids undergoing structural phase
transitions. A characteristic feature of these materials is that several crystalline variants
are stable at low temperature. Consequently, the free energy considered here is noncon-
vex as a function of the deformation gradient for temperatures below a fixed threshold
temperature. As a result of the nonconvexity of the free energy density, existence of weak
solutions is not to be generally expected. We therefore show existence of a Young measure
valued solution. The proof relies on vanishing capillarity.

1 Introduction

This paper deals with the thermomechanics of a one-dimensional, heat-conducting, elastic
solid of constant density ρ ≡ 1. We show that a simplified variant of an associated initial-
boundary value problem proves solvable globally in time. The model under consideration
arises from the theory of solid-solid phase transitions. To take phase changes into account,



we assume that the (Helmholtz) free energy density is nonconvex as a function of the
deformation gradient below a critical temperature θc > 0. Such an assumption permits
the modeling of shape-memory alloys. At the same time, the nonconvexity, combined with
nonlinear coupling in the system, is the main challenge for the mathematical analysis.
The isothermal model also has drawn a lot of attention over the past two decades. The
main reason for this is that, in general, existence of solutions in the weak sense can not
be expected. Instead, approximate solutions will typically show ever finer oscillations
between the stable phases of the energy. The limit will therefore not be a function, but a
probability measure, which describes the likelihood of finding a certain phase at a given
point in the material body. These kinds of measures are called Young measures. They
can be considered as generalized solutions. For further references see, e.g., [Tar79, Ped97].
In recent years, Young measures have been successfully applied to various dynamical prob-
lems. See for example [Sle91, KP94] for parabolic equations, [Dem97] for wave equations
and [DST01, Rie03] for (isothermal) elasticity and certain hyperbolic-parabolic systems.
Different regularizations of the equations of thermoelasticity have been studied to avoid
the aforementioned nonuniqueness that is typically associated with Young measures.

i) Existence results for viscous regularizations in the one-dimensional situation were,
among others, obtained in [CH94, RZ97, Wat00]. Results in several space dimen-
sions can be found in [FD97] for the isothermal problem, and in [Zim04] for the full
thermoviscoelastic problem.

ii) Alternatively (or in addition to a viscous regularization), capillarity-like regulariza-
tions have been studied. The capillarity can be seen as an interfacial energy, penal-
izing the formation of ever finer structures. Existence and uniqueness in the one-
dimensional case is studied by Sprekels and Zheng [SZ89]. Paw low and Żochowski
consider a model with capillarity and a viscosity-like term in several space dimen-
sions [PŻ02].

For classical thermoelasticity (i.e., convex energy), by contrast, global existence can so
far only be proved for small initial data or partially linearized systems [JR00, Chapter
6]. Specifically, blow-up results prove, in general, the non-existence of global classical
solutions for large data. Global weak solutions for the partially linearized system (5)–(6)
with convex energy were obtained by Durek [JR00, Section 6.6].
We consider a modified system of thermoelasticity, given by Equations (3)–(4). We show
that it is possible to obtain a global existence result for arbitrary large data, even for
nonconvex energy densities. To show existence of solutions to (3)–(4), we first introduce
an artificial capillarity in Equation (3). We prove the existence of solutions for this
modified system. The convergence of these solutions when the capillarity approaches zero
is shown. Finally, we demonstrate that the limit solves the unperturbed system (3)–(4),
as the capillarity approaches zero.
The present analysis is merely a first step in the endeavor to describe the limit system
of vanishing capillarity in nonconvex thermoelasticity. This problem has been open for
discussion since the late 1980s [SZ89]. A drawback of the system (3)–(4) is that positivity
of the absolute temperature can, in general, not be expected. We finally remark that the
existence proof presented here relies crucially on the fact that the nonlinear term in the



heat equation can be written as a time derivative. Therefore, the methods employed here
can not be applied in a straightforward manner to the full system (1)–(2).

2 Existence result

The solid will be identified with its reference configuration, which, by choosing the ap-
propriate coordinates, can be assumed to be the unit interval I := (0, 1) ⊂ R. Let T > 0
be an arbitrary, but fixed time. The thermomechanical evolution of the body will be de-
scribed in terms of the deformation field u : I × [0, T ) → R and the absolute temperature
field θ : I × [0, T ) → R.
The equations of one-dimensional thermoelasticity (with Helmholtz free energy described
by the Landau-Ginzburg model) are given by

utt − (α2θux + φ(ux))x = f, (1)

α1θt − κθxx − α2θuxutx = g, (2)

where κ > 0 is the heat conductivity, which will be assumed to be constant. The other
terms appearing in (1)–(2) are explained below. The system (1)–(2) is to be equipped
with initial conditions u(·, 0) = u0, ut(·, 0) = u1 and θ(·, 0) = θ0. We consider Dirich-
let boundary conditions u(0, ·) = u(1, ·) = 0 in u, and Neumann boundary conditions
θx(0, ·) = θx(1, ·) = 0 in θ.
The function φ is the isothermal part of the stress tensor, given by the derivative of the
isothermal part of the stored energy density E. We assume

E(ux, θ) := α0 − α1θ ln(θ) +
1

2
α2θu

2
x −

1

2
α2θ1u

2
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4
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with α0, . . . , α4, θ1 positive constants describing the properties of the thermoelastic mate-
rial. In the following, we write E(ux, θ) = α0 − α1θ ln(θ) + 1

2
α2θu

2
x + Φ(ux). Here, Φ(ux)

denotes the primitive of φ(ux) = −α2θ1ux−α4u
3
x+u5

x . The energy studied here is classical
Landau energy for martensitic phase transitions in one space dimension [Fal82]. (In the
following we assume for simplicity α0 = · · · = α4 = θ1 = κ = 1.) This energy has been
chosen as the most relevant and frequently used one-dimensional energy for martensitic
phase transitions. We point out that the linear dependence of the coupling part 1

2
α2θu

2
x in

E on the temperature is not a simplification, but a widely accepted modeling assumption
in the engineering literature.
It is not clear how to show that the temporal regularity of θ is high enough to prove
existence of a solution of Equations (1)–(2). But as the temperature flow close to the
critical temperature θc is of particular interest, we study the slightly modified system

utt − (θux + φ(ux))x = f, (3)

θt − θxx − θcuxutx = g. (4)

Here, θc > 0 is the critical temperature, that is, the temperature above which the
noncaloric part of the free energy density E is convex. Another motivation for study-
ing the system (3)–(4) is given by the following reasoning. Let us consider for a moment



a nonconstant heat conductivity κ̃(θ) := θ instead of κ. Suppose further that the caloric
part of the energy E is given by α0 − α1θ

2. Then the heat equation without forcing (i.e.,
g = 0) reduces for α0, . . . , α4 = 1 after a division by θ to

θt − θxx −
θx

θ
− uxutx = 0.

This is, except for immaterial constants and the nonlinear lower order term θx
θ

identical
to Equation (4) with g = 0.
The methods and results presented here are related to those obtained by Durek [JR00,
Section 6.6], who considered the partially linearized system with convex energy given by

utt − (φ(ux))x + γθx = 0, (5)

δθt − κθxx + γutx = 0. (6)

with constant γ, δ, and κ. Her proof relies on vanishing viscosity and compensated com-
pactness. The main difference between her approach and our work is that the system (3)–
(4) satisfies an energy balance, and that we allow for nonconvex energy densities. Indeed,
the proof of Lemma 3.3 reveals that, for f = g = 0, the conservation law

∫

I

[

1

2
(ut(τ))2 + Φ(ux(τ)) +

1

θc
(θ(τ))2

]

dx +
1

θc

∫ τ

0

∫

I

(θx)2 dx dt =

∫

I

[

1

2
(ut(0))2 + Φ(ux(0)) +

1

θc
(θ(0))2

]

dx (7)

holds for every τ ∈ [0, T ).
In order to define solutions for the system (3)–(4), we use the concept of Young measures.
A Young measure (or parameterized measure) is a family of probability measures (νx)x∈Ω
on R

N associated with a sequence of measurable functions fj : Ω ⊂ R
n → R

N such that
for any continuous function φ : RN → R the function

φ(x) :=

∫

RN

φ(F ) dνx(F ) =: 〈νx, φ〉

is measurable, and for every sequence (fj)j converging weakly in Lp(Ω), we have

(φ(fj))j ⇀ φ in Lp(Ω).

We can think of the Young measure as a one-point statistic for the sequence (fj)j . Namely,
νx describes (in a certain sense that can be made mathematically precise) the probability
distribution of the values of the sequence (fj)j at x ∈ I [Ped97].
A gradient Young measure is a Young measure generated by a sequence (fj)j with fj =
∇uj, where uj ∈ W 1,2(Ω). In this case we often write ∇uj ⇀ ν. Whenever (∇uj)j is
uniformly bounded (e.g., in L2(Ω)), there exists a Young measure ν such that ∇uj ⇀ ν,
see, e.g., [Tar79]. Introductions to Young measures and their applications can be found,
e.g., in [Ped97].



Definition 2.1 (Young measure solutions) Let T ≥ 0, let

u ∈ W 1,∞((0, T ), L2(I)) ∩ L∞((0, T ),W 1,6(I)),

θ ∈ W 1,∞((0, T ), L1(I)) ∩ L2((0, T ), H1(I)),

and let ν be a gradient Young measure with 〈Id, ν〉 = ux a.e.. Then (u, ν, θ) is a Young
measure solution of Equations (3)–(4) if for all ξ, ζ ∈ H1

0 ((0, T ), H1
0(I))

∫ T

0

∫

I

[utξt − uxθξx − 〈φ, ν〉ξx] dx dt = −

∫ T

0

∫

I

fξ dx dt, (8)

∫ T

0

∫

I

[

θ ζt − θxζx −
1

2
θc〈| · |

2, ν〉ζt

]

dx dt = −

∫ T

0

∫

I

gζ dx dt, (9)

and if u(·, 0) = u0, ut(·, 0) = u1, θ(·, 0) = θ0, u(0, ·) = u(1, ·) = 0, θx(0, ·) = θx(1, ·) = 0.

We observe that a sufficiently smooth solution in the sense of Definition 2.1 satisfies (3)–
(4) in the weak sense.

Remark 2.1 Let (u, ν, θ) be a Young measure solution. Let u and θ be twice continuously
differentiable and let ν := δux

. Then u and θ satisfy (3) and (4) in the weak sense.

The main result of this paper is existence of a Young measure solution to (3)–(4). The
precise statement is given in the following theorem.

Theorem 2.2 (Global Existence Theorem) Suppose f, g ∈ L2((0, T ), L2(I)) and u0,

u1 ∈ H1(I), θ0 ∈ H1(I). Under these assumptions, a Young measure solution to (3)–(4)
exists.

The idea of the proof of Theorem 2.2 is to consider the Equations (3)–(4) with an addi-
tional capillarity term of order ε. Similar equations were studied in [SZ89]. (The results
obtained there carry over to the technically simpler case of Neumann boundary conditions
θx(0, ·) = θx(1, ·) = 0.) The aim of Section 3 is to derive an existence result and a priori
estimates for the regularized equations following the ideas of [SZ89, BS98]. In Section 4,
we study the limit of these solutions as ε → 0 and prove convergence to a Young measure
solution of the system (3)–(4).
We remark that it seems to be difficult to obtain our results by using a viscous regu-
larization, although this idea works well in the isothermal case. The reason is that the
additional nonlinear term εu2

xt in the heat equation derived from the viscous regularization
cannot be easily controlled as the viscosity goes to zero.

3 Existence for the regularized equations

In this section, we prove existence and uniqueness of the regularized problem

uε
tt − (uε

xθ
ε)x − (φ(uε

x))x + εuε
xxxx = f, (10)

θεt − θεxx − θcu
ε
xu

ε
xt = g, (11)

with initial and boundary conditions specified below.
We first state a local existence theorem.



Theorem 3.1 Consider the system (10)–(11), equipped with initial conditions uε(·, 0) =
u0, u

ε
t (·, 0) = u1, θ

ε(·, 0) = θ0, and boundary conditions uε(0, ·) = uε(1, ·) = 0, uε
xx(0, ·) =

uε
xx(1, ·) = 0, θεx(0, ·) = θεx(1, ·) = 0. Suppose

f ∈ H1((0, T ), H1(I)), ftt ∈ L2((0, T ), L2(I)), (12)

g ∈ L2((0, T ), H2(I)) ∩H1((0, T ), H1(I)), (13)

u0 ∈ H5
E(I) := {u ∈ H5(I)

∣

∣ u(0) = uxx(0) = u(1) = uxx(1) = 0}, (14)

u1 ∈ H4
E(I) := {u ∈ H4(I)

∣

∣ u(0) = uxx(0) = u(1) = uxx(1) = 0}, (15)

θ0 ∈ H3(I). (16)

Then a T > 0 exists such that this initial-boundary value problem has a unique solution
in [0, T ).

Proof: The proof relies on the fact that (10) can be seen as a perturbed one-dimensional
plate equation. Existence can be proved by deriving the necessary a priori estimates that
allow an application of Tikhonov’s fixed point theorem. We refrain from presenting the
computations here and remark that the methods presented in [BS98] apply, with minor
modifications, to the system (3)–(4). �

The main theorem of this section is given as follows.

Theorem 3.2 Consider the system (10)–(11), equipped with initial conditions uε(·, 0) =
u0, u

ε
t (·, 0) = u1, θ

ε(·, 0) = θ0, and boundary conditions uε(0, ·) = uε(1, ·) = 0, uε
xx(0, ·) =

uε
xx(1, ·) = 0, θεx(0, ·) = θεx(1, ·) = 0. Suppose that the regularity assumptions (12)–(16)

hold. Then the system (10)–(11) has a unique classical solution (uε, θε) on I × [0, T ],
where T < ∞ is arbitrary. The functions uε

xxxx, u
ε
xxt, u

ε
tt, θ

ε
t , θ

ε
xx all belong to Cα,α

2 , for
some α ∈ (0, 1).

We start by deriving the following lemma, which provides an a priori energy estimate.

Lemma 3.3 The following energy estimate holds, with a constant C independent of ε > 0:

sup
t∈[0,T ]

∫

I

[

(uε
t)

2 + Φ(uε
x) +

1

θc
(θε)2 + ε(uε

xx)2
]

dx +
1

θc

∫ T

0

∫

I

(θεx)2 dx dt < C. (17)

Proof: A multiplication of (10) by uε
t , followed by integration over space and time, yields

1

2

∫

I

(uε
t (t))

2 dx +

∫

I

Φ(uε
x)(t) dx +

ε

2

∫

I

(uε
xx(t))2 dx (18)

= −

∫ t

0

∫

I

θεuε
xu

ε
xt dx ds +

1

2

∫

I

(uε
t(0))2 dx

+

∫

I

Φ(uε
x)(0) dx +

ε

2

∫

I

(uε
xx(0))2 dx +

∫ t

0

∫

I

fuε
t dx ds

for almost every t in [0, T ]. Since θc > 0, it is possible to multiply (11) by θε

θc
. Integrating

over space and time and using the Neumann boundary condition for θε, we obtain

1

θc

∫

I

(θε(t))2 dx +
1

θc

∫ t

0

∫

I

(θεx)2 dx ds =

∫ t

0

∫

I

θεuε
xu

ε
xt dx ds

+
1

θc

∫

I

(θε(0))2 dx +
1

θc

∫ t

0

∫

I

gθε dx ds. (19)



Addition of equations (18) and (19), together with Young’s inequality for the last terms
on the right hand side of Equations (18) and (19), gives the desired result. �

From the bound on uε
xx in Lemma 3.3, the crucial estimate

‖uε
x‖L∞(L∞) < C (20)

follows via Sobolev embedding. Similarly, we get

∫ T

0

||θε(t)||2L∞ dt ≤ C.

Moreover we derive from Lemma 3.3

sup
0≤t≤T

∫

I

|θε(t)| dx ≤ sup
0≤t≤T

∫

I

max (|θε(t)|, 1) dx ≤ sup
0≤t≤T

∫

I

max
(

|θε(t)|2, 1
)

dx

≤ sup
0≤t≤T

∫

I

|θε(t)|2 dx + |I| ≤ C.

Having obtained these crucial bounds, one can proceed as in [SZ89]. Indeed, a careful
examination of [SZ89] reveals that the estimates obtained there (Lemma 2.6–Lemma 2.8)
can be derived with straightforward modifications for the system under consideration. In
particular, the modification of the boundary conditions and the lack of a lower bound
on the temperature for the system under consideration do not alter the argumentation
substantially. Therefore, we refrain from reproducing the corresponding estimates and
refer the reader to the work by Sprekels and Zheng [SZ89].

4 Vanishing capillarity

We investigate system (3)–(4) as the limit of the system (10)–(11) studied in the previous
section, as ε → 0. In the limit case the assumptions (12)–(16) on the initial conditions and
the conditions on the right hand sides f and g appear strong without sufficient justification
for this. We approximate them by functions with more natural regularities. We choose
f ε → f in L2(L2), gε → g in L2(L2), uε

0 → u0 in H1(I), uε
1 → u1 in H1(I) and θε0 → θ0

in H1(I), such that f ε, gε, uε
0, u

ε
1, θ

ε
0 satisfy (12)–(16). The existence of such sequences

f ε, gε and θε0 is obvious. To construct approximating sequences uε
0 and uε

1 that satisfy the
boundary conditions (uε

0)xx(0) = (uε
0)xx(1) = 0 and (uε

1)xx(0) = (uε
1)xx(1) = 0 requires a

small technical trick which we illustrate for u0.
We first find u

δ,ε
0 that satisfy the boundary conditions and approximate a given smooth

function uδ
0. This can be achieved by defining the approximating functions as (uδ

0)x(0) · x
for x ≤ δ, as (uδ

0)x(1) · (x − 1) for x ≥ 1 − δ and by using an appropriate mollifier in
between. As ε → 0, the sequence u

δ,ε
0 converges to uδ

0 in H1(I). On the other hand,
we can approximate u0 ∈ H1(I) by smooth functions uδ

0 in H1(I). Taking the diagonal
sequence uε

0 := u
ε,ε
0 we find the desired approximation.

Now let (uε, θε) be solutions of (10)–(11) for ε > 0 and consider the limit of vanishing
capillarity. The coupling between elasticity and heat equation in thermoelasticity poses
some technical difficulties that can so far only be solved in one space dimension.



By Lemma 3.3, we can extract subsequences of uε and θε (not relabeled) such that uε ⇀ u

in L∞(W 1,6)∩W 1,∞(L2), uε
x generates a Young measure ν and θε ⇀ θ in L2(H1)∩L∞(L1).

We consider the weak formulation of the regularized system,

∫ T

0

∫

I

[uε
tξt − uε

xθ
εξx − φ(uε

x)ξx

+εuε
xxξxx] dx dt = −

∫ T

0

∫

I

f εξ dx dt, (21)

∫ T

0

∫

I

[

θε ζt − θεxζx −
1

2
θc(u

ε
x)2ζt

]

dx dt = −

∫ T

0

∫

I

gεζ dx dt, (22)

for ξ, ζ ∈ C∞
0 (I × (0, T )) and study the limit of (21):

By the weak convergence of uε
t , we have

∫ T

0

∫

I

uε
tξt dx dt →

∫ T

0

∫

I

utξt dx dt.

To prove convergence of the second term we use the Div-Curl-Lemma (see, e.g., [Tar79]):
Let aε := (θε, 0), then div aε = θεx is bounded in L2(I) and hence compact in H−1(I).
Moreover, bε := (uε

x, u
ε
t) satisfies curl bε = ∂tu

ε
x − ∂xu

ε
t = 0. Thus, in the sense of distribu-

tions, the inner product aεbε converges to the inner product ab, so θεuε
x → θux. Since on

the other hand uε
xθ

ε is bounded in L1(L1), we deduce for a subsequence that

∫ T

0

∫

I

uε
xθ

εξx dx dt →

∫ T

0

∫

I

uxθξx dx dt.

The definition of Young measures results for the third term of (21) in

∫ T

0

∫

I

φ(uε
x)ξx dx dt →

∫ T

0

∫

I

〈ν, φ〉ξx dx dt.

The Cauchy-Schwarz inequality together with the a priori estimate for uε
xx as stated in

Lemma 3.3 gives

∫ T

0

∫

I

εuε
xxξxx dx dt ≤

(

ε2
∫ T

0

||uε
xx||

2 dt

)

1

2
(
∫ T

0

||ξxx||
2 dt

)

1

2

→ 0.

The convergence of the right hand side in (21) is obvious, since f ε → f in L2(L2). Thus,
we have obtained the limit of the elasticity equation (21).
Similarly, we can consider the limit of (22): By the weak convergence of θε and θεx, the first
two terms converge to

∫ ∫

θζt dx dt and −
∫ ∫

θxζx dx dt, respectively. The convergence
of the third term follows (as in the corresponding term of the elasticity equation) from
the definition of the Young measure. Finally, the right hand side converges since gε → g

in L2(L2).
We now pass to the limit ε → 0 in Equations (21)–(22). We just have to combine the
limits of the individual terms obtained behind Equation (22). The limiting equations for



u, ν and θ read

∫ T

0

∫

I

[utξt − uxθξx − 〈ν, φ〉ξx] dx dt = −

∫ T

0

∫

I

fξ dx dt,

∫ T

0

∫

I

[

θ ζt − θxζx −
1

2
θc〈| · |

2, ν〉ζt

]

dx dt = −

∫ T

0

∫

I

gζ dx dt.

The equality 〈Id, ν〉 = ux a.e. is the only remaining claim to prove. However, it follows
immediately from the fact that ν is generated by uε

x and uε
x ⇀ ux . Thus, we have proved

Theorem 2.2. �

5 Open problems

It seems interesting to generalize the results presented here to several space dimensions.
In the one-dimensional situation, we build on a well-established existence theory for reg-
ularized equations of thermoelasticity with nonconvex energy. In more than one space
dimension, we are only aware of relatively few results. In [PŻ02], a regularized model
with viscosity and capillarity is studied. A model with a purely viscous regularization is
investigated in [Zim04]. For equations of thermoviscoelasticity without a capillarity-like
regularization, the situation is particularly subtle in several space dimensions, cf. [Zim04]
for a discussion.
A further natural extension would be to study the original system (1)–(2) instead of
(3)–(4).
Numerical analysis of nonconvex problems with Young measure valued solutions is an
active area of research. See, e.g., [CR02] for an application to elastodynamics. An exten-
sion to the field of nonconvex thermoelasticity is likely to be a interesting, but challenging
subject.

Acknowledgments

We are grateful to Constantine Dafermos, Irene Fonseca, Harald Garcke, Massimiliano
Morini and Reinhard Racke for stimulating discussions and helpful advice. The work
was partially carried out while JZ was a postdoctoral scholar at the California Institute
of Technology. This work started during a visit of the second author at the Center for
Nonlinear Analysis at Carnegie Mellon University. He thanks Irene Fonseca and the
Center for their kind invitation and hospitality.
Communicated by Editors; Received April 16, 2003.

This work is supported by the Center for Nonlinear Analysis under NSF Grant DMS-9803791 (MOR) and

by an NSF-ITR grant (ACI-0204932), the US Air Force Office of Scientific Research through a MURI

grant (F49620-98-1-0433) and the Deutsche Forschungsgemeinschaft through an Emmy Noether grant

(JZ).

AMS Subject Classification 35M10, 35Q72, 74B20, 74N15



References

[BS98] Nikolaus Bubner and Jürgen Sprekels. Optimal control of martensitic phase
transitions in a deformation-driven experiment on shape memory alloys. Adv.
Math. Sci. Appl., 8(1):299–325, 1998.

[CH94] Zhiming Chen and K.-H. Hoffmann. On a one-dimensional nonlinear thermo-
viscoelastic model for structural phase transitions in shape memory alloys. J.
Differential Equations, 112(2):325–350, 1994.

[CR02] Carsten Carstensen and Marc Oliver Rieger. Numerical simulations in non-
monotone elastodynamics involving Young-measure approximations. Preprint
2002/27, Center for Nonlinear Analysis, Carnegie Mellon University, Pittsburgh,
USA, 2002. submitted to M2AN.

[Dem97] Sophia Demoulini. Young measure solutions for nonlinear evolutionary systems
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