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Abstract. In this paper we analyse the structure of approximate solutions to the compatible
two well problem with the constraint that the surface energy of the solution is less than some
fixed constant. We prove a quantitative estimate that can be seen as a two well analogue of
the Liouville theorem of Friesecke James Müller.

Let H =
` σ 0

0 σ−1
´

for σ > 0. Let 0 < ζ1 < 1 < ζ2 < ∞. Let K := SO (2)∪SO (2) H. Let

u ∈ W 2,1 (Q1 (0)) be a C1 invertible bilipschitz function with Lip (u) < ζ2, Lip
`
u−1

´
< ζ−1

1 .
There exists positive constants c1 < 1 and c2 > 1 depending only on σ, ζ1, ζ2 such that

if ε ∈ (0, c1) and u satisfies the following inequalitiesZ
Q1(0)

d (Du (z) , K)dL2z ≤ ε

Z
Q1(0)

˛̨
D2u (z)

˛̨
dL2z ≤ c1,

then there exists J ∈ {Id, H} and R ∈ SO (2) such thatZ
Qc1 (0)

|Du (z) − RJ | dL2z ≤ c2ε
1

800 .
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2 ANDREW LORENT

1. Introduction

We consider the following simple problem.
Problem A. Let E be a set of matrices and F �∈ E. Let q ≥ 1, and Ω be a Lipschitz domain
in IRn. Let d (·, E) denote Euclidean distance from set E. Prove there exists constants ε0 > 0,
β0 > 0 such that any u ∈W 2,q (Ω : IRm) satisfying u (x) = F (x) on ∂Ω and∫

Ω

d (Du (z) , E) dL2z ≤ ε (1)

for ε ∈ (0, ε0) has the property that∫
Ω

∣∣D2u (z)
∣∣q dL2z ≥ ε1−q−β0 . (2)

Problem A is solved only for sets of 2 or 3 matrices satisfying the following strong condition.

Definition 1. A set of matrices E is called restricted if and only if given any Lipschitz domain
Ω there exists constant c1 > 0, δ0 > 0, γ0 > 0 such that if function u ∈ Lip satisfies u = F on
∂Ω for F �∈ E and ∫

Ω

d (Du (z) , E) dL2z < δ0

then u has the property

sup {|u (z) − F (z)| : x ∈ Ω} < c1

(∫
Ω

d (Du (z) , E) dL2z

)γ0

. (3)

We briefly comment on how Problem A is solved for restricted sets of 2×2 matrices in order
to motivate definition 1. For restricted sets condition (1) forces the function to be pressed down
uniformly close to the affine boundary condition F in the sense of (3). Let v ∈ S1 be such that
(X − F ) v �= 0 for any X ∈ E. Suppose we can find two points a, b ∈ Ω in direction v such
that Du�[a,b] ≈ X ∈ E then as (X − F ) (a− b) ≈ (u− F ) (a− b) ≤ ‖u− F‖L∞(Ω). So we have
|a− b| < c2‖u − F‖L∞(Ω) < c2c1

(∫
Ω d (Du (z) ,K)dL2x

)γ0 . Thus for any line going through

Ω there must be approximately
(
c2c1

(∫
Ω
d (Du (x) ,K)dL2x

)γ0)−1
points at which Du jumps

from one matrix inside E to another. Hence by Fubini (2) follows.
Solutions to problem A for restricted sets of 2 or 3 matrices appear in [7], [19]. For example

the set
{(

1 0
0 0

)
,
(−1 0

0 0

)}
is restricted.

From the results of S. Müller, V. Šverák [23], [24] and B. Dacorogna, P. Marcellini [12] for
the set of matrices E = SO (2) ∪ SO (2)H ⊂ M2×2, H diagonal there exists a large class of
matrices F �∈ E for which we can solve the differential inclusion.

Du ∈ E for a.e. and u = F on ∂Ω.

Our goal is to solve Problem A with respect to this set of matrices. Our main theorem is
following.

Theorem 1. Let 0 < ζ1 < 1 < ζ2 <∞. Let K := SO (2) ∪ SO (2)H where H =
(

σ 0
0 σ−1

)
.

Let u ∈ W 2,1 (Q1 (0)) be a C1 invertible bilipschitz function with Lip (u) < ζ2, Lip
(
u−1
)
<

ζ−1
1 . There exists positive constants c1, c3, c4 < 1 and c2, c5 > 1 depending only on σ, ζ1, ζ2

such that if κ ∈ (0, c1], m0 ≥ c2 and u satisfies the following inequalities∫
Q1(0)

d (Du (z) ,K)dL2z ≤ κm0 (4)

∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ c3κ, (5)
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then there exists J ∈ {Id,H} and R ∈ SO (2) such that∫
Qc4 (0)

|Du (z) −RJ |dL2z ≤ c5κ
m0
800 . (6)

The integral
∫
d (Du (z) ,K) dL2z is known as the bulk energy and

∫ ∣∣D2u (z)
∣∣ dL2z is known

as the surface energy . To illustrate our theorem it is helpful to consider κ = c1 and to take
m0 → ∞ (this way we also obtain the theorem stated in the abstract). So for small but fixed
surface energy, as the bulk energy decreases, the control of the derivative of the function in the
central subsquare improves to some root power of the bulk energy. To state things more roughly,
even though the surface energy is a small but fixed quantity, as the bulk energy decreases, the
function in the central subsquare becomes increasingly flat.

The upper bound c5κ
m0
800 in (6) is far from optimal. The naive guess that the optimal bound

is given by cκ is false 1, this follows from the construction of [8], see [11] for more details.
The assumption that u is bilipschitz is a technical one, however it is used in an essential way

many times in the proof. On the other hand the assumption u is C1 is not necessary, its saves
us some details to do with fine properties of Sobolev functions.

In another paper [20] we will use Theorem 1 to reduce Problem A to a kind of discrete ε free
version of the problem 2.

As shown in the remark following definition (1), for restricted sets E we can control the
function just using bulk energy, then simply count up the surface energy. For our case with
matrices K = SO (2) ∪ SO (2)H from the work of Dacorogna and Marcellini [12], Müller and
Šverák [23], we have the existence of Lipschitz functions satisfying the affine boundary condition
but for which Du ∈ K a.e. in Ω. So there is no relation between small bulk energy (in this case
zero bulk energy) and being pressed down close to the affine boundary. It is not possible to just
use bulk energy, we have to control the function using bulk and surface energies in combination.
Hence the need for Theorem 1.

Functionals of the form (4) for K = SO (2) ∪ SO (2)H have received much attention in
non convex calculus of variations. From work of Ball, James [2], [3] and Chipot, Kinderlehrer
[6] functionals of this form have been the basis of a well known model for solid-solid phase
transformations. The basic idea was that deformations of the material will attempt to minimise
an energy functional of the form

I (u) =
∫

Ω

φ (Du (x)) dL2x (7)

where φ is the free energy per unit volume in Ω. Many features of minimising sequences can be
understood from the set {F : φ (F ) = 0}. This set is known as the energy wells of the functional
I. Certain natural assumptions on the behavior of φ, in particular frame indifference, imply
that K has to be of the form

K = {SO (3)Ai : i = 1, 2, . . .m} (8)

where the Ai are symmetry related and depend on the action of the phase transition.
Functional I is not quasiconvex and so minimisers can not be found by lower semicontinuity,

however as stated, from the work of Dacorogna and Marcellini, Müller and Šverák there exists
absolute minimisers to I. It is the existence of these functions that make Problem A interesting.

A some what different but nevertheless relevant theorem is [15], Theorem 3.1.

Theorem 2 (Friesecke, James, Müller). Let U be a bounded Lipschitz domain in IRn, n ≥ 2.
The exists a constant C (U) with the following property. For each v ∈ W 1,2 (U, IRn) there exists

1Thanks to Sergio Conti for pointing this out
2Though this discrete problem remains very much open
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an associated rotation R ∈ SO (n) such that

‖Dv −R‖L2(U) ≤ C (U) ‖dist (Dv, SO (n)) ‖L2(U). (9)

In [4] Theorem 2 was proved for the set K̃ = SO (2)∪SO (2)H whereH = diag (λ1, λ2, . . . λn),
λi > 0 is such that

n∑
i=1

(1 − λi)
(

1 − det (H)
λi

)
> 0. (10)

Specifically it was shown that for each u ∈ W 1,2 (Ω, IRm) there exists R ∈ K̃ such that

‖Du−R‖L2(Ω) ≤ C (Ω, H) ‖dist
(
Du, K̃

)
‖L2(Ω).

Condition (10) forces the wells SO (n) and SO (n)H to be strongly incompatible, in particular
H is not rank-1 connected to SO (n).

In our case (where H is rank-1 connected to SO (2)) Theorem 2 is trivially false without
additional conditions (a simple laminate being the counter example).

Our additional conditions are to bound ‖D2u‖L1(Ω) by a small but fixed constant and to
constrain u to be bilipschitz 3, and we obtain the weaker bound.

‖Du−RJ‖L1(Qc3 (0)) ≤ c4

(
‖dist (Du,K) ‖

L1

„
Q

16ζ
−1
1 ζ2

(0)

«
) 1

800

.

After this paper was submitted, we learned of the relevance of the work of Conti, Schweizer
[10] on the Gamma limit of functional I with surface energy term, where I has linearised
wells. Using methods of [11] (for the non-linear functional) Conti, Schweizer proved a strong
generalisation of Theorem 1, their strategy was to use hypotheses (4) and (5) to deduce∫

Q1(0)
d (Du (z) , SO (2)J) ≤ κm0 for some J ∈ {Id,H}, the theorem then follows from Theo-

rem 2. For a simple proof of Theorem 1 in the plane via application of Theorem 2, see [9].

Acknowledgements. Firstly I would like to thank the referee for reading the entire paper
with great care and providing many useful comments, in particular for pointing out Theorem 2
was not needed in the proof of Lemma 2 (and hence is not needed in the proof of Theorem 1).

Secondly I am greatly indebted to Laszlo Szekelyhidi and Sergio Conti for many suggestions
and simplifications, thanks also to Stefan Müller for helpful comments on the introduction.
This paper is a reworking and improvement of preprint MIS MPG 37/2002, carried out with
the support of an EPSRC fellowship.

3Note that the fact we only have an L1 bound on D2u is important, for Lq bounds on D2u a much stronger
result is possible, see [21]. Also note that for a finite L2 bound on D2u the result can easily be deduced from
Lemma 4 of [4]
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2. Plan of Proof

Strategy:
We will gain control of function u in a central subsquare by surrounding the central subsquare
with a “diamond”. Along the sides of the diamond we will show Du is L1 close to a fixed
rotation, the control in the central subsquare follows from this. Showing Du on a line l is L1

close to a fixed rotation is “more or less” equivalent to showing u (l) is “roughly” mapped to a
straight (unstretched) line. We will develop methods that show that for many lines in Q1 (0)
(in the directions of the sides of the diamond), function u maps the lines to “roughly” straight
(unstretched) lines.

2.1. The push over lemma. H =
(

σ 0
0 σ−1

)
. To begin with note that there are two linearly

independent vectors φ1 and φ2 such that |Hφi| = 1 for i = 1, 2. A short calculation gives that

we can take φ1 =
( 1√

1+σ2
σ√

1+σ2

)
and φ2 =

( 1√
1+σ2
−σ√
1+σ2

)
. Let ni denote the anticlockwise normal to φi

for i = 1, 2.
Now the most basic example of a function satisfying the affine boundary condition that

minimises bulk energy is a laminate . In the reference configuration this can be seen as a
function defined on a collection of strips running parallel to either φ1 or φ2 for which the
derivative of the laminate alternates from one strip to the next from being in SO (2) to being
in SO (2)H . For simplicity, let us suppose the strips are parallel to φ1 and let us denote the
laminate by u. Now if all our strips are of width w, by Fubini and the fact that det (H) = 1
and |Hφ1| = 1 we know that the images of our strips under the action of u will be strips of
width w, as shown Fig. 1.

φ 1

φ 2

TS

P

ReferenceImage

RQ

2Ξ

Ξ 1

1e
e2

Figure 1
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For a general function v with small bulk energy (i.e.
∫
Ω d (Dv (x) , SO (2) ∪ SO (2)H) dL2x <

ε) we will examine the behaviour of v on lines parallel to φi. Roughly speaking it will turn out
that if l1 is parallel to l2 and the two lines are distance w apart, then v(l1) will have to stay
distance w away from v(l2). This is a consequence of the following inequality

|Hψ| ≥ ψ · ni for all ψ ∈ S1. (11)

For the proof of which, see the argument following (27).
Firstly, suppose for two parallel lines l1, l2 in direction φ1 that are distance w apart we have

that v (l1), v (l2) are distance (much) less than w apart at some point, as shown on figure 2 .

φ 1

φ 2
Ξ

v(l ) v(l )12

2
n1

l1α
l2 v (  )α−1

e 1

2e

Figure 2

Let α be the line of length less than w joining v (l1) to v (l2). Using bilipschitzness of v and
a Fubini argument, we can assume α is such that

∫
α
d
(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
<

√
ε.

We consider the preimage v−1 (α). We want to use the formulaH1 (α) =
∫

v−1(α) |Dv (x) t (x)| dH1x

and the fact that H1
(
v−1 (α)

) ≥ w to get a contradiction from the assumption H1 (α) << w.
Assume for simplicity Dv

(
v−1 (x)

) ∈ N√
ε (SO (2) ∪ SO (2)H) for all x ∈ α. For each

x ∈ α let G (x) ∈ SO (2) ∪ SO (2)H be the matrix such that
∣∣Dv (v−1 (x)

)−G (x)
∣∣ =

d
(
Dv
(
v−1 (x)

)
, SO (2) ∪ SO (2)H

)
, and let tx denote the tangent to v−1 (α) at point x. We
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have

H1 (α) =
∫

v−1(α)

∣∣Dv (v−1 (x)
)
tx
∣∣ dH1x

≥
∫

v−1(α)

|G (x) tx| dH1x−√
εH1

(
v−1 (α)

)
(11)

≥ L1
(
Pφ⊥

i

(
v−1 (α)

)) −√
εH1

(
v−1 (α)

)
= w −√

εH1
(
v−1 (α)

)
.

Assuming v is bilipschitz (and so H1
(
v−1 (α)

)
is not too big) this implies the images of lines

l1 and l2 must be (by at least (1 − c
√
ε)w) “pushed over” from one another, i.e. we can not

find a line α of length less than (1 − c
√
ε)w joining v (l1) to v (l2). This is our first restriction

on the geometry of the function we want to study, just coming from smallness of bulk energy.

2.2. ODE method. We consider the same picture as before but from a different perspec-
tive. So l1, l2, . . . are lines in direction φ1 going through Ω and we consider the images
v (l1) , v (l2) , . . . . Now supposing we were on a point x ∈ v (l1) and we wanted to get to
v (l2) via a path in v (Ω) of the shortest length. If we start at point s the most obvious thing
to do is to “draw a straight line” to the nearest point of v (l2). But supposing we are “blind”
and we can not see which straight line to draw, suppose we have to find the path just using
analytic information we have about v.

φ 1

φ 2
Ξ

v(l )v(l )2 1 ll 12

2
1n

ssψ (  )1

e

v (s)

v (e)−1

−1

w

e 1

e 2

Figure 3

The most natural way to do it would be to consider the vector field given by the gradient of
the function Ψ1 : v (Ω) → IR2 defined by Ψ1 (x) := v−1 (x) · n1 note v (l1), v (l2) are the level
sets of Ψ1. If we “follow” the vector field from point x it will indeed take us along the optimal
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path to v (l2). But “following” a vector field is exactly finding an integral curve for a vector
field, which means solving the following ODE

X (0) = x
dX

dt
(t1) = DΨ1 (X (t1)) . (12)

Now if point y ∈ {X (t) : t > 0} is such that Dv
(
v−1 (y)

) ∈ N√
ε (SO (2) ∪ SO (2)H) we

calculate that DΨ1 (y) = Dv−T (y) · n1. Letting R
(
v−1 (y)

)
S
(
v−1 (y)

)
:= Dv

(
v−1 (y)

)
be

the polar decomposition of Dv
(
v−1 (y)

)
(i.e. R

(
v−1 (y)

) ∈ SO (2) and S
(
v−1 (y)

) ∈ M2×2
sym )

we have Dv−T (y)n1 = R
(
v−1 (y)

)
S−1

(
v−1 (y)

)
n1 and as S

(
v−1 (y)

) ∈ N√
ε ({Id,H}) so

either S
(
v−1 (y)

) ∈ N√
ε (Id) and so

∣∣S (v−1 (y)
)
n1

∣∣ ≈ 1 or S
(
v−1 (y)

) ∈ N√
ε (H) and so∣∣S (v−1 (y)

)
n1

∣∣ ≈ ∣∣H−1n1

∣∣ = 1. So assuming the path of the vector field is such that Dv stays
close to the wells SO (2) ∪ SO (2)H , if Λ is a connected subset of the set {X (t) : t > 0} with
end points e ∈ v (l2), s ∈ v (l1) then

|Ψ1 (e) − Ψ1 (s)| =
∣∣(v−1 (e) − v−1 (s)

) · n1

∣∣ ≈ H1 (Λ) . (13)

So on Fig. 3, as v−1 (s) ∈ l1 and v−1 (e) ∈ l2 then H1 (Λ) ≈ w, but on the other hand, by the
push over lemma we know that |s− e| can not be much less than w, this implies Λ must be
close to a straight line.

2.3. Finding lines in a grid of good subsquares. Suppose u is an invertible function
with

∫
Ω d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ δ2 and

∫
Ω

∣∣D2u (z)
∣∣ dL2z ≤ 1

1000 . It follows from
the “push over lemma” and the “ODE method” that if we can find many paths X (0) =
x0, dX

dt (t0) = DΨ1 (X (t0)) in u (Ω) where the path {X (t) : t > 0} is mostly contained in{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
,K
)
< δ
}

then we have that these paths are mostly straight and
so we can control function u on the path, specifically u is L∞ close to a rotation.

So the problem becomes how to find these paths. The key observation that allows us to find
them is the following:

Suppose we have a point x0 ∈ u (Ω) where the path

X (0) = x0 and
dX

dt
(t0) = DΨ1 (X (t0)) (14)

stays mostly in the set
{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}

then from the study we made
in Section 2.1 we know u−1 ({X (t) : t > 0}) will be “roughly” a line in direction n1.

Conversely if we manage to find a line L in direction n1 where Du on Ω ∩ L stays mostly
within Nδ (SO (2)) then u (Ω ∩ L) will “roughly” form an integral curve to DΨ1 and the path
u (Ω ∩ L) will stay mostly in the set

{
z ∈ u (Ω) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}
. So instead of

trying to find paths X : [a, b] → u (Ω) that satisfy (14) for which Du on X ([a, b]) stays L1 close
to the wells SO (2) ∪ SO (2)H , we can look for a straight lines in direction n1 in Ω for which
Du stays L1 close to SO (2). By Fubini there will be many lines L1 close to SO (2)∪SO (2)H
and by the bound on surface energy, many of these lines will either be L1 close to SO (2) or
SO (2)H .

To summarise, what we have gained is that in the reference configuration (i.e. in Ω) we need
only look for straight lines with low bulk energy, and by Fubini there will be plenty of these.
The cost is that Du must stay close to the well SO (2).

2.3.1. The grid. First we will repeat the idea given in Section 2.3 with a bit more detail. Let
δ > 0 be some small number and m be a large integer. Suppose we had an invertible function
u : Q1 (0) → IR2 with ∫

Q1(0)

d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ δ2 (15)



A TWO WELL LIOUVILLE THEOREM 9

and ∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ 1

1000
. (16)

Suppose also we have an m ×m grid of subsquares T := {Q1, Q2, . . .Qm2} that cover Q1 (0)
for which we have a subcollection G such that Card (T \G) ≤ (1 − δ)m2 and G has the
following property; for any Qk ∈ G there exists Rk ∈ SO (2), Jk ∈ {Id,H} such that∫

Qk
|Du (z) −RkJk| dL2z ≤ δm−2. Then by the bound on surface energy (16) we must be

able to find many lines L in direction n1 such that {Qk ∈ G : Qk ∩ L �= ∅} are all subsquares
with Du close to either SO (2) or all of them are such that Du is close to SO (2)H . If we
know additionally that

∫
Q1(0) d (Du (z) , SO (2)) dL2z ≤ ∫Q1(0)

d (Du (z) , SO (2)H) dL2z then
we could in fact find many lines in direction n1 (or direction n2) on which Du stays close to
SO (2).

As we have argued, the u image of these lines will form paths which (roughly speaking) solve
the ODE (14) and stay mostly inside the set

{
z ∈ u (Q1 (0)) : d

(
Du
(
u−1 (z)

)
, SO (2)

)
< δ
}

and hence by the push over lemma (i.e. using (13)) and the ODE method, these paths will
form mostly straight lines.

Now given that there are many lines L in directions n1 and n2 on which Du stays close to
a fixed (depending only on the line) rotation, its easy to show that some central subsquare S̃
(whose size is determined by the eigenvalues of matrix H) must be “surrounded” by the bound-
ary of a “diamond” whose sides are parallel to n1, n2 and form subsets of these “controlled”
lines (see Fig. 7). So on each of these four lines, (call them L1, L2, L3, L4) Du must be L1 close
to a fixed rotation Rk. One of the main reasons for working on the grid is that when two lines
(say L1, L2) intersect on a “good” subsquare Qk ∈ T on which Du ≈ R1, Du ≈ R2 we have
R1 ≈ R2. So if we manage to find our four lines L1, L2, L3, L4 such that they only intersect
on “good subsquares” function u on the boundary of the diamond will be L1 close (with error
δ

1
8 say) to a fixed rotation. Since there are so many good subsquares finding these four lines is

just a matter of careful counting.
Once this is established, by integrating the function in direction φ1 (note |Du (x)φ1| ≈ 1 for

any x ∈ Q1 (0) such that Du (x) is close to the wells SO (2) ∪ SO (2)H) from one side of the
boundary of the diamond to the other we can show that inside the diamond, Du will be mostly
close to a rotation R with error say δ

1
16 .

So if for some δ which is approximately a root power of κm0 if we can find such a grid we
will be in a position to argue the statement of Theorem 1.

Ideas similar to this have been used in plate theories, specifically decomposing a region into
squares on which a rigidity theorem is applied. See [15] section 4, and [26].

2.4. The “weak” two well Liouville Theorem. Recall our main theorem is a kind of
Liouville theorem for functions with small (fixed) surface energy but much much smaller bulk
energy, where the control of the derivative of the function inside a central subsquare is of some
root power of the bulk energy.

We can have a “weaker” theorem of this type (weaker because the control of the derivative
in the central subsquare will be bounded by the surface energy) as a simple corollary of the BV

Poincaré inequality; by the inequality if we let A =
R

Q1(0) Du(z)dL2z

4 then we have∫
Q1(0)

|Du (z) −A| dL2z ≤ c

∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ cκ.

And its easy to see A ∈ Nκ (SO (2) ∪ SO (2)H).
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2.5. Carefully scaling of the “weak” two well Liouville Theorem. Suppose function u
is such that

∫
Q1(0)

d (Du (z) , SO (2)) dL2z ≤ ∫
Q1(0)

d (Du (z) , SO (2)H) dL2z and satisfies (4),
(5).

Recall we want a grid of subsquares T := {Qk : k = 1, 2, . . .} that cover Q1 (0) for which
there is a subset G ⊂ T such that for some (possible large) q ∈ N we have

•
Card (T \G) ≤ κ

m0
q Card (T ) . (17)

• For each Qk ∈ G there exists Rk ∈ SO (2), Jk ∈ {Id,H} such that∫
Qk

|Du (z) −RkJk| dL2z ≤ κ
m0
q L2 (Qk) . (18)

Since m0 can be arbitrarily big we can in effect have as much control of bulk energy as we
like and so we need only concentrate on the surface energy. However surface energy being the
gradient of Du means that it is “morally speaking” one dimension lower than the estimate
on bulk energy. If we take a grid with elements of diameter h, we can think of the measure
A → ∫

A

∣∣D2u (z)
∣∣ dL2z as being a “one dimensional set” of length ≤ κ spread out across the

elements of the grid.
So if we take the set of “bad” grid elements Qk for which

∫
Qk

∣∣D2u (z)
∣∣ dL2z ≥ κ

m0
q h, the

total sum of the lengths of the bad grid elements will be less than κ1−m0
q which is κ−

m0
q times

longer than the original “one dimensional” set of surface energy. However we are interested in
establishing estimate (17) which is a “two dimensional” estimate because Card (T ) ≈ 1

h2 so the
set of bad grid elements is negligible.

Since by the bulk energy estimate we easily have that most of the elements Qk are such that∫
Qk
d (Du (z) , SO (2) ∪ SO (2)H) dL2z ≤ κ

m0
q h2 we have the conditions to apply the “weak

two well Liouville theorem” on “most” of the elements Qk of the grid and this give us (17),
(18). Hence we have the grid we need. Technicalities aside these are all the elements need for
the proof.

We will prove Theorem 3, Theorem 1 follows by symmetry. Note that throughout the proof
c will denote all unimportant constants depending only on σ, ζ1, ζ2.

Theorem 3. Let 0 < ζ1 < 1 < ζ2 < ∞. Let H =
(

σ 0
0 σ−1

)
for σ ∈ (0, 1). Let K :=

SO (2) ∪ SO (2)H. Let u ∈ W 1,2 (Q1 (0)) be a C1 bilipschitz function with Lip (u) < ζ2,
Lip
(
u−1
)
< ζ−1

1 . There exists positive constants c1, c3, c4 < 1 and c2, c5 > 1 depending on σ,
ζ1, ζ2 such that if k ∈ (0, c1], m0 ≥ c2 and function u satisfies∫

Q1(0)

d (Du (z) ,K)dL2z ≤ κm0 (19)∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ c3κ (20)∫

Qc4 (0)

d (Du (z) , SO (2)H) dL2z ≤
∫

Qc4 (0)

d (Du (z) , SO (2)) dL2z (21)

then there exists R1 ∈ SO (2) such that∫
Qc4 (0)

|Du (z) −R1H | ≤ c5κ
m0
800 .
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3. Preliminary notation

Let H =
(
σ 0
0 σ−1

)
for σ ∈ (0, 1). Throughout all the lemmas we take

K := SO (2) ∪ SO (2)H (22)

Let 0 < ζ1 < 1 < ζ2 <∞. Define

D (ζ1, ζ2) :=
{
M ∈M2×2 : inf

v∈S1
|Mv| ≥ ζ1 and sup

v∈S1
|Mv| ≤ ζ2

}
. (23)

Given a C1 invertible function u : Ω → IR2, u being bilipschitz with Lip (u) ≤ ζ2, Lip
(
u−1
) ≤

ζ−1
1 is equivalent to

Du (z) ∈ D (ζ1, ζ2) for all z ∈ Ω.

The latter formulation will be more convenient for us. Let

R (z, α, β) :=
{
x ∈ IR2 : |(z − x) · e1| ≤ β, |(z − x) · e2| ≤ α

}
.

4. Push over lemma

This is the push over Lemma described in Section 2.1 of the introduction. The proof is
essentially a calculation, see Section 2.1 for a explanation of why it works.

Lemma 1. Let 0 < ζ1 < 1 < ζ2 < ∞. Let K be as in (22). Let u ∈ W 2,1 (Q1 (0)) be a C1

invertible function with the property that Du (x) ∈ D (ζ1, ζ2) for all x ∈ Q1 (0). Let

φ1 =

(
1√

1+σ2
σ√

1+σ2

)
, φ2 =

( −1√
1+σ2
σ√

1+σ2

)
note that |Hφi| = 1 for i = 1, 2. (24)

Let ni denote the anti-clockwise normal to φi for i = 1, 2.
Let i ∈ {1, 2}. For any s, e ∈ u (Q1 (0)), such that η := [s, e] ⊂ u (Q1 (0)) and∫

η

d
(
Du
(
u−1 (z)

)
,K
)
dH1z < α |s− e| (25)

then
|s− e| > ∣∣(u−1 (s) − u−1 (e)

) · ni

∣∣− ζ−1
1 α |s− e| . (26)

Proof. We begin with the main inequality.
Step 1. Let i ∈ {1, 2}, for any ψ ∈ S1

|Hψ| ≥ ψ · ni. (27)

Proof of Step 1. 4 This follows by self adjointness of H and Cauchy Schwartz inequality, let
ψ
 denote the clockwise normal to ψ

ψ · ni = ψ
 · φi

= H−1ψ
 ·Hφi

≤
∣∣∣H−1ψ


∣∣∣
= |Hψ| .

Proof of Lemma.

4I would like to thank Laszlo Szekelyhidi for the following argument
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Let J : u
(
Q16ζ−1ζ2 (0)

) → IR be defined by J (x) = d
(
Du
(
u−1 (x)

)
,K
)
. We let tx ∈ S1

denote the tangent to the curve u−1 (η) at point x∫
η

J (z) dH1z =
∫

u−1(η)

|Du (x) tx| J (u (x)) dH1x

≥ ζ1

∫
u−1(η)

J (u (x)) dH1x.

So using (25) we have

ζ−1
1 α |s− e| ≥

∫
u−1(η)

d (Du (x) ,K)dH1x. (28)

Now for each x ∈ u−1 (η), letG (x) ∈ K be the matrix such that d (Du (x) ,K) = |Du (x) −G (x)|.
Let E (x) = Du (x) −G (x), note that |E (x)| = d (Du (x) ,K). So

|s− e| = L1 (η)

=
∫

u−1(η)

|Du (x) tx| dH1x

≥
∫

u−1(η)

|G (x) tx| − |E (x) tx| dH1x

(27)

≥
∫

u−1(η)

tx · ni −
∫

u−1(η)

|E (x) tx|dH1x

(28)

≥ L1
(
Pφ⊥

i

(
u−1 (η)

))− ζ−1
1 α |s− e|

=
∣∣(u−1 (s) − u−1 (e)

) · ni

∣∣− ζ−1
1 α |s− e| .

�

5. Weak two well Liouville Theorem

Lemma 2 is the “weak two well Liouville Theorem” described in Section 2.4 of the introduc-
tion. The proof is simply a matter of applying the BV Poincaré inequality.

Lemma 2. Suppose u ∈W 2,1 (Q1 (0))∩C1 with the property that for constant ζ2 > 1 we have
Du (z) ∈ D (0, ζ2) (see definition (23)) for all z ∈ Q1 (0). Let K be as in (22). Suppose κ > 0
is a small number and that u satisfies the following inequalities∫

Q1(0)

d (Du (z) ,K) dL2z ≤ κ (29)

∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ κ (30)

then for some R ∈ SO (2), J ∈ {H, Id} we have∫
Q1(0)

|Du (z) −RJ |dL2z < cκ (31)

Proof
Let A = 1

4

∫
Q1(0)Du (z) dL2z. By the BV Poincaré inequality (see Theorem 3.43 [1]) we have∫

Q1(0)

|Du (z) −A| dL2z ≤ c

∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z

≤ cκ. (32)
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And

4d (A,K) ≤
∫

Q1(0)

|A−Du (z)| dL2z +
∫

Q1(0)

d (Du (z) ,K)dL2z

(29),(32)

≤ 2cκ. (33)

So there exists R ∈ SO (2), J ∈ {H, Id} such that |A−RJ | = d (A,K) and by (32) and (33)
satisfies (31). �

Definition 2. Given vectors v1, v2 ∈ S1 and δ > 0 we define a grid G (v1, v2, δ) as follows.

G (v1, v2, δ) := {P (k1δv1 + k2δv2, v1, v2, δ) : P (k1δv1 + k2δv2, v1, v2, δ) ⊂ Q1 (0) , k1, k2 ∈ Z}
where P (x1, v1, v2, δ) is a parallelogram centered on x1 whose sides are parrel to v1, v2 and of
length δ. Note that the grid is the set of parallelograms inside Q1 (0).

6. Scaling lemma

In this lemma we set up the grid described in Section 2.3.1 and Section 2.5 of the introduction.
The proof is a matter of simple scaling and counting.

Lemma 3. Let Q1 (0) be the unit square in IR2. Let K be as in (22). Let integer m0 be large.
Given u ∈W 1,2 (Q1 (0)) ∩ C1 that for small κ > 0 satisfies the following properties,

•
Du (x) ∈ D (0, ζ2) for all x ∈ Q1 (0) .

• ∫
Q1(0)

d (Du (z) ,K)dL2z ≤ κm0 (34)

• ∫
Q1(0)

∣∣D2u (z)
∣∣ dL2z ≤ 1. (35)

Let w1, w2 ∈ S1 be vectors such that w1 · w2 ∈ (−1 + 2σ6, 1 − 2σ6
)
. Then we can find a

subcollection G ⊂ G
(
w1, w2, κ

m0
2

)
with the following properties

• Card
(
G
(
w1, w2, κ

m0
2

)
\G
)
≤ cκ−

3m0
4 .

• For any P ∈ G there exists R ∈ SO (2), J ∈ {H, Id} such that∫
P

|Du (z) −RJ | dL2z ≤ cκ
m0
4 κm0 . (36)

Proof . First note that P (0, w1, w2, 1) ⊂ Q1 (0). We define zk1,k2 := k1w1 + k2w2.

Let W :=
{
(k1, k2) : Q

κ
m0
2

(zk1,k2) ⊂ Q1 (0)
}
. Let θ > 0 be the angle between w1 and

w2. Now
(
sin θ

2

)2
= 1−cos θ

2 ≥ σ6, so sin θ
2 ≥ σ3. From this it follows that the width or

height (which ever is smaller) of any parallelogram P ∈ G (w1, w2, 1) is greater than σ3. Now
G
(
w1, w2, κ

m0
2

)
\W are the set of parallelograms close to the boundary, as can easily be seen

from figure 4

Card
(
G
(
w1, w2, κ

m0
2

))
− Card (W ) < cκ−

m0
2 . (37)

Let

B1 :=

⎧⎨⎩(k1, k2) ∈W :
∫

Q
κ

m0
2

(zk1,k2)
d (Du (z) ,K)dL2z ≥ κ

5m0
4

⎫⎬⎭ . (38)
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m /20κ

2σ−2 κm 0

σ −22 κm 0/2

/2

κm 0/2

Figure 4

Let

B2 :=

⎧⎨⎩(k1, k2) ∈ W :
∫

Q
κ

m0
2

(zk1,k2)

∣∣D2u (z)
∣∣ dL2z ≥ κ

3m0
4

⎫⎬⎭ . (39)

Now as can seen from figure 5,
{
Q

κ
m0
2

(zk1,k2) : (k1, k2) ∈W
}

can not overlap by more than c
times. Formally ∑

(k1,k2)∈W

χQ
κ

m0
2

(zk1,k2) (z) ≤ c. (40)

σ

1

2σ −2

3

Figure 5
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So

Card (B1) κ
5m0

4 ≤
∑

(k1,k2)∈B1

∫
Q

κ

m0
2

(zk1,k2)
d (Du (z) ,K) dL2z

(40)

≤ c

∫
S

(k1,k2)∈B1
Q

κ

m0
2

(zk1,k2)
d (Du (z) ,K) dL2z

(34)

≤ cκm0 .

Thus
Card (B1) ≤ cκ−

m0
4 . (41)

In the same way

Card (B2)κ
3m0

4 ≤
∑

(k1,k2)∈B2

∫
Q

κ

m0
2

(zk1,k2)

∣∣D2u (z)
∣∣ dL2z

≤ c

∫
S

(k1,k2)∈B2
Q

κ

m0
2

(zk1,k2)

∣∣D2u (z)
∣∣ dL2z

(35)

≤ c.

Thus
Card (B2) ≤ cκ−

3m0
4 . (42)

Now for any (k1, k2) ∈ W\ (B1 ∪B2) we can define function v on Q1 (0) by

v (z) = u
(
κ

m0
2 z + zk1,k2

)
κ−

m0
2 .

Since (k1, k2) �∈ B1 (see definition (38))∫
Q1(0)

d (Dv (z) ,K)dL2z =
∫

Q
κ

m0
2

(zk1,k2 )
d (Du (y) ,K)κ−m0dL2y

≤ κ
m0
4 .

Now since (k1, k2) �∈ B2, (see (39))∫
Q1(0)

∣∣D2v (z)
∣∣ dL2z =

∫
Q

κ

m0
2

(zk1,k2 )

∣∣D2u (y)
∣∣ κ−m0

2 dL2y

≤ κ
m0
4 .

Now we can apply Lemma 2 to v on Q1 (0) we can obtain that for some R ∈ SO (2), J ∈ {Id,H}
we have ∫

Q1(0)

|Dv (z) −RJ | dL2z ≤ cκ
m0
4 .

Since P (0, w1, w2, 1) ⊂ Q1 (0) this of course implies∫
P (0,w1,w2,1)

|Dv (z) −RJ | dL2z ≤ cκ
m0
4 . (43)

Now we scale this information back to learn about the derivative of u on P
(
zk1,k2 , w1, w2, κ

m0
2

)
.

Recall

u (z) = κ
m0
2 v

(
z − zk1,k2

κ
m0
2

)
for z ∈ Q

κ
m0
2

(zk1,k2) .
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So let y = (z − zk1,k2)κ−
m0
2 ,∫

P
“

zk1,k2 ,w1,w2,κ
m0
2

” |Du (z) −RJ | dL2z =
∫

P (0,w1,w2,1)

|Dv (y) −RJ |κm0dL2y

(43)

≤ cκ
m0
4 κm0 . (44)

Let
G :=

{
P
(
zk1,k2 , w1, w2, κ

m0
2

)
: (k1, k2) ∈W\ (B1 ∪B2)

}
from (37), (41), (42) we have that

Card
(
G
(
w1, w2, κ

m0
2

)
\G
)
≤ cκ−

3m0
4 .

And by (44) any P ∈ G satisfies (36) and this completes the proof.

7. Following integral curves I

If we have a curve γ with endpoints a, b and |a− b| > H1 (γ) − δ we can show that the
tangents (denote the tangent at point z by tz) of the curve mostly point in direction a−b

|a−b| by
the following trick∫

γ

(
tz − a− b

|a− b|
)2

dH1z = 2H1 (γ) − 2
(∫

γ

tzdH
1z,

a− b

|a− b|
)

= 2
(
H1 (γ) − |a− b|) < 2δ.

(45)
Letting c1, c2 be the centres of P1, Pm1 respectively, the curve we will be considering is given by

u ([c1, c2]). Analogously to what we discussed in Section 2.4 of the introduction, if we have a line
L parallel to H−1n1 such that

∫
L∩Q1(0)

d (Du (z) , SO (2)H) dH1z ≤ δ then the curve u ([c1, c2])
will form a small perturbation of an integral curve to the vector field Ψ1 : u (Q1 (0)) → IR (recall
Ψ1 (x) := u−1 (x) · n1). Since ||DΨ1 (z)| − 1| < δ for all z such that d

(
Du
(
u−1 (z)

)
,K
)
< δ

we have |(c1 − c2) · n1| = |Ψ1 (u (c1)) − Ψ1 (u (c2))| ≈ H1 (u ([c1, c2])). However by (197) this
is also the distance between the end points of the path u ([c1, c2]) and by a trick very similar to
(192) this gives (198), (199). We will have to use Lemma 7 a couple of times, for this reason
we formulate it in a more general way than would at first seem necessary.

Notation. Given a set of vectors {v1, v2, . . . vm} let < v1, v2, . . . vm > denote the span of
these vectors, i.e. < v1, v2, . . . vm >= {∑m

i=1 λivi : λi ∈ IR}.
Definition 3. A G-line inside grid G (w1, w2, α) is subset {P1, P2, . . . Pk1} ⊂ G (w1, w2, α)
which form a connected line of parallelograms in direction w1 or w2. Formally, {P1, P2, . . . Pk1}
satisfies the following properties

• Pk ∩ Pk+1 �= ∅ for k ∈ {1, 2, . . . k1 − 1}.
• If C (Pk) denotes the center of the parallelogram Pk, then either

Pw⊥
1

(C (Pi)) = Pw⊥
1

(C (Pj)) for i, j ∈ {1, 2, . . . k1}
or

Pw⊥
2

(C (Pi)) = Pw⊥
2

(C (Pj)) for i, j ∈ {1, 2, . . . k1}
Definition 4. A complete G-line {P1, P2, . . . Pk1} inside grid G (w1, w2, α) is a G-line with the
property that d (P1, ∂Q1 (0)) ≤ 2κ

m0
2 and d (Pk1 , ∂Q1 (0)) ≤ 2κ

m0
2 . Informally, the G-line cuts

right across the grid.

Definition 5. Given grid G (w1, w2, α), and G-line L we let

L̃ :=
⋃

P∈L

P.
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Lemma 4. Let u ∈ W 1,2
(
Q16ζ−1

1 ζ2
(0)
)

be an invertible C1 function with assumption that
Du (z) ∈ D (ζ1, ζ2) for all z ∈ Q16ζ−1

1 ζ2
(0). Let K be defined by (22). Let m0 ≥ 16. Let

κ > 0 be a small number (depending on σ, ζ1, ζ2), suppose function u satisfies the following
properties:

(1) ∫
Q

16ζ
−1
1 ζ2

(0)

d (Du (z) ,K)dL2z ≤ κm0 . (46)

(2) There exist G-line {P1, P2, . . . Pm1} parallel to H−2ni

|H−2ni| inside grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
and a subset M0 ⊂ {P1, P2, . . . Pm1} such that

•
Card ({P1, P2, . . . Pm1\M0}) ≤ 2κp0κ−

m0
2 for some p0 ≥ m0

16
. (47)

•
dist (P1, Pm1) >

σ2

16
. (48)

• For each P ∈M0 there exists R ∈ SO (2) such that∫
P

|Du (z) −RH |dL2z ≤ cκ
m0
4 κm0 . (49)

And with the property that for some points x1 ∈ P1 and x2 ∈ Pm1 where x2−x1
|x2−x1| =

H−2ni

|H−2ni| we have

||u (x1) − u (x2)| − |(x1 − x2) · ni|| < cκq0 for some q0 ≥ m0

8
. (50)

Then let R0 ∈ SO (2) be such that R0H
−1n1 = u(x2)−u(x1)

|u(x2)−u(x1)| , there exists a subset M1 ⊂M0

with

Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2 (51)

such that for any P ∈M1 we have∫
P

|Du (z) −R0H |dL2z ≤ c
(
κ

p0
4 + κ

q0
4

)
κm0 . (52)

Proof
Step 1: There exists w1 ∈ P1, w2 ∈ Pm1 such that if v1 := u(w2)−u(w1)

|u(w2)−u(w1)| then∫ w2

w1

∣∣Du (x)H−2ni − v1
∣∣2 dH1x < c (κp0 + κq0) . (53)

Proof of Step 1: Define O : M0 → SO (2) as follows. For each P ∈ M0 let O (P ) ∈ SO (2)
be a rotation (which by definition of M0 we know exists) such that∫

P

|Du (z) −O (P )H |dL2z ≤ cκm0κ
m0
4 . (54)

We define function

Ẽ (z) :=

{
|Du (z) −O (P )H | z ∈ M̃0

2ζ2 z �∈ M̃0

(55)
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So using (194)

∫
Sm1

k=1 Pk

Ẽ (z)dL2z ≤ cκm0κ
m0
4 Card ({P1, P2, . . . Pm1} ∩M0)

+2ζ2κm0Card ({P1, P2, . . . Pm1} \M0)
(194)

≤ cκ
m0
4 κ

m0
2 + 4ζ2κp0κ

m0
2

≤ cκp0κ
m0
2 . (56)

Now its a calculation to see H−2n1
|H−2n1| =

(
1√

1+σ6

σ3√
1+σ6

)
so
∣∣∣ H−2n1
|H−2n1| · e2

∣∣∣ ≥ σ3

2 . Now we will take a

diamond of side length 1 with sides parallel to H−2ni

|H−2ni| for i = 1, 2. The length of the smallest

projection will be greater than σ3

2 , see figure 6. Now {Pk : k = 1, . . .m1} are diamonds of side
length κ

m0
2 with sides parallel to H−2ni

|H−2ni| for i = 1, 2. So

P(H−2n1)
⊥ (Pk) ≥ σ3κ

m0
2

4
. (57)

So by Fubini from (203) we must be able to find a point w1 ∈ P1 such that

∫
(w1+〈H−2ni〉)∩(Sm1

k=1 Pk)
Ẽ (z) dL1z ≤ cκp0 . (58)

Take point w2 ∈ Pm1 ∩
(
w1 + 〈H−2ni〉

)
. Note that by Lipschitzness from (197) we have

||u (w1) − u (w2)| − |(w1 − w2) · ni|| ≤ c
(
κq0 + κ

m0
2

)
. (59)

For each x ∈ [w1, w2] let Γ (x) ∈ SO (2) be such that

d (Du (x) , SO (2)H) = |Du (x) − Γ (x)H | . (60)

From (24) we know

∣∣H−1ni

∣∣ = ∣∣∣∣∣
(
σ−1 0
0 σ

)( ±σ√
(1+σ2)
1√

1+σ2

)∣∣∣∣∣ =
∣∣∣∣∣
( ±1√

(1+σ2)
σ√

1+σ2

)∣∣∣∣∣ = 1. (61)

Thus

∣∣∣∣Du (z)H−2ni

∣∣− ∣∣Γ (z)H−1ni

∣∣∣∣ ≤ 2
∣∣Du (z)H−1 − Γ (z)

∣∣
(207)

≤ 4σ−1d (Du (x) , SO (2)H) . (62)



A TWO WELL LIOUVILLE THEOREM 19

Hence from (202), (205), (209)∣∣∣∣∣
∫

[w1,w2]

∣∣Du (z)H−2ni

∣∣2 dL1z −
∫

[w1,w2]

∣∣Γ (z)H−1ni

∣∣2 dL1z

∣∣∣∣∣
≤
∣∣∣∣∣
∫

[w1,w2]

(∣∣Du (z)H−2ni

∣∣− ∣∣Γ (z)H−1ni

∣∣) (∣∣Du (z)H−2ni

∣∣+ ∣∣Γ (z)H−1ni

∣∣) dL1x

∣∣∣∣∣
≤
∫

[w1,w2]

2
∣∣∣∣Du (z)H−2ni

∣∣− ∣∣Γ (z)H−1ni

∣∣∣∣ ζ2σ−1dL1z

(209)

≤ 8ζ2σ−2

∫
[w1,w2]

d (Du (z) , SO (2)H) dL1z

(202)

≤ 8ζ2σ−2

∫
[w1,w2]

Ẽ (z)dL1z

(205)

≤ cκp0 .

Since from (208) we know
∣∣Γ (x)H−1ni

∣∣ = ∣∣H−1ni

∣∣ = 1 we have∣∣∣∣∣
∫

[w1,w2]

∣∣Du (x)H−2ni

∣∣2 dL1x− |w1 − w2|
∣∣∣∣∣ ≤ cκp0 . (63)

Let

v1 :=
u (w2) − u (w1)
|u (w2) − u (w1)| . (64)

So∫
[w1,w2]

∣∣Du (z)H−2ni − v1
∣∣2 dL1z =

∫
[w1,w2]

∣∣Du (z)H−2ni

∣∣2 + |v1|2 − 2
(
Du (z)H−2ni, v1

)
dL1z

(210)

≤ 2 |w1 − w2| + cκp0

−2
∣∣H−2ni

∣∣ (∫
[w1,w2]

Du (z)
H−2ni

|H−2ni|dL
1z, v1

)
= 2 |w1 − w2| + cκp0

−2
∣∣H−2ni

∣∣ (u (w1) − u (w2) , v1) . (65)

Note from the definition of v1, (211)∣∣H−2ni

∣∣ (u (w1) − u (w2) , v1) =
∣∣H−2ni

∣∣ |u (w1) − u (w2)| . (66)

As w2−w1
|w2−w1| = H−2ni

|H−2ni| so

|(w1 − w2) · ni| = |w1 − w2|
∣∣∣∣ H−2ni

|H−2ni| · ni

∣∣∣∣ (67)

Putting (214) together with (206) we get∣∣∣∣|u (w1) − u (w2)| − |w1 − w2|
∣∣∣∣ H−2ni

|H−2ni| · ni

∣∣∣∣∣∣∣∣ ≤ c
(
κq0 + κ

m0
2

)
. (68)

Note by self adjointness

H−2n1 · n1 = H−1n1 ·H−1n1

=
∣∣H−1n1

∣∣2
(208)
= 1. (69)
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In the same way we can see that H−2n2 · n2 = 1. So applying (216) to (215) we have∣∣∣∣H−2ni

∣∣ |u (w1) − u (w2)| − |w1 − w2|
∣∣ ≤ c

(
κq0 + κ

m0
2

)
. (70)

So from (213) this implies∣∣|w1 − w2| −
∣∣H−2ni

∣∣ (u (w1) − u (w2) , v1)
∣∣ ≤ c

(
κq0 + κ

m0
2

)
.

Applying this to (212) we get∫
[w1,w2]

∣∣Du (z)H−2ni − v1
∣∣2 dL1z ≤ c (κp0 + κq0) . (71)

This completes the proof of Step 1.

Proof of Lemma continued.
Now recall from (205) we know that∫

[w1,w2]

Ẽ (z) dL1z ≤ cκp0 . (72)

So we can find a set of intervals I1, I2, . . . Im1−2 ⊂ [w1, w2] with Ik := [w1, w2] ∩ Pk for some
k ∈ {1, 2, . . .m1} and L1

(
[w1, w2] \

(⋃m1−2
k=1 Ik

))
≤ 3κ

m0
2 . Let

A1 :=
{
k ∈ {1, 2, . . .m1 − 2} :

∫
Ik

Ẽ (z)dL1z ≤ cκ
p0
2 L1 (Ik)

}
. (73)

Thus from (219)

cκ
p0
2

⎛⎝ ∑
k∈{1,2,...m1−2}\A1

L1 (Ik)

⎞⎠ ≤
∑

k∈{1,2,...m1−2}\A1

∫
Ik

Ẽ (z) dL1z

(219)

≤ cκp0 .

So
cκ

p0
2 ≥

∑
k∈{1,2,...m1−2}\A1

L1 (Ik) = Card ({1, 2, . . .m1 − 2} \A1) κ
m0
2 .

Hence
Card ({1, 2, . . .m1 − 2} \A1) ≤ cκ

p0
2 κ−

m0
2 . (74)

Let

A2 :=
{
k ∈ {1, 2, . . .m1 − 2} :

∫
Ik

∣∣Du (z)H−2ni − v1
∣∣2 dL1z ≤ c (κq0 + κp0)

1
2 κ

m0
2

}
.

So from (200)

Card ({1, 2, . . .m1 − 2} \A2) c (κq0 + κp0)
1
2 κ

m0
2

≤
∑

k∈{1,2,...m1−2}\A2

∫
Ik

∣∣Du (z)H−2ni − v1
∣∣2 dL1z

≤ c (κp0 + κq0)

Which implies

Card ({1, 2, . . .m1 − 2} \A2) ≤ c
(
κ

q0
2 + κ

p0
2

)
κ−

m0
2 (75)
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So for and k ∈ {1, 2, . . .m1 − 2} \ (A1 ∪A2), recalling definition (220) we have∫
Ik

Ẽ (z) +
∣∣Du (z)H−2ni − v1

∣∣2 dL1z ≤ c
(
κ

p0
2 + κ

q0
2

)
κ

m0
2 .

Hence there must exist a point zk ∈ Ik such that

Ẽ (zk) +
∣∣Du (zk)H−2ni − v1

∣∣2 ≤ c
(
κ

p0
2 + κ

q0
2

)
.

So if P ∈ {P1, P2, . . . Pm1} \ (A1 ∪A2) by definition of Ẽ (see (202)) we have

|Du (zk) −O (P )H | ≤ c
(
κ

p0
2 + κ

q0
2

)
(76)

and ∣∣Du (zk)H−2ni − v1
∣∣2 ≤ c

(
κ

p0
2 + κ

q0
2

)
. (77)

Now (223) implies ∣∣Du (zk)H−2ni −O (P )H−1ni

∣∣ < c
(
κ

p0
2 + κ

q0
2

)
. (78)

And (224) implies ∣∣Du (zk)H−2ni − v1
∣∣ < c

(
κ

p0
4 + κ

q0
4

)
(79)

so adding (225) and (226) together gives∣∣O (P )H−1ni − v1
∣∣ ≤ c

(
κ

p0
4 + κ

q0
4

)
. (80)

Let M1 := {Pk : k ∈ {1, 2, . . .m1 − 2} \ (A1 ∪A2)} ∩M0. Note by (222) and (221) we have

Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2 . (81)

Let R1 ∈ SO (2) be the rotation such that

R1H
−1ni = v1, (82)

recall (211) for a reminder of the definition of v1. Since |w1 − x1| < κ
m0
2 and |w2 − x2| < κ

m0
2

and from (195) |x1 − x2| > σ2

32 (recall x1 ∈ P1, x2 ∈ Pm1). By bilipschitzness, from (211)
making obvious estimates we obtain∣∣∣∣ u (x2) − u (x1)

|u (x2) − u (x1)| − v1

∣∣∣∣ ≤ cκ
m0
2 . (83)

Now recall the definition of R0 in the statement of the lemma, R0H
−1ni := u(x2)−u(x1)

|u(x2)−u(x1)| . Hence

from (230)
∣∣R0H

−1ni −R1H
−1ni

∣∣ < cκ
m0
2 which implies

|R0 −R1| ≤ cκ
m0
2 . (84)

So (227) implies that for any P ∈ {P1, P2, . . . Pm1} \ (A1 ∪A2),

|O (P ) −R0| ≤ ∣∣O (P )H−1ni −R0H
−1ni

∣∣
(229),(231)

≤ ∣∣O (P )H−1ni − v1
∣∣+ cκ

m0
2

(227)

≤ c
(
κ

p0
4 + κ

q0
4

)
. (85)

To summarise, by (228) we can find a set M1 ⊂M0 such that

• Card (M0\M1) ≤ c
(
κ

p0
2 + κ

q0
2

)
κ−

m0
2
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• From (232), for each P ∈ M1 we have |O (P ) −R0| ≤ c
(
κ

p0
4 + κ

q0
4

)
and so putting

this together with (201)∫
P

|Du (z) −R0H |dL2z ≤ c
(
κ

p0
4 + κ

q0
4

)
κm0 .

Thus M1 satisfies all the properties we want and hence we have established the lemma.

8. Following integral curves II

As explained in the introduction to Lemma 7, hypotheses (235) and (236) imply |(c1 − c2) · n1| ≈
H1 (u ([c1, c2])) where c1, c2 denote the centres of P1, Pn1 respectively. To recall, this is es-
sentially because (235), (236) imply u ([c1, c2]) is close to an integral curve of the vector field
Ψ1 (x) where Ψ1 : u (Q1 (0)) → IR is defined by Ψ1 (x) := u−1 (x) · n1.

Now by the “push over” lemma, i.e. Lemma 1 (see Section 2.1 of the introduction) if we
know ∫

u−1([u(c1),u(c2)])

d (Du (z) ,K)dH1z is small (86)

then |u (c1) − u (c2)| is (with some small error) greater than |(c1 − c2) · n1| and so the endpoints
of u ([c1, c2]) are pushed far enough apart to make u ([c1, c2]) an “almost” straight line, then
we can simply apply Lemma 7 to arrive at conclusions (237) and (238). The only issue is
establishing (233) via the area formula, a Fubini argument and Lipschitzness.

Lemma 5. Let u ∈ W 2,1
(
Q16ζ−1

1 ζ2
(0)
)
∩ C1 be invertible with the assumption that Du (z) ∈

D (ζ1, ζ2) for all z ∈ Q16ζ−1
1 ζ2

(0). Let K be defined by (22). Let m0 be a big integer. Let
κ > 0 be a small number (depending on σ, ζ1, ζ2), suppose function u satisfies the following
properties:

(1) ∫
Q

16ζ
−1
1 ζ2

(0)

d (Du (z) ,K)dL2z ≤ κm0 . (87)

(2) There exists G-line {P1, P2, . . . Pm1} parallel to H−2ni

|H−2ni| inside grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
and a subset M ⊂ {P1, P2, . . . Pm1} such that

•
Card ({P1, P2, . . . Pm1} \M) ≤ 2κ

m0
16 κ−

m0
2 (88)

•
dist (P1, Pm1) >

σ3

8
.

• For each P ∈M there exists R ∈ SO (2) such that∫
P

|Du (z) −RH |dL2z ≤ cκ
m0
4 κm0 . (89)

Then there exists a set M0 ⊂M and fixed R0 ∈ SO (2) such that

•
Card (M\M0) ≤ cκ

m0
32 κ−

m0
2 (90)

• Every P ∈M0 satisfies the inequality∫
P

|Du (z) −R0H |dL2z ≤ cκ
m0
64 κm0 . (91)
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Proof.
Step 1: Let i ∈ {1, 2} be such that the G-line {P1, P2, . . . Pm1} is parallel to H−2ni

|H−2ni| . We

will we show that for any point x1 ∈ P1 and any point x2 ∈ Pm1 such that x2−x1
|x2−x1| = H−2ni

|H−2ni|
we have the following inequality

|u (x1) − u (x2)| ≤ |(x1 − x2) · ni| + cκ
m0
16 (92)

Proof of Step 1. We define the function E :
⋃m1

k=1 Pk → IR by

E (x) =
{ |Du (x) −RkH | for x ∈ Pk ∈M where Rk ∈ SO (2) satisfies (236)

2ζ2 for x ∈ (
⋃m1

k=1 Pk) \M (93)

From (235), (236) we know∫
Sm1

k=1 Pk

E (x) dL2x ≤
∑

Pk∈M

∫
Pk

|Du (z) −RkH |dL2z + cκm0Card ({P1, P2, . . . Pm1} \M)

≤ cκ
m0
4 κ

m0
2 + cκ

m0
2 κ

m0
16

≤ cκ
m0
16 κ

m0
2 .

Now in the same way as we deduced inequality (205) from inequality (203) in Lemma 7.

Here we again use the fact that PH−2n⊥
i

(
⋃m1

k=1 Pk) ≥ σ3 κ
m0
2

4 . So by Fubini, we must be able

to find point z1 ∈ P1 and z2 ∈ Pm1 such that z2−z1
|z2−z1| = H−2ni

|H−2ni| and∫ z2

z1

E (x) dH1x ≤ cκ
m0
16 . (94)

We will first show the inequality for z1, z2. It will then follow by Lipschitzness. First note∣∣∣∣∫ z2

z1

Du (x) ·H−2ni

∣∣∣∣ = ∣∣H−2ni

∣∣ |u (z2) − u (z1)| . (95)

Now for each x ∈ [z1, z2], let Γ (x) ∈ SO (2)H be such that |Du (x) − Γ (x)| = d (Du (x) , SO (2)H).
Note that |Du (x) − Γ (x)| ≤ E (x).

From (208) we have
∣∣Γ (x) ·H−2ni

∣∣ = ∣∣H−1ni

∣∣ = 1 and so from (242)∣∣∣∣∫ z2

z1

Du (x) ·H−2nidL
1x

∣∣∣∣ ≤
∣∣∣∣∫ z2

z1

Γ (x) ·H−2nidL
1x

∣∣∣∣+ σ−1

∫ z2

z1

E (x) dL1x

≤
∫ z2

z1

∣∣Γ (x) ·H−2ni

∣∣ dL1x+ cκ
m0
16

≤ |z1 − z2| + cκ
m0
16 .

By (243) this implies ∣∣H−2ni

∣∣ |u (z2) − u (z1)| ≤ |z1 − z2| + cκ
m0
16 . (96)

Recall from (216) we have H−2ni · ni = 1. So since z2−z1
|z2−z1| = H−2ni

|H−2ni| from (244) we have

|u (z1) − u (z2)| ≤ ∣∣H−2ni

∣∣−1
(
|z1 − z2| + cκ

m0
16

)
=

∣∣∣∣ H−2ni

|H−2ni| · ni

∣∣∣∣ (|z1 − z2| + cκ
m0
16

)
≤ |(z1 − z2) · ni| + cκ

m0
16

and this completes the proof of this inequality for z1, z2. Since x1 ∈ B
κ

m0
2

(z1) and x2 ∈
B

κ
m0
2

(z2) inequality (239) in the statement of Step 1 follows by Lipschitzness.
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Step 2: We will show that for any point x1 ∈ P1 and any point x2 ∈ Pm1 such that
x2−x1
|x2−x1| = H−2ni

|H−2ni| we have the following inequality

|u (x1) − u (x2)| ≥ |(x1 − x2) · ni| − cκ
m0
4 |x1 − x2| . (97)

Proof of Step 2: Let J (z) = d
(
Du
(
u−1 (z)

)
,K
)
. So by the area formula∫

u

„
Q

16ζ
−1
1 ζ2

(0)

« J (z)
∣∣det

(
Du
(
u−1 (z)

))∣∣−1
dL2z =

∫
Q

16ζ
−1
1 ζ2

(0)

J (u (z)) dL2z

=
∫

Q
16ζ

−1
1 ζ2

(0)

d (Du (x) ,K)dL2x

≤ κm0 .

Since Du ∈ D (ζ1, ζ2) we know |det (Du (z))| ≤ ζ2
2 for all z ∈ Q16ζ−1

1 ζ2
(0). So∫

u

„
Q

16ζ
−1
1 ζ2

(0)

« J (z) dL2z ≤ ζ2
2κ

m0 . (98)

Now as we know u is invertible and by assumption since ‖Du−1 (x) ‖ < ζ−1
1 , so u−1 is

ζ−1
1 -Lipschitz. So Q4ζ2 (u (0)) ⊂ u

(
Q16ζ−1

1 ζ2
(0)
)

since otherwise there would be a point

q ∈ ∂Q16ζ−1
1 ζ2

(0) with |u (0) − u (q)| < 4ζ2. And hence |0 − q| ≥ 2ζ−1
1 |u (0) − u (q)| which

contradicts ζ−1
1 -Lipschitzness of u−1.

Similarly, as u is ζ2-Lipschitz, so Q1 (0) ⊂ u−1 (Q4ζ2 (u (0))). So as for any two points,
x1 ∈ P1, x2 ∈ Pm1 we know that u (x1) , u (x2) ∈ Q4ζ2 (u (0)). Since Q4ζ2 (u (0)) is convex

[u (x1) , u (x2)] ⊂ Q4ζ2 (u (0)) ⊂ u
(
Q16ζ−1

1 ζ2
(0)
)
.

By a Fubini argument using (247) we must be able to find points z1 ∈ B
κ

m0
2

(u (x1)) and
z2 ∈ B

κ
m0
2

(u (x2)) such that ∫ z2

z1

J (z)dL1z ≤ ζ−2
1 κ

m0
2 .

Now since x1 ∈ P1 and x2 ∈ P2 we know |x1 − x2| ≥ σ3

16 . By bilipschitzness this implies
|u (x1) − u (x2)| > ζ1σ3

16 so |z1 − z2| > ζ1σ3

32 . Hence∫ z2

z1

J (z) dL1z ≤ c |z1 − z2|κ
m0
2

We apply Lemma 1 to conclude that

|z1 − z2| ≥
∣∣(u−1 (z1) − u−1 (z2)

) · ni

∣∣− cκ
m0
2 |z1 − z2| . (99)

Now |z1 − u (x1)| < κ
m0
2 , |z2 − u (x2)| < κ

m0
2 which implies

∣∣u−1 (z1) − x1

∣∣ < ζ−1
1 κ

m0
2 and∣∣u−1 (z2) − x2

∣∣ < ζ−1
1 κ

m0
2 , so applying this to (248) gives Step 2.

Note, by putting Step 1 (239) and Step 2 (246) together we have

||u (x1) − u (x2)| − |(x1 − x2) · ni|| ≤ cκ
m0
16 . (100)

Notice that for p0 = m0
16 , q0 = m0

16 , (235), (249) give us the hypotheses to apply Lemma 7.
So by Lemma 7 there exists a set M0 ⊂M and some fixed R0 ∈ SO (2) such that

Card (M\M0) ≤ cκ
m0
32 κ−

m0
2
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and every P ∈M0 satisfies the inequality∫
P

|Du (z) −R0H |dL2z ≤ cκ
m0
64 κm0 .

9. Transferring orientation across lines

Now from hypotheses (101), (102), (103) and by Lemmas 3, 7, 8 we have the existence of a
grid G and many lines L in directions H−2n1 and H−2n2 for which Du on {P : P ∈ G,P ∩ L �= ∅}
is “mostly” orientated by R (L)H, R (L) ∈ SO (2). See subsection 2.3.1 for a basic outline of
the idea. What we would like to do is to surround a central subsquare in Q1 (0) with a “diamond”
whose boundary is contained in the union of lines L1, L2, L3, L4 in directions H−2n1, H−2n2

(see figure 6) such that Du on {P : P ∈ G,P ∩ Li �= ∅ for some i ∈ {1, 2, 3, 4}} is “mostly” ori-
entated by RH for some fixed R.

It would then be a relatively elementary matter to show that most of the elements of the
grid inside the central subsquare are such that Du is orientated by RH; we just need to notice
that function u is fixed on the endpoints of the lines in direction H−2ni intersected with the
diamond, so we can apply Lemma 7 to them.

We only need to find the “diamond”. Note that if line L1 in direction H−2n1 and line L2

in direction H−2n2 intersect (inside Q1 (0)) and at the intersection they have an element of
the grid G for which Du is orientated both by R (L1)H and R (L2)H, then R (L1) ≈ R (L2).
Our strategy for the proof is to find lines L1, L2, L3, L4 where we have this intersection of grid
elements on which Du is orientated by R (Li) and R (Li+1) occurs between L1 and L2, between
L2 and L3 and between L3 and L4. The reason we can find these lines is that there are so
many lines in direction H−2n1 and H−2n2 which have most of the grid elements where Du
along them is orientated by a fixed rotation, so to find four lines that intersect three times on
(mutually) orientated grid elements is just a matter of careful counting. See figures 7, 8, 9 for
an impression of how we do this.

Recall definition (5), given a G-line L, we define L̃ to be the set given by the union of all
the parallelograms in L.

Lemma 6. Let u ∈ W 2,1
(
Q16ζ−1

1 ζ2
(0)
)

be C1 invertible with the assumption that Du (z) ∈
D (ζ1, ζ2) for all z ∈ Q16ζ−1

1 ζ2
(0). Let K be as defined in (22). There exists constant c1

depending on σ, ζ1, ζ2 such that if function u satisfies the following inequalities∫
Q

16ζ
−1
1 ζ2

(0)

d (Du (z) ,K)dL2z ≤ κm0 (101)

∫
Q

16ζ
−1
1 ζ2

(0)

∣∣D2u (z)
∣∣ dL2z ≤ c1 (102)

∫
Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)H) dL2z ≤
∫

Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)) dL2z. (103)

Given grid G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
there exists a complete G-lines Ki1 ,Ki3 in direction

H−2n2 and complete G-lines Ki2 ,Ki4 in direction H−2n1 which satisfy the following properties.

• The connected component of Q1 (0) \
(
K̃i0 ∪ K̃i1 ∪ K̃i2 ∪ K̃i3

)
containing zero also con-

tains Q σ3

2
√

σ6+1

(0).

• There exists a subset M ⊂ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 with the property that

Card ((Ki0 ∪Ki1 ∪Ki2 ∪Ki3) \M) < cκ
m0
32 κ−

m0
2 (104)
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and for some fixed R ∈ SO (2), for any P ∈M we have∫
P

|Du (z) −RH |dL2z ≤ cκ
m0
64 κm0 . (105)

Proof: To start with we know by Lemma 3 there is a subsetG of the gridG
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
with the following properties

•
Card

(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)

≤ κ
m0
4 κ−m0 (106)

• For any P ∈ G there exists R ∈ SO (2), J ∈ {Id,H} such that∫
P

|Du (z) −RJ | dL2z ≤ cκ
m0
4 κm0 . (107)

Let vi denote the anticlockwise rotation of H−2ni

|H−2ni| for i = 1, 2. NowG
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
is made up of a union of complete G-lines in direction H−2n1. We denote them K1,K2, . . .Kn2

where n2 is of order κ−
m0
2 . And in the same way G

(
H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
is made of the

union of complete G-lines in direction H−2n2. We denote them Kn2+1,Kn2+2, . . .K2n2 .
Observe figure 6. It should be clear that there exists some constant aσ > 0 such that for any

two G-lines Ki, Kj such that

K̃i ∩ 〈e2〉 ⊂ [−aσe2, aσe2] , K̃j ∩ 〈e2〉 ⊂ [−aσe2, aσe2]

must be such that K̃i ∩ K̃j �= ∅. Its a calculation to see

H−2n1

|H−2n1| =

(
1√

1+σ6

σ3√
1+σ6

)
. (108)

As can been seen from figure 6 we can take

aσ =
H−2n1

|H−2n1| ·
(

0
1

)
=

σ3

√
σ6 + 1

. (109)

Let Ỹ denote the region enclosed by the lines{
σ3e2√
σ6 + 1

+ 〈H−2n1〉, σ3e2√
σ6 + 1

+ 〈H−2n2〉, −σ3e2√
σ6 + 1

+ 〈H−2n2〉, −σ3e2√
σ6 + 1

+ 〈H−2n1〉
}
(110)

as shown in figure 6.

Its a routine calculation to see that

d (SO (2) , SO (2)H) ≥ σ−1 + σ − 2 =: εσ.
5 (111)

Step 1. Let

E1 :=

⎧⎪⎨⎪⎩
k ∈ {1, 2, . . . n2} : There exists P1, P2 ∈ Kk ∩G with∫

P1
d (Du (z) , SO (2)H) dL2z < cκ

m0
4 κm0∫

P2
d (Du (z) , SO (2)) dL2z < cκ

m0
4 κm0

⎫⎪⎬⎪⎭ ,

5Identifying 2 × 2 matrices with 4 vectors in the obvious way, its enough to notice that the projection of8>><
>>:

0
BB@

σ sinα
σ−1 cos α
σ−1 sin α
−σ cos α

1
CCA : α ∈ [0, 2π)

9>>=
>>;

onto the subspace span

8>><
>>:

0
BB@

1
0
1
0

1
CCA ,

0
BB@

0
1
0
−1

1
CCA

9>>=
>>;

forms as circle of radius σ + σ−1.
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Figure 6

F1 :=

⎧⎪⎨⎪⎩
i ∈ {n2 + 1, n2 + 2, . . . n2} : There exists Q1, Q2 ∈ Ki ∩M with∫

Q1
d (Du (z) , SO (2)H) dL2z < cκ

m0
4 κm0∫

Q2
d (Du (z) , SO (2)) dL2z < cκ

m0
4 κm0

⎫⎪⎬⎪⎭ ,

E2 :=
{
k ∈ {1, 2, . . . n2} : Card (Kk\G) ≥ κ

m0
8 κ−

m0
2

}
, (112)

and
F2 :=

{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : Card (Ki\G) ≥ κ

m0
8 κ−

m0
2

}
. (113)

We will show

Card (E1) ≤ 4c1
εσσ3

κ−
m0
2 . (114)

Card (F1) ≤ 4c1
εσσ3

κ−
m0
2 . (115)

Card (E2) ≤ cκ
m0
8 κ−

m0
2 . (116)

Card (F2) ≤ cκ
m0
8 κ−

m0
2 . (117)

Proof of Step 1. First we estimate the cardinality of E1. Let k1 ∈ E1 and let P1, P2 ∈ Kk1∩G
such that ∫

P1

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 , (118)∫

P2

d (Du (z) , SO (2)) dL2z ≤ cκ
m0
4 κm0 .
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Note that, as we have seen before (see (204), Lemma 7)

L1
(
Pv⊥

1
(P1)

)
≥ σ3

4
κ

m0
2 . (119)

Let
B1 :=

{
x ∈ Pv⊥

1
(P1) : inf

{
d (Du (z) , SO (2)H) : z ∈ P−1

v⊥
1

(x) ∩ P1

}
≥ κ

m0
8

}
.

So by (118) L1 (B1) κ
m0
8 κ

m0
2 ≤ cκ

m0
4 κm0 . Which implies

L1 (B1) ≤ cκ
m0
8 κ

m0
2 . (120)

Let

B2 :=
{
x ∈ Pv⊥

1
(P2) : inf

{
d (Du (z) , SO (2)) : z ∈ P−1

v⊥
1

(x) ∩ P1

}
≥ κ

m0
8

}
.

In the same way we have that
L1 (B2) ≤ cκ

m0
8 κ

m0
2 . (121)

Now for any x ∈ Pv⊥
1

(P1) \(B1∪B2) we have a point p (x) ∈ P1 such that d (Du (p (x)) , SO (2)H) <
κ

m0
8 and q (x) ∈ P2 such that d (Du (p (x)) , SO (2)) < κ

m0
8 and thus by using (111) we have∣∣∣∣∣

∫ p(x)

q(x)

D2u (z)
H−2n1

|H−2n1|

∣∣∣∣∣ = |Du (p (x)) −Du (q (x))|

≥ εσ

2
.

So by Fubini and (119), (121), (120)∫
S

P∈Kk
P

∣∣D2u (z)
∣∣ dL2z ≥ εσ

2
L1 (Pv⊥ (P1) \ (B1 ∪B2))

≥ εσ

4
σ3κ

m0
2

Thus from (102) we have

c1 ≥
∫

Q1(0)

∣∣D2u (z)
∣∣ dL2z

≥ εσ

4
σ3Card (E1)κ

m0
2 .

And thus we have (114). In exactly the same way we obtain the upper bound (115).
Now we estimate the cardinality of E2. From (106)

Card (E2)κ
m0
8 κ−

m0
2 ≤ Card

(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)

≤ cκ
m0
4 κ−m0

and thus we have (116). In exactly the same way we have (117).

Step 2: We will show that for any i ∈ {1, 2, . . . n2} \ (E1 ∪ E2) and for any P ∈ Ki ∩ G we
have ∫

P

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 .

And for any j ∈ {n2 + 1, n2 + 2, . . . 2n2} \ (F1 ∪ F2) we have∫
P

d (Du (z) , SO (2)H) dL2z ≤ cκ
m0
4 κm0 for any P ∈ Kj ∩G. (122)
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Proof of Step 2. Let

∆1 :=
{
i ∈ {1, 2, . . . n2} : K̃i ∩Q σ3

2
√

1+σ6
(0) �= ∅

}
.

Let

∆2 :=
{
j ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃j ∩Q σ3

2
√

1+σ6
(0) �= ∅

}
.

Let

ΨH :=
{
P : P ∈ G,

∫
P

d (Du (z) , SO (2)H) dL2z ≤ cκm0κ
m0
4 , P ⊂ Q σ3

2
√

1+σ6
(0)
}
.

Let

ΨR :=
{
P : P ∈ G,

∫
P

d (Du (z) , SO (2)) dL2z ≤ cκm0κ
m0
4 , P ⊂ Q σ3

2
√

1+σ6
(0)
}
. (123)

First note that if there exists i0 ∈ ∆1\ (E1 ∪ E2) such that Ki0 ∩ G ∩ ΨH �= ∅ then by
definition of E1, every P1 ∈ Ki0 ∩ G will be such that P1 ∈ ΨH . Now take j ∈ ∆2\ (F1 ∪ F2)
such that Kj ∩Ki0 ∩G �= ∅ then by definition of F1, for every P2 ∈ Kj ∩G we must also have
P2 ∈ ΨH . Note

{j ∈ ∆2\ (F1 ∪ F2) : Kj ∩Ki0 ∩G �= ∅} = {j ∈ ∆2\ (F1 ∪ F2)} \ {j : Kj ∩Ki0 ∩G = ∅}
and as Card ({j : Kj ∩Ki0 ∩G = ∅}) ≤ Card (Ki0\G) so from (115), (117) and definition (113)
we have

Card ({j ∈ ∆2\ (F1 ∪ F2) : Kj ∩Ki0 ∩G �= ∅}) ≥ Card ({j ∈ ∆2\ (F1 ∪ F2)})
−Card (Ki0\G)

(115),(117),(113)

≥ Card (∆2) − 8c1
εσσ3

κ−
m0
2 .

We have a large number of G-lines in {Kj : j ∈ ∆2\ (F1 ∪ F2)} with all the P ∈ Kj ∩G being
such that Du on P is close to SO (2)H . From this, using similar arguments its easy to show
that all G-lines Kj with j ∈ ∆1\ (E1 ∪E2) satisfy (122). And consequently all G-lines Ki with
i ∈ {1, 2, . . . n1} \ (F1 ∪ F2) also satisfy (122).

Thus we only need to argue the case where⋃
i∈∆1\(E1∪E2)

{P : P ∈ Ki ∩G} ⊂ ΨR. (124)

Let

Θ0 :=
{
P ∈ G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
: P ⊂ Q σ3

2
√

1+σ6
(0)
}
. (125)

Since from inequalities (114), (116) and definition (112)

Card

⎛⎝Θ0\
⎛⎝ ⋃

i∈∆1\(E1∪E2)

{P : P ∈ Ki ∩G}
⎞⎠⎞⎠

≤ Card (E1 ∪ E2) κ−
m0
2 + cκ

m0
8 κ−

m0
2

≤ 16c1κ−m0

εσσ3
.

So from (124) we have

Card (Θ0\ΨR) ≤ 16c1κ−m0

εσσ3
.
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Since obviously ΨH ∩ ΨR = ∅ so

Card (ΨH) ≤ Card (Θ0\ΨR)

≤ 16c1κ−m0

εσσ3
. (126)

Note that for any P ∈ ΨR

κ
m0
8 L2

({
x ∈ P : d (Du (x) , SO (2)) ≥ κ

m0
8

})
≤

∫
P

d (Du (z) , SO (2)) dL2z

≤ cκm0κ
m0
4 .

So E (P ) :=
{
x ∈ P : d (Du (x) , SO (2)) < κ

m0
8

}
is such that

L2 (E (P )) ≥ L2 (P ) − cκ
m0
8 κm0 .

Note that for each x ∈ E (P ), d (Du (x) , SO (2)H) > 3εσ

4 and hence∫
P

d (Du (x) , SO (2)H) dL2x ≥
(
L2 (P ) − cκ

m0
8 κm0

) 3εσ

4
.

Thus since P ∈ ΨR (recall definition (123)) we have∫
P

d (Du (z) , SO (2)H) − d (Du (z) , SO (2)) dL2z ≥
(
L2 (P ) − cκ

m0
8 κm0

) 3εσ

4
− cκ

m0
8 κm0

≥ εσ

2
L2 (P ) .

Multiplying by −1 gives∫
P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z ≤ −εσ

2
L2 (P ) . (127)

Let A := L2 (P ) for any P ∈ G
(

H−2n1
|H−2n1| ,

H−2n2
|H−2n2| , κ

m0
2

)
. So using (103) and (106)

0
(103)

≤
∫

Q σ3

2
√

σ6+1

(0)

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

≤
∑

P∈ΨR

∫
P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

+
∑

P∈ΨH

∫
P

d (Du (z) , SO (2)) − d (Du (z) , SO (2)H) dL2z

+2ζ2Card
(
G

(
H−2n1

|H−2n1| ,
H−2n2

|H−2n2| , κ
m0
2

)
\G
)
κm0

(106),(127)

≤ −Card (ΨR)
εσ

2
A+ 2ζ2Card (ΨH)A+ cκ

m0
4 .

Thus

Card (ΨR)
εσ

2
A ≤ 2ζ2Card (ΨH)A+ cκ

m0
4 .
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Now as we have seen before (see (109)) A ≥ σ3

2 κ
m0 so using (126)

Card (ΨR)
εσ

2
≤ 2ζ2Card (ΨH) + cκ

m0
4 κ−m0

(126)

≤ 32c1ζ2κ−m0

εσσ3
+ cκ

m0
4 κ−m0

≤ 64c1ζ2κ−m0

εσσ3
.

Thus

Card (ΨR) ≤ 128c1ζ2κ−m0

ε2σσ
3

. (128)

Since G = ΨH ∪ ΨR we know from (106) Card (Θ0\ (ΨH ∪ ΨR)) ≤ cκ
m0
4 κ−m0 so using (126),

(128)

Card (Θ0) ≤ Card (ΨH) + Card (ΨR) + cκ
m0
4 κ−m0

≤ 256ζ2c1
ε2σσ

3
κ−m0 .

Since from definition (125) we know

Card (Θ0) ≥
(
σ3κ−

m0
2

2
√

1 + σ6

)2

≥ σ6

8
κ−m0

so we know
σ6κ−m0

8
≤ 256ζ2c1

ε2σσ
3
κ−m0 ,

and assuming sufficient smallness of c1 we have a contradiction. So we have established Step 2.

Notation for Step 3.
Firstly we note that for any k ∈ {1, 2, . . . n1} \E1 ∪ E2 by definition of E2 (see (112) and

(107)) we have the hypotheses (235) and (236) of Lemma 8, by (101) we also have hypothesis
(234) so by the lemma there there exists a subset U (k) ⊂ Kk with the following properties

• For fixed Rk ∈ SO (2) we have for any P ∈ U (k)∫
P

|Du (z) −RkH | dL2z ≤ cκ
m0
64 κm0 (129)

•
Card (Kk\U (k)) ≤ cκ

m0
32 κ−

m0
2 . (130)

Similarly for any i ∈ {n1, n1 + 1, . . . 2n1} \ (F1 ∪ F2) there is a subset U (i) ⊂ Ki with the
following properties

• For fixed Ri ∈ SO (2) we have for any P ∈ U (i)∫
P

|Du (z) −RiH |dL2z ≤ cκ
m0
64 κm0 . (131)

•
Card (Ki\U (i)) ≤ cκ

m0
32 κ−

m0
2 . (132)

Observe the figure 7.



32 ANDREW LORENT
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H
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Figure 7

Let Vi := H−2ni

|H−2ni| for i = 1, 2. Define

H1 := P−1
V ⊥
2

(
PV ⊥

2

([
V1

4
,
V1

2

]))
,

H2 := P−1
V ⊥
1

(
PV ⊥

1

([
V2

4
,
V2

2

]))
,

H3 := P−1
V ⊥
2

(
PV ⊥

2

([
−V1

2
,−V1

4

]))
,

H4 := P−1
V ⊥
1

(
PV ⊥

1

([
−V2

2
,−V2

4

]))
.

(133)

And define

J1 :=
{
k ∈ {1, 2, . . . n2} : K̃k ⊂ H1, k �∈ E1 ∪ E2

}
,

J3 :=
{
k ∈ {1, 2, . . . n2} : K̃k ⊂ H3, k �∈ E1 ∪ E2

}
,

J2 :=
{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃i ⊂ H2, i �∈ F1 ∪ F2

}
,

J4 :=
{
i ∈ {n2 + 1, n2 + 2, . . . 2n2} : K̃i ⊂ H4, i �∈ F1 ∪ F2

}
.

Step 3. We will show we can find i0 ∈ J1, j1, j2, . . . jξ1 ∈ J2 where

ξ1 ≥ κ−
m0
2

128
(134)



A TWO WELL LIOUVILLE THEOREM 33

such that for some fixed R̃ ∈ SO (2), for any P ∈ U (i0) ∪
⋃ξ1

k=1 U (jk) we have∫
P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 . (135)

Proof of Step 3. Its helpful to observe figure 8.

Hn 1
−2

Hn
−2

2

Ki 0

L j1

L j2

L jk

iU 0

Ujk

j2

j1

1Θ 1/4

U
U

Figure 8

As shown in figure 7. We let C1 := H1 ∩H2, C2 := H2 ∩H3, C3 := H3 ∩H4, C4 := H1 ∩H4.
Its easy to see the convex hull of the set {C1, C2, C3, C4} will be contained the region Ỹ

shown of figure 6, see (110) and (133) for definitions. As shown on figure 8, let

Θ1 := {P : P ∈ U (i) for some i ∈ J2, P ⊂ C1} .

We start by estimating the cardinality of Θ1. Let

Z1 :=
{
P ∈ G

(
V1, V2, κ

m0
2

)
: P ⊂ C1

}
.

Note that

Card (Z1) ≥ κ−m0

32
. (136)

If P ∈ Z1\Θ1 then either P ∈ Ki for some i ∈ F1 ∪ F2 or P ∈ Ki\U (i) for some some i ∈ J2.
Formally;

Z1\Θ1 ⊂
( ⋃

i∈F1∪F2

Ki

)
∪
(⋃

i∈J2

Ki\U (i)

)
.
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So from (115), (117), (132)

Card (Z1\Θ1) ≤ Card (F1 ∪ F2)κ−
m0
2 +

∑
i∈J2

Card (Ki\U (i))

(132),(115),(117)

≤ 8c1
εσσ3

κ−m0 + cκ
m0
32 κ−m0

≤ 16c1
εσσ3

κ−m0 . (137)

Let Ψ1 := {P : P ∈ Ki for some i ∈ J1}. So from (114), (116)

Card (Z1\Ψ1) ≤ Card (E1 ∪ E2)κ−
m0
2

≤ 16c1
εσσ3

κ−m0 . (138)

Note from (137), (138), (136) (assuming c1 is small enough)

Card (Ψ1 ∩ Θ1)
(137),(138)

≥ Card (Z1) − 32c1
εσσ3

κ−m0

(136)

≥ κ−m0

32
− 32c1
εσσ3

κ−m0

≥ κ−m0

64
. (139)

Now we have the obvious estimate Card (J1) ≤ κ−
m0
2 . And as

Ψ1 ∩ Θ1 =
⋃

i∈J1

Ki ∩ Θ1

so (139) implies there must exist i0 ∈ J1 such that

Card (Ki0 ∩ Θ1) ≥ κ−
m0
2

64
.

So using (130) we have

Card (Ki0 ∩ Θ1 ∩ U (i0)) ≥ κ−
m0
2

128
. (140)

Now by definition of U (i0) (since i0 ∈ J1) there exists R̃ ∈ SO (2) such that for every P ∈ U (i0)
we have ∫

P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 . (141)

Let {P1, P2, . . . Pξ1} := Ki0 ∩ Θ1 ∩ U (i0), so of course from (140) we know ξ1 ≥ κ− m0
2

128 . By
definition of Θ1 for every k ∈ {1, 2, . . . ξ1} we have that Pk ∈ U (jk) for some jk ∈ J2. And by
definition of U (jk) we have for some fixed R (jk) ∈ SO (2) such that for any P̃ ∈ U (jk)∫

eP |Du (z) −R (jk)H | dL2z ≤ cκ
m0
64 κm0 for some fixed R (jk) ∈ SO (2) .

So putting this together with (141)∫
Pk

∣∣∣Du (z) − R̃H
∣∣∣+ |Du (z) −R (jk)H |dL2z ≤ cκ

m0
64 κm0

and hence as L2 (Pk) ≥ σ3

2
√

1+σ6 κ
m0 (see (109)) there must be a point zk ∈ Pk such that∣∣∣Du (zk) − R̃H

∣∣∣+ |Du (zk) −R (jk)H | ≤ cκ
m0
64
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which implies ∣∣∣R (jk) − R̃
∣∣∣ ≤ cκ

m0
64 .

From this and (141) Step 3 follows.

Step 4.
Let

T3 :=
{
i ∈ J3 : Card (Ki ∩ Θ2) ≥ cκ

m0
32 κ−

m0
2

}
. (142)

We will show we can find r1, r2, . . . rξ2 ∈ T3 with ξ2 >
κ− m0

2

2048 with the property that for any
P ∈ ⋃ξ2

i=1 U (ri) satisfies inequality∫
P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 . (143)

Proof of Step 4.
Let

Θ2 := {P : P ∈ U (jk) for k ∈ {1, 2, . . . ξ1} , P ∈ C2} . (144)
From (132), (134) and figure 9 we see that

Hn 1
−2

Hn
−2

2

1/4
2C

Θ 2

j1

j2

jk H 2
L

L

L

H 3

Figure 9

Card (Θ2)
(132),figure 9

≥ ξ1

(
1
4
− cκ

m0
32

)
κ−

m0
2

(134)

≥ κ−m0

1024
. (145)
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Since for any i ∈ H3 we have trivially that Card (Ki ∩ Θ2) ≤ κ−
m0
2 . So

Card (Θ2) ≤ Card (T3)κ−
m0
2 + cκ

m0
32 κ−

m0
2 Card (J3\T3) .

Hence from (145) and the trivial estimate Card (J3\T3) ≤ κ−
m0
2 .

κ−m0

1024
≤ Card (T3)κ−

m0
2 + cκ

m0
32 κ−m0

we have

Card (T3) ≥ κ−
m0
2

2048
. (146)

Now from (130) since (definition (142)) T3 ⊂ J3 ⊂ {1, 2, . . . n2} \ (E1 ∪E2) so by (129), (130)
for any i ∈ T3, Card (Ki\U (i)) ≤ cκ

m0
32 κ−

m0
2 . So by definition of T3, U (i) ∩ Θ2 �= ∅ so we can

pick P0 ∈ U (i) ∩ Θ2. Now by definition of Θ2, (see (144)) and of the set {j1, j2, . . . jξ1} (see
(134), (135)) we have ∫

P0

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 .

Also by definition of U (i), (see (129), (130)) we know there exists Ri ∈ SO (2) such that∫
eP |Du (z) −RiH | dL2 ≤ cκ

m0
64 κm0 for all P̃ ∈ U (i) .

Hence as we have argued before (since P0 ∈ U (i)), there must be a point z0 ∈ P0 such that∣∣∣R̃−Ri

∣∣∣ ≤
∣∣∣Du (z0) − R̃H

∣∣∣+ |Du (z0) −RiH |
≤ cκ

m0
64 .

And so for all P ∈ U (i) ∫
P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 .

Let {r1, r2, . . . rξ2} be an ordering of T3. Note that from (146) we have

ξ2 ≥ κ−
m0
2

2048
. (147)

So we have shown all the P ∈ G inside the set of G-lines
{
Kr1 ,Kr2 , . . .Krξ2

}
are such that Du

on P is orientated by R̃. This completes the proof of Step 4.

Step 5. We will show we can find i0 ∈ J1, i1 ∈ J2, i2 ∈ J3 and i3 ∈ J4 such that for some
fixed R̃ ∈ SO (2), for any P ∈ U (i1) ∪ U (i3) ∪ U (i2) ∪ U (i4) we have∫

P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 .

Proof of Step 5. Let

Θ3 := {P : P ∈ U (ri) , for i = 1, 2, . . . ξ2, P ∈ C3} .
We make the same estimates as before, from (147)

Card (Θ3) ≥ ξ2
κ−

m0
2

8

≥ κ−m0

16384
.

Let T4 :=
{
i ∈ H4 : Card (Ki ∩ Θ3) ≥ cκ−

m0
2

}
, as before

Card (Θ3) ≤ Card (T4) κ−
m0
2 + cκ

m0
32 κ−m0 .
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So κ−m0

22768 ≤ Card (T4)κ−
m0
2 which implies κ− m0

2

22768 ≤ Card (T4).
So as in Step 4 since T4 ⊂ J4 ⊂ {1, 2, . . . n1} \ (F1 ∪ F2) so by (131), (132) we must be able to

find a G-line Kl0 where l0 ∈ T4 and Card (Kl0\U (l0)) ≤ cκ
m0
32 κ−

m0
2 . Hence U (l0) ∩ Θ3 �= ∅ so

as before we have the property that there exists Rl0 ∈ SO (2) such that for any P ∈ U (l0)∩Θ3∫
P

∣∣∣Du (z) − R̃H
∣∣∣+ |Du (z) −Rl0H | dL2z ≤ cκ

m0
64 κm0 .

So there must exists a point z0 ∈ P such that∣∣∣Du (z0) − R̃H
∣∣∣+ |Du (z0) −Rl0H | ≤ cκ

m0
64 .

Hence
∣∣∣R̃ −Rl0

∣∣∣ ≤ cκ
m0
64 and thus for every P̃ ∈ U (l0) we have∫

eP
∣∣∣Du (z) − R̃H

∣∣∣ dL2z ≤ cκ
m0
64 κm0 .

We have already chosen i0 in Step 3, see (134). Let i1 be any member of {j1, j2, . . . jξ1} (see
again Step 3) and let i2 be any member of {r1, r2, . . . rξ2} (see Step 4) and let i3 = l0. Now
i0, i1, i2, i3 satisfy all the properties required.

Proof of Lemma continued.
Now since the G-line Kl0 must intersect the original G-line Ki0 . And since any G-line Krk

,
k ∈ {1, 2, . . . ξ2} must intersect any G-line Kjk

for k ∈ {1, 2, . . . ξ1}. So the G-lines Ki1 , Ki2 ,
Ki3 , Ki4 from Step 5 (and inequalities (130), (132)) satisfy all the properties of the statement
of the lemma.

10. Proof of Theorem 3

The strategy of the proof of Theorem 3 is as has been outlined in the introduction to Lemma
6. Lemma 6 gives us four lines L1, L2, L3, L4 (parallel either to H−2n1 or H−2n2) that contain
the boundary of a “diamond” surrounding a central subsquare. These lines have the property
that “most” of the grid elements that intersect them are such that Du on these elements will
be L1 close to matrix RH for some fixed R ∈ SO (2).

We will be considering lines in direction H−2n1 that start and end on the boundary of the
diamond. However before applying Lemma 7 we need to know that “most”of the grid elements
along the line are such that Du is close to a matrix in the well SO (2)H. Note that we know
from Lemma 3 that most of the grid elements are such that Du is either close to a matrix in
the well SO (2) or close to a matrix in the well SO (2)H.

So we need to rule out the possibility that there are many grid elements inside the diamond
for which Du is close to SO (2). Now note that |He2| = σ−1 > 1, so if for some line Q (inside
the diamond) in direction e2, many of the grid elements intersecting Q are such that Du is
close to a matrix in SO (2), letting a, b denote the endpoints of Q where (say) a ∈ L1 and
b ∈ L3 we would have H1 (u ([a, b])) << |He2| |a− b| which is a contradiction because u ([a, b])
has to connect u (a) to u (b) and integrating from a to L1 ∩ L3, then from L1 ∩ L3 to b we see
that |u (a) − u (b)| ≈ |RH (a− b)| = |He2| |a− b|. Thus there can not be many grid elements
in the diamond for which Du is close to a matrix in SO (2) and thus we can apply Lemma 7
to control “most” of the lines in direction H−2n1.

Proof of Theorem 3.
First note by Lemma 3 there exists G ⊂ G

(
H−2φ1
|H−2φ1| ,

H−2φ2
|H−2φ2| , κ

m0
2

)
with the following prop-

erties
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•
Card

(
G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
\G
)

≤ cκ
m0
4 κ−m0. (148)

• For any P ∈ G there exists R ∈ SO (2), J ∈ {H, Id} such that∫
P

|Du (z) −RJ | dL2z ≤ cκ
m0
4 κm0 . (149)

By Lemma 6 there exists G-lines Ki1 ,Ki3 in direction H−2n1 and G-lines Ki2 ,Ki4 in direc-
tion H−2n2 which satisfy the following properties.

• Let W be the connected component of Q1 (0) \
(
K̃i0 ∪ K̃i1 ∪ K̃i2 ∪ K̃i3

)
containing

zero, then
Q σ3

2
√

σ6+1

(0) ⊂W. (150)

• There exists a subset M ⊂ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 with the property that

Card ((Ki0 ∪Ki1 ∪Ki2 ∪Ki3) \M) < cκ
m0
32 κ−

m0
2 (151)

and for some fixed R̃ ∈ SO (2), for any P ∈M we have∫
P

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0 . (152)

Let

B :=
{
P ∈ G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
: P ⊂W

}
.

And let

D :=
{
P ∈ G ∩ B :

∫
P

|Du (z) −R| dL2z ≤ cκm0κ
m0
4 for some R ∈ SO (2)

}
.

Part 1: We will show
Card (D) ≤ 5κ

m0
100 κ−m0 . (153)

Proof of Part 1: Suppose not, so

Card (D) ≥ 5κ
m0
100 κ−m0 . (154)

Let C (P ) denote the center of each P . We can partition B into columns parrel to e2 in the
following way. Let

R (α) := {P ∈ W : C (P ) · e1 = α} .
As we can see from figure 10, for some constant �σ > 0 we have

B ⊂
2

h
κ− m0

2
i⋃

k=−2
h
κ− m0

2
i R

(
k�σκ

m0
2

)
.

Let

Φ :=
{
k ∈

{
−2
[
κ−

m0
2

]
, . . . 2

[
κ

m0
2

]}
: Card

(
R

(
k�σκ

m0
2

)
∩ D

)
≥ κ

m0
100 κ−

m0
2

}
. (155)

By (154) 5κ
m0
100 κ−m0 ≤ 2κ−

m0
2 Card (Φ) + κ

m0
100κ−m0 so we have

Card (Φ) ≥ 2κ
m0
100 κ−

m0
2 . (156)

Step 1.1: We claim we must be able to find k1 ∈ Φ such that

Card
(

R

(
j�σκ

m0
2

)
\G
)
≤ κ

m0
20 κ−

m0
2 for j ∈ {k1 − 1, k1, k1 + 1} . (157)
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Hn 1
−2

Hn
−2

2

K

K i1i0

i2

Ki3

K

0wP

1wP

y0

y1

Figure 10

Proof of Step 1.1: Suppose not. So we have a subset Φ̃ ⊂ Φ with

Card
(
Φ̃
)

≥ Card (Φ)
3

− 2

(156)

≥ κ
m0
100

2
κ−

m0
2 (158)

and for every k ∈ Φ̃ we have

Card
(

R

(
k�σκ

m0
2

)
\G
)
≥ κ

m0
20 κ−

m0
2 .

So

Card
(
G

(
H−2φ1

|H−2φ1| ,
H−2φ2

|H−2φ2| , κ
m0
2

)
\G
)

≥ Card
(
Φ̃
)
κ

m0
20 κ−

m0
2

(158)

≥ κ
m0
100

2
κ

m0
20 κ−m0

≥ κ
3m0
50

2
κ−m0

which contradicts (148), hence we have established (157).

Step 1.2:
Let S := W ∩ P−1

e⊥
2

([(
k1 − 1

2

)
�σ,
(
k1 + 1

2

)
�σ

])
and we define function E : S → IR by

E (z) :=

⎧⎨⎩
d (Du (z) , SO (2)) if z ∈ P ∈ D

d (Du (z) , SO (2)H) if z ∈ P ∈ G\D

2ζ2 if z ∈ P �∈ G.
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We will show ∫
S

E (z)dL2z ≤ 7ζ2κ
m0
20 κ

m0
2 . (159)

Proof of Step 1.2:
To begin with note that if P ∩ S �= ∅ and P �∈ G then P ∈ R

(
j�σκ

m0
2

)
\G for some

j ∈ {(k1 − 1) , k1, (k1 + 1)}.
So

{P : P ∩ S �= ∅, P �∈ G} ⊂
⋃

j∈{(k1−1),k1,(k1+1)}
R

(
j�σκ

m0
2

)
\G

and hence from (157)

Card ({P : P ∩ S �= ∅, P �∈ G}) ≤ 3κ
m0
20 κ−

m0
2 . (160)

Thus ∫
S\(S

P∈G P)
E (z)dL2z ≤ 2ζ2κm0Card ({P : P ∩ S �= ∅, P �∈ G})

≤ 6ζ2κ
m0
20 κ

m0
2 . (161)

On the other hand from the definition of G specifically from (149) we have∫
S∩(S

P∈G P)
E (z)dL2z ≤

∑
j∈{(k1−1),k1,(k1+1)}

∑
P∈R(�σj)∩G

∫
P

d (Du (z) , SO (2) ∪ SO (2)H) dL2z

≤ 3cκ
m0
2 κ

m0
4 . (162)

Hence putting (161), (162) together gives us (159) and this completes the proof of Step 1.2.

Step 1.3.
Now since k1 ∈ Φ (see definition (155)) its clear that L1

(
P−1

e⊥
2

(
k1�σκ

m0
2

)
∩ {P : P ∈ D}

)
≥

κ
m0
100 σ3

4 . Now from figure 10 its easy to see that for any x0 ∈
[(
k1 − 1

2

)
�σκ

m0
2 ,
(
k1 + 1

2

)
�σκ

m0
2

]
we have

L1
(
P−1

e⊥
2

(x0) ∩ {P : P ∈ D}
)

≥ 1
2
L1
(
P−1

e⊥
2

(
k1�σκ

m0
2

)
∩ {P : P ∈ D}

)
≥ κ

m0
100 σ3

8
. (163)

Now by a Fubini type argument using (159) there must exists x1 ∈
[(
k1 − 1

2

)
�σκ

m0
2 ,
(
k1 + 1

2

)
�σκ

m0
2

]
such that ∫

P−1
e⊥2

(x1)∩W

E (z) dL1z ≤ cκ
m0
20 . (164)

Now we must be able to find Pw0 , Pw1 ∈ Ki0 ∪ Ki1 ∪ Ki2 ∪ Ki3 with P−1
e⊥
2

(x1) ∩ Pw0 �= ∅,
P−1

e⊥
2

(x1) ∩ Pw1 �= ∅. Without loss of generality assume Pw0 ∈ Ki0 and Pw1 ∈ Ki3 . See figure
10.

Let z0 ∈ P−1
e⊥
2

(x1) ∩ Pw0 and z1 ∈ P−1
e⊥
2

(x1) ∩ Pw1 . We will show

|u (z0) − u (z1)| ≤ σ−1 |z0 − z1| −
(
σ−1 − 1

) κm0
100 σ3

8
+ cκ

m0
20 . (165)
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Proof of Step 1.3.

|u (z1) − u (z0)| =
∫ z1

z0

Du (z) · e2dL1z

≤
∫

[z0,z1]∩{P :P∈D}
|Du (z) · e2| dL1z +

∫
[z0,z1]∩{P :P∈G\D}

|Du (z) · e2| dL1z

+
∫

[z0,z1]∩{P :P 	∈G}
|Du (z) · e2| dL1z. (166)

We define a function
Γ1 : [z0, z1] ∩ {P : P ∈ D} → SO (2)

such that Γ1 (x) ∈ SO (2) is the unique matrix such that d (Du (x) , SO (2)) = |Du (x) − Γ1 (x)|.
Define

Γ2 : [z0, z1] ∩ {P : P ∈ G\D} → SO (2)H

such that Γ2 (x) ∈ SO (2)H is the unique matrix such that d (Du (x) , SO (2)H) = |Du (x) − Γ2 (x)|.
So∫

[z0,z1]∩{P :P∈D}
|Du (z) · e2|dL1z ≤

∫
[z0,z1]∩{P :P∈D}

|Γ1 (z) · e2| dL1z +
∫

[z0,z1]∩{P :P∈D}
E (z) dL1z

≤ L1 ([z0, z1] ∩ {P : P ∈ D}) +
∫

[z0,z1]∩{P :P∈D}
E (z)dL1z.(167)

Similarly∫
[z0,z1]∩{P :P∈G\D}

|Du (z) · e2| dL1z

≤
∫

[z0,z1]∩{P :P∈G\D}
|Γ2 (z) · e2| dL1z +

∫
[z0,z1]∩{P :P∈G\D}

E (z) dL1z

≤ |He2|L1 ([z0, z1] ∩ {P : P ∈ G\D}) +
∫

[z0,z1]∩{P :P∈G\D}
E (z) dL1z. (168)

So using (160), (163), (164), (166), (167), (168) we have

|u (z0) − u (z1)|
(166),(167),(168)

≤ L1 ([z0, z1] ∩ {P : P ∈ D}) + |He2|L1 ([z0, z1] ∩ {P : P ∈ G\D})
+2ζ2L1 ([z0, z1] ∩ {P : P �∈ G}) +

∫
[z0,z1]∩{P :P∈G}

E (z) dL1z

= (1 − |He2|)L1 ([z0, z1] ∩ {P : P ∈ D}) + |He2|L1 ([z0, z1] ∩ {P : P ∈ G})
+
∫ z1

z0

E (z)dL1z + 2ζ2L1 ([z0, z1] ∩ {P : P �∈ G})
(160),(163),(164)

≤ (
1 − σ−1

) κm0
100 σ3

8
+ σ−1 |z0 − z1| + cκ

m0
20 .

Hence we have completed the proof of Step 1.3.

Step 1.4. We will show∣∣∣|u (z1) − u (z0)| − |z1 − z0| R̃H · e2
∣∣∣ ≤ cκ

m0
64 .

Proof of Step 1.4.
Now recall Pw0 , Pw1 ∈ Ki0 ∪Ki1 ∪Ki2 ∪Ki3 . Assume without loss of generality Pw1 ∈ Ki0 ,

Pw0 ∈ Ki3 , see figure 10.
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Now from (151), (152) we know that∫
gKi2∪gKi3

∣∣∣Du (z) − R̃H
∣∣∣ dL2z ≤ cκ

m0
64 κm0Card (Ki2 ∪Ki3) + cκ

m0
32 κ

m0
2

≤ cκ
m0
64 κ

m0
2 .

So by a Fubini argument (using the fact that the width of K̃i1 and K̃i3 is bigger than σ3κ
m0
2

4 )
we must be able to find points y0 ∈ Pw0 , y1 ∈ Pw1 such that∫

(y0+〈H−2n2〉)∩Q1(0)

∣∣∣Du (z) − R̃H
∣∣∣ dL1z ≤ cκ

m0
64 .

And ∫
(y1+〈H−2n1〉)∩Q1(0)

∣∣∣Du (z) − R̃H
∣∣∣ dL1z ≤ cκ

m0
64 .

Let ỹ :=
{
y0 + 〈H−2n2〉

} ∩ {y1 + 〈H−2n1〉
}
. So∣∣∣∣∣

(∫ ỹ

y0

Du (z) · H
−2n2

|H−2n2|dL
1z +

∫ y1

ỹ

Du (z) · H
−2n1

|H−2n1|dL
1z

)

−
(∫ ỹ

y0

R̃H · H
−2n2

|H−2n2|dL
1z +

∫ y1

ỹ

R̃H · H
−2n1

|H−2n1|dL
1z

)∣∣∣∣∣
≤
∫ ỹ

y0

∣∣∣Du (z) − R̃H
∣∣∣ dL1z +

∫ y1

ỹ

∣∣∣Du (z) − R̃H
∣∣∣ dL1z

≤ cκ
m0
64 . (169)

As ∫ ỹ

y0

R̃H · H
−2n1

|H−2n1|dL
1z +

∫ y1

ỹ

R̃H · H
−2n2

|H−2n2|dL
1z =

∫ y1

y0

R̃H · e2

= |y1 − y0| R̃H · e2
And as (∫ ỹ

y0

Du (z) · H
−2n1

|H−2n1|dL
1z +

∫ y1

ỹ

Du (z) · H
−2n2

|H−2n2|dL
1z

)
= u (y1) − u (y0) .

So (169) becomes ∣∣∣|u (y1) − u (y0)| − |y1 − y0| R̃H · e2
∣∣∣ ≤ cκ

m0
64 . (170)

By Lipschitzness this implies∣∣∣|u (z1) − u (z0)| − |z1 − z0| R̃H · e2
∣∣∣ ≤ cκ

m0
64 . (171)

This completes the proof of Step 1.4.

Proof of Part 1 continued.
So in particular, from (171)

|u (z1) − u (z0)| ≥ σ−1 |z1 − z0| − cκ
m0
64 . (172)

Putting this together with (165) we have

σ−1 |z1 − z0| − cκ
m0
64 ≤ − (σ−1 − 1

) κm0
100 σ3

8
+σ−1 |z0 − z1| + cκ

m0
20 .
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This implies (
σ−1 − 1

)
8

κ
m0
100σ3 ≤ cκ

m0
64 + cκ

m0
20

which is a contradiction for small enough κ. Hence we have shown Part 1.

Part 2. We will complete the proof of Theorem 3.
As we have noted before. B is made up of a union ofG-lines in directionH−2n1. Denote them

Ks1 ,Ks2 , . . .Ksn4
where n4 ≥ σ3

8 κ
−m0

2 . Formally
{
Ks1 ,Ks2 , . . .Ksn4

}
:=
{
Ki : K̃i ∩W �= ∅

}
.

Let
W1 :=

{
Ki : Card (Ki ∩ D) ≤ κ

m0
200 κ−

m0
2 , Ki ∩W �= ∅

}
. (173)

Note that from (153) we have

Card ({K1, . . .Kn4} \W1) ≤ 5κ
m0
200 κ−

m0
2 . (174)

Let
W2 :=

{
Ki ∈ W1 : Card (Ki\G) ≤ κ

m0
16 κ−

m0
2

}
(175)

So from (148) we know Card (W1\W2) κ
m0
16 κ−

m0
2 ≤ cκ

m0
4 κ−m0 so

Card (W1\W2) ≤ cκ
3m0
16 κ−

m0
2 . (176)

Let {q1, q2, . . . qn5} ∈ IN be such that W2 :=
{
Kq1 ,Kq2 , . . .Kqn5

}
. Note that we of course have

n5 ≤ κ−
m0
2 . Note that from (174), (176)

Card
({
Ks1 ,Ks2 , . . .Ksn4

} \{Kq1 ,Kq2 , . . .Kqn5

}) ≤ 6κ
m0
200 κ−

m0
2 . (177)

Now for any G-line Kqi ∈ W2 let P (1)
qi be the “first” parallelopiped in Kqi ∩ B (i.e. the

parallelopiped such that C
(
P

(1)
qi

)
·H−2n1 ≤ C (P ) ·H−2n1 for any P ∈ Kqi ∩ B). Let P (2)

qi be
the similarly defined “last” parallelopiped. Note that by (150) we have∣∣∣C (P (1)

qi

)
− C

(
P (2)

qi

)∣∣∣ > σ3

4
. (178)

Let x1 := C
(
P

(1)
qi

)
and x2 := C

(
P

(2)
qi

)
. By arguing as we did to establish (170) in Part 1

we can show that there exists R2 ∈ SO (2) independent of i such that

|(u (x2) − u (x1)) −R2H (x2 − x1)| ≤ cκ
m0
64 . (179)

Let R1 ∈ SO (2) be such that

R1

(
H−1n1

)
=

u (x2) − u (x1)
|u (x2) − u (x1)| . (180)

Now

||u (x2) − u (x1)| − |R2H (x2 − x1)|| ≤ |(u (x2) − u (x1)) −R2H (x2 − x1)|
≤ cκ

m0
64 . (181)

As x2−x1
|x2−x1| = H−2n1

|H−2n1|

|R2H (x2 − x1)| = |x2 − x1|
∣∣∣∣H ( H−2n1

|H−2n1|
)∣∣∣∣

=
|x2 − x1|
|H−2n1| . (182)
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Since from (216) we have H−2n1 · n1 = 1 so H−2n1
|H−2n1| · n1 = 1

|H−2n1| so since x2−x1
|x2−x1| = H−2n1

|H−2n1|
using this on (182) we have

|R2H (x2 − x1)| = |x2 − x1| H
−2n1

|H−2n1| · n1 = |(x2 − x1) · n1| . (183)

Applying this to (181) gives

||u (x2) − u (x1)| − |(x2 − x1) · n1|| < cκ
m0
64 . (184)

Using inequalities (179), (180) and the fact that x2−x1
|x2−x1| = H−2n1

|H−2n1|∣∣∣∣|u (x2) − u (x1)|R1

(
H−1n1

)− |x1 − x2|R2

(
H−1n1

|H−2n1|
)∣∣∣∣

(180)
= |(u (x2) − u (x1)) −R2H (x2 − x1)|

(179)

≤ cκ
m0
64 . (185)

And as we have see
∣∣H−2n1

∣∣−1 = H−2n1
|H−2n1| · n1 so |x1−x2|

|H−2n1| = |(x2 − x1) · n1| and so using this in
(184) and inserting it into (185) we have∣∣∣∣|x2 − x1|R1

(
H−1n1

|H−1n1|
)
− |x2 − x1|R2

(
H−1n1

|H−1n1|
)∣∣∣∣ < cκ

m0
64 (186)

from (178) we know |x1 − x2| > σ3

4 and so (186) implies

|R1 −R2| < cκ
m0
64 . (187)

By definition of W1 and W2 (173) and (175) we know

Card (Kqi\ (G\D)) ≤ κ
m0
16 κ−

m0
2 + κ

m0
200 κ−

m0
2

≤ 2κ
m0
200 κ−

m0
2 . (188)

So setting p0 = m0
200 , q0 = m0

128 we see (188) and (178), (179), (187) gives us the necessary
conditions to apply Lemma 7. So by Lemma 7 we have the existence of a set Mi ⊂ Kqi ∩(G\D)
such that

Card (Kqi\Mi) ≤ cκ
m0
400 κ−

m0
2 (189)

and every P ∈Mi has the property∫
P

|Du (z) −R2H | dL2z ≤ cκ
m0
800 κm0 . (190)

Recall (see (179)) R2 is independent of i. Let

Π = B\
n5⋃
i=1

Mi.

So by (177) and (189) we have

Card (Π) ≤ κ−
m0
2 Card

({
Ks1 ,Ks2 , . . .Ksn4

} \{Kq1 ,Kq2 , . . .Kqn5

})
+

n5∑
k=1

Card (Kqk
\Mqk

)

(177),(189)

≤ 6κ
m0
200 κ−m0 + cκ

m0
400 κ−m0

≤ cκ
m0
400κ−m0 . (191)
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And note any P ∈ B\Π satisfies inequality (190) and so using (191) we have∫
W

|Du (z) −R2H |dL2z ≤ 20ζ2κ
m0
2 +

∑
P∈B

∫
P

|Du (z) −R2H | dL2

(191)

≤ 20ζ2κ
m0
2 + Card (B\Π) cκ

m0
800 κm0 + cκ

m0
400

≤ cκ
m0
800 .

This completes the proof of the theorem.
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