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Abstract

We derive a spectral representation for the oblate spheroidal wave operator, which
is holomorphic in the aspherical parameter Ω in a neighborhood of the real line. For
real Ω, estimates are derived for all eigenvalue gaps uniformly in Ω.

The proof of the gap estimates is based on detailed estimates for complex solutions
of the Riccati equation. The spectral representation for complex Ω is derived using
the theory of slightly non-selfadjoint perturbations.

1 Introduction

Recently an integral representation was derived for solutions of the scalar wave equation in
the Kerr black hole geometry [3]. This result relies crucially on a spectral representation
for the oblate spheroidal wave operator for complex values of the aspherical parameter Ω
(also referred to as “ellipticity parameter” or “semifocal distance”). In the present paper
we rigorously derive this spectral representation. The reason why this problem deserves
to be worked out in a separate paper is that most of our methods apply in a much more
general context. Namely, the core of the paper is to derive estimates for the eigenvalue
gaps λn+1 − λn for real Ω, which are uniform in Ω and n. To this end, we need to control
the eigenvalues and the behavior of the wave functions in detail. Our method is based on
invariant region estimates for the complex Riccati equation and applies to general one-
dimensional Schrödinger problems. In particular, it gives refined error estimates for WKB
approximations. We regard the spheroidal wave equation as a model problem for working
out these estimates.

Despite the vast literature on spectral estimates for the Schrödinger equation (see
e.g. [10] and the references therein), gap estimates are rarely found in the standard liter-
ature. Most papers are concerned with the two lowest eigenvalues [7, 12], or they apply
in special situations like a a nearly constant potential [8]. Probably, this is because gap
estimates depend sensitively on the detailed form of the potential (as one sees in the ex-
ample of a double-well potential), making it difficult to get general results. Our method
requires that the potential is piecewise monotone and that we have explicit control of its
derivatives.

We now introduce our problem and state our results. The spheroidal wave equation
can be written as the eigenvalue equation

AΘ = λΘ (1.1)
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where A is the elliptic differential operator on the unit sphere

A = − d

d cos ϑ
sin2 ϑ

d

d cos ϑ
+

1
sin2 ϑ

(Ω sin2 ϑ + k)2 (1.2)

which involves two parameters k ∈ Z and Ω ∈ C. We consider A as an operator in the
Hilbert space H = L2(S2) with domain of definition D(A) = C∞(S2). We will fix k
throughout, whereas Ω is a variable parameter. Note that the potential of this operator
is in general complex,

Im
(

(Ω sin2 ϑ + k)2

sin2 ϑ

)
= 2

(
Re Ω sin2 ϑ + k

)
ImΩ , (1.3)

and therefore A is symmetric only if Ω is real. In previous works asymptotic expansions
for individual eigenvalues are derived [4, 9], and it is shown numerically that eigenvalues
can degenerate for non-real Ω [5], but rigorous estimates or completeness statements are
not given. Our main result is the following spectral representation for Ω in a neighborhood
of the real line.

Theorem 1.1 For any given k ∈ Z and c > 0, we define the open set U ⊂ C by the
condition

|Im Ω| <
c

1 + |ReΩ| . (1.4)

Then there is a positive integer N and a family of operators Qk(Ω) on H defined for
k ∈ N ∪ {0} and Ω ∈ U with the following properties:

(i) The Qk are holomorphic in Ω.

(ii) Q0 is a projector on an N -dimensional invariant subspace of A. For k > 0, the Qn

are projectors on one-dimensional eigenspaces of A with corresponding eigenvalues
µk(Ω). These eigenvalues satisfy a bound of the form

|µk(Ω)| ≤ C(k) (1 + |Ω|) (1.5)

for suitable constants C(k). Furthermore, there is a parameter ε > 0 such that for
all k ∈ N and Ω ∈ U ,

|µk(Ω)| ≥ k ε . (1.6)

(iii) The Qk are complete, i.e.
∞∑

k=0

Qk = 11

with strong convergence of the series.

(iv) The Qk are uniformly bounded, i.e. for all k ∈ N0,

‖Qk‖ ≤ c1 (1.7)

with c1 independent of Ω and k.

If c is sufficiently small, c < ε, or the real part of Ω is sufficiently large, |ReΩ| > C(c),
one can choose N = 1, i.e. A is diagonalizable with non-degenerate eigenvalues.
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To avoid misunderstandings, we point out that by “projector on an invariant subspace
of A” we mean an operator Q which is idempotent and commutes with A. But Q will in
general not be symmetric.

In our proof we shall treat the imaginary part of the potential (1.3) as a slightly non-
selfadjoint perturbation in the spirit of [6, Chap. V, §4, Sec. 5], see also [2, Chapter 12]. For
this method to be applicable, we need good control of the eigenvalues of the corresponding
selfadjoint problem. Our starting point is the following standard spectral decomposition
of A in the case of real Ω.

Theorem 1.2 For any given k ∈ Z and Ω ∈ R, the operator A is essentially selfadjoint,
positive and compact resolvent. It is invariant on the even and odd parity subspaces H±

defined by

H = H+ ⊕H− with H± = {φ ∈ H with φ(π − ϑ) = ±φ(ϑ)}.

We denote the eigenvalues of A restricted to H± by λ±
n and count them with multiplicities,

0 ≤ λ±
1 < λ±

2 < λ±
3 ≤ · · · .

The crucial and most delicate part is the following gap estimate uniform in n and Ω.

Theorem 1.3 For any given k ∈ Z and gamma > 0, there is a positive integer N such
that

λ±
n+1 − λ±

n > γ for all n ≥ N and Ω ∈ R.

If γ is sufficiently small or |Ω| is sufficiently large, one can choose N = 1.

The paper is organized as follows. In Section 2 we prove Theorem 1.2 and reduce
Theorem 1.3 to gap estimates for a real Schrödinger equation on the interval ϑ ∈ [0, π

2 ]
with suitable boundary conditions. In Sections 2–6 we introduce the complex Riccati
equation and develop general techniques for analyzing its solutions. In Section 7 and 8 we
apply these techniques to the spheroidal wave operator and prove Theorem 1.3. Finally,
in Section 8 we use perturbative methods to proof Theorem 1.1.

2 Basic Considerations, the Schrödinger Equation

Until the end of Section 7 we will consider the spheroidal wave equation (1.1) for real Ω.
Using that (1.2) is symmetric under the transformations Ω → −Ω and k → −k, we can
clearly assume that

Ω > 0 .

Obviously, the operator A is symmetric, elliptic and positive. Standard elliptic theory [11]
yields that A is essentially selfadjoint and has compact resolvent. Furthermore, (1.2) is
symmetric under the transformation ϑ → π − ϑ, and thus the parity subspaces H± are
invariant under A. This gives Theorem 1.2.

In order to better understand Theorem 1.3, it is useful to consider the limits n → ∞
and Ω → ∞. For fixed Ω and large n, Weyl’s asymptotics applies and yields that the
eigenvalues of A behave for large n like the eigenvalues of the Laplacian on the sphere,

λn ∼ n2 and λn+1 − λn ∼ n .
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Therefore, it is obvious that the statement of Theorem 1.3 holds for any fixed Ω and
sufficiently large N = N(Ω). The estimate

|λn(Ω) − λn(Ω′)| ≤ ‖A(Ω) −A(Ω′)‖∞ ≤ |Ω − Ω′| (Ω + Ω′ + 2k)

yields that eigenvalues of A are locally Lipschitz in Ω, uniformly in n. This shows that the
constant N(Ω) can be chosen locally uniformly in Ω. If conversely we fix n, the asymptotic
expansion of the spheroidal eigenvalue λn for large Ω (see [4] or [9])

λn(Ω) =

{
2(n + 1)Ω + O(1) if n − k is even,

2nΩ + O(1) if n − k is odd.
(2.1)

shows us that for each n we can make the eigenvalue gap arbitrarily large by choosing Ω
sufficiently large. We conclude that it remains to show that the eigenvalue gaps are
bounded uniformly as both N and |Ω| become large. This is the hard part of Theorem 1.3,
and we state it as a separate Lemma.

Lemma 2.1 For any given k ∈ Z and c > 0, there are constants N ∈ N and Ω0 > 0 such
that

λ±
n+1 − λ±

n > c for all n ≥ N and Ω > Ω0.

The proof of this lemma requires detailed eigenvalue estimates. We will complete it in
Section 7, and this will also finish the proof of Theorem 1.3.

Let us collect some basic facts about the spheroidal wave functions Θ±
n . First of all,

standard elliptic regularity theory applied to the yields that they are smooth functions
on S2. The spheroidal wave operator (1.2) is singular at the poles ϑ = 0, π. Introducing
the variable u = ϑ (or analogously u = π − ϑ), the spheroidal wave equation has near
u = 0 the asymptotic form (

− d2

du2
− 1

u

d

du
+

k2

u2

)
Θ = 0 .

Computing the fundamental solutions of this equation and using Sturm-Liouville theory,
one sees that the spheroidal wave functions have near u = 0 the asymptotic form Θ ∼
u0, log u (if k = 0) and Θ ∼ u±k (if k �= 0). The cases Θ ∼ log u and Θ ∼ u−|k| cannot
occur because they would lead to a singularity of Θ at the poles. We conclude that near
the poles the spheroidal wave functions have the following asymptotic form,

Θ±
n (u) = c u|k| + O(u|k|+1) with c �= 0 . (2.2)

Furthermore, the node theorem [13, Theorem 14.10] tells us about the number of zeros
of the spheroidal wave functions. In our setting, the statement of the node theorem can
easily be derived as follows. We know from Sturm-Liouville theory that the spheroidal
wave functions depend smoothly on the parameter Ω. If the number of zeros of the
function Θ±

n changed at some Ω, there would be a u ∈ (0, π) with Θ±
n (u) = 0 = (Θ±

n )′(u), in
contradiction to the fact that Θ±

n does not vanish identically. We conclude that the number
of zeros of Θ±

n is independent of Ω, and therefore it suffices to consider the case Ω = 0,
when the spheroidal wave functions reduce to the spherical harmonics. We thus obtain

Θ+
n (ϑ)

Θ−
n (ϑ)

}
has on the interval (0, π)

{
2n zeros

2n + 1 zeros
(2.3)
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(note that we do not count the zeros at ϑ = 0, π).
Next we reformulate the eigenvalue problem (1.1) as a boundary value problem for a

Schrödinger-type equation on the interval 0 ≤ ϑ ≤ π
2 . In the variable u = ϑ ∈ [0, π], the

angular operator (1.2) can be written as

A = − 1
sinu

d

du
sin u

d

du
+

1
sin2 u

(Ω sin2 u + k)2.

In order to get rid of the first order term, we introduce the function Y by

Y =
√

sin u Θ . (2.4)

Then
B Y = λ Y ,

where

B = − 1√
sin u

d

du
sinu

d

du

1√
sin u

+
1

sin2 u
(Ω sin2 u + k)2

= − d2

du2
+

1
2

cos2 u

sin2 u
−

√
sin u

(
1√
sin u

)′′
+

1
sin2 u

(Ω sin2 u + k)2

= − d2

du2
− 1

4
cos2 u

sin2 u
− 1

2
+

1
sin2 u

(Ω sin2 u + k)2 .

Thus Y satisfies the so-called Schrödinger equation(
− d2

du2
+ V

)
Y = 0 , (2.5)

where V is the potential

V = Ω2 sin2 u +
(

k2 − 1
4

)
1

sin2 u
− µ (2.6)

with
µ = λ − 2Ωk +

1
4
. (2.7)

The behavior near the poles (2.2) and the normalization condition gives rise to the following
boundary conditions at u = 0,{

Y ±
n (0) = 0 if k �= 0

limu↘0 u− 1
2 |Y ±

n (u)| < ∞ if k = 0
(2.8)

The boundary conditions at u = π
2 are obvious from the parity,⎧⎪⎨
⎪⎩

(Y +
n )′
(π

2

)
= 0

Y −
n

(π

2

)
= 0 .

(2.9)

The eigenvalue equation (1.1) is equivalent to the Schrödinger equation (2.5) with bound-
ary conditions (2.8, 2.9). Finally, the node theorem (2.3) yields that

Y ±
n has n zeros on (0, π

2 ). (2.10)
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3 The Complex Riccati Equation

Let Y1 and Y2 be two real fundamental solutions of the Schrödinger equation (2.5) for a
general real and smooth potential V . Then their Wronskian

w := Y1(u) Y ′
2(u) − Y ′

1(u) Y2(u)

is a constant; we assume in what follows that w > 0. We combine the two real solutions
to the complex function

z = Y1 + iY2 ,

and denote its polar decomposition by

z = ρ eiϕ (3.1)

with real functions ρ(u) ≥ 0 and ϕ(u). By linearity, z is a solution of the complex
Schrödinger equation

z′′ = V z . (3.2)

Note that z has no zeros because at every u at least one of the fundamental solutions does
not vanish. Thus the function y defined by

y =
z′

z
(3.3)

is smooth. Moreover, y satisfies the complex Riccati equation

y′ + y2 = V . (3.4)

The fact that the solutions of the complex Riccati equation are smooth will be helpful
for getting estimates. Conversely, from a solution of the Riccati equation one obtains the
corresponding solution of the Schrödinger equation by integration,

log z|vu =
∫ v

u
y . (3.5)

Using (3.1) in (3.3) gives separate equations for the amplitude and phase of z,

ρ′ = ρ Re y , ϕ′ = Im y ,

and integration gives

log ρ|vu =
∫ v

u
Re y (3.6)

ϕ|vu =
∫ v

u
Im y . (3.7)

Furthermore, the Wronskian gives a simple algebraic relation between ρ and y. Namely,
w can be expressed by w = Im (z z′) = ρ2 Im y and thus

ρ2 =
w

Im y
. (3.8)

Since ρ2 and w are non-negative, we see that

Im y(u) > 0 for all u. (3.9)
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The boundary conditions for the Schrödinger equation can easily be translated into
conditions for y. To this end we write the solutions Y ±

n of the Schrödinger equation
as Y ±

n = Im(e−iαz±n ) with a suitable phase factor e−iα. Then a Dirichlet condition can be
written as ϕ = αmod π. A Neumann boundary condition gives

0 = Im
(
e−iαyz

)
= Re

(
e−i(α+ π

2
)yz
)

=
[
Re y cos(ϕ − α − π

2
) − Im y sin(ϕ − α − π

2
)
]
ρ

and thus

ϕ = α +
π

2
+ arctan

(
Re y

Im y

)
.

According to (3.7) and (3.9) the function ϕ(u) is monotone increasing. Therefore the
number of zeros of Y , (2.10) tells us how often ϕ crossed the points modπ. This allows
us to completely determine the “phase shifts” on the interval (0, π

2 ),

ϕ+
n

∣∣π
2
0

=
π

2
+ arctan

(
Re y(π

2 )
Im y(π

2 )

)
+ nπ (3.10)

ϕ−
n

∣∣π
2
0

= (n + 1)π (3.11)

(we use the usual convention that the arc tangent takes values in (−π
2 , π

2 )). Using (3.7)
these boundary conditions can be expressed purely in terms of y and the integral of the
imaginary part of y.

For the gap estimates we need to control how y depends on λ. To this end, we
differentiate through the complex Riccati equation (3.4) and use that ∂λV = −1 according
to (2.6) and (2.7). This gives the linear ODE

y′λ = −1 − 2yyλ ,

where the λ-derivative is denoted by a subscript. This equation can immediately be
integrated using variation of constants. Applying (3.5), we obtain

z2 yλ

∣∣v
u

= −
∫ v

u
z2 . (3.12)

Substituting into this relation the integration-by-parts formula∫ v

u
z2 =

∫ v

u

1
2y

(z2)′ =
z2

2y

∣∣∣∣
v

u

+
∫ v

u

V − y2

2y2
z2

we obtain the identity

z2 yλ

∣∣v
u

= − z2

2y

∣∣∣∣
v

u

−
∫ v

u

V − y2

2y2
z2 . (3.13)

In our estimates we will work both with (3.12) and (3.13).

4 Invariant Region estimates

In this section we describe estimates for the complex Riccati equation (3.4) with initial
conditions at u = 0,

y′ = V − y2 , y(0) = y0 (4.1)

on the interval [0, umax) with umax ∈ R
+ ∪ {∞}. In what follows the potential V ∈

C∞([0, umax)) can be any real and smooth function. The next lemma is the key to all the
estimates in this section.
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Lemma 4.1 Let α be a real function on [0, umax] which is continuous and piecewise C1.
For a constant T0 ≥ 1 we introduce the functions σ, U and T by

σ(u) = exp
(

2
∫ u

0
α

)
(4.2)

U(u) = V − α2 − α′ (4.3)

T (u) = T0 exp
(

1
2

TV[0,u) log |σ2U |
)

. (4.4)

Furthermore, we define the functions β, R and m by

β =

√|U |
2

(
T +

1
T

)
(4.5)

R =

√|U |
2

(
T − 1

T

)
(4.6)

m = α + iβ . (4.7)

Suppose that U ≤ 0 on [0, umax). If a solution y of the boundary value problem (4.1)
satisfies at u = 0 the condition

|y − m| ≤ R , (4.8)

then this condition holds for all u ∈ [0, umax).

Before coming to the proof we briefly discuss the statement of this lemma. If α is a real
solution of the Riccati equation, the function U as given by (4.3) vanishes identically,
and thus β ≡ 0 ≡ R. In this case, the above lemma reduces to the trivial statement
that y(0) = α implies that y = α on [0, umax). It is more interesting to consider the case
that α = Re y with y a complex solution of the Riccati equation. Then

U = Re
(
V − α2 − α′) = Re

(
V − z2 − z′

)− (Im y)2 = −(Im y)2 < 0 .

Moreover, from (3.6) we can immediately compute σ,

σ(u) = exp
(

2
∫ u

0
Re y

)
=

ρ2(u)
ρ2(0)

.

Substituting these relations into (3.8) yields

σ2U = −ρ4(u)
ρ4(0)

(Im y)2 = − w2

ρ4(0)
.

Hence the function log |ρ2U | is a constant, and its total variation in (4.4) vanishes. This
means that T is a constant, and thus β and R are constant multiples of Im y. Our Lemma
states that the circles of radius R(u) around the point m(u) = α(u) + iβ(u) are invariant
under the flow of the Riccati equation.

If no solution of the Riccati equation is known (and this will of course be the usual
situation), one can take for α the real part of an approximate solution of the complex
Riccati equation. In this case the function log |ρ2U | will not be constant, but we can
hope that its total variation is small. If this is the case, our lemma gives an “improved
approximative solution” m together with a rigorous error estimate R. A good candidate for
an approximate solution would be the usual wave function obtained by “gluing together”
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suitable WKB wave functions and Airy functions. We remark that the above lemma
might even be useful for getting rigorous error estimates for numerical solutions of the
Schrödinger or Riccati equations. In this case, one would have to estimate the total
variation of log |ρ2U | from above, and this might be doable numerically if one has some
control of the accuracy of the numerical calculation.

Proof of Lemma 4.1. For ε > 0 we set

Tε(u) = T0 exp
(

1
2

∫ u

0

∣∣∣∣ |σ2U |′
|σ2U |

∣∣∣∣+ εe−u

)
(4.9)

and let Rε and mε be the functions obtained from (4.5)–(4.7) if one replaces T by Tε.
Since Tε(0) = T (0) and limε↘0 Tε = T , it suffices to show that for all ε > 0 the following
statement holds,

|y − mε|(0) ≤ Rε(0) =⇒ |y − mε|(u) ≤ Rε(u) for all u ∈ [0, umax).

In order to prove this statement, we will show that the assumption

|y − mε|(u) = Rε(u) (4.10)

implies that
|y − mε|′(u) < R′

ε(u) . (4.11)

In what follows we will often omit the subscript ε.
Assume that (4.10) holds and that U ≤ 0. Then we can represent y as

y = m + Reiϕ (4.12)

with ϕ ∈ [0, 2π). Furthermore, it follows immediately from (4.5), (4.6), and (4.3) that

R2 = U + β2 = V − α2 + β2 − α′ . (4.13)

Using the above relations together with (3.4), we obtain

1
2

d

du
|y − m|2 = (Re y − α) (Re y − α)′ + (Im y − β) (Im y − β)′

(3.4)
= (Re y − α) (V − (Re y)2 + (Im y)2 − α′) + (Im y − β) (−2Re y Im y − β′)
= Re y

[
V − |y|2 − α′ + 2α Re y + 2βIm y

]
−β′ Im y − α|y|2 − αV + αα′ + ββ′

(4.10)
= Re y

[
V − R2 + |m|2 − α′]− β′ Im y − α|y|2 − αV + αα′ + ββ′

(4.12)
= R cos ϕ

[
V − R2 + |m|2 − α′ − 2α2

]− R sin ϕ
[
β′ + 2αβ

]− 2αR2

(4.13)
= −2αR2 − R (β′ + 2αβ) sin ϕ ≤ −2αR2 + R |β′ + 2αβ| .

Using that d
du |y − m|2 = 2R|y − m|′, we obtain the simple inequality

|y − m|′ ≤ −2αR + |β′ + 2αβ| .
Hence in order to prove (4.11), it suffices to show that

R′ > −2αR + |β′ + 2αβ| .
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Using (4.2), we write the last inequality in the equivalent form

(σR)′ > |(σβ)′| . (4.14)

In order to prove this inequality, we first use (4.5) and (4.6) to write the functions σβ and
σR as

σβ =
1
2

(√
|σ2U | T +

√
|σ2U | T−1

)

σR =
1
2

(√
|σ2U | T −

√
|σ2U | T−1

)
.

⎫⎪⎪⎬
⎪⎪⎭ (4.15)

By definition of Tε (4.9),
T ′

T
=

1
2

∣∣∣∣ |σ2U |′
|σ2U |

∣∣∣∣+ εe−u .

It follows that{
(
√|σ2U | T−1)′ = −εe−u (

√|σ2U | T−1) if |σ2U |′ ≥ 0

(
√

|σ2U | T )′ = εe−u (
√

|σ2U | T ) if |σ2U |′ < 0 .

Hence when we differentiate through (4.15) and set ε = 0, either the first or the second
summand drop out in each equation , and we obtain (σR)′ = |σβ|′. If ε > 0, an inspection
of the signs of the additional terms gives (4.14).

The question arises how the function α in the above lemma is to be chosen. In order
to explain our method, we first consider the WKB wave functions

φ(u) = |V |− 1
4 exp

(
±i

∫ u√
|V |
)

,

which should be good approximations to fundamental solutions in the “semiclassical”
regime V � 0. The corresponding function y is

y(u) =
φ′

φ
= ±i

√
|V | − V ′

4V
.

Lemma 4.1 should give a good estimate only if m is close to the exact solution y. This
leads us to choose for the function α = Re m the corresponding expression in the WKB
approximation,

α = − V ′

4V
in the “semiclassical regime”.

This gives rise to the following estimate.

Theorem 4.2 Assume that the potential V is negative and monotone increasing on [0, umax),
and that the following condition holds,

K :=
sup |V ′′| + TV V ′′

V 2
max

+ sup
V ′2

|V |3 ≤ 1 , (4.16)

where Vmax := supV ≤ 0 (and the supremum as well as the total variation are taken on
the interval [0, umax)). Then the solution y of the boundary value problem (4.1) with initial
condition

y0 = i
√

|V (0)| − V ′(0)
4V (0)

(4.17)

10



satisfies on [0, umax) the inequalities∣∣∣∣y − i
√

|V | + V ′

4V

∣∣∣∣ ≤ 20
√

|V | K (4.18)

Im y ≥
√|V |

10
. (4.19)

Proof. We introduce on [0, umax] the function α by

α(u) = − V ′

4V
.

Then from (4.3),

α′ = −V ′′

4V
+

V ′2

4 V 2
(4.20)

U = V

(
1 +

V ′′

4V 2
+

5 V ′2

16 |V |3
)

. (4.21)

Using the inequality (4.16) we get

2V ≤ U ≤ V

2
. (4.22)

In particular, U is negative.
The inequalities (4.21) and (4.16) allow us to estimate

√|U | −√|V |,
∣∣∣√|U | −

√
|V |
∣∣∣ =

|U − V |√|U | +√|V | ≤
√

|V |
∣∣∣∣U − V

V

∣∣∣∣ ≤
√|V |

2
K . (4.23)

Dividing by
√|V | and

√|U |, we obtain furthermore

1
1 + K

≤
√

|V |
|U | ≤ 1 + K . (4.24)

Choosing T0 = 1 + K, we have the following estimates at u = 0,

|y − m| = |
√

|V | − β| =

∣∣∣∣∣
√

|V | −
√|U |

2

(
(1 + K) +

1
1 + K

)∣∣∣∣∣
=

√|U |
2

∣∣∣∣∣(1 + K) +
1

1 + K
− 2

√
|V |
|U |

∣∣∣∣∣ .
Applying (4.24) we obtain

|y − m| ≤
√|U |

2

(
(1 + K) − 1

1 + K

)
= R .

We conclude that the inequality (4.8) holds at u = 0.

11



Hence we can apply Lemma 4.1 and obtain that (4.8) holds for all u ∈ [0, umax).
Combining this with the inequalities (4.22) and (4.24) we obtain∣∣∣∣y − i

√
|V | + V ′

4V

∣∣∣∣ ≤ |y − m| + |β −
√

|V || ≤ R + |β −
√

|V ||

= R +

√|U |
2

(
T +

1
T

− 2

√
|V |
|U |

)
=
√

|U |
(

T −
√

|V |
|U |

)

≤ 2
√

|V |
(

T − 1
1 + K

)
≤ 2

√
|V | (T − 1 + K) (4.25)

Im y ≥ β − R =

√|U |
T

≥
√|V |√

2T
. (4.26)

It remains to estimate the function T , (4.4). We first compute σ and σ2U ,

σ =

√
V0

V (u)
(4.27)

σ2U

|V0| = −1 − V ′′

4V 2
− 5 V ′2

16 |V |3 , (4.28)

where we set V0 = V (0). Applying (4.16) we immediately obtain the inequalities

1
2

≤
∣∣∣∣σ2 U

V0

∣∣∣∣ ≤ 2 .

The lower bound allows us to leave out the logarithm in the total variation in the definition
of T ; namely,

TV[0,u) log |σ2U | =
∫ u

0

∣∣∣∣(σ2U)′

σ2U

∣∣∣∣ ≤ 2
∫ u

0

∣∣∣∣ (σ2U)′

|V0|
∣∣∣∣ = 2 TV[0,u)

σ2U

|V0| .

We substitute (4.28) into this equation and estimate the total variation of the individual
terms using (4.16) as well as the monotonicity of V ,

TV[0,u)
V ′′

V 2
≤

∫ u

0

|V ′′′|
V 2

+ 2
∫ u

0

|V ′′| V ′

(−V )3
≤ TVV ′′ + sup |V ′′|

V 2
max

TV[0,u)
V ′2

(|V |)3 ≤
∫ u

0

2 |V ′′| V ′

(|V |)3 +
∫ u

0

3 |V ′|3
V 4

≤ sup |V ′′|
V 2

max

+
∫ u

0

3 |V ′|3
V 4

.

In the last term we can integrate by parts,∫ u

0

3 |V ′|3
V 4

=
∫ u

0
V ′2 ((−V )−3

)′ =
V ′2

|V |3
∣∣∣∣
u

0

−
∫ u

0

2V ′′ V ′

|V |3 ≤ sup
V ′2

|V |3 +
sup |V ′′|

V 2
max

.

Collecting all the terms and using (4.16) we conclude that

TV[0,u) log |σ2U | ≤ 2K .

We substitute this bound into (4.4) and use that T0 = 1 + K to obtain the bound

T − 1 = (1 + K) eK − 1 ≤ |eK − 1| + KeK ≤ 2e K .

12



Using this bound in (4.25) and (4.26) concludes the proof.

The condition (4.16) will clearly be violated when |V | becomes very small. This is not
astonishing because the WKB approximation fails near the zeros of the potential. In this
“quantum regime”, there is no good candidate for α, and therefore we simply take

α = const in the “quantum regime”.

We state the corresponding estimate in such a way that it can easily be “pasted together”
with the result of Lemma 4.2.

Theorem 4.3 Assume that the potential V is negative and monotone (increasing or de-
creasing) on [0, umax), and that for some constant κ > 0 the following condition holds,√

|V0| umax ≤ κ (4.29)

(with V0 = V (0)). Then any solution y of the boundary value problem (4.1) which is
bounded by

|y0| ≤ c1

√
|V0| , Im y0 ≥

√|V0|
c1

for a suitable constant c1 ≥ 1 satisfies on [0, umax) the inequalities

|y| ≤ c2

√
‖V ‖∞ , Im y ≥ 1

c2

|V0|√‖V ‖∞
where ‖V ‖∞ := sup[0,umax) |V | and c2 is a constant which depends only on κ and c1.

Proof. Let α be the constant function α =
√|V0|. Then the function U = V − α2 is

clearly negative. A simple calculation shows that by choosing T0 = 2 c1(1 + c1)2, we can
arrange that |y0 − m(0)| ≤ R(0). Lemma 4.1 yields that |y − m| ≤ R for all u ∈ [0, umax).

Since α is a constant, σ(u) = e2αu and thus

|σ2U | = e4αu
(
α2 − V

)
.

As a consequence,
|σ2U |′
|σ2U | ≤ 4α − V ′

α2 − V
.

If we integrate and use (4.29), we obtain the following bound for T ,

T ≤ T0 e2αu

(√
α2 − V0√
α2 − V

+
√

α2 − V√
α2 − V0

)

≤ T0 e2αu 4
√‖V ‖∞

α
≤ 4T0 e2κ

√
‖V ‖∞
|V0| =: Tmax .

Finally we bound y by

|y| ≤ |y − m| + |m| ≤ R + α + β

=
√

|U | T + α ≤ (2T + 1) α

Im y ≥ R − β =

√|U |
T

≥ α

T
.
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These are the desired inequalities if we set c2 = 2Tmax + 1 = 8c1 (1 + c1)2 e2κ + 1.

As is obvious from (2.6, 2.7), the potential V has a singularity at u = 0. We will now
explain how Lemma 4.1 can be used for estimates near such a singular point. We will
restrict attention to the case k = 0, but our method applies similarly to general k. In
order to find a good candidate for the function α, we consider on the interval [0, umax) the
Schrödinger equation with a potential which at u = umax has the same singular behavior
as (2.6),

z′′(u) = − 1
4 (umax − u)2

z . (4.30)

Setting v = umax−u, this differential equation has the two fundamental solutions φ1 =
√

v
and φ2 =

√
v log v, and therefore the function

z =
√

v (1 − i log v)

is a complex solution. The corresponding solution of the complex Riccati equation is given
by

y =
z′

z
= − 1

2v
+

i

v (1 − i log v)
=
(
− 1

2v
− log v

v (1 + log2 v)

)
+

i

v (1 + log2 v)
. (4.31)

Choosing α equal to the real part of this function gives rise to the following estimate.

Lemma 4.4 Suppose that the potential V is on [0, umax) of the form

V = −1
4

1
(umax − u)2

+ B(u)

with a function B which is monotone (decreasing or increasing) and satisfies the inequality

u2
max (1 + log2 umax)2 ‖B‖∞ ≤ 1

8
(4.32)

(with ‖B‖∞ := sup[0,umax) |B|). Then any solution y of the boundary value problem (4.1)
with initial conditions bounded by

|y0| ≤ C
√

|V0| , Im y0 ≥
√|V0|

C

for any constant C ≥ 1 satisfies on [0, umax) the inequalities

|y| ≤ 64 C3

umax − u
(4.33)

Im y ≤ 64 C3 (1 + log2 umax)
1

(umax − u) log2(umax − u)
(4.34)

Im y ≥ 1
64 C3 (1 + log2 umax)

1
(umax − u) log2(umax − u)

. (4.35)

Proof. We set v = umax − u and choose for α the real function

α = − 1
2v

− log v

v (1 + log2 v)
.
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Using that α = Re y with y according to (4.31) and that y is a solution of the complex
Riccati equation corresponding to the Schrödinger equation (4.30), we obtain

U = V − α2 − α′ = Re
(
V − y2 − y′

)− (Im y)2 = B − 1
v2 (1 + log2 v)2

. (4.36)

Our assumption (4.32) yields that U is negative.
At u = 0, the potentials V and U can easily be bounded by above and below,

−1 ≤ 4v2 V = −1 + 4v2B ≤ −1
2

−1 ≤ 4v2 (1 + log2 v)2 U = −1 + v2 (1 + log2 v)2 B ≤ −1
2

and in particular
1
2

≤ (1 + log2 v)
√|U |

|√V | ≤ 2 .

A simple calculation shows that by choosing T0 = 2C(1 + C)2 (1 + log2 umax), we can
arrange that |y0 − m(0)| ≤ R(0). Lemma 4.1 yields that |y − m| ≤ R for all u ∈ [0, umax).

Writing the function α in the form

α =
d

du
log
(√

v (1 + log2 v)
)

we can immediately compute σ2U ,

σ2 = v2 (1 + log2 v)2

|σ2 U | = 1 − v2 (1 + log2 v)2 B .

Using the bound (4.32) we obtain

TV[0,u) log |σ2 U | ≤ 2 TV[0,u)|σ2 U | ≤ 4 u2
max (1 + log2 umax)2 ‖B‖∞ ≤ 2 , (4.37)

and thus T is bounded by T ≤ T0e
2 ≤ 64C3 (1 + log2 umax). Finally we combine the above

estimates with the inequalities

|y| ≤ R + |α| + β , R − β ≤ Im y ≤ R + β .

The estimate (4.34) is very useful because it shows that the pole of Im y at u = 0 is
integrable.

5 Convexity Estimates

The estimates of the previous section gave us good control of the solutions of the boundary
value problem (4.1) provided that the potential is negative. In this section we now proceed
with estimates in the case that V is positive, V ≥ 0. Under this assumption it is a simple
observation that ρ2 is convex, because

(ρ2)′′ = (zz)′′ = 2 (V + |y|2) ρ2 > 0 . (5.1)

This fact will be essential for the estimates in this section.
We begin with a lemma which bounds ρ from below.
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Lemma 5.1 Suppose that V is positive and monotone increasing on [0, umax). Then every
solution of the boundary value problem (4.1) satisfies on [0, umax) the inequality

ρ ≥ ρ0
Im y0

|y0|
(with ρ0 = |z(0)| and z any solution of the corresponding complex Schrödinger equa-
tion (3.2)).

Proof. Differentiating through the equation ρ′ = ρ Re(y) and using the complex Riccati
equation (3.4), we get

ρ′′ = ρ (Re y)2 + ρ Re(V − y2) =
(
V + (Im y)2

)
ρ ,

and substituting in (3.8) we obtain the following differential equation for ρ,

ρ′′ = V ρ +
w2

ρ3
. (5.2)

We let ρ(u) be the solution of the boundary value problem

ρ′′ =
w2

ρ3
with ρ(0) = ρ0 , ρ′(0) = ρ′(0) ≡ ρ0 Re y0 . (5.3)

Then the function δ = ρ − ρ satisfies the conditions δ(0) = 0 = δ′(0) and δ′′ ≥ 0.
Hence δ ≥ 0 on [0, umax), and we conclude that ρ is a lower barrier for ρ,

ρ ≥ ρ on [0, umax).

The function ρ is a solution of (5.2) in the case V ≡ 0. Therefore, ρ can be written
explicitly in the form ρ = |z| with z a solution of the complex Schrödinger equation without
potential with Wronskian is equal to w, i.e.

z′′ = 0 and Im(z z′) = w = ρ2
0 Im y0 .

A short calculation shows that the solution of the boundary value problem (5.3) has the
simple form

ρ(u) = ρ0 |1 + y0 u| .
Computing the minimum of this function gives the result.

This lemma has the following immediate consequence. Due to the convexity of ρ,

sup
[0,u)

ρ ≤ ρ0 + ρ(u) = ρ(u)
(

1 +
ρ0

ρ(u)

)
≤ ρ(u)

(
1 +

|y0|
Im y0

)

and hence
sup
[0,u)

ρ ≤ ρ(u)
2|y0|
Im y0

. (5.4)

In regions where the potential V is large, we expect that ρ should increase exponen-
tially. The next lemma quantifies this exponential increase of ρ by showing that in the
“semiclassical regime” V � 0, the integral over ρ2 is much smaller than the supremum
of ρ2.
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Lemma 5.2 Suppose that V is positive and monotone increasing on [0, umax). Then every
solution of the boundary value problem (4.1) satisfies on [0, umax) the inequality∫ u

0
ρ2 ≤ L sup

[0,u)
ρ2

with L given by

L = sup
(

3√
V

+
V ′

V 2

)
+ TV

V ′

V 2
. (5.5)

Proof. We substitute the differential equation for ρ2, (5.1), into the integral,∫ u

0
ρ2 =

1
2

∫ u

0

1
V + |y|2 (ρ2)′′ .

Integrating by parts gives∫ u

0
ρ2 =

(ρ2)′

2 (V + |y|2)
∣∣∣∣
u

0

− 1
2

∫ u

0

(
1

V + |y|2
)′

(ρ2)′ .

Using the estimates∣∣∣∣ (ρ2)′

V + |y|2
∣∣∣∣ ≤ 2ρ2 |y|

V + |y|2 ≤ 2ρ2 |y|
2
√

V |y| =
ρ2

√
V∣∣∣∣

(
1

V + |y|2
)′∣∣∣∣ ≤ V ′ + 2|y| |V − y2|

(V + |y|2)2 ≤ V ′

V 2
+

2|y|
V + |y|2 ≤ V ′

V 2
+

1√
V

we obtain ∫ u

0
ρ2 ≤ sup

[0,u)

ρ2

√
V

+
1
2

∫ u

0

(
V ′

V 2
+

1√
V

) ∣∣(ρ2)′
∣∣ .

When integrating by parts once again we must be careful because the function (ρ2)′ may
change signs. However, since ρ2 is convex, it changes signs at most once, and therefore we
get positive boundary terms at most twice,∫ u

0

(
V ′

V 2
+

1√
V

) ∣∣∣∣ d

du
ρ2

∣∣∣∣ ≤ 2 sup
[0,u)

(
ρ2 V ′

V 2
+

ρ2

√
V

)
+
∫ u

0

∣∣∣∣
(

V ′

V 2
+

1√
V

)′∣∣∣∣ ρ2 .

Finally, we can estimate the last integral by∫ u

0

∣∣∣∣
(

V ′

V 2
+

1√
V

)′∣∣∣∣ ρ2 ≤ sup
[0,u)

ρ2 TV[0,u)

(
V ′

V 2
+

1√
V

)

= sup
[0,u)

ρ2

(
TV[0,u)

V ′

V 2
+ sup

[0,u)

1√
V

)
,

where in the last step we used the monotonicity of V .
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Figure 1: The potential V in the cases k �= 0 (top) and k = 0 (bottom).
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6 Elementary Properties of the Potential

In this section we shall analyze the potential V for large λ and Ω; more precisely in the
range

Ω > Ω0 and λ > 2ΛΩ (6.1)

for parameters Ω0 and Λ, which we can choose as large as we want. Then the potential
looks qualitatively as in Figure 1. In the case k �= 0, V has a unique minimum u0 given
by

sin2 u0 =
1
Ω

√
k2 − 1

4
, (6.2)

where the potential is negative,

V (u0) = Ω

(
2

√
k2 − 1

4
+ 2k

)
− λ − 1

4
< −ΛΩ

(where in the last step we possibly increased Λ). V is strictly decreasing on the interval
[0, u0] and tends to infinity as u ↘ 0. Thus there is a unique u− ∈ [0, u0] with V (u−) = 0.
On the interval [u0,

π
2 ], V is strictly increasing. Thus there is at most one u+ ∈ (u0,

π
2 ] with

V (u+) = 0. If no such u+ exists, we set u+ = π
2 . Setting ∆u = κ/

√
ΛΩ and choosing Λ

sufficiently large (for any given parameter κ), it is easily verified that V (u0 ±∆u) < 0. As
a consequence

|V (u0)| |u± − u0|2 > κ2 .

Using monotonicity, we can thus uniquely introduce points uS
+ ∈ (u0, u+) and uS− ∈

(u−, u0) by the condition that

|V (uS
±)| |u± − uS

±|2 = κ2 . (6.3)

Finally, we introduce the point uI ∈ (u+, π
2 ] by the condition V (uI) = Ω

3
2 . If no such

point exists, we set uI = π
2 .

In the case k = 0, V is monotone increasing on the whole interval (0, π
2 ]. We set

uJ =
1

8
√

λ log2 λ
, u0 =

κ√
λ

and u1 =
1√
Ω

.

The points u+, uS
+ ∈ (u1, u+) and uI are introduced as in the case k �= 0.

We consider on (0, π
2 ] the solution y of the complex Riccati equation (3.4) with initial

condition

y(u0) = i
√

|V (u0)| − V ′(u0)
4V (u0)

. (6.4)

The next lemmas make the following statements precise: The intervals S (as introduced
in Figure 1) are “semiclassical” in the sense that Theorem 4.2 applies. On C we can
use the convexity estimate of Lemma 5.2. The interval P near the pole can be treated
by Theorem 4.4. Finally, the “intermediate regions” I± and J can be controlled with
Theorem 4.3 and Lemma 5.1.

Lemma 6.1 For every δ > 0 and k ∈ Z there are parameters κ,Λ,Ω0 > 0 such that for
all Ω, λ in the range (6.1), the quantity K as defined by (4.16) is on the interval S bounded
by

K ≤ δ .
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Proof. The third derivative of V can be written in the form

V ′′′ =
cos u

sin5 u
(polynomial in sin2 u of degree 3).

Hence V ′′′ has on any interval [u, v] ⊂ [0, π
2 ] at most 4 zeros. Thus after splitting up [u, v]

into at most four subintervals, V ′′′ has on each subinterval a fixed sign. On any such
subinterval [u, v] we can apply the estimate∫ v

u
|V ′′′| du ≤ |V ′′(u)| + |V ′′(v)| .

This makes it possible to control the total variation of V ′′ in (4.16) by 8 sup |V ′′|. We
conclude that it suffices to show that on the interval I the following two inequalities hold,

V ′2

|V |3 ≤ δ (6.5)

|V ′′|
V 2

≤ δ . (6.6)

We treat three cases separately.

First case: k = 0 and u+ ≥ 3π
8 .

On the interval [5π
16 , π

2 ], the potential V is concave; more precisely,

−Ω2 ≤ V ′′ ≤ −Ω2

4
.

Integration yields for all τ ∈ (5π
16 , u+] the following bounds for V ′ and V ,

Ω2

4

(π

2
− τ
)

≤ V ′(τ) ≤ Ω2
(π

2
− τ
)

V (u+) − V (τ) ≥ Ω2

8
(u+ − τ) (π − u+ − τ) ≥ Ω2

8
(u+ − τ)2 .

V (u+) is either zero or else it is negative and bounded by V (u+) = V (π
2 ) ≤ Ω2−λ. Hence

|V (τ)| ≥ max(λ − Ω2, 0) +
Ω2

8
(u+ − τ)2 . (6.7)

Using the last inequality in the defining equation for uS
+, (6.3), we obtain that (possibly

after increasing Ω0), uS
+ ∈ (5π

16 , u+] and

u+ − uS
+ ≤ 2 κ

2
3 Ω− 2

3 .

Again using (6.3), we conclude that

−V (uS
+) ≥ κ

2
3

4
Ω

4
3 ,

and since V is monotone increasing, this also gives a lower bound for |V | on the whole
interval I.
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Next we bound V ′ and V ′′ on I. A short calculation shows that

|V ′| + |V ′′| ≤ 4Ω2 on [u1,
π
2 ] . (6.8)

Conversely, on the interval [u0, u1) we can bound V ′ and V ′′ in terms of suitable powers
of λ,

|V ′|2 ≤ λ3

κ6
and |V ′′| ≤ 2λ2

κ4
on [u0, u1] . (6.9)

Combining (6.8) and (6.9) with (6.7) gives the result.

Second case: k = 0 and u+ < 3π
8 .

On the interval [u0, u1], a simple estimate shows that

|V | ≥ λ

2
.

Combing this with (6.9) and choosing κ sufficiently large, we obtain the inequalities (6.5,
6.6) on [u0, u1]. Conversely, on [u1,

3π
8 ], V ′′ can be bounded in terms of higher powers of

the first derivatives; more precisely,

|V ′′| ≤ 10 |V ′| 43 .

This inequality allows us to deduce (6.6) from (6.5). Hence it remains to prove (6.5) on
the interval [u1, u

S
+].

On the interval [u1, u
S
+], the potential V is either convex or at least else the second

derivative of V is small compared to |V ′| 43 . More precisely, by choosing Ω0 sufficiently
large we can arrange that

V ′′ ≥ −κ− 2
3 V ′ 4

3 . (6.10)

We shall derive an upper bound for ∆u := u+ − uS
+; for ease in notation the subscript ‘+’

will be omitted. We rewrite (6.10) as

d

du

(
V ′ 1

3

)
= −1

3
V ′′

V ′ 4
3

≤ κ− 2
3

3
.

We integrate from uS to τ ∈ [uS , u] to obtain

V ′(τ) ≥
(

V ′(uS)−
1
3 +

κ− 2
3

3
(τ − uS)

)−3

.

Integrating τ over the interval [uS , u], we obtain for ∆V := V (u) − V (uS) the estimate

∆V ≥ 3κ
2
3

2
V ′(uS)

2
3

(
1 − 1

(1 + α)2

)
with α :=

κ− 2
3

3
V ′(uS)

1
3 ∆u .

The inequality

1 − 1
(1 + α)2

≥ α

1 + α
,

gives

∆V ≥ V ′(uS)
2

∆u

1 + α
.
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By definition of uS, (6.3), we know that ∆V · (∆u)2 = κ2. Hence multiplying the last
inequality by (∆u)2 we obtain

κ2 ≥ V ′(uS)
2

(∆u)3

1 + α
.

Putting in the definition of α gives the inequality

(∆u)3 − 2
3

(
κ

2
3 V ′(uS)−

1
3

)2
∆u − 2

(
κ

2
3 V ′(uS)−

1
3

)3 ≤ 0 .

Since the polynomial x3 − 2x
3 − 2 is positive for x ≥ 2, we conclude that

∆u ≤ 2 κ
2
3 V ′(uS)−

1
3 .

Using again the relation ∆V (∆u)2 = κ2, we get an upper bound for ∆V ,

∆V ≥ κ
2
3

4
V ′(uS)

2
3 . (6.11)

This proves the inequality (6.5) at u = uS .
Next we will want to show that (6.5) holds on the whole interval (u1, u

S ]. To this end,
we introduce on this interval the function f by

f = V ′2 +
43

κ2
V 3 .

We saw above that f(uS) < 0; our goal is to show that f ≤ 0 on (u1, u
S ]. Let (v, uS ]

with u1 ≤ v < uS be the maximal interval on which f is negative. We apply (6.10) to
obtain

f ′(v) = V ′
(

2V ′′ +
3 43

κ2
V 2

)

≥ V ′
(
−2κ− 2

3 V ′ 4
3 +

3 43

κ2
V 2

)
≥ 160

κ2
V ′2 > 0 ,

where in the last line we used that f(v) ≤ 0. The last inequality contradicts the maximal-
ity of the interval (v, uS ] unless v = u1. This concludes the proof in the second case.

Third case: k �= 0.
On the interval (uS−, u0], the proof of the second case goes through without changes if
we consider the integral backwards and set u1 = u0 − 1/(4

√
Ω). On the remaining

interval [u0, u
S
+], we can use the proof of the first case and the second case after set-

ting u1 = u0 + 1/(4
√

Ω).

Lemma 6.2 For sufficiently large Λ and Ω0, the parameter L as defined by (5.5) is for
all Ω, λ in the range (6.1) bounded by

L ≤ 3√
Ω0

.
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Proof. We already saw in (6.7) that V ′ and V ′′ satisfy on C the bound |V ′|+ |V ′′| ≤ 4Ω2.
On the other hand, it is clear from the definition of uI that |V | ≥ Ω

3
2 on C. This imme-

diately gives the lemma.

Lemma 6.3 For sufficiently large Λ and Ω0, the potential

B(u) := V (u) +
1

4u2

satisfies on the interval P the inequality

(uI
−)2 (1 + log2 uI

−)2 ‖B‖∞ ≤ 1
8

.

Proof. A short calculation shows that B is bounded from above by

|B(u)| ≤ Ω2 u2 + 2λ .

¿From the definition of uI− and the fact that λ is large, we can clearly assume that

1
λ

< uI
− <

1√
λ

.

These inequalities give rise to the following estimate,

(uI
−)2 (1 + log2 uI

−)2 ‖B‖∞ ≤ 1
64 λ log4 λ

(1 + log2 λ)2 ‖B‖∞

≤ 1
32 λ

‖B‖∞ ≤ 1
32 λ

(
Ω2

λ
+ 2λ

)
≤ 1

8
,

where in the last step we used (6.1).

Lemma 6.4 For every δ > 0 and k ∈ Z there are parameters κ,Λ,Ω0 > 0 such that for
all Ω, λ in the range (6.1),

|I±| ≤ δ .

Proof. We choose Ω0 so large that u0 < δ
4 . Then clearly |I−| ≤ δ. Furthermore, it

is readily verified that the potential is increasing on the interval K := [ δ
4 , π

2 − δ
4 ] at the

following rate,

V (v) − V (u) ≥ c (v − u)2 Ω2 for all u, v ∈ K, v > u ,

where c is independent of λ and Ω. This implies that

∣∣[uS
+, u+] ∩ K

∣∣ ≤ c−
1
4

√
κ

Ω
,

because otherwise (6.3) would be violated. Furthermore, the condition V (uI) ≤ Ω
3
2 implies

that ∣∣[u+, uI ] ∩ K
∣∣ ≤ √

c Ω− 1
4 .

We conclude that by increasing Ω0, we can arrange that |I+∩K| ≤ δ
2 and thus |I+| ≤ δ.
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7 Spectral Estimates for the Selfadjoint Problem

In this section we shall prove Lemma 2.1. We begin by reducing the problem to an estimate
for yλ.

Lemma 7.1 Assume that for any given k ∈ Z and ε > 0, there are constants Λ,Ω0 > 0
such that ∫ π

2

0
Im yλ ≤ ε (7.1)

for all Ω and λ in the range (6.1). Then Lemma 2.1 holds.

Proof. According to the asymptotics (2.1) it suffices to consider λ in the range λ > ΛΩ
for sufficiently large Λ. Let us consider the quotient Re(y)/Im(y) in (3.10). According to
Theorem 4.2 and Theorem 4.3 there is c > 0 such that for all Ω > Ω0 and λ > ΛΩ,

Re y

Im y
> −c on [u0, u+]. (7.2)

On the interval [u+, π
2 ], ρ2 is convex, and using the identity

Re y

Im y
=

ρ2

w
Re y =

1
2w

(ρ2)′

one sees that Re(y)/Im(y) is monotone increasing. We conclude that the inequality (7.2)
also holds at u = π

2 , and thus

−π

2
< − arctan c < arctan

(
Re y(π

2 )
Im y(π

2 )

)
<

π

2
.

Using the last bounds in (3.10) one sees that for two neighboring eigenvalues, the
phases must differ at least by δ := π

2 − arctan c,

ϕn+1 − ϕn|
π
2
0 ≥ δ . (7.3)

From (3.11) one sees that this inequality is also true for the states of odd parity (with δ =
π). Applying (3.7) and the mean value theorem, we conclude that there is λ ∈ [λ±

n , λ±
n+1]

such that

(λ±
n+1 − λ±

n )
∫ π

2

0
Im yλ ≥ δ .

Hence the upper bound (7.1) gives the desired gap estimate.

We establish (7.1) by deriving separate estimates in the regions S, I±, C and near the
pole.

Lemma 7.2 For any given k ∈ Z and ε > 0, there are constants Λ,Ω0 > 0 such that on
the interval S,

|yλ| ≤ ε .
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Proof. Differentiating the initial condition (6.4) gives

yλ(u0) =
i

2
√|V (u0)|

+
V ′(u0)

4V 2(u0)
.

This can be estimated using Lemma 6.1,

|yλ(u0)| ≤ 1
2
√|V (u0)|

(
1 +

|V ′(u0)|
|V (u0)| 32

)
≤ 1√|V (u0)|

. (7.4)

For given u ∈ S, we compute yλ(u) via (3.13). This gives rise to the estimate

|yλ(u)| ≤ 1
2 |y| + Im y(u)

∫ u

u0

|V − y2|
2 |y2|

1
Im y

.

According to Lemma 6.1 we can apply the estimates of Theorem 4.2,

|y| ≤ 22
√

|V |
|y − i

√
|V || ≤

√
|V | (20K +

√
K) ≤ 21

√
K
√

|V |
|V − y2| = |(y − i

√
|V |)((y + i

√
|V |)|

≤ 21
√

K
√

|V | 23
√

|V | ≤ 500 |V |
√

K ,

and thus, using the monotonicity of V on the intervals [u0, u] or [u, u0],

|yλ(u)| ≤ 10√|V (u)| +
10√|V (u)|

∫ u

u0

|V − y2|
|y|2 20

√
V

≤ 10√|V (u)| + 200
∫ u

u0

|V − y2|
|y|2 ≤ 10√|V (u)| + 5π 106

√
K ,

According to Lemma 6.1, this can be made arbitrarily small.

Lemma 7.3 For any given k ∈ Z and ε > 0, there are constants Λ,Ω0 > 0 such that on
the intervals I±,

|yλ| ≤ ε .

Proof. We only consider the interval I+; the proof for I− is analogous. For any v ∈
(uS

+, u+], we compute yλ via (3.12) with u = uS
+,

yλ(v) = −z2(uS
+) yλ(uS

+)
z2(v)

− 1
z2(v)

∫ v

uS
+

z2 .

According to Lemma 6.4 we can apply Theorem 4.3. This gives the estimate

|yλ(v)| ≤ |yλ(uS
+)| Im y(v)

Im y(uS
+)

+ Im y(v)
∫ v

uS
+

1
Im y

≤ c2
2 |yλ(uS

+)| + c2
2 (v − uS

+) .

This can be made arbitrarily small according to Lemma 7.2 and Lemma 6.4.
If v ∈ (u+, uI ], the change of yλ on the interval (u+, v) can be estimated similarly using

Lemma 5.1.
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Lemma 7.4 For any given k ∈ Z and ε > 0, there are constants Λ,Ω0 > 0 such that on
the interval C,

|yλ| ≤ ε .

Proof. We again compute yλ via (3.12). This gives for any v ∈ C the estimate

|yλ(v)| ≤ ρ2(uI)
ρ2(v)

|yλ(uI)| + 1
ρ2(v)

∫ v

uI

ρ2 .

The first summand can be made arbitrarily small according to Lemma 7.3 and Lemma 5.1,
whereas the second summand can be handled with Lemma 5.2 and Lemma 6.2.

Lemma 7.5 For any given k ∈ Z and ε > 0, there are constants Λ,Ω0 > 0 such that for
all λ and Ω in the range (6.1), ∫

P∪J
|yλ| ≤ ε .

Proof. A short calculation shows that on the interval J ,

λ

8κ2
≤ |V (u0)| ≤ λ

κ2
, 8 λ log4 λ ≤ |V (uJ)| ≤ 64 λ log4 λ , |J | ≤ κ√

λ
.

In particular, |V (u0)| |J |2 ≤ κ2, and so we can apply Lemma 6.2 to obtain on J the
estimates

|y| ≤ 8c2

√
λ log2 λ , Im y ≥ 1

8c2κ2

√
λ

log2 λ
. (7.5)

These estimates allow us to bound yλ on J again using (3.12). Namely, for all v ∈ J ,

|yλ(v)| ≤ |yλ(u0)| Im y(v)
Im y(u0)

+ Im y(v)
∫ u0

v

1
Im y

.

Estimating the factor |yλ(u0)| by (7.4) we obtain

|yλ(v)| ≤ c3
log4 λ√

λ
on J . (7.6)

with c3 = 256c2κ
3. By increasing Λ this can be made arbitrarily small.

On the interval P , we apply Lemma 4.4 with C = 64c2κ
2 log4 λ. This gives the estimate

1
c4 logp λ

1
v log2 v

≤ Im y(v) ≤ c4 logp λ

v log2 v
(7.7)

with p = 14 and a constant c4 which is independent of Λ and Ω. We again estimate yλ

using (3.12),

|yλ(v)| ≤ |yλ(uJ)| Im y(v)
Im y(uJ )

+ Im y(v)
∫ uJ

v

1
Im y

.

Estimating y(uJ) and yλ(uJ) by (7.5, 7.6) and using (7.7) we get for all v ∈ P ,

|yλ(v)| ≤ c5
logp+6 λ

λ

1
v log2 v

+ c5
log2p λ

v log2 v

∫ uJ

v
τ log2 τ dτ
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for a suitable constant c5. This expression is not bounded as v ↘ 0. But the pole is
integrable, and the calculation∫ uJ

0

dv

v log2 v
= − 1

log uJ∫ uJ

0

dv

v log2 v

∫ uJ

v
τ log2 τ dτ =

∫ uJ

0
dτ τ log2 τ

∫ τ

0

dv

v log2 v

= −
∫ uJ

0
τ log τ dτ =

1
2

(uJ)2 (1 − log uJ)

shows that by increasing Λ, we can make the resulting integrals over P arbitrarily small.

This completes the proof of Theorem 1.3.

8 Slightly Non-Selfadjoint Perturbations

It remains to prove Theorem 1.1. In preparation, we split up the spheroidal wave operator
as

A = A0 + W

with

A0 = − d

d cos ϑ
sin2 ϑ

d

d cos ϑ
+

1
sin2 ϑ

(Re Ω sin2 ϑ + k)2

W = 2i ReΩ Im Ω − (Im Ω)2 sin2 ϑ .

The symmetric operator A0 clearly satisfies the hypothesis of Theorems 1.2 and 1.3,
whereas the complex potential W is uniformly bounded according to assumption (1.4),

|W | ≤ 2c + c2 =:
ρ

2
. (8.1)

Our method is to treat W as a slightly non-selfadjoint perturbation as introduced by
Kato [6, Chap. V, §4, Sec. 5]; see in particular [6, Theorem 4.15a]. Unfortunately, the
latter theorem is not quite strong enough for our purpose. For clarity, we here repeat the
basic ideas of Kato and give a detailed proof of our main theorem.

Proof of Theorem 1.1. Throughout the proof we restrict all operators either to H+ or H−.
Applying Theorems 1.2 and 1.3 to the operator A0 and γ = 8πρ, we obtain for the
eigenvalues 0 ≤ λ1 < λ2 < · · · of A0 the estimates

λn+1 − λn > γ for all n ≥ N and Ω ∈ R.

For all λ �∈ σ(A0), the resolvent R0
λ := (λ −A0)−1 exists and satisfies the bound

‖R0
λ‖ ≤ 1

dist(λ, σ(A0))
. (8.2)

Since the spectrum of A0 is real, we have in particular

‖R0
λ‖ ≤ 1

|Im λ| .
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λ1 λ2 λ2 λN λN+1 λN+2

C0 C1 C2 C3

λ

≥ γ

Figure 2: The contours Ck.

Around each λn we draw a circle of radius ρ. The first N circles may intersect, and
we take the outermost lines to define the contour C0,

C0 = ∂(Bρ(λ1) ∪ . . . ∪ Bρ(λN ) .

All the following circles do not intersect and give rise to the contours

Ck = ∂Bρ(λN+k) , k ≥ 1

(see Figure 2). Since the distance of these contours to the spectral points of A0 is at
least ρ, we have for λ on any of these contours,

‖R0
λ W‖ ≤ ‖R0

λ‖ ‖W‖ ≤ 1
2

.

Hence the operator 1 + R0
λW is invertible with a Neumann series. We conclude that the

resolvent Rλ := (λ −A)−1 = ((λ −A0) (1 + R0
λW ))−1 = (1 + R0

λW )−1R0
λ exists and

‖Rλ‖ ≤ 2 ‖R0
λ‖ . (8.3)

This allows us to introduce the operators Qk as the following contour integrals

Qk =
∮

Ck

Rλ dλ .

The Cauchy integral formula together and the resolvent identity

Rλ Rλ′ = − 1
λ − λ′ (Rλ − R′

λ)

immediately yield that the operators Qk are projectors onto invariant subspaces of A,
and that they are holomorphic in Ω. Furthermore, they are uniformly bounded because
according to (8.3, 8.2) and the definition of the contours,

‖Qk‖ ≤ 1
2π

∮
Ck

2 ‖R0
λ‖ ≤ 2N .

We introduce the operators PK as the finite sums

PK =
K∑

k=1

Qk .
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R

λ

λ1 λN+K+1

DK

λN+K

Figure 3: The contours DK .

For the unperturbed operator A0, we introduce similarly the projectors Q0
k and P 0

K . Let
us derive estimates for the difference PK − P 0

K . We first write it as the contour integral

PK − P 0
K =

1
2πi

∮
DK

(Rλ − R0
λ) dλ ,

where DK is a rectangle with side lengths λN+K + λN+K+1 and 2R centered at the origin
(see Figure 3). Since dist(Dk, σ(A0)) > ρ, the inequality (8.3) again holds. Using the
resolvent identity

Rλ − R0
λ = Rλ W R0

λ

together with (8.1, 8.2), we obtain for any λ on the contour DK the estimate

‖Rλ − R0
λ‖ ≤ 4ρ

γ2 + 4 (Im λ)2
.

This inequality allows us to take the limit R → ∞ to obtain the estimate

‖PK − P 0
K‖ ≤ 4πρ

γ
=

1
2

. (8.4)

This estimate can be improved if the operator PK − P 0
K is restricted to the range of P 0

L,
L < K. Namely, applying the bound

‖R0
λ P 0

L‖ ≤ max
n=1,...,N+L

|λ − λn|−1

to the resolvent identity gives for any λ on the contour CK the bound

‖(PK − P 0
K) P 0

L‖ ≤ 4ρ
|γ + 2i Im λ| |λ − λN+l| .

Substituting this estimate into the contour integral, taking the limit R → ∞ and estimat-
ing the resulting integral as follows,

∫ ∞

0

dx√
a2 + x2

√
b2 + x2

≤
∫ √

ab

0

dx

ab
+
∫ ∞
√

ab

dx

x2
≤ 2√

ab
,
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we conclude that

‖(PK − P 0
K) P 0

L‖ ≤ 4ρ√
γ (λN+K − λN+L)

, L < K. (8.5)

The inequality (8.4) allows us to determine the rank of the operators PK . Namely, for
every Ψ in the range of P 0

K ,

‖PKΨ‖ ≥ ‖P 0
KΨ‖ − ‖(PK − P 0

K)Ψ‖ ≥ 1
2
‖Ψ‖ .

In particular, Ψ is not in the kernel of PK . This shows that the rank of PK is greater or
equal to the rank of P 0

K . Interchanging the roles of PK and P 0
K , we see that PK and P 0

K

have the same rank. Since P 0
K is the projector on the eigenspaces of A0 corresponding to

the eigenvalues λ1, . . . , λN+K , the dimension of its range is N + k. We conclude that Q0

is a projector on an N -dimensional invariant subspace of A and Q1, Q2, . . . are projectors
on 1-dimensional eigenspaces.

The inequalities (8.4, 8.5) imply completeness: Let Ψ ∈ H and ε > 0. Since the spectral
projectors of the unperturbed problem converge strongly (i.e. s − limL→∞ P 0

L = 1), there
is L ∈ N such that ‖Ψ − P 0

MΨ‖ < ε for all M ≥ L. According to (8.4), ‖PK − 1‖ ≤
‖PK − 1‖ ≤ ‖PK − P 0

K‖ + ‖P 0
K‖ + ‖1‖ ≤ 3. Hence

‖(PK − 1) Ψ‖ ≤ ‖(PK − 1) (Ψ − P 0
LΨ)‖ + ‖(PK − P 0

K) P 0
LΨ‖ + ‖(P 0

K − 1) P 0
LΨ‖

≤ 5ε + ‖(PK − P 0
K) P 0

LΨ‖ ,

and the estimate (8.5) shows that the last term can be made arbitrarily small by choos-
ing K sufficiently large.

It remains to prove the inequalities (1.5) and (1.6). Combining the gap estimates of
Theorem 1.3 with the fact that µk ∈ Bρ(λN+k), one immediately obtains (1.6). The in-
equality (1.6) follows similarly from the asymptotics (2.1).
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