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Abstract: We investigate the dynamics of a system of two
reaction diffusion equations in one space dimension, and
study the effect of a small and of a vanishing diffusion co-
efficient in one equation. The analysis is restricted to com-
peting species with two stable equilibria. We show that the
system has traveling front solutions and analyze their wave-
speed. It turns out that the diffusive species can propagate
at a finite rate, while the non-diffusive species is blocked.
We characterize the two cases with the help of an Lyapunov
function.

1 Introduction

Reaction diffusion equations are a common model in the description of non-
linear systems such as chemical processes, ecological systems, or nerve-pulse
propagation. Recently, Luckhaus and Triolo [6] studied a discrete stochastic
model for tumor growth and derived a limiting continuous model for the
densities u and v of malignant and healthy tissue. In one space dimension
the system can be written as

∂tu = ∂xxu+ f(u, v),
∂tv = g(u, v).

(1.1)

In the discrete system the malignant cells are mobile which results in a
positive diffusivity in the first equation, but the healthy cells are immobile
and there is no diffusion in the v-equation. A feature of the nonlinearities
in (1.1) is competition, which results from the fact that in the discrete
model the two species are competing for space. In the continuous model
competition is expressed by

∂vf(u, v) ≤ 0, ∂ug(u, v) ≤ 0. (1.2)
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Due to competition, (1.1) defines a monotone dynamical system. The mono-
tonicity has many analytical consequences, for instance, a comparison prin-
ciple for solutions holds. In the case of a positive diffusion in the second
equation the existence and stability of traveling fronts is well-understood [8].
We analyze traveling waves for (1.1). We will see that the missing diffusivity
changes the qualitative picture.

Our setting will be such that at x = −∞ only healthy cells are present,
(u, v) = (0, 1) = S−, while at x = +∞ only tumor cells are present, (u, v) =
(1, 0) = S+. These are supposed to be the only stable uniform states. We
will construct a Lyapunov function for the system and thus associate an
energy H(u, v) to each state. Under the condition

H(S−) > H(S+), (1.3)

we expect that the system prefers state S+ = (1, 0) over S− = (0, 1), and
therefore that fronts travel to the left. Our analysis verifies this picture. In-
stead, for the opposite inequality in (1.3), there are no waves traveling to the
right. A blocking occurs and only stationary states exist. The phenomenon
has some similarity to the blocking of propagation in an inhomogeneous
medium with a highly varying diffusivity. Also in this case the existence of
steady states prevents propagation. In [4], we analyze the stability of the
traveling waves. While waves traveling to the left are stable, the stationary
states are unstable, and an invasion of v at a logarithmic rate is possible.

While the above describes the picture for many nonlinearities g, for some
applications we have to study a more general situation. The energy H is
then no longer the decisive quantity, and in (1.3) we must replace H(f, g)
by a function A(f, g), which coincides with H for nonlinearities g for which
the set of nontrivial zeroes is the graph of a monotone function.

A similar competitive system has been studied by Aronson, Tesei and
Weinberger in [1] as a model for pattern formation. They considered (1.1) on
a bounded domain and with a diffusion coefficient in the first equation that
depends on the second species. They show the existence of many discontinu-
ous steady states and verify their stability. In their model, the assumptions
on the reaction term differ from ours, in particular, the bistable case is not
considered.

A bistable system with diffusion for both species was considered by
Hosono and Mimura [5]. They obtained traveling wave solutions for a small
diffusivity in the second equation via a singular perturbation method from
stationary waves of the limit system. Our characterization of wave pinning
enlarges the range of applicability of their approach (cp. section 4).

2



1.1 Main assumptions

In the proposed model the nonlinearities f and g are continuously differen-
tiable and satisfy assumptions 1.-4. below. In this article we always assume
that 1.-4. are satisfied by f and g. For an illustration see Figure 1.

1. Preserving positivity: f(0, v) = 0 = g(u, 0) for all u, v ∈ [0, 1].

2. Bistability: There are exactly two linearly stable equilibria (u, v) =
(1, 0) and (u, v) = (0, 1), and two linearly unstable equilibria (0, 0)
and (us, vs).

3. Strict Competition: ∂vf, ∂ug < 0 for u, v ∈ (0, 1).

4. The non-trivial solutions of g(u, v) = 0 have the form u = Γ(v), v ∈
(0, 1), for a continuous function Γ : [0, 1] → [0,∞) with Γ(1) = 0 and
Γ(0) ∈ (0, 1). We assume that Γ has no local minimum in (0, 1), but
possibly a maximum which is then unique. Observe also that the range
of Γ may exceed [0, 1].

u

v

f=0

g=0

g=0

f=0

1

1

*

*v

u
u

Figure 1: The zero-sets in the phase diagram

By linearly stable (unstable) we mean that the two eigenvalues of the Jaco-
bian have nonzero real part, stable refers to both eigenvalues having negative
real part and unstable refers to the case were at least one has positive real
part. Note the our assumption imply that (0, 0) is totally unstable and
(us, vs) is a saddle.
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1.2 Main results

We show that for all pairs of nonlinearities (f, g) satisfying assumptions
1.-4. there exists a monotone traveling wave solution to system (1.1) con-
necting S− with S+, i.e., there exists a triple (u, v, c) representing a solution
(u, v)(x + ct) of (1.1). The profiles (u, v)(ξ) solve the system of ordinary
differential equations

cu′ = u′′ + f(u, v),
cv′ = g(u, v),

(u, v)(−∞) = S− = (0, 1), (u, v)(+∞) = S+ = (1, 0).
(TW)

Here ′ denotes differentiation by the wave coordinate ξ. Furthermore, we
have a complete characterization of the possible wave speeds c according to
a quantity A = A(f, g), which is related to the Lyapunov function and is
defined in (3.2) below.

Theorem 1.1. If A < 0, there exists a monotone solution of (TW) with
c > 0. If A ≥ 0, there is a monotone solution of (TW) with c = 0.

Moreover, the existence of a monotone traveling wave with c > 0 implies
A < 0. The existence of a monotone standing wave implies A ≥ 0.

Our approach to prove the existence of traveling waves is independent
of the value of A. The characterization of the speed is given a-posteriori.

In the case c = 0 we will show that the monotone standing wave is unique
(see Theorem 3.1). However, there are families of non-monotone standing
waves (see Lemma 5.1). In [4] we show a uniqueness and stability result for
traveling waves in the case c > 0, and an instability result for the monotone
stationary solutions.

2 Existence of traveling wave solutions

To prove the existence of traveling wave solutions to (1.1) we use the method
of vanishing viscosity. For ε > 0 we consider traveling waves for the system

ut − ∂xxu = f(u, v),

vt − ε2∂xxv = g(u, v).
(1.1ε)

The advantage of this approach is that convergence of traveling waves of
(1.1ε) as ε → 0 can be proved without appealing to the regularity of the
limit. In fact, the limit will be discontinuous in the case A > 0. We do not
divide our approach into the two possible cases of propagating and stationary
waves.
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A traveling wave solution of (1.1ε) is a heteroclinic orbit (u, v)(ξ), ξ =
x+ ct, of the system of ordinary differential equations

cu′ = u′′ + f(u, v),

cv′ = ε2v′′ + g(u, v),
(u, v)(−∞) = (0, 1), (u, v)(+∞) = (1, 0),

(TWε)

connecting the desired equilibria asymptotically. Existence of a monotone
wave (uε, vε, cε) for any ε > 0 is assured by Theorem 3.2, p. 174 in [8].
To employ the result directly one has to transform (TWε) into a monotone
system by considering the vector-valued variable (u, 1 − v).

Theorem 2.1. Let (f, g) satisfy the main assumptions 1. to 4. Let
(uε, vε, cε) be a family of monotone traveling wave solutions of (TWε),
ε ∈ (0, ε0). After suitable translation, the waves (uε, vε, cε) converge for
ε→ 0 to (u, v, c), being a monotone traveling wave solution of (TW) in the
following sense:
If c �= 0 then (u, v, c) is a classical solution and the convergence is in
C2,α × C1,α on compact intervals. There holds u′ > 0 > v′.
If c = 0 then (u, v, c) is a weak solution and we have C1,α-convergence for
u, whereas convergence is only pointwise for v. Furthermore, u′ > 0 and
there exists a unique point, say 0, with the property v(ξ) > 0 if and only if
ξ < 0. Also, v′(ξ) < 0 for ξ < 0. Thus, we have better convergence for v
away from 0.

An important step in the proof of Theorem 2.1 will be to show uniform
bounds for the speed cε.

Theorem 2.2. Let (uε, vε, cε) be any traveling wave solution of (TWε).
Then there holds

−2
√
Kε ≤ cε ≤ 2

√
L

with positive constants K := sup
0<v<1

g(0,v)
v and L := sup

0<u<1

f(u,0)
u .

The lower bound implies an interesting consequence for the speed as ε
tends to zero.

Corollary 2.3 (Exclusion of negative speeds). Let (u, v, c) be a trav-
eling wave arising as a limit point as in Theorem 2.1. Then there holds
c ≥ 0.

All speed estimates are obtained by using test functions (ũ, ṽ) which
are sub- or super-solutions of (1.1ε). We use the comparison principle for
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diffusive competitive systems, see Theorem 5.5, p. 244 of [8]. We say that
(ũ, ṽ)(x, t) is a sub-solution in the moving frame ξ = x+ c̃t if it satisfies

∂tũ+ c̃∂ξũ− ∂ξξũ ≤ f(ũ, ṽ),

∂tṽ + c̃∂ξ ṽ − ε2∂ξξ ṽ ≥ g(ũ, ṽ).

We recall that the system is competitive which leads to the opposite in-
equality in the second line. The parabolic comparison principle in the weak
form yields that for a sub-solution (ũ, ṽ) in the frame c̃ and an instationary
solution (u, v) the inequalities

ũ(t, ξ) ≤ u(t, ξ),
ṽ(t, ξ) ≥ v(t, ξ),

remain satisfied for all times if they are satisfied initially. We recall that for
weak sub-solutions jumps in the derivative are allowed if the sign condition
[∂ξ ũ] ≥ 0 ≥ [∂ξ ṽ] is satisfied. Super-solutions are defined analogously.

Proof of Theorem 2.2. i) Lower bound. We claim that a sub-solution can
be constructed in the form

c = −2
√
Kε,

u = um max{1 − e−2
√

Kεξ, 0},

v =

{
min{vme

−
√

K
ε

ξ, 1}, ξ ≤M/ε,

v(M/ε)(1 + e−2
√

K
ε

(ξ−M/ε))/2, ξ > M/ε.

Here K is chosen such that g(u,v)
v ≤ g(0,v)

v ≤ K, which is possible by ∂ug ≤ 0.
We choose um ∈ (Γ(0), 1) freely and then vm ∈ (0, 1) such that um >
sup0<v<vm

Γ(v) and f(u, v) ≥ 0 for all u ≤ um, v ≤ vm. The latter is
possible since (0, 0) is an unstable equilibrium. We can now choose M > 0,
independent of ε, such that

u(M/ε) = um

(
1 − e−

√
KM
)
≥ sup

0<v<vm

Γ(v).

Note that [∂ξu] ≥ 0 ≥ [∂ξv], where the derivatives are discontinuous.
We consider the equation for v. In the case ε√

K
ln vm < ξ < M/ε the

inequality g(u, v) ≤ Kv implies

−c∂ξv + ε2∂ξξv + g(u, v) ≤ −c∂ξv + ε2∂ξξv +Kv = 0 = ∂tv.

For ξ > M/ε the definition of M implies g(u, v) ≤ 0 and thus

−c∂ξv + ε2∂ξξv + g(u, v) ≤ −c∂ξv + ε2∂ξξv = 0 = ∂tv.

6



We now consider the equation for u. There holds f(u, v) ≥ 0. For ξ < 0
this is implied by u(ξ) = 0, for ξ > 0 by the choice of um, vm. Hence for all
ξ �= 0 we have

−c∂ξu+ ∂ξξu+ f(u, v) ≥ −c∂ξu+ ∂ξξu = 0 = ∂tu.

We have thus proved that (c, u, v) is a sub-solution. Note that for any ε > 0
the profile (u, v) remains in both components at a positive distance from
S+ = (1, 0) for all ξ > 0. Furthermore, (u, v)(ξ) = (0, 1) for all ξ < 0 with
|ξ| large. Thus, any initial data (u0, v0) with (u0, v0)(ξ) → (1, 0) as ξ → ∞
can be shifted to be comparable with (u, v). This implies that no traveling
wave solution can travel at a slower speed than the comparison solution,
cε ≥ c = −2

√
Kε.

ii) Upper bound. The definition of Γ, i.e., g(Γ(t), t) = 0 for all 0 < t < 1,
implies

d

ds
Γ−1(s) = −∂ug(s,Γ−1(s))

∂vg(s,Γ−1(s))
.

For small s we know that ∂vg(s,Γ−1(s)) is close to ∂vg(0, 1) < 0, i.e.,
d
dsΓ

−1(s) is well-defined. Furthermore, there exists γ > 0 such that
Γ−1(s) ≥ 1 − γs for small s ≥ 0. By the continuity of ∂uf there exists
a small δ > 0 such that f(s, t) ≤ 0 for s ≤ δ and t ≥ 1− 2γδ and g(s, t) ≥ 0
for s ≤ δ, t ≤ 1 − γδ

For the upper bound we claim that

c̄ = 2
√
L,

ū =

{
min{δe

√
Lξ, 1}, ξ ≥ −M,

ū(−M)(1 + e2
√

L(ξ+M))/2, ξ < −M,

v̄ = max{(1 − 2γδ)(1 − e
c̄

ε2
ξ), 0}.

is a super-solution for M sufficiently large. The condition [∂ξū] ≤ 0 ≤ [∂ξ v̄]
is satisfied.

The inequality in the u-equation is trivially satisfied if ū = 1. If ξ > −M
and ū < 1 we deduce from f(ū, v̄) ≤ f(ū, 0) ≤ Lū

−c̄∂ξū+ ∂ξξū+ f(ū, v̄) ≤ −c̄∂ξū+ ∂ξξū+ Lū = 0 = ∂tū.

For ξ < −M , M sufficiently large, the conditions on γ, δ ensure f(ū, v̄) ≤ 0.
Thus,

−c̄∂ξū+ ∂ξξū+ f(ū, v̄) ≤ −c̄∂ξū+ ∂ξξū = 0 = ∂tū.
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Inequality in the v-equation: For ξ < 0 we have g(ū, v̄) ≥ g(δ, v̄) ≥ 0,
hence,

−c̄∂ξ v̄ + ε2∂ξξv̄ + g(ū, v̄) ≥ −c̄∂ξ v̄ + ε2∂ξξv̄ = 0 = ∂tv̄.

Thus, (c̄, ū, v̄) is indeed a super-solution. Since ū and v̄ are uniformly
bounded away from 0 and 1, respectively, and (ū, v̄)(ξ) = (1, 0) for ξ > 0, we
can always shift initial data (u0, v0) with (u0, v0)(ξ) → (0, 1) for ξ → −∞
to be comparable with the super-solution. We conclude cε ≤ c̄.

Proof of Theorem 2.1. Due to the translational invariance of the the prob-
lem (TWε), we have to impose a normalization condition. We consider those
wave solutions (uε, vε, cε) with uε(0) = us, where (us, vs) is the unique saddle
point of (f, g) in (0, 1)2.

1) Uniform bounds. First we show that equation (TWε) implies uni-
form C1,1-bounds for uε and uniform C0-bounds for vε. Recall the wave
monotonicity u′ε > 0 > v′ε. At a position where |u′ε| is maximal we have

|cεu′ε| = |f(uε, vε)| ≤ sup
0<s,t<1

|f(s, t)| =: Cf ,

since uε and vε map to [0, 1]. Thus, |u′′ε | ≤ supξ |cεu′ε| + supξ |f(uε, vε)| ≤
2Cf . The bound on u′′ε implies a bound on u′ε by interpolation. For all
ξ0 ∈ R we use

1 > |uε(ξ) − uε(ξ0)| =
∣∣∣∣(ξ − ξ0)u′ε(ξ0) +

∫ ξ

ξ0

∫ s

ξ0

u′′ε(t) dt ds
∣∣∣∣

to deduce

u′ε(ξ0) ≤ inf
ξ

(|ξ − ξ0|−1 + |ξ − ξ0|Cf

)
= 2
√
Cf .

2) Convergence of a subsequence. We recall that the speeds cε are
bounded uniformly in ε by Theorem 2.2. From the monotonicity and the
bounds for (uε, vε, cε) we obtain for a subsequence the convergence to a
monotone profile (u, v, c) (the convergence is in C1,α on compact intervals
for u and pointwise for v). The bounds for the speed imply c ≥ 0. Since u is
a weak solution for ε = 0, we obtain u ∈ C1,1. Also cv′ = g(u, v) is satisfied
in the weak sense. Thus, c > 0 implies v ∈ C1,1 and hence u ∈ C2,1. In the
case c = 0 the profiles are confined to the zero level set of g consisting of the
axis {(s, 0) : s ∈ [0, 1]} and the curve {(Γ(t), t) : t ∈ [0, 1]}. The assumptions
on Γ(t) imply that the monotone profile v can jump at most once, from the
curve down to the axis.

3) Boundary values. The limit (u, v, c) is a solution of (TW); it remains
to check the limits for |ξ| → ∞. The monotonicity of the profiles yields
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u(−∞) ≤ us ≤ u(∞) and 1 ≥ v(−∞) ≥ v(∞) ≥ 0. Since u is continuous
we have u(0) = us. Furthermore, (u, v)(±∞) are equilibria of (f, g) and
therefore contained in the set {(1, 0), (us, vs), (0, 1), (0, 0)}. By the maximum
principle, u is either strictly increasing or u ≡ us identically. This implies,
that we are left with three possibilities:

i) (u, v, c) is a traveling wave solution of (TW) satisfying the boundary
condition.

ii) v vanishes identically and u is a strictly monotone traveling wave in-
creasing from u(−∞) = 0 to u(∞) = 1,

iii) (u, v) ≡ (us, vs).

First we want to exclude case ii). Here the position where vε equals vs

diverges to −∞ as ε tends to 0. Since the resulting wave u solves

cu′ = u′′ + f(u, 0),

an integration over R gives c > 0 (the nonlinearity is of KPP type). Now we
consider other translates (ũε, ṽε) of (uε, vε), satisfying the new normalization
ṽε(0) = vs. We know ũε(0) → 0 as ε→ 0 since vε was tending to zero in the
first normalization. We take a further subsequence ε→ 0 such that (ũε, ṽε)
converges on compact intervals to (ũ, ṽ), in C1,α for ũ and in Cα for ṽ, where
now the profile ũ vanishes identically. Thus, recalling c > 0, the decreasing
profile ṽ is a classical solution of

cṽ′ = g(0, ṽ) > 0.

This contradicts c > 0 and the monotonicity of ṽ.
To exclude case iii) we consider the translates (ũε, ṽε) of (uε, vε) satisfying

ũε(0) = 1
2us. Arguing as before, we obtain a subsequence ε→ 0 and strictly

monotone profiles (ũ, ṽ), now satisfying the asymptotic boundary conditions
(ũ, ṽ)(∞) = (us, vs), and (ũ, ṽ)(−∞) = (0, 1). The fact that (ũ, ṽ, c) solves
the traveling wave system (TW) except for the boundary conditions will
provide a contradiction.

Note that c ≥ 0 and the monotonicity of ṽ imply 0 ≥ cṽ′ = g(ũ, ṽ).
Integrating the equation

cũ′ = ũ′′ + f(ũ, ṽ)

over R we obtain

0 ≤ cus =
∫

R

f(ũ, ṽ) dξ.
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We claim that the integral on the right hand side is negative, giving the
contradiction. The condition g(ũ, ṽ) ≤ 0 implies us ≥ ũ ≥ Γ(ṽ). But
∂vf < 0 implies f(ũ, ṽ) ≤ 0 for ṽ > vs by ∂vf < 0 and f(Γ(t), t) < 0 for
t ∈ (vs, 1). Note that ũ is non-constant which implies the strict inequality.

4) Strict monotonicity if c > 0. We note here that c > 0 implies u′ >
0 and v′ < 0. For the u-component this followed already by excluding
the constant limit profiles in 3). The weak monotonicity v′ ≤ 0 implies
g(u, v) ≤ 0 on R. We claim g(u, v) < 0, which would imply the strict
inequality v′ < 0. Assuming there is a point ξ0 with g(u, v)(ξ0) = 0 we
conclude d

dξg(u, v) = ∂ugu
′ < 0. Since this leads to a sign change of the

function g(u, v)(ξ) we arrive at a contradiction.

3 Characterization of the speed

3.1 A Lyapunov function

The system (1.1) possesses a free energy functionH and a Lyapunov function
E which yield further conditions for the wave speed. In fact, the energy
characterizes the two cases of standing waves (c = 0) and propagating waves
(c > 0).

For functions (u, v)(t, x) satisfying u, v ∈ [0, 1], (u, v)(t,−∞) = (0, 1),
and (u, v)(t,∞) = (1, 0) we define

E((u, v)) :=
∫

R

{
1
2
|∂xu|2 +H(u, v) −H(1, 0)χR+

}
dx, (3.1)

where χR+ is the characteristic function of {x ∈ R : x > 0} and

H(u, v) = −
∫ u

0
f(σ, v) dσ −

∫ 1

v

∫ Γ(τ)

0
∂vf(σ, τ) dσ dτ.

We recall that σ = Γ(τ) is the unique nontrivial solution of g(σ, τ) = 0. We
normalized such that H(0, 1) = H(S−) = 0. The constant term H(1, 0)χR+

is inserted to ensure finiteness of the integral for solutions sharing the asymp-
totics of the traveling wave.

Next we verify that E is decreasing along solutions of (1.1). In the
calculation we perform a partial integration without boundary terms using
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∂xu(t,±∞) = 0, which is justified for ∂xu, ∂xxu, ∂tu, ∂t∂xu ∈ L2(R+×R,R).

∂tE((u, v)) =
∫

R

(−∂xxu)∂tu+ ∂uH∂tu+ ∂vH∂tv

=
∫

R

(−∂xxu− f(u, v))∂tu

+
∫

R

(
−
∫ u

0
∂vf(σ, v) dσ +

∫ Γ(v)

0
∂vf(σ, v) dσ

)
∂tv.

We exploit that ∂vf is nonpositive and that

g(u, v) < 0 for u < Γ(v), g(u, v) > 0 for u > Γ(v),

to conclude that E is decreasing.
The Lyapunov function allows to obtain a condition on the uniqueness

and existence of standing waves. Let

u1 := min

{
1, sup

t∈(0,1)
Γ(t)

}
, v1 := Γ−1(u1).

Here we defined for s in the range of Γ the unique maximal inverse Γ−1(s) :=
max{t ∈ (0, 1] : Γ(t) = s}. From our assumptions on Γ we know that Γ
decreases strictly monotone on the interval (v1, 1). Note that for monotone
Γ we have v1 = 0 and u1 = Γ(0).

We additionally define the following number A = A(f, g) ∈ R,

A := H(1, 0) −H(u1, 0) +H(u1, v1)

= −
∫ u1

0
f(s,Γ−1(s))ds −

∫ 1

u1

f(s, 0)ds.
(3.2)

Theorem 3.1. If the system (TW) has a monotone standing wave solution
(u, v, c = 0), then A ≥ 0.

Vice versa, if A ≥ 0, there is a monotone solution (u, v, c) of (TW) with
c = 0. This wave is unique in the class of standing waves. For monotone Γ
and A = 0 the solution is continuous.

There are two special cases where we can easily check the condition
A ≥ 0. For monotone Γ there holds v1 = Γ−1(u1) = 0 and therefore

A = H(1, 0) = −
∫ 1

0
f(s, v) ds−

∫ 1

0

∫ Γ(t)

0
∂vf(s, t) ds dt

=
∫ 1

0
f(s,Γ−1(s)) ds.
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Secondly, if supΓ exceeds 1, we have u1 = 1 and therefore

A = H(1, v1) = −
∫ 1

0
f(s, v1) ds−

∫ 1

v1

∫ Γ(t)

0
∂vf(s, t) ds dt

= −
∫ 1

0
f(s,Γ−1(s)) ds > 0,

since f(s,Γ−1(s)) < 0. The latter follows because otherwise we had more
than one non-trivial equilibrium, contradicting our assumptions. Thus, in
the case u1 = 1 the theorem ensures the existence of a standing wave.

For traveling wave solutions (u, v, c) we calculate

c
(−1

2 |u′|2 +H(u, v)
)′ = c((−u′′ + ∂uH)u′ + ∂vHv

′)

= −
(
c2|u′|2 +

∫ u

Γ(v)
∂vf(s, v)ds

∫ u

Γ(v)
∂ug(s, v)ds

)
.

Since the traveling wave connects the equilibrium S− = (0, 1) with S+(1, 0),
an integration over R yields

c · [H(1, 0) −H(0, 1)] ≤ 0. (3.3)

For c > 0 the inequality is strict. From c > 0 and v1 = 0 we can conclude
from this A = H(1, 0) < 0.

x

v
u

*v

*u

1

Figure 2: A standing wave solution

For A ≥ 0 the qualitative behavior of a corresponding standing wave is
depicted in Figure 2. We remark that the profile v is non-smooth; there is
a unique point, where v or v′ has a discontinuity.
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Proof. i) Let us assume that there exists a monotone standing wave solution
(u, v, c) with c = 0 of system (TW). We want to show A ≥ 0. Recall that
the elliptic equation provides uniform C1,1-estimates for u.

From (TW) and c = 0 we know that g(u, v) = 0 for all ξ. According
to our assumption on Γ, the monotonicity of the profiles (u, v) implies that,
after a suitable translation, (u, v)(ξ) follows the curve {(Γ(t), t) : 0 < t ≤ 1}
for ξ < 0 and the axis {(s, 0) : 0 < s ≤ 1} for ξ > 0. Thus, again by
monotonicity of u and v, we have u∗ := u(0) ∈ (0, u1], v(ξ) = 0 for ξ > 0,
and v(ξ) = Γ−1(u(ξ)) for ξ < 0.

We exploit that

− d

du
H(u,Γ−1(u)) = f(u,Γ−1(u)) and − d

du
H(u, 0) = f(u, 0).

imply that the profile u satisfies

−1
2 |u′(ξ)|2 +H(u(ξ), v(ξ)) = H(0, 1) for ξ < 0,

−1
2 |u′(ξ)|2 +H(u(ξ), 0) = H(1, 0) for ξ > 0.

The continuity of u′ implies that there must hold equality in ξ = 0, i.e.

H(1, 0) −H(u∗, 0) = −H(u∗,Γ−1(u∗)). (3.4)

In the following we show that the existence of a solution u∗ ∈ (0, u1] of (3.4)
is equivalent with A ≥ 0. Furthermore, u∗ will be unique.

Let us define for all u ∈ [0, u1]

A(u) := H(1, 0) −H(u, 0) +H(u,Γ−1(u))

= −
∫ u

0
f(s,Γ−1(s)) ds−

∫ 1

u
f(s, 0) ds,

such that A = A(u1) and a solution u∗ of (3.4) is characterized by the
property A(u∗) = 0. We evaluate A(0) = H(1, 0) − H(0, 0) + H(0, 1) =
− ∫ 1

0 f(s, 0) ds < 0 and calculate A′(u) = f(u, 0) − f(u,Γ−1(u)) > 0 on
(0, u1). Hence, there is a solution u∗ ∈ (0, u1] satisfying A(u∗) = 0 if and
only if A = A(u1) ≥ 0. The solution is unique by the monotonicity of A(.).

ii) We now prove that for A ≥ 0 there exists a standing wave solution.
We will construct such a wave using the solution u∗ of A(u∗) = 0, i.e. of
(3.4). We define

F−(u) := −
∫ u

0
f(s,Γ−1(s)) ds, for u ∈ [0, u1],

F+(u) :=
∫ 1

u
f(s, 0) ds, for u ∈ [0, 1].

13



For u ∈ [0, u1] we recover A(u) = F−(u) − F+(u). We note the identities
F−(u) = H(u,Γ−1(u)) −H(0, 1) and F+(u) = H(u, 0) −H(1, 0).

We can now explicitely construct a wave with c = 0. On ξ < 0 we
find u(ξ) as the solution of the (backward in ’time’ ξ) ordinary differential
equation

u′(ξ) =
√

2F−(u(ξ)), u(0) = u∗.

From the boundedness of f on [0, 1]2 we know that F± is Lipschitz for
all s ∈ [0, u1]. Furthermore, bounded derivatives ∂uf give F−(s) ≤ Cs2.
Finally, there holds F− > 0 on s ∈ (0, u1]. For F−(u1) this follows from
F+(u1) > 0 and A(u1) ≥ 0. Also, if there were a nonpositive minimum at
ũ ∈ (0, u1), it followed that 0 = F ′−(ũ) = f(ũ,Γ−1(ũ)), i.e., it is located
at the unique saddle point ũ = us. In this case f(s,Γ−1(s)) < 0 for all
s ∈ (0, ũ) by our assumptions. Thus, F−(ũ) > 0, contradicting the assumed
nonpositive minimum.

Thus, the o.d.e. above has a Lipschitz nonlinearity implying existence
and uniqueness of the trajectory u(ξ). In particular, u(ξ) exists for all ξ < 0
with u(ξ) → 0 as ξ → −∞.

Now let us consider ξ > 0. Let u(ξ) be a solution of the initial value
problem

u′(ξ) =
√

2F+(u(ξ)), u(0) = u∗.

Observe that F+ is uniformly Lipschitz in u ∈ [0, 1]. Furthermore, F+(s) = 0
only for s = 1. We conclude that the solution u(ξ) is unique and monotone
for all ξ > 0, satisfying u(ξ) → 1 as ξ → +∞. The uniqueness of the profile
u(ξ) follows from the uniqueness of u∗. Finally we define v(ξ) = Γ−1(u(ξ))
for ξ < 0 and v(ξ) = 0 for ξ > 0.

A = 0 implies A(u1) = A = 0 and therefore u∗ = u1. For monotone Γ
we have Γ−1(u1) = 0, so v is continuous.

Proof of Theorem 1.1. The existence of traveling waves is shown in Theorem
2.1. In Corollary 2.3 we have seen that c ≥ 0 holds for these waves. Standing
waves were considered in Theorem 3.1, we have seen that A ≥ 0 is equivalent
to the existence of a traveling wave (u, v, c = 0).

In Theorem 3.2 we already verified that for the solutions constructed
there, c > 0 is impossible in the case A ≥ 0. To conclude the proof of
Theorem 1.1 it remains to show that the existence of a monotone traveling
wave (u, v, c) with c > 0 always implies A < 0.

Let (u, v, c) be a monotone traveling wave with c > 0. We want to
show that there must hold A < 0. The argument from part 1) of the proof
of Theorem 2.1 gives u ∈ C2,1, v ∈ C1,1 with u strictly increasing. The

14



equation cv′ = g(u, v) gives g(u, v) ≤ 0. Hence v ≥ φ(u), where φ(u) =
Γ−1(u) for u ≤ u1 and φ(u) = 0 for u > u1. In particular it follows that
there must hold u1 < 1.

Recalling that f is competitive we obtain from (TW)

cu′ = u′′ + f(u, v) ≤ u′′ + f(u, φ(u)).

Thus, multiplying with u′ and integrating over R we get

0 < c

∫
R

|u′|2 =
∫ 1

0
f(s, φ(s))ds,

since the traveling wave connects the equilibria (0, 1) and (1, 0) at −∞ and
+∞, respectively. Here we used that the t → ∫ t

0 f(s, φ(s))ds is a Lipschitz
function on [0, 1]. Furthermore, the definition of A and our estimates for
φ yield

∫ 1
0 f(s, φ(s))ds < −A. Thus, the existence of a monotone traveling

wave with c > 0 implies the inequality A < 0.

The next theorem shows that if system (1.1) is in the standing wave
regime A ≥ 0, then the diffusive system (1.1ε) allows only slow waves.

Theorem 3.2. Consider (1.1ε) under assumptions 1. to 4. In addition,
we assume for a more readable proof that the nonlinearities f, g are C2 in
[0, 1]2, Γ′(t) �= 0 for all t ∈ (v1, 1]. If A > 0 then there exist K,M, ε0 > 0
such that any traveling wave solution (uε, vε, cε) connecting S− = (0, 1) with
S+ = (1, 0) satisfies for all 0 < ε < ε0

|cε| ≤Mε. (3.5)

Proof. A lower bound cε ≥ −2
√
Kε is implied by Theorem 2.2. For the

upper bound we construct a super-solution to the speed ĉ = Mε, where M
is chosen later sufficiently large.

Analogously to the construction of the standing wave we may obtain
profiles (û, v̂) serving as a super-solution for the speed ĉ. The super-solution
will be close to the standing wave profile. To allow initial data with an
arbitrary decay to the asymptotic states, the super-solution has to differ
from the standing wave for large |ξ|. Recall that if A > 0 the profile v of the
standing wave is discontinuous at ξ = 0. Thus, an admissible test-function v̂
satisfying −ĉ∂ξ v̂+ε2∂ξξ v̂+g(û, v̂) ≥ 0 has to be altered in the neighborhood
of ξ = 0 in an appropriate way.

For a = −∂uf(0, 1) > 0 we can choose 0 < ν < a such that 4ν√
a(1− ν

a
)

=

Mε. We recall from the proof of Theorem 2.2 that ∂vg(0, 1) < 0 and a > 0
implies that for ν > 0 there exists δ > 0 such that |∂uf(s,Γ−1(s)) + a| < ν
for all s ∈ [0, δ].
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The unique solution of A(u∗) = 0 satisfies u∗ < u1 if A = A(u1) > 0.
We choose u0 ∈ (u∗, u1). In close analogy to the proof of Theorem 3.1 we
define for u ∈ [0, 1]

F0(u) := −
∫ u

0
f(s, φ0(s)) ds, φ0(s) :=

{
Γ−1(s), 0 ≤ s ≤ u0,

0, u0 < s ≤ 1.

There holds

F0(1) = −
∫ 1

0
f(s, φ0(s)) ds

> −
∫ u∗

0
f(s,Γ−1(s)) ds−

∫ 1

u∗
f(s, 0) ds = A(u∗) = 0.

We recall that F0 = F− on [0, u0]. Since F− and F+ are positive on (0, u1]
and [0, 1), respectively, we have F0 = F− > 0 on (0, u0] and F0(s) = F+(s)+
F0(1) > F0(1) > 0 for s ∈ [u0, 1). Furthermore,

√
2F0 is uniformly Lipschitz

on [0, 1], vanishing only at 0.
For ξ < 0 we get the profile û(ξ) by solving

û′(ξ) =
√

2F0(û(ξ)), û(0) = 1

in backward direction. The properties of F0 ensure that û(ξ) exists for all
ξ < 0, is strictly increasing in ξ, and satisfying limξ→−∞ û(ξ) = 0. Since
F0 = F− on [0, u0] we know that û(ξ) coincides with a translate of the unique
standing wave profile for all ξ ≤ ξ∗, with û(ξ∗) = u∗ < u0.

There exist a unique ξ− < 0 such that û(ξ−) = δ. The definition of δ
implies that the following inequalities hold

|f(s,Γ−1(s)) + as| < νs, |2F0(s) − as2| < νs2 for all s ∈ [0, δ].

Thus, û′(ξ−) =
√

2F0(δ) <
√
a+ νδ. We re-define for ξ < ξ−

û(ξ) = δ
(
ν̃ + (1 − ν̃) exp{

√
a+ν

1−ν̃ (ξ − ξ−)}
)
,

where ν̃ = ν
a . There holds limξ→ξ− û(ξ) = δ = û(ξ−). Also,

lim
ξ→ξ−

û′(ξ) =
√
a+ νδ >

√
2F0(δ) = û′(ξ−).

Thus, the new profile is continuous with a jump in the derivative of negative
sign. We remark that for small ε we have that δ is strictly less than u∗.
Note that the new asymptotic state û(−∞) is strictly positive.

We extend û by setting û(ξ) = 1 for all ξ > 0. Obviously, the jump in
the derivative satisfies [∂ξû](0) < 0. There is a unique ξ0 ∈ (ξ∗, 0) such that
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û(ξ0) = u0. Let us define v̂(ξ) := φ0(û(ξ)) for ξ ≤ ξ0. Since φ0(s) = Γ−1(s)
for s ≤ u0 we have v(0) = Γ−1(u0) < v∗ and v′(0−) = d

duΓ−1(u0)u′(ξ0) < 0.
We extend v̂ by setting

v̂(ξ) := max{v̂(0) + ε(e(ξ−ξ0)/ε − 1)v̂′(0−), 0} for all ξ > ξ0.

Hence, there is a unique ξ1 ∈ (ξ0, 0) satisfying v̂(ξ1) > 0 for all ξ < ξ1. We
remark that ξ1 − ξ0 ≤ Cε ln ε−1.

Both profiles (û(ξ), v̂(ξ)) are C2 except at the points E = {ξ−, ξ∗, ξ0, 0}.
Furthermore, the construction ensures that for each ξe ∈ E we have
[∂ξ û](ξe) ≤ 0 ≤ [∂ξ v̂](ξe). We will now verify that (û, v̂) is a super-solution
for the speed ĉ.

First, consider ξ < ξ−. There holds

−ĉ∂ξû+ ∂ξξû+ f(û, v̂) ≤ −ĉ∂ξû+ ∂ξξû+ (ν − a)û

≤ δ

(
−ĉ√a+ ν +

a+ ν

1 − ν̃
− (a− ν)(1 − ν̃)

)
exp{

√
a+ν

1−ν̃ (ξ − ξ−)} ≤ 0

since

−ĉ√a+ ν +
a+ ν

1 − ν̃
− (a− ν)(1 − ν̃) < −ĉ√a+

4ν
1 − ν̃

= 0

by the definition of ĉ.
We next consider ξ− < ξ < 0, ξ �∈ E. The profile û satisfies

∂ξξû+ f(û, v̂) = ∂ξξû+ f(û, φ0(û)) = 0.

Thus, ĉ > 0, ∂ξû > 0 implies

−ĉ∂ξû+ ∂ξξû+ f(û, v̂) ≤ −ĉ∂ξû < 0 = ∂tû.

Now consider the equation for the profile v. For all ξ > ξ1 we have
v̂(ξ) = 0. Thus, the inequality −ĉ∂ξ v̂ + ε2∂ξξ v̂ + g(û, v̂) ≥ 0 holds trivially
for all ξ > ξ1, ξ �∈ E.

Recalling ĉ = Mε we estimate for ξ < ξ0, ξ �∈ E

−ĉ∂ξ v̂ + ε2∂ξξ v̂ = −ĉφ′0∂ξû+ ε2(φ′0∂ξξû+ φ′′0(∂ξû)2)

≥ ε(−φ′0)∂ξû

(
M − ε

(
∂ξξû

∂ξû
+
φ′′0
φ′0
∂ξû

))
.

The definition of φ0 ensures that

φ′′0
φ′0

(û) =
−Γ′′

(Γ′)2
(Γ−1(û))
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is bounded since û < u0 < u1 for ξ > ξ0. Furthermore, the definition of F0

implies a uniform (in ε and ξ) bound on ∂ξû as well as ∂ξξû/∂ξ û. Choosing
M sufficiently large, we therefore have

−ĉ∂ξ v̂ + ε2∂ξξ v̂ ≥ 1
2Mε(−φ′0(û))∂ξ û > 0.

Since the construction implies g(û(ξ), v̂(ξ)) = 0 for all ξ �∈ (ξ0, ξ1) we obtain

−ĉ∂ξ v̂ + ε2∂ξξ v̂ + g(û, v̂) ≥ 0.

Finally we turn to the small interval ξ ∈ (ξ0, ξ1). We compute

−ĉ∂ξ v̂ + ε2∂ξξ v̂ = (−v̂′(0))ε(M − 1)e(ξ−ξ0)/ε

= (M − 1)
(
v̂(0) + ε(−v̂′(0)) − v̂

)
.

Observe for ξ ∈ (ξ0, ξ1) that û′′ + f(û, 0) = 0 implies

g(û, v̂) ≥ g(û(0) + ξû′(0), v̂) =
∫ v̂

Γ−1(û(0)+ξû′(0))
∂vg(û(0) + ξû′(0), t)dt

≥ −Cg|Γ−1(û(0) + ξû′(0)) − v̂|
= −Cg|v̂(0) + ξv̂′(0) + o(ξ) − v̂|,

since Γ−1 is C2 close to u0 = û(0). Summarizing, we obtain

−ĉ∂ξ v̂ + ε2∂ξξv̂ + g(û, v̂)
≥ (M − 1)

(
v̂(0) + ε(−v̂′(0)) − v̂

)− Cg

∣∣v̂(0) + ξv̂′(0) + o(ξ) − v̂
∣∣

≥ 1
2M

(
v̂(0) + ε(−v̂′(0)) − v̂

)− Cg

∣∣v̂′(0)(ξ + ε) + o(ξ)
∣∣

≥ 1
2Mε− Cε ≥ 0,

for M chosen sufficiently large and ε sufficiently small.
Hence we have shown that (û, v̂, ĉ) is a super-solution which provides the

inequality c ≤ ĉ = +Mε.

4 Examples

4.1 Lotka-Volterra Nonlinearities

In this subsection we consider the for parameters α, β > 1, and δ > 0 the
nonlinearities

f(u, v) = u(1 − u− αv),
g(u, v) = δv(1 − v − βu).
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In our parameter range the system is bistable and competitive. We find
Γ(v) = 1−v

β , u1 = 1/β, and

H(u, v) = −1
2
u2(1 − αv − 2

3
u) − α

6β2
(v − 1)3.

The Lyapunov function E satisfies

d

dt
E = −

∫
u2

t +
αδ

2β2
v(1 − v + βu)(1 − v − βu)2 ≤ 0.

Furthermore, along the heteroclinic wave orbit we have

c
(−1

2 |u′|2 +H(u, v)
)′ = −c2|u′|2 − αδ

2β2
v(1 − v + βu)(1 − v − βu)2.

Since A = A(u1) = H(1, 0) = 1
6(−1 + α

β2 ), the speed criterion reads

c > 0 ⇐⇒ β2 > α,

c = 0 ⇐⇒ β2 ≤ α.

Hence, for a stationary wave, i.e. c = 0, we have to assume β2 ≤ α. Using
the Lyapunov function we can construct the monotone, but singular (in v)
solution. Let us fix v ≡ 0 on x > 0 and v = Γ−1(u) = 1 − βu on x < 0.
Equation (3.4) requires v∗ = 1 − βu∗, u∗ = u(0) to be a solution of

1 = α(u∗)2(1 + 2v∗) =
α

β2
(1 − v∗)2(1 + 2v∗).

Observe that (1 − v∗)2(1 + 2v∗) decreases strictly monotonically from 1 to
0 for v∗ varying from 0 to 1. Hence, for β2 ≤ α there is a unique solution
v∗ ∈ [0, 1), which in turn defines also u∗. We remark that v∗ → 0 for
α/β2 → 1 and v∗ → 1 for α/β2 → ∞.

4.2 A system by Hosono and Mimura

We study the nonlinearities introduced in [5],

F = u(a− bu− kv), G = v

(
a− bv − ku

1 + ev

)
.

It is shown in [5] with singular perturbation methods that there are slow
waves for 0 < ε < ε0 assuming (A.4) [5, p. 441], namely

k/b > 3 and e� 1. (4.1)
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The latter condition has a geometric interpretation. It ensures that the
function Γ(v) has a maximum which is larger than 1. Hence, the curve
(Γ(v), v) consists of two continuous branches in the region {(u, v) ∈ [0, 1]2}.
One branch is connected to (0, 1) and monotonically increasing, the other
decreases and connects to the axis (u, 0). Thus, there is no continuous path
in the zero level set of g connecting the states (0, 1) and (1, 0) and staying
completely in [0, 1]2. Therefore, a stationary profile (u, v) necessarily has a
jump.

With the help of the Lyapunov function we can provide the precise pa-
rameter regime for stationary waves in the limit system with ε = 0. Thus, we
considerably improve the range of applicability of the singular perturbation
result which relies on the assumption cε = O(ε).

Scaling t, x, u, v we arrive at the form

f = u(1 − u− κv), g = v

(
1 − v − κu

1 + ηv

)

with κ = k
b > 1, η = a

b e > 0.
Now we consider the Lyapunov function. We have Γ(t) = 1

κ(1−t)(1+ηt)
showing that Γ is monotone for η ≤ 1. In this case A(u1) = H(1, 0) where

H(1, 0) =
1
6

(
−1 +

1 + 1
2η + 1

10η
2

κ

)
.

Hence, for η ≤ 1 there holds A(u1) ≥ 0 if and only if k ≤ κ1 := 1+ 1
2η+ 1

10η
2.

Furthermore, there holds u1 = 1 if and only if η > 1 and κ ≤ κ3 :=
(η + 1)2/(4η).

If η > 1 and κ > κ3 we have u1 = κ3/κ < 1 and v1 = (1 − 1/η)/2 > 0.
A direct calculation shows that A(u1) ≥ 0 if and only if

κ ≤ κ2 :=
23η5 + 85η4 + 110η3 + 50η2 − 5η − 7

160η3
.

We remark that κ1 = κ2 = 8/5 for η = 1.
Since κ3 < κ2 for all η > 1 we obtain that there holds A(u1) ≥ 0 if and

only if

κ ≤ κ0 =

{
κ1, η ≤ 1,
κ2, η > 1.

Thus, for any given η > 0, depending on the value of κ > 1, propagating
and standing waves are possible for the limit system (TW).
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Theorem 3.2 yields: For all η > 0 there exist κ0 = κ0(η) > 1 and ε0 > 0
such that for all ε ∈ (0, ε0] and κ ≤ κ0 the unique traveling wave solutions
(uε, vε, cε) connecting (0, 1) with (1, 0) satisfies

|cε| ≤ 2ε. (4.2)

Note, that κ0 → 1 as η0 → 0. Thus, standing waves still exist for small
values of e = b

aη, showing that (4.1) is not optimal. Also for large values of η
the critical κ0 is not linear in η, as suggested by the geometric property of Γ
leaving the unit square [0, 1], cf. κ3 and the condition (ae+b)2/(4bke) > a/b
following lemma 3.1, [5, p. 437]. In fact, it is quadratic in η which is seen
from the formula for κ2, given the weaker condition e2/k > const. We
remark that condition (4.2) is precisely assumption (A.3) on [5, p. 437].

Having verified the assumptions for the singular perturbation approach
we can use their result on the expansion of the speed. Thus, using (4.2), the
speed actually satisfies

lim
ε→0

cε
ε

= −c∗ < 0.

5 Large sets of equilibria

Due to the absence of diffusion in the equation for v we can characterize
stationary solutions of (1.1) by the scalar equation

0 = ∂xxu+ f(u, v),

v(x) = ψ(x)Γ−1(u(x)),

where the function ψ : R → {0, 1} decides whether g vanishes at the point
x ∈ R due to v = 0 or due to u = Γ(v). In order to match the asymp-
totic boundary data we impose u(−∞) = 0, u(+∞) = 1 and ψ(−∞) = 1,
ψ(+∞) = 0. We refer to Figure 2 for a sketch of the qualitative behavior of
a corresponding solution. Recall that the equation above implies an a priori
bound in C1,1(R) for the solution u. For simplicity, we assume that Γ is
monotone.

Theorem 3.1 implies that in the case A = A(u1) ≥ 0 there exists
a unique weak monotone stationary solution (u, v) of (1.1) with v(x) =
χR−(x)Γ−1(u(x)), that is, a solution u of

0 = u′′ + f(u, χR−Γ−1(u)), (5.1)

with u(x) → 0 for x→ −∞ and u(x) → 1 for x→ +∞.
We want to show that in the neighborhood of the monotone front we

can find many non-monotone stationary solutions. This shows that the
monotone front is not asymptotically stable in any Lp-norm, p <∞.
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Lemma 5.1 (Many non-monotone stationary solutions). Assume
A > 0. There exists δ0 > 0 such that for all 0 < δ1 < δ2 < δ0 there exists a
stationary solution of (1.1) with v(x) = χ(x)Γ−1(u), that is, a solution u of

u′′ + f(u, χΓ−1(u)) = 0, (5.2)

where χ is the characteristic function of the set (−∞, 0) ∪ (δ1, δ2).

Proof. We will construct a function

G : R
5 ⊃ Bρ(P ) → R

3, G(δ1, δ2, ū0, ū1, ū2) ∈ R
3,

where P = (0, 0, u∗, u∗, u∗). At P there holds G(P ) = 0. Our aim is to use
the implicit function theorem such that G(δ1, δ2, ū0, ū1, ū2) = 0 implies that
equation (5.2) has a solution u for small δ1, δ2.

We consider the two (i = 0, 1) autonomous equations

u′′ + fi(u) = 0, for

f0(u) := f(u, 0), f1(u) := f(u,Γ−1(u)).

The two equations define two flow maps, Φi
x : (u(0), u′(0)) �→

((Φi
x)1, (Φi

x)2) := (u(x), u′(x)). Given (δ, ū) = (δ1, δ2, ū0, ū1, ū2) we set

p :=
(
−2
∫ ū0

0
f1(s) ds

)1/2

,

which we expect to be the derivative of u in x = 0. We furthermore set

G1(δ, ū) := (Φ0
δ1)1(ū0, p) − ū1,

G2(δ, ū) := (Φ1
δ2−δ1)1 ◦ Φ0

δ1(ū0, p) − ū2,

G3(δ, ū) :=
1
2
[
(Φ1

δ2−δ1)2 ◦ Φ0
δ1(ū0, p)

]2 − ∫ 1

(Φ1
δ2−δ1

)1◦Φ0
δ1

(ū0,p)
f0(s) ds.

By definition, G(P ) = 0. If we find a point (δ, ū) with G(δ, ū) = 0, we can
construct a solution to (5.2) by gluing together the flows above. It remains
to calculate the derivatives of G in the point P .

∂ūG1(P ) · 〈w̄0, w̄1, w̄2〉 = w̄0 − w̄1,

∂ūG2(P ) · 〈w̄0, w̄1, w̄2〉 = w̄0 − w̄2,

∂ūG3(P ) · 〈w̄0, w̄1, w̄2〉 = p · ∂ū0p · w̄0 + f0(u∗) · w̄0

= ∂ū0

1
2
|p|2 + f0(u∗) · w̄0

= (−f1(u∗) + f0(u∗)) · w̄0.

By f1(u∗) < f0(u∗) the 3 × 3-matrix ∂ūG(P ) is invertible. The implicit
function theorem can be applied and provides the solutions.
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Note that with the same proof one can construct solutions for any finite
number of interfaces.
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