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Abstract

The adaptive cross approximation method can be used to efficiently approximate stiffness
matrices arising from boundary element applications by hierarchical matrices. In this article an
approximative LU decomposition in the same format is presented which can be used for pre-
conditioning the resulting coefficient matrices efficiently. If the LU decomposition is computed
with high precision, it may even be used as a direct yet efficient solver.
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1 Introduction

We consider Fredholm integral equations λu+ Ku = f , λ ∈ R, for the unknown function u, where
the integral operator K is defined by

(Ku)(x) =
∫

Γ
κ(x, y)u(y) dsy, x ∈ R

3, (1.1)

with a kernel function κ : R
3 × Γ → R on a manifold Γ ⊂ R

3. Note that the results of this article
can easily be extended to volume integrals. It can be shown (cf. [8]) that this kind of integral
equation arises for example from any direct boundary integral method applied to

Lu = 0 in Ω
Rγu = g on Γ := ∂Ω,

where L is an elliptic partial differential operator of order 2m and R is an m × (2m) matrix of
tangential derivatives applied to the Cauchy vector γu = [u, ∂nu, . . . , ∂

2m−1
n u]. As a consequence

a differential equation on a domain Ω is reformulated as an integral equation on its boundary Γ.
The advantage of applying the finite element method to this boundary integral equation, i.e., the
advantage of the so-called boundary element method (BEM) over the usual finite element method,
is that a discretisation of the volume Ω is avoided. Hence, the number of unknowns is reduced
due to the reduction of the dimensionality. However, if K is discretised using a finite dimensional
ansatz space Vh := span{ϕi : i ∈ I}, where I := {1, . . . , n}, the arising stiffness matrix K ∈ R

n×n

with entries
Kij :=

∫
Γ

∫
Γ
ϕi(x)κ(x, y)ϕj(y) dsx dsy, i, j = 1, . . . , n, (1.2)
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is expected to be dense, since the support of the kernel κ is in general non-local. Since the
introduction of data-sparse representations this disadvantage of the boundary element method has
been overcome.

An important property that all data-sparse representations are based on is the pseudo-locality
property of elliptic operators. Since K is an elliptic pseudo-differential operator, its kernel function
κ fulfils the Calderón-Zygmund property, which states that κ is smooth everywhere on Γ × Γ
apart from the diagonal {(x, x) : x ∈ Γ}. The Calderón-Zygmund property is sometimes called
asymptotical smoothness, i.e., there are constants cas1 , c

as
2 > 0 and a real number s ≥ 0 such that for

all multi-indices α ∈ N
3
0 it holds that

|∂α
y κ(x, y)| ≤ cas1 p! (c

as
2 |x− y|)−s−p, p = |α|, (1.3)

where as usual we denote by ∂α
y the partial derivative

∂α
y =

(
∂

∂y1

)α1
(

∂

∂y2

)α2
(

∂

∂y3

)α3

.

Note that strongly singular kernels are not excluded. However, then the integral in (1.1) has to be
defined by an appropriate regularisation.

If the boundary integral method is applied for example to Laplace’s equation, κ is either the
kernel of the single layer, the double layer or the hypersingular operator

κV (x, y) :=
1
4π

1
|x− y| , κK(x, y) :=

∂

∂ny
κV (x, y) and κD(x, y) :=

∂

∂nx

∂

∂ny
κV (x, y).

Here, nx denotes the outer normal unit vector to the surface Γ at x ∈ Γ. It is important to remark
that neither the smoothness of κ with respect to x nor smoothness properties of the surface Γ are
necessary for the methods treated in this article.

The algorithmic complexity of computing and storing the dense matrixK from (1.2) is quadratic
in the number of degrees of freedom. Therefore, different approaches have been introduced to avoid
dense matrices: for rotational invariant geometries, the matrixK is likely to have Toeplitz structure,
which can be exploited (cf. [24]) by algorithms based on the fast Fourier transformation. If the
underlying geometry can be described by a small number of smooth maps, wavelet techniques can
be used for compressing the resulting matrices, see [11]. Another class of methods exploits the fact
that the kernel function κ can locally be approximated by degenerate functions, i.e.,

κ(x, y) ≈
k∑

i=1

ui(x)vi(y), (1.4)

where k is a small number. This idea originating from the fast multipole method [14] and panel
clustering [19] today is looked at more from an algebraic point of view, since on the discrete level
(1.4) means that appropriate blocks of the matrix K can be approximated by matrices of low rank.
This gave rise to the mosaic-skeleton method [27] and hierarchical matrices (H-matrices) [16, 17, 12].
By the latter it is not only possible to (approximatively) store dense matrices and multiply them
by a vector with almost linear complexity, they also provide the usual (approximative) operations
like matrix addition, multiplication and inversion with almost the same complexity. The basis for
the efficiency of this class of matrices is a hierarchical partition of the matrix into blocks and the
low-rank representation of each block. Instead of generating these low-rank approximants from
degenerate kernel approximations, e.g, by the multipole expansion or interpolation, it is more
efficient and convenient to use the adaptive cross approximation (ACA) algorithm [1, 4], which
finds such low-rank approximants from few of the original matrix entries.
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After building an H-matrix approximant K̃ of K the discrete system

(λM + K̃)x = b (1.5)

has to be solved for a given right-hand side b, where M ∈ R
n×n is the mass matrix with entries

Mij =
∫

Γ

∫
Γ
ϕi(x)ϕj(x) dsx, i, j = 1, . . . , n.

M is sparse and can therefore be easily treated. A direct method for the solution of (1.5) like
Gaussian elimination would require a computational complexity cubic in the size n of the matrix
K. Iterative solvers that are based on matrix-vector multiplication, e.g., CG or GMRES, can exploit
the efficiency of the H-matrix-vector multiplication. However, the number of iterative steps can be
prohibitively large, since it depends on the condition number of λM + K̃. In order to improve the
convergence rate a preconditioner is used. A left preconditioner is a regular and easily invertible
matrix C ≈ λM + K̃ in the sense that the condition number of C−1(λM + K̃) is bounded by a
constant, where instead of (1.5) one solves the linear system

C−1(λM + K̃)x = C−1b.

If C is used as a right preconditioner (1.5) is replaced by

(λM + K̃)C−1x̃ = b.

In the latter case the solution x can be computed from Cx = x̃. Hence, in addition to the matrix-
vector multiplications needed during the iteration, in each step a linear system with coefficient
matrix C has to be solved. In this article only right preconditioners are considered. However, a
left preconditioner can be defined analogously.

There are many different approaches to obtain a preconditioner C. In a recently published
idea [22] an algebraic multigrid procedure is constructed for boundary element matrices. Another
possibility is based on the mapping properties of the operator only, see [26]. Let A : V → V ′ be a
V -coercive and B : V ′ → V a V ′-coercive operator. Then A and B−1 : V → V ′ both are V -coercive,
i.e., there are constants αi, βi > 0, i = 1, 2, such that for all v ∈ V

α1‖v‖2
V ≤ (Av, v)L2 ≤ α2‖v‖2

V and β1‖v‖2
V ≤ (B−1v, v)L2 ≤ β2‖v‖2

V .

From this it already follows that A and B−1 are spectrally equivalent, i.e,

α1

β2
(B−1v, v) ≤ (Av, v) ≤ α2

β1
(B−1v, v) for all v ∈ V.

Hence, for preconditioning the single layer potential operator of the Laplacian for instance the
hypersingular operator can be used. Since both operators can be approximated using ACA, one
could easily obtain an efficient preconditioner. Although the idea of using operators with inverse
mapping properties is attractive, the preconditioning effect can only be observed asymptotically,
i.e., for fixed problem sizes n the condition number might still be large.

The approach we are going to pursue in this article is to use an approximative LU decomposition

C := LU ≈ λM + K̃,

where the two triangular factors L and U are stored in H-matrix format. Depending on the
prescribed accuracy of the LU decomposition the condition number can be controlled also for fixed
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problem sizes. A constant accuracy will be sufficient to guarantee spectral equivalence. The arising
equations with coefficient matrix C can then be solved by forward/backward substitution with the
same complexity as the H-matrix-vector multiplication. The setup of the factors L and U can be
done with complexity O(n log2 n). Since constants are much smaller compared with the complexity
of building K̃, the time for decomposing K̃ can be neglected. This is especially true, if the LU
decomposition is computed with low precision.

The rest of this article is organised as follows. Section 2 gives a brief review of the structure of
H-matrices. In Section 3 we explain in detail how K is approximated by H-matrices using ACA.
We present a new strategy to choose the first cross in the ACA algorithm. This strategy improves
the accuracy of the first steps of ACA. Based on the approximative H-arithmetic in Section 4 an
algorithm for computing an LU decomposition in H-matrix format is introduced. Based on this
decomposition we present a black-box preconditioner for boundary element stiffness matrices. If
the LU decomposition is computed with high precision it may also be used as an efficient direct
solver. Furthermore, we discuss how the hierarchical forward/backward substitution should be
implemented. The last Section 5 is devoted to numerical tests for typical academic as well as
realistic problems. It will be seen that the proposed preconditioner has almost linear complexity
and leads to a bounded number of iterations. Furthermore, we will apply our preconditioner to an
extremely ill-conditioned boundary element stiffness matrix of an asymptotically well-conditioned
operator.

2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally introduced by Hack-
busch et al. [16, 17]. We will describe the two principles on which the efficiency of H-matrices is
based. These are the hierarchical partitioning of the matrix into blocks and the blockwise restriction
to low-rank matrices. These principles were also used in the mosaic-skeleton method [27].

In contrast to other efficient methods like wavelet techniques [7, 9, 10], fast multipole and panel
clustering, see [14], [19] and the references therein, H-matrices concentrate on the matrix-level.
They are purely algebraic in the sense that once the H-matrix approximant is built, no further
information about the underlying problem is needed.

H-matrices mainly aim at non-local formulations of elliptic boundary value problems. The
latter usually leads to integral operators with kernel functions κ(x, y) that share the same kind
of algebraic singularity |x − y|−s, s > 0. Hence, approximations of type (1.4) cannot be expected
unless x and y are well separated from each other. This gives a condition on the pairs of domains
on which κ can be approximated.

2.1 Admissibility condition

Let b = t× s ⊂ I × J , I := {1, . . . , n1}, J := {1, . . . , n2}, be the indices of a subblock of A ∈ R
I×J

with entries
aij = a(ψj , ϕi), i ∈ t, j ∈ s, (2.1)

where ϕi and ψj are ansatz and trial functions with supports Xi := supp ϕi and Yj := supp ψj ,
and a is a bilinear form which also depends linearly on the kernel function κ. We assume that
the supports Xi and Yj are local. Galerkin stiffness matrices are of the form (2.1). If formally
delta distributions are used as ansatz and trial functions also collocation and Nyström matrices are
enclosed.

The existence of low-rank approximants on subblocks of A is equivalent to the existence of
degenerate approximations of κ on a corresponding pair of subdomains, since for each subblock
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b = t × s the kernel κ is evaluated only on the Cartesian product Xt × Ys of the supports of the
basis functions ϕi, i ∈ t, and ψj , j ∈ s, where

Xt :=
⋃
i∈t

Xi, Ys :=
⋃
j∈s

Yj.

In the field of elliptic partial differential equations the following condition on b = t× s has proved
useful:

min{diam(Xt), diam(Ys)} ≤ η dist(Xt, Ys), (2.2)

where η > 0 is a given real number. This so-called admissibility condition will be the criterion for
deciding whether b belongs to the partition we are going to construct.

If (2.2) holds, the Green function of any elliptic operator even with non-smooth coefficients can
be approximated degenerately on Xt × Ys, see [5, 3] for a proof.

Remark 2.1 In the case of unstructured grids the computation of the distance in (2.2) between
two supports Xt and Ys is too costly. Therefore, for practical purposes the supports are enclosed
into sets of a simpler structure, e.g. boxes or spheres.

In order to exploit the fact that there is a partition P such that on each contained block a
given matrix can be approximated by a matrix of low rank, we first have to find P from the set
of possible subsets of I × J . This set however is too large to be searched for a partition that will
satisfy our needs. Therefore, the set of subsets b = t×s is restricted to those which consist of index
sets t and s, the so-called clusters, stemming from cluster trees TI and TJ , respectively. We will
see that with this restriction still competitive partitions can be computed with small effort.

2.2 The cluster tree

A tree TI satisfying the following conditions is called a cluster tree for I:

(i) I is the root of TI

(ii) if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI , so that t = t1 ∪ t2.
The set of sons of t ∈ TI is denoted by S(t), while L(TI) stands for the set of leaves of the tree TI .

A cluster tree is usually generated by recursive subdivision of I. For practical purposes the
recursion should be stopped if a certain cardinality nmin of the clusters is reached, rather than
subdividing the clusters until only one index is left. The depth of TI will be denoted by L. For
reasonable cluster trees one would always expect L = O(log |I|). A strategy for subdividing I
recursively leading to a cluster tree with clusters of minimal extension is based on the principle
component analysis, see [1]. In the same article the complexity of building the cluster tree in the
case of quasi-uniform grids is estimated as O(|I| log |I|).

Remark 2.2 Sometimes the number of sons in the previous definition of a cluster tree is not
restricted to two. However, this generalization has not proved useful in practice.

2.3 The block-cluster tree

Based on cluster trees TI and TJ which contain hierarchies of partitions of I and J , respectively,
we are able to construct the so called block-cluster tree TI×J describing a hierarchy of partitions of
I × J by the following rule:
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procedure build block-cluster tree(t× s)
begin

if t× s does not satisfy (2.2) and t 	∈ L(TI) and s 	∈ L(TJ) then begin
S(t× s) := {t′ × s′ : t′ ∈ S(t), s′ ∈ S(s)}
for t′ × s′ ∈ S(t× s) do build block-cluster tree(t′ × s′)

end
else S(t× s) := ∅

end

Applying build block-cluster tree to I × J we obtain a cluster tree for the index set I × J . The
set of leaves P := L(TI×J) is a partition of I × J with blocks b = t× s ∈ P either satisfying (2.2)
or consisting of clusters t and s one of which is a leaf in TI or TJ , respectively, i.e., #t ≤ nmin or
#s ≤ nmin. The complexity of building the block-cluster tree in the case of quasi-uniform grids
can be estimated as O(η−2n log n), where n = max{|I|, |J |}, cf. [1].

For a given partition P we are now in a position to define the set of H-matrices with blockwise
rank k

H(P, k) := {M ∈ R
I×J : rankMb ≤ k for all b ∈ P},

where by Mb we denote the restriction of M to block b. Note that H(P, k) is not a linear space,
since in general the sum of two rank-k matrices exceeds rank k.

Remark 2.3 For a block B ∈ R
t×s the low-rank representation B = UV T , U ∈ R

t×k, V ∈ R
s×k,

is only advantageous compared with the entrywise representation, if k(|s|+ |t|) < |s| |t|. For the sake
of simplicity in this article we will however assume that each block has the low-rank representation.
Employing the entrywise representation for appropriate blocks will accelerate the algorithms.

2.4 Storage and arithmetical operations

The cost of multiplying an H-matrix M ∈ H(P, k) or its transposed MT by a vector x is inherited
from the blockwise matrix-vector multiplication:

Mx =
∑

t×s∈P

Mt×sxs and MTx =
∑

t×s∈P

(Mt×s)Txt.

Since each block t× s has the representation Mt×s = UV T , U ∈ R
t×k, V ∈ R

s×k (see Remark 2.3),
O(k(|t| + |s|)) units of memory are needed to store Mt×s and the matrix-vector products

Mt×sxs = UV Txs and (Mt×s)Txt = V UTxt

can be done with O(k(|t| + |s|)) operations. Exploiting the hierarchical structure of M it can
therefore be shown that both storing M and multiplying M and MT by a vector has complexity
O(η−2kn log n), where n = max{|I|, |J |}. For a rigorous analysis the reader is referred to [1].
Therefore, H-matrices are well suited for iterative schemes such as Krylov subspace methods.

In addition to the fast matrix-vector multiplication H-matrices also provide approximative
versions of the usual matrix operations such as addition and multiplication with almost linear
complexity, see [12]. These operations can only be carried out approximatively since H(TI×J , k) is
not a linear space. Hence, the result of the arithmetical operations A + B and A · B have to be
projected into the set H(TI×J , k

′), where k′ ≤ 2k is the smallest index such that the projection
lies inside an ε-neighbourhood of the exact result. Under assumptions that are valid for elliptic
problems the hierarchical addition has complexity O(k2n log n). For multiplying two H-matrices
O(k2n log2 n) operations are needed. These fast H-operations will be used extensively to compute
hierarchical LU decompositions.
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3 Discretisation using ACA

We have seen in the previous section that H-matrices can be handled efficiently. In this section
we concentrate on a single block b = t × s ∈ P satisfying (2.2) in the rows t and columns s of a
matrix A of the form (1.2). We assume that the kernel function κ is asymptotically smooth (see
(1.3)). Under these assumptions it is possible to devise an algorithm which generates a low-rank
approximant S of the subblock Ab. For all blocks b ∈ P that do not satisfy (2.2) the entries of Ab

are stored without approximation.
In the following we present the ACA (adaptive cross approximation) algorithm [1, 4]. The idea

of this algorithm is as follows. Starting from an initial matrix R0 := At×s ∈ R
t×s in the k-th step

find a nonzero pivot in Rk, say (ik, jk), and subtract a scaled outer product of the ik-th row and
the jk-th column:

Rk+1 = Rk − [(Rk)ikjk
]−1(Rk)t,jk

(Rk)ik ,s. (3.1)

The pivot (ik, jk) is chosen to be the maximum element in modulus of the ik-th row, i.e.,

|(Rk−1)ikjk
| = max

j=1,...,n
|(Rk−1)ikj|. (3.2)

Note that in this formulation of ACA only the choice of jk is specified through (3.2), since only this
condition is necessary for the convergence proof of ACA. Hence, ACA allows many implementations
differing by the choice of ik. In the following Algorithm 3.1 the index ik, k > 1, is chosen to be the
maximum entry in modulus of the jk−1-th column of Rk−2.

What remains is the choice of the row i1 to start from. Due to the assumption (1.3) each kernel
function κ(x, y) is almost constant with respect to y on Xt × Ys. Hence, if the expression

max
y∈Xt

|κ(x, y) − κ(x, z)| = max
y∈Xt

|
∫ z

y
∂yκ(x, ξ) dξ| ≤ cmax

y∈Xt

|y − z|

appearing in the remainder after one step of ACA is to be minimized with respect to z, one should
choose z to be the Chebyshev center of Xt. Since the Chebyshev center of a set is quite complicated
to compute, we use the center of mass mt of Xt instead. Hence, from these arguments it seems
promising to choose i1 so that the center zi1 of Xi1 is closest to mt. In Figure 1 we compare this
new strategy with the old one in which i1 was chosen so that zi1 is closest to the center of Ys. In
addition Figure 1 shows the accuracy of approximations with find rank obtained from the multipole
expansion

1
|x|

∞∑
k=0

k∑
�=−k

Y �
k (x̂)Y −�

k (ŷ)
1

2k + 1

( |y|
|x|

)k

, where x̂ =
x

|x| , ŷ =
y

|y| with |x| > |y|,

and from the singular value decomposition applied to an admissible matrix block. The first k
singular triplets give provably the best accuracy among all rank-k approximants. The influence of
then new strategy on the quality of the approximation can be realized in the first four steps. In
this part the new version gives almost optimal approximation. For all other steps the old and the
new version behave almost the same.

Since in the k-th step only the entries in the jk-th column and the ik-th row of Rk are used
to compute Rk+1, there is no need to calculate the whole matrix Rk. Taking advantage of this,
the following Algorithm 3.1 is an efficient reformulation of (3.1). Note that the vectors uk and ṽk

coincide with (Rk−1)t,jk
and (Rk−1)ik,s, respectively.
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Figure 1: Accuracy of different approximants

Let k = 1; Z = ∅ { in Z the vanishing rows of Rk are collected }
repeat

if k > 1 then ik := argmaxi�∈Z |(uk−1)i|
else choose i1 so that zi1 is closest to the center of Xt

ṽk := aik,s

for 
 = 1, . . . , k − 1 do ṽk := ṽk − (u�)ik
v�

Z := Z ∪ {ik}
if ṽk does not vanish then

jk := argmaxj=1,...,n|(ṽk)j |; vk := (ṽk)−1
jk
ṽk

uk := at,jk

for 
 = 1, . . . , k − 1 do uk := uk − (v�)jk
u�.

k := k + 1
endif

until the stopping criterion (3.3) is fulfilled or Z = t

Algorithm 3.1: Adaptive Cross Approximation

The matrix Sk :=
∑k

�=1 u�v
T
� is used as an approximant to Ab. Obviously, the rank of Sk is bounded

by k. Let ε > 0 be given. The following condition on k

‖uk+1‖2 ‖vk+1‖2 ≤ ε(1 − η)
1 + ε

‖Sk‖F (3.3)

can be used as a stopping criterion, see [6]. Here, ‖Sk‖F denotes the Frobenius norm of Sk, which
can be computed with O(k(|t|+ |s|)) operations. Therefore, the amount of numerical work required
by Algorithm 3.1 is of the order k2(|t|+ |s|). Hence, the cost of building an H-matrix approximant
with accuracy ε > 0 using ACA is of the order n| log ε|4 log n, cf. [4].

A major advantage of this algorithm is that it adapts itself to the actual matrix properties,
whereas the rank for instance in the fast multipole method is chosen beforehand and is hence often
higher than necessary, compare Figure 1. The most important advantage of ACA, however, is a
practical one. Since it is based on the matrix entries, ACA can be built on top of existing computer
codes without changes. For applications see for instance [21], [22]. In [6] ACA is used to solve
boundary integral equations in parallel.

Let p ∈ N and np =
(d+p

d

)
be the dimension of the space of polynomials in d variables of degree

at most p. Then the following theorem gives a bound on the remainder Rk of the approximation.
For a proof see [4].
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Theorem 3.1 Let t ⊂ I, s ⊂ J and let Xt, Ys fulfil condition (2.2). Furthermore, let κ be
asymptotically smooth. In the case of collocation matrices

aij =
∫

Γ
κ(x, yi)ϕj(x) dsx, i ∈ t, j ∈ s

it holds that
|(Rnp)ij| ≤ cdistg(Xt, Ys) ηp, 0 < η <

1
4
√
d
. (3.4)

Analogous results can be obtained for the Galerkin and the Nyström method, see [2, 1]. Note that
the condition η < (4

√
d)−1 in (3.4) does not have to be satisfied in practice. Typically, η should be

chosen 1.
The last theorem gives a bound on entries which have never been inspected. This seems impos-

sible at first glance. The smoothness assumption (1.3) on the kernel function κ however provides a
relation between the computed and neglected rows and columns in each block.

3.1 Recompressing H-matrices

Although the quality of the approximant resulting from ACA is better than the quality of an
approximant generated from kernel approximation, it can still be improved. Note that the major
singular triplets will give the best approximation, see also Figure 1. However, for the computation
of the singular value decomposition (SVD) the whole matrix block has to be computed beforehand.
Since from ACA we already have an approximant UV T to the entries Ab, we can now generate
the SVD of the approximant instead of Ab by computing the QR decompositions U = QURU and
V = QVRV of U ∈ R

t×k and V ∈ R
s×k, respectively. The SVD of Ab can then be reduced to the

smaller SVD Q1ΣQT
2 of RUR

T
V ∈ R

k×k, since

UV T = QURUR
T
VQ

T
V = QUQ1Σ(QVQ2)T (3.5)

is a singular value decomposition of UV T .
In addition to recompressing each block one can also improve the block structure of the H-

matrix. Non-admissible blocks might be regarded as admissible, because the admissibility condition
(2.2) is sufficient but not necessary. This was first observed in [18] under the term weak admissibility.

Rather than replacing the admissibility condition by another (improved) sufficient condition,
one can reduce the storage and computational effort by inspecting the matrix directly, cf. [13]:
If all four sons of a block b are leaves in the block cluster tree TI×J , one can try to unify them.
The singular value decomposition of the union can be computed efficiently using a similar idea as
(3.5). From the singular values one can obtain the rank required for a prescribed accuracy of the
approximant. If the cost of the approximant of the union is less than the sum of the costs of the
subblocks, the four blocks in the H-matrix are replaced by one. This idea is then applied to the
new leaves in the block cluster tree. Obviously, the accuracy of the approximant is kept during this
procedure.

The combination of the previous two recompression techniques is of particular importance if
the accuracy of the approximant is to be reduced. This happens for instance when computing a
preconditioner, which does not require high precision.

Note that to apply the previous idea to an H-matrix approximant, it is not necessary that it has
been computed beforehand. If memory consumption is an issue, the computation of the H-matrix
approximant and the recompression procedure should be folded. It is obvious how this can be done.
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4 Preconditioning in the H-matrix format

The condition number of a Galerkin stiffness matrix arising from a pseudo-differential operator

K : Hα(Γ) → H−α(Γ)

can be shown to be of the order h−2|α|, where h := mini=1,...,n diam(Xi) is the discretisation
parameter. Hence, for α 	= 0 the coefficient matrices are ill-conditioned if the number of unknowns
n is large. In addition, a large condition number can result from the discretisation of the geometry
even for small n, see Section 5. Therefore, if a linear system Ax = b is to be solved iteratively, one
has to incorporate a preconditioner C, since the convergence rate usually depends significantly on
the condition number of the coefficient matrix.

In this article we propose to use C = LU , i.e.,

C−1 = (LU)−1 = U−1L−1,

where L and U are lower and upper triangular H-matrices such that A ≈ LU is an approximative
LU decomposition. If A is symmetric positive definite, C = LLT is used as a preconditioner, where
L is now the lower triangular H-matrix from the approximative Cholesky decomposition A ≈ LLT .
Hence, during an iterative scheme like GMRES in addition to multiplications of A and AT by a
vector, forward/backward substitutions have to be applied when multiplying with C−1.

Note that in order to compute a spectrally equivalent preconditioner it is not necessary to
compute the LU decomposition with high precision. Assume that we have computed a matrix C
such that

‖In −AC−1‖2 ≤ δ < 1. (4.1)

Since ‖AC−1‖2 ≤ 1 + ‖In −AC−1‖2 ≤ 1 + δ and since

‖CA−1‖2 ≤
∞∑

j=0

‖In −AC−1‖2 ≤ 1
1 − δ

due to the Neumann series, we are led to

cond2(AC−1) ≤ 1 + δ

1 − δ
. (4.2)

Hence, in order to obtain a spectrally equivalent preconditioner, the accuracy δ in (4.1) can be
chosen independently of n, say δ = 0.1.

In the following subsection it will be explained in detail how the factors L and U can be com-
puted with almost linear complexity as well as how the forward/backward substitutions should be
implemented. Hence, the hierarchical LU decomposition provides a spectrally equivalent precon-
ditioner with almost linear complexity.

4.1 Hierarchical LU decomposition

Using the H-matrix arithmetic it is possible to generate an LU decomposition of an H-matrix
A ∈ H(P ) with any prescribed accuracy δ, i.e., a lower triangular matrix L ∈ H(P ) and an upper
triangular matrix U ∈ H(P ) are to be found such that

‖In −A(LU)−1‖2 < δ.
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As we have seen in the previous section for a spectrally equivalent preconditioner it is sufficient to
use δ ∼ 1. Hence, compared with building A the LU decomposition can be computed with lower
precision. For higher efficiency A should therefore be copied and treated by the recompression
procedure (see Section 3.1) with accuracy δ. The extra memory needed to hold the factors L and
U is then typically much smaller than the memory needed for the stiffness matrix A. If however the
H-LU decomposition is to be used as a direct solver, see Section 4.2, then for both its computation
and its decomposition the same accuracy δ = ε has to be used.

In order to define the H-LU decomposition we exploit the hierarchical block structure of a block
(t, t) ∈ TI×I \ L(TI×I):

Att =
[
At1t1 At1t2

At2t1 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Ut1t1 Ut1t2

Ut2t2

]
,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block Att is reduced
to the following four problems on the leaves of (t, t):

(i) Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 .

(ii) Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 .

(iii) Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 .

(iv) Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 − Lt2t1Ut1t2 .

If a block (t, t) ∈ L(TI×I) is a leaf, the usual pivoted LU decomposition is employed. For (i) and
(iv) two LU decompositions of half the size have to be computed. In oder to solve (ii), i.e., solve
LttBts = Ats for Bts, where Ltt is a lower triangular matrix, we use a recursive block forward
substitution: If the block t× s is not a leaf in TI×I , from the decompositions of the blocks Ats, Bts

and Ltt into their subblocks
[
Lt1t1

Lt2t1 Lt2t2

] [
Bt1s1 Bt1s2

Bt2s1 Bt2s2

]
=

[
At1s1 At1s2

At2s1 At2s2

]

one observes that Bts can be found from the following equations

Lt1t1Bt1s1 = At1s1

Lt1t1Bt1s2 = At1s2

Lt2t2Bt2s1 = At2s1 − Lt2t1Bt1s1

Lt2t2Bt2s2 = At2s2 − Lt2t1Bt1s2,

which are again of type (ii). If on the other hand t× s is a leaf, the usual forward substitution is
applied. Similarly, one can solve (iii) by a recursive block backward substitution.

In order to obtain an LU decomposition with almost linear complexity we take advantage of
the H-matrix arithmetic with truncation accuracy δ instead of the exact matrix operations. Hence,
when computing the LU decomposition the accuracy of storing and of each arithmetical operation
is δ. A result [20] on the stability analysis of the LU decomposition states that the product LU is
backward stable, i.e.,

‖A− LU‖2 < cρδ‖A‖2,

where

ρ :=
maxij |uij |
maxi,j |aij | ,

11



is the so-called growth factor, which is bounded in practice. Hence, the accuracy of LU will be
of order δ. Since the H-LU decomposition is mainly determined by the H-matrix multiplication,
its complexity can be estimated to be of order n| log δ|4 log2 n. Thus, for the choice δ ∼ 1 we
obtain a preconditioner with complexity O(n log2 n), while building the approximant using ACA
has complexity O(n| log ε|4 log n). The LU decomposition of H-matrices of a format that is too
restrictive for our needs has already been used in [23].

In the case of positive definite matrices A we are also able to define an H-version of the Cholesky
decomposition of a block Att, t ∈ TI×I \ L(TI×I):

Att =
[
At1t1 At1t2

AT
t1t2 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Lt1t1

Lt2t1 Lt2t2

]T

.

This factorisation is recursively computed by

Lt1t1L
T
t1t1 = At1t1

Lt1t1L
T
t2t1 = At1t2

Lt2t2L
T
t2t2 = At2t2 − Lt2t1L

T
t2t1

using the usual Cholesky decomposition on the leaves. The equation Lt1t1L
T
t2t1 = At1t2 is solved

for Lt2t1 in a similar way as Ut1t2 has previously been obtained in the LU decomposition.
After the LU decomposition has been computed the solution of Ax = b can be found by

forward/backward substitution: Ly = b and Ux = y. Since L and U are H-matrices yt, t ∈
TI \ L(TI), can be recursively computed by solving the following systems for yt1 and yt2

Lt1t1yt1 = bt1 and Lt2t2yt2 = bt2 − Lt2t1yt1 .

If t ∈ L(TI) is a leaf, a usual triangular solver is used. The backward substitution can be done
analogously. The complexity of this forward/backward substitution is determined by the complexity
of the hierarchical matrix-vector multiplication, which is O(n log n) for δ ∼ 1.

The computed H-LU decomposition may be looked at as an incomplete LU decomposition.
Instead of the sparsity pattern in the case of the H-LU preconditioner the decomposition of the
original matrix into subblocks is kept.

4.2 Direct solution

Since both generating the LU decomposition and the forward/backward substitution are efficient
H-operations, one can equally use the H-LU decomposition as a direct solver. In this case the
precision δ which the LU decomposition is generated with has to be of the same order as the
accuracy ε of the approximant A. In this case no extra memory is needed, since the stiffness matrix
A can be overwritten by the two factors L and U . The solution x is then given by x := U−1L−1b
without any iterative process. The disadvantage of this approach is that the time for setting up the
two factors L and U has complexity O(n| log ε|4 log2 n). Although the complexity estimate shows
a logarithm more than the complexity estimate for building the approximant, it will be seen in the
numerical experiments that the actual computational times are much lower. Once the two factors
are computed, the system can be solved with O(n| log ε|4 log n) operations, such that if Ax = b is
to be solved for many right-hand sides the overall complexity of this approach might be less than
an iterative solution using the LU preconditioner.

12



Figure 2: first geometry Figure 3: second geometry

5 Numerical examples

In this section we present numerical results for the algorithms proposed in this article. In the first
test we apply the preconditioner to the inner Dirichlet problem of the Laplacian in R

3. For the
introduced LU decomposition we compare iterative solution with direct solution. The second test
stems from real applications. Here, the Neumann problem is investigated. Although the double
layer potential operator is asymptotically well-conditioned, the coefficient matrix is ill-conditioned
even for a small problem size. All tests were computed on a dual Intel Xeon 2.666 GHz system1.

5.1 Application: Inner Dirichlet Problem

In this section we are going to test Algorithm 3.1 on the boundary integral formulation of the inner
Dirichlet problem

∆u = 0 in Ω (5.1a)
u = g on Γ := ∂Ω (5.1b)

for the Laplacian in three dimensions. The boundary Γ ⊂ R
3, which was generated by NETGEN

[25], is shown in Figure 2.
By Greens’ formula and jump relations we obtain the following integral formulation of (5.1)

1
2
u+ Ku = V(∂nu), (5.2)

where the single layer potential operator V : H−1/2(Γ) → H1/2(Γ) and the double layer potential
operator K : H1/2(Γ) → H1/2(Γ) are defined by

(Vu)(x) =
∫

Γ
s(x, y)u(y) dsy and (Ku)(x) =

∫
Γ
∂nys(x, y)u(y) dsy,

respectively. The kernel function s appearing under the last integrals is the fundamental solution
s(x, y) := (4π|x − y|)−1 of the Laplacian in three dimensions. The single layer potential operator
is self adjoint with respect to (·, ·)L2(Γ) and is coercive, i.e.,

(Vu, u)L2 ≥ c‖u‖H−1/2 for all u ∈ H−1/2(Γ).
1The H-matrix library used is available under http://www.mathematik.uni-leipzig.de/∼bebendorf/AHMED.html
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Since the Dirichlet data u = g is given on the boundary Γ, from (5.2) we obtain the following
equation for the unknown v := ∂nu:

Vv = (
1
2
I + K)g.

A Galerkin discretisation with piecewise constants ϕi, i = 1, . . . , n, and piecewise linears ψi, i =
1, . . . , n�, leads to the following linear system of equations

Ax = b, b = (
1
2
M +B)g̃

where for i = 1, . . . , n

aij = (Vϕj , ϕi), j = 1, . . . , n and bij = (Kψj , ϕi), mij = (ψj , ϕi), j = 1, . . . , n�

and g̃ ∈ R
n� is the vector minimizing

‖g −
n�∑
i=1

g̃iψi‖L2(Γ).

5.1.1 Building the H-matrix approximants

In the first set of numerical tests we approximate the matrices A and B of the single and double
layer operator using ACA (see Algorithm 3.1) with relative accuracy ε = 10−4. Additionally the
techniques from Section 3.1 were used to improve the compression rate. In all tests a minimal
blocksize nmin = 10 was chosen.

Since A is coercive its Galerkin stiffness matrix A is positive definite. Under sufficiently small
perturbations such as the approximation error caused by ACA this property is preserved. Hence,
in contrast to the H-matrix approximant BH to B we may only generate the upper triangular part
of the approximant AH to A.

The same operator is tested for two different discretisations of the surface from Figure 2. The
first discretisation has n = 28288 degrees of freedom, while for the other n is 113152. Note that
storing the single layer matrix entrywise without approximation would need 3052 MB in the first
case and 48841 MB in the second. The matrix B of the double layer operator is a matrix of
dimension 28288 × 14146 in the first case and 113152× 56578 in the second. Hence, the amount of
storage to hold B entrywise would be 3053 MB and 48843 MB, respectively.

In the following table the time for building and the memory consumption of AH and BH for
different admissibility parameters η are shown.

n = 28288 n = 113152
single layer double layer single layer double layer

η MB time MB time MB time MB time
0.6 76 132 s 154 772 s 378 698 s 756 3972 s
0.8 78 99 s 156 596 s 391 497 s 765 2971 s
1.0 83 79 s 164 491 s 422 397 s 807 2408 s
1.2 88 71 s 172 448 s 458 353 s 860 2195 s

We observe that for lower η the approximant needs less memory but takes more time for its
computation. Since we have not used the most elaborate integration routines, the CPU times for
building the approximants could be easily reduced, if faster routines were employed.
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5.1.2 Computing the H-LU decomposition

After the single layer potential matrix AH has been built in H-matrix format we recompress a
copy of it to a prescribed accuracy δ and compute the hierarchical Cholesky decomposition (see
Section 4.1) with precision δ. Depending on δ this decomposition will then either be used as a
preconditioner or for direct solution. If it is to be used as a direct solver we use δ = ε and may
overwrite the original matrix AH. Hence, in this case no additional memory is needed. If, however,
the Cholesky decomposition will be used for preconditioning, then δ is chosen to be 0.1, which leads
to a condition number of at most 2, see (4.2).

In the following table the CPU time for recompressing a copy of AH to accuracy δ, the memory
consumption of the generated preconditioner and the CPU time for the Cholesky decomposition
are presented. For these tests η = 1.0 was used.

n = 28288 n = 113152
δ recompr. MB decomp. recompr. MB decomp.

1e− 1 3.6 s 11 3.4 s 20.4 s 54 3.7 s
1e− 2 8.1 s 40 5.7 s 40.1 s 224 53.0 s
1e− 3 6.0 s 73 21.4 s 11.3 s 366 135.1 s
1e− 4 81 26.5 s 410 173.0 s

Apparently, compared with build AH the CPU time for generating the Cholesky decomposition
can be neglected if δ ∼ 0.1. If δ ∼ ε was used, we obtain a direct solver with relatively small effort.

5.1.3 Solving the system

In the final step we have to find the solution of the approximated system

AHx = b̃, b̃ = (
1
2
M +BH)g̃. (5.3)

Using the computed Cholesky decomposition of AH we may find it directly by x = L−TL−1b̃, if the
precision δ of the decomposition is of the same order as the accuracy ε of AH. The following table
shows the CPU time for solving (5.3) by hierarchical forward/backward substitution.

time error
28288 0.1 s 7.2e − 3

113152 0.4 s 1.9e − 3

Since for the Dirichlet data g we used the restriction of s(x0, ·) to the boundary, where x0 	∈ Ω,
we know the exact solution u = s(x0, ·). Hence, in the last table we were able to computed the
approximate L2-error ⎛

⎝ ∑
i=1,...,n

|Xi| |∂ns(x0,mi) − xi|2
⎞
⎠

1/2

as an error of the solution.
If on the other hand the Cholesky decomposition has been computed with low precision, we

use it to solve (5.3) by the preconditioned conjugate gradient method. In the following table the
number of iterations and the CPU time to obtain a solution with residual norm 1e− 8 are listed.

n = 28288 n = 113152
δ steps time steps time

1e− 1 39 3.6 s 40 20.1 s
1e− 2 21 2.6 s 21 14.1 s
1e− 3 6 1.0 s 6 5.2 s
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As one would expect, the number of iterations is less the more accurate the LU preconditioner is.
In any case the number of iterations does not depend on n. For the L2-error of the solution we
obtained the same results as in the case of the direct solver.

As a conclusion the number of iterations using the proposed preconditioner is bounded inde-
pendently of n. A direct solution using backward/forward substitution is attractively fast. Decom-
posing A with high precision, however, is only worthwhile if (5.3) has to be solved for many right
hand sides b̃.

5.2 Application: Magnetostatic problem

The second example is an integral equation

θ(x)ϕ(x) +
∫

Γ
ϕ(y)

〈ny , x− y〉
|x− y|3 dsy =

∫
Γ
∂nyϕ(y)

1
|x− y| dsy

with given Neumann boundary condition ∂nϕ = g on the surface Γ from Figure 3. The dimension
of the coefficient matrix A arising from a collocation method is n = 3760. Since the double layer
operator has a one dimensional kernel (the surface is simply connected), the extended system

[
A w
vT 0

] [
x
λ

]
=

[
b
0

]

with v ∈ KerAT and w 	∈ ImA has to be solved.
In the following table we compare the results obtained by a standard solution strategy, i.e., A

is built without approximation and solved using Gaussian elimination, and the results obtained by
fast methods.

storage time
matrix precond. matrix precond. solution

standard 108 MB 575.0 s 1108.0 s
Mbit 42 MB 149.0 s 1273.0 s
ACA 26 MB 12 MB 55.0 s 1.7 s 1.3 s

In the row “Mbit” the results using an implementation of the fast multipole method can be found.
The memory needed to store the matrix is reduced compared with the standard solution strategy.
But, although a fast method was used, it took longer to solve the system iteratively than solving
it directly, since no preconditioner was available. In the last row the values of the methods from
this article can be found. With the proposed preconditioner the iteration needed only few steps to
converge.
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