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Thin elastic sheets under isotropic compression, such as for example
blisters formed by thin films which debonded from the substrate, can
exhibit remarkably complex folding patterns. We discuss the scaling
of the elastic energy with respect to the film thickness, and show
that in certain regimes the optimal energy scaling can be reached
by self-similar folding patterns that refine towards the boundary, in
agreement with experimental observations. We then extend the anal-
ysis to anisotropic compression, and discuss a simplified scalar model
which suggests the presence of a transition between a regime where
the deformation is governed by global properties of the domain and
another one where the direction of maximal compression dominates
and the scale of the folds is mainly determined by the distance to the
boundary in the direction of the folds themselves.

1 Introduction

Debonding from the substrate and subsequent blistering is a mechanism by
which a film can release compressive stresses. This happens for example upon
cooling films deposited at high temperature on a substrate with a larger ther-
mal expansion coefficient, see [31] for a review of the experimental context
and of the technological applications. The complexity of the resulting pat-
terns have generated interest spanning the mechanics [10, 48, 31, 4], physics
[46, 39, 7, 54, 53, 3, 12] and mathematics [2, 33, 8, 24, 34, 35, 9] literature.
Experimentally, typical observed configurations exhibit folds perpendicular
to the boundary, which often coarsen in the interior of the debonded region,
see for example [1, 31]. In many cases even the debonded region itself has a
complex shape, as for example in the so-called telephone-cord blisters [48, 31].
Theoretically, the analysis of such phenomena is typically based on a separa-



tion of time scales. A fast elastic relaxation determines the folding pattern of
the debonded region. The debonded region itself arises and grows by means
of a slower fracture process whose driving force is given by the solution of the
elasticity problem. We focus here on the first, elastic, problem, and assume
the debonded region to be fixed. Our results show that oscillations sponta-
neously form close to the boundary, even if the boundary itself is straight.
This implies that the driving force for boundary propagation is oscillatory,
and therefore that straight boundaries will tend, after propagation, to be-
come wavy. This argument indicates that the waviness of the boundary is
a consequence of the formation of oscillations in the elastic problem in the
interior, and not vice versa, as often assumed in the literature on the subject.
This effect, which had already been mentioned in [48], was studied within a
linear stability analysis by Audoly in [3].

We briefly review in Section 2 several simplified two-dimensional models
for elasticity of thin sheets and their derivations from three-dimensional elas-
ticity. Then, in Section 3 we discuss the patterns expected for isotropically
compressed films. The heuristic discussion is based on a two-dimensional
vectorial model, but all results hold for the full three-dimensional elasticity
theory. Section 4 is focussed on the case of anisotropic compression, within
a restricted scalar model.

2 Reduced two-dimensional models

Let w C R? be the region where the film detached from the substrate, which
we assume to be smooth and bounded, and h > 0 be the film thickness.
Then, the deformation ¢ : w x (0, h) — R3 is determined by minimization of
the elastic energy

1
Ii[e] = E/ on Wip (Vo) dz, (1)

where the free-energy density Wsp(F') behaves qualitatively as the squared
distance of F' from the set SO(3) of rotations (our more general precise
assumptions are stated below). The boundary conditions are set by the part
of the film which is still bound to the substrate, and are given by

(1 —€)xy
o) = (1 —e)za | on (Ow) x (0,h) (2)

where €, > 0 is a small parameter representing the amount of compression.
As usual in thin-film elasticity boundary conditions are imposed only on the
lateral boundary, not on the top and bottom faces of the sheet.



2.1 A director ansatz

The history of the theory of thin sheets and shells is paved with a number
of simplifications of the general elasticity functional (1) aiming at a direct
description of the behavior of the sheet as a two-dimensional object, without
resolving explicitly the third dimension. The model of choice for the blistering
problem is the von Karman functional, where both stretching and bending
of the film are included. This can be heuristically derived by means of an
ansatz, due to Kirchhoff, which enslaves the three-dimensional deformation
¢ to the behavior of the mid-plane section 1. Namely, given v : w — R3,
one writes

d(x1, T2, x3) = Y(x1, 22) + 23b(21, T2)

and then optimizes locally over all vectors fields b € R3. Within a for-
mal asymptotic expansion, and up to multiplicative coefficients, the optimal
choice for b is the normal v to the surface described by v, defined according

to
- ViAYs
b1 ANiba|

In materials with a nonzero Poisson’s ratio the energy can be further reduced
by including the second-order term in x3. Since it does not change the energy
scaling, for simplicity we neglect this correction. A formal asymptotic expan-
sion leads then to the reduced energy (again, up to inessential multiplicative
factors of order unity)

Il = / Wap (Vi) + 12| Vo2 da 3)

where |Vv|? = |01v]? + |0or|?. The new potential Wop(a|b) is obtained from
Wisp(alblc) by optimizing over all possible choices for the third column ¢ of
the argument,

Wap (F) zirel]%WgD(ﬂc), F e R¥2,
Here (F|c) denotes the 3 x 3 matrix obtained extending F' with ¢ in the third
column, Fe; ® e; + Fes ® e5 + ¢ ® e3. This definition is, for low-energy and
smooth deformations, equivalent to the one obtained by simply assuming
that ¢ is a unit vector normal to the first two columns of I, i.e. ¢ = v. The
function Wop(F) is therefore equivalent to the squared distance of F' from
the set O(2,3) of linear isometries from R? to R?.



2.2 Rigorous results on membrane and plate theories

The method of choice for the mathematical derivation of reduced variational
theories is Gamma convergence, a criterion for convergence of functionals
which is naturally coupled to convergence of minimizers, developed by De
Giorgi and his school in the 70s ([22]; see also [21, 11]). Recent progress in
the mathematical theory of thin elastic bodies has shown that each of the two
terms that form the model (3) can be, separately and in different regimes,
justified by means of Gamma convergence. No such result exists, however,
for Iyp, and indeed this approach by Gamma convergence seems unable to
derive a functional such as (3) where the small parameter does not disappear
in the limit, but is still present in front of a term with higher derivatives
(mathematically, a problem with a singular perturbation).

The first term in (3), called the stretching term, is characteristic of mem-
brane theories, which are written in terms of the first gradient of the de-
formation. Convergence of the three-dimensional problem to a membrane
theory was proven by LeDret and Raoult [42, 43, 44], who (under some tech-
nical growth conditions on Wsp) showed that the Gamma-limit of I[¢], as
h — 0, is given by

Imembrane[w] = / Wg};(vw) dx

w

where 1) : w — R3 is the limit of the vertical averages of ¢, in the sense that

1 /b
E/ ¢($17$2,9€3)d9€3—>1/1(9€17$2)
0

in L?. The reduced energy density W, : R3*? — R is the quasiconvex
envelope of the reduction Wsp of the elastic energy density Wsp to two di-
mensions. Precisely, it corresponds to optimizing Wsp over all possible os-
cillations which can be realized by gradient fields with affine boundary data,
according to

WoS(F) = inf{ Wop(F 4+ Vo)dz : v e C5°((0, 1)2)} :

(0,1)

A simple computation shows that since the function Wsp vanishes on SO(3),
the two-dimensional energy Wsp vanishes on O(2,3), and the envelope W5
vanishes on convex hull of O(2,3), which is given by the set of all short ma-
trices, i.e. of all matrices F' € R**? such that FTF < Id (equivalently, the
nonlinear strain is compressive, i.e. both singular values of F' are less than
or equal to 1). This behavior is remarkably different from what happens in
the first term of the reduced theory defined in (3): the latter only vanishes
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on gradients of isometric maps, not on all compressive strains. This differ-
ence arises from the fact that in the scaling regime considered by LeDret and
Raoult fine-scale oscillations which can absorb compressive strains can be
generated at no energetic cost, since no bending term is present. Mechani-
cally, this reflects the fact that the sheet cannot withstand compression. The
resulting tension-field theory had been discussed earlier by Pipkin [52, 51].

The second term in (3), called the bending term, is characteristic of plate
theories, and it was considered by Friesecke, James and Miiller [28, 29] and
by Pantz [49, 50]. They have shown that the Gamma-limit of h=21%,[¢], as
h — 0, is given by a functional which had been proposed with a heuristic
derivation by Kirchhoff in 1850 [36], namely,

ojate[1)] = /sz(UW dr if ¢ € W2 (w,R%), V¢ € 0(2,3)
o0

else.

Here 111 denotes the second fundamental form of ¢, which can be defined
as the projection on the tangent space to the surface described by 1 of the
gradient of the normal to such surface, i.e.,

Y1 AYs
Iy = (Vi) 'Vu, v=——""
v = (Vi) 1 A sl
The quadratic form Qy(G) is defined on R**? by
1 O*Wsp
(@) = i Qu(@),  Qu(F) = LR E ).

The components of the quadratic form ()3 are the elastic constants of the
material, and the optimization in b is analogous to the one that leads from
Wsp to Wayp in the membrane theory. The resulting model Ija¢e is very rigid.
In fact, the energy is infinite for all deformations which are not W?%2-smooth
local isometries, which leaves rather little freedom.

Both mentioned results, namely, the rigorous derivation of membrane and
plate theories, have represented substantial progress in the mathematical
understanding of thin elastic bodies. However, none of them permits to
make any prediction for the blistering problem of interest here. Precisely,
the functional I ,cmprane vanishes on all maps which are short, such as for
example the affine continuation of the boundary data. The functional Ijate
instead is infinite on all maps that satisfy the boundary conditions. None
of the two gives useful information on the blistering patterns. In particular,
the functional Iop defined in (3) is not equivalent to I = Iombrane + R Late:
the latter is indeed finite only on locally isometric maps, whereas Ilop is



finite on all twice differentiable fields ¢. In particular, for the affine map
Yo(z) = ((1—e,)x,0), which satisfies the boundary conditions of the blistering
problem, we obtain that Irp(¢),) behaves as c|w|e,?, whereas I(1),) = co.

The reduced model (3) still contains the small parameter h. In mathemat-
ical terms, the bending correction, which corresponds to a term depending on
the second derivative of 1, represents a singular perturbation. From the point
of view of elasticity, the peculiarity of the blistering problem is that both the
stretching term — depending on Vi) — and the bending term — depending on
Vv — are present and relevant, but they appear with very different coeffi-
cients. We remark that the geometrically linearized version of the model (3),
corresponding to the von Karman model, has been derived first formally by
asymptotic expansion [16, 17] and then rigorously by Gamma convergence
[27] and alternatively by a subtle application of the implicit function theorem
[47] in a scaling regime where both terms have the same behavior, hence in
which no small parameter appears in the limit. This corresponds to energies
scaling as the fifth power of the film thickness, and is not relevant for the
blistering problem.

2.3 The scalar ansatz

The functional Irp can be further simplified by assuming that the deforma-
tions are small, which leads to a geometrically linear model which we do not
discuss here. Ortiz and Gioia proposed in 1994 [48] a more drastic simplifi-
cation, namely, they assumed that only the component of ¢) normal to the
plane is active, in the sense that

v = (i)

where w : w — R is a scalar deformation field. This leads to a simplified
scalar model, which after suitable rescaling (see below) takes the form

Igifu] = / [(Vu)* — 1}2 + 0% V?ul* dx (4)

where o = h/(2¢,)"/? is the natural length scale of the problem.The functional
I also plays a role in models of liquid crystals [5], of micromagnetism in
thin films [24, 25], and of convection patterns in fluids [26]. In spite of recent
progress (see [2, 6, 33, 24, 23]) the Gamma limit of Igy as 0 — 0 remains
to be identified. The natural candidate low-energy state of Igj is obtained
setting u(z) equal to the distance of x from the boundary of w, and then
smoothing it where the gradient jumps. This approximate solution, that
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was first proposed by Gioia and Ortiz, leads to a scaling of the total elastic
energy per unit thickness of the form c|w| + che,”?. We shall show later
that this energy is not optimal, in the sense that inclusion of the in-plane
components permits to relax the energy down to order che,/?, eliminating
the constant term. Further, the mentioned scalar approach and its solution
w(z) ~ dist(z, Ow) indicate that the folding patterns in the interior of the
domain arise as a consequence of the waviness of the boundary. In particular,
in a domain with smooth boundaries very few folds on a long length scale are
expected; for example, only a segment in an ellipse, or the two diagonals in
a square (see Figure 1). We shall argue later that inclusion of the tangential
components permits to identify the formation of a large number of additional
folds on a much finer length scale, which refine towards the boundary. For the
case of anisotropically compressed films, however, our discussion is restricted
to the simplified scalar model.

3 Folding patterns in compressed thin films

We study the qualitative properties of low-energy states of the three-dimen-
sional elasticity problem (1) under compressive affine boundary conditions
as specified in (2). The heuristic discussion will be phrased in terms of the
more explicit two-dimensional reduced functional (3). We remark that all
results presented here apply to the full problem (1) (see [9]), the reduction
to two dimensions is only used for the purpose of a more explicit heuristic
derivation and a simpler pictorial illustration. As mentioned above, the three-
dimensional energy density Wsp is locally comparable to the squared distance
from the set SO(3) of rotations, and the two-dimensional energy density Wap
is locally comparable to the squared distance from the set O(2,3) of linear
isometric maps from R? to R3. For simplicity of notation we shall formu-
late our statements under the assumption that the reduced two-dimensional
energy takes the specific form

Wop (F) = dist*(F,0(2,3)) .

The entire argument applies, however, to general energy densities which sat-
isfy the growth conditions stated in (8-9) below.

A first approximation to the solution, which corresponds to the scalar
model discussed in the introduction, can be obtained by relaxing only the
vertical component, i.e. optimizing over all deformations of the form

yeal () = ((1;(6*)9”) . (5)

z)
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Here and below we use z to denote two-dimensional coordinates, x = (x1, z3) €
w C R2. Computing the gradient of 4., we get

VL aVibsea = (1 — €,)’1d + Vuw @ Vw.

sca.

Matrices F' in O(2,3) are characterized by the fact that FTF = Id, and,
indeed, Wap(F) behaves as |[FTF — 1d|? for matrices F close to the identity.
Therefore the energy density Wop(Vsca) is comparable to

VL, Viea — 1d)? = |[Vw ® Vw — (26, + €.2)Id|*.

scal

No multiple of the rank-one matrix Vw ® Vw can equal the rank-two matrix
(2¢, +¢€,%)Id, hence no choice of w permits to relax locally the energy to zero.
However, writing w(z) = (2¢, + €.2)?u(z) the expression above takes the
simplified form

|va vz/Jscal - Id‘Q = (26* + 6*2)2 [1 + (‘VU|2 — 1)2} ,

scal

hence compression in one direction is relaxed if [Vu| = 1. This condition
corresponds to the eikonal equation, and a solution to it which satisfies the
required boundary condition v = 0 on Jw is obtained by setting u(x) =
dist(z, Ow). This shows that optimization within this restricted class permits
to relax an isotropic compression to a uniaxial one, thereby reducing the
stored energy by a factor two, in the sense that a deformation of the form
(5) with |Vu| = 1 has half the energy of the one with u = 0. The resulting
deformation is illustrated for the case of a square in Figure 1. Here the
gradient of u is a unit vector parallel to e; or ey, constant in four parts of
the domain. The corresponding symmetrized strain takes the form

. (1= (2e.46e?) 0 0 1
vwscalvwscal — ( 0 1 or 1— (26* + 6*2) 0

in the different parts of the domain, corresponding to a uniaxial compres-
sion. Note that the remaining compression is uniaxial everywhere, but it
is not everywhere in the same direction, therefore it has to be treated sep-
arately in the different parts of the domain. The procedure just described
corresponds to the Gioia-Ortiz approximation [48]. In the next sections we
refine this construction, showing how the remaining uniaxial compression in
the orthogonal direction can be relaxed.

3.1 Energy relaxation by one-dimensional folds and a
boundary layer

Uniaxial compression in a flat domain can be relaxed by means of a cylin-
drical deformation containing smooth fine-scale oscillations, as illustrated



(a) (b)

FIGURE 1: (a): Piecewise affine deformation relaxing an isotropic biaxial
compression to a uniaxial one in the unit square. (b): the gradient of w in
the three pieces. In each triangle, compression parallel to the corresponding
part of the boundary is unrelaxed.

in Figure 2. If the oscillation scale is fine enough, it is possible to insert a
small-energy boundary layer to achieve Dirichlet boundary conditions and/or
to patch together oscillations with different orientations. To give a precise
construction of the oscillatory map we choose a smooth curve v : R — R?
which is parameterized by arc length (i.e. |7/| = 1 everywhere) and satisfies

sy =2+ (1)

(see e.g. Figure 2a). It is easy to see that the function v can be chosen so
that the distance from a straight line is controlled by

() = (1 = e)t] < ce., [a(t)] < e/

and analogous bounds on the first and second derivatives, much as in the
analysis of Euler buckling of compressed rods. Given a period p > 0 to be
chosen later, we set
x
Up(x) = | pra(z2/p)
py2(x2/p)

where we assumed for definiteness that the uniaxial compression is in the x,
direction. The resulting deformation is illustrated in Figure 2b. The map v,
achieves on average the uniaxial compression

1 0
F={0 1—e],
0 0
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corresponding to uniaxial com-

pression, as in Euler buckling. (a): the curve y(¢). (b): the corresponding

deformation .

in the sense that the average over one period of ,(z) — Fz vanishes. In
addition, it is crucial that v, has exactly zero stretching energy, i.e. Vi, €

0O(2, 3) everywhere. Moreover, we have the

|wp(x) - F"L‘| S Cp€*1/2 )

|Vip,(x) — F| < ce, M2 ,

bounds

€12

2
[V, (2)] < c D

The energy per unit area is proportional to h%e,/p?, and is entirely deter-
mined from the bending term in Iop. Such oscillatory maps do not, how-
ever, satisfy the affine Dirichlet boundary condition. Therefore one inserts a
boundary layer, as illustrated in Figure 3. Precisely, we fix a small parameter
¢ representing the width of the interpolation layer, and define

() = (x)py(z) + (1

Here 60 is a smooth interpolation function

— 0(x))Fx.

which equals zero outside w, one

on all points inside w whose distance from the boundary is larger than &, and
obeys the bounds 0 < 0 < 1, |[VO] < ¢/, |[V?0] < ¢/£? everywhere, for some

constant ¢ which depends only on the dom

ain w. This generates a boundary

layer whose area is controlled by &. There, the deformation gradient takes

the form

Vip(x) = VO(x)(Pp(z) — Fr) +0(x

)Vipp(x) + (1 = 0(2)) F, (6)

and its stretching energy density is controlled by

dist*(Vep, 0(2,3)) =~ ce.? [ 1+
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FIGURE 3: Relaxing a uniaxial compression in a square. (a): resulting three-
dimensional construction. (b): subdivision of the domain. The construction
is p-periodic plus affine in the interior, and is given by the smooth interpo-
lation in a &-neighborhood of the boundary.

To see this, observe that the second and third term in (6) correspond to
an average between Vi, € 0(2,3) and F. Since dist(F,0(2,3)) = €, and
|F — Vib,| < ce,/?) it follows that the average is at a distance of order e,
from O(2,3). Further, the first two components of the first term in (6) are
of order pe, /¢, and the third one of order pe,'/?/¢. Therefore the first term
modifies the distance from O(2,3) only at order e€,(p/& + p?/£2).

A similar analysis applies to the bending energy, which turns out to be of
order h?|V2y|? ~ ce,h*(1/€% + 1/p?). The total energy of this construction
can be therefore estimated as

4 1 e.h?
EP < ce,? <£+ %) + ce,h? (E + ]%) +c o
where the last term is the bulk contribution h?|V?,[?. The optimal value
of £ is p, and gives for the total energy the estimate

€. h?
2
The optimal value of p is then determined by balancing the first and the last

term, and results in p = h%3/e,'/3. The final energy estimate is

1
EP < ce.’p+ ce*h2]—7 +c (7)

ElD < Ch2/3€*4/3.

Combining this construction with the previous one leads to a candi-
date solution for the problem of isotropic compression whose energy is pro-
portional to h*3. To see this, consider for definiteness the unit square
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FIGURE 4: Deformation pattern obtained for isotropic compression in a
square using one-dimensional oscillations in each of the four triangles. Note
the separation of length scale between the roof-type construction which re-
laxes the isotropic compression to an uniaxial one, and the fine-scale oscilla-
tions which relax the remaining uniaxial compression.

w = (0,1)2. The map obtained with the scalar approximation, i.e. (5) with
w(r) = (26, +¢,2)Y2dist(z, 0w), is affine on each of four pieces, as illustrated
in Figure 1. In each of those triangles, the remaining uniaxial compression
can be relaxed by fine-scale oscillations, which disappear by smooth inter-
polation approaching the boundary of the triangle. This ensures a smooth
matching between the four pieces, and at the same time fulfillment of the
boundary conditions. The resulting deformation is illustrated in Figure 4.

3.2 Optimal patterns beyond the one-dimensional con-
struction: fold branching

The key competition determining the optimal total energy for the construc-
tion presented in the previous section is between the first term in (7), repre-
senting strain in the boundary layer and favoring fine-scale oscillations (i.e.
small p), and the last one, representing bending energy in the bulk, and
favoring coarse-scale oscillations (i.e. large p). This kind of competition is
very common in problems in materials science where nonconvex bulk en-
ergies, with a regularizing singular perturbation (such as a wall energy or
any higher-gradient term) compete with the boundary conditions. A pattern
that makes an ubiquitous appearance in such problems is oscillation refine-
ment towards the boundary, or, equivalently, coarsening towards the interior.
Starting with the discussion of branched domains in the intermediate state
of type-I superconductors by Landau back in 1938 [40, 41], and of magnetic

12



FIGURE 5: The period-doubling step of the construction. The period on the
right is twice that on the left, the entire deformation is smooth and has small
energy.

domains by Lifshitz in 1944 [45], self-similar constructions with a series of
period-doubling steps have been used to construct low-energy states for a
variety of models, and have in many cases found experimental confirmation.
A heuristic one-dimensional model for the magnetic case was formulated by
Hubert in 1967 [32], and the first mathematical results in this direction have
been obtained for the case of shape-memory alloys by Kohn and Miiller in
1992-1994 [37, 38|, and later refined in [18, 19]. Their work originated a large
amount of related mathematical investigations of pattern-formation problems
in materials; similar domain branching has been demonstrated, beyond the
blistering problem of interest here, in models of uniaxial ferromagnets [13, 15]
of flux domain structures in the intermediate state of type-I superconductor
plates [14], and dislocation walls in crystal plasticity [20, 19]. In the case
of compressed thin films such branching patterns have been first used by
Pomeau and Rica [54, 53], based on heuristic scaling estimates for the fold-
ing energies, followed by mathematical results in [8, 34, 35, 9]

The general idea is that fine-scale oscillations close to the boundary should
be coupled to coarse-scale oscillations in the interior. The interpolation be-
tween the two can be achieved by means of a suitable period-doubling step,
which for the blistering problem can be constructed as illustrated in Figure
5. Combining several such period-doublings at different scales one achieves
deformations which interpolate between oscillations on very different length
scales, as for example the one illustrated in Figure 6. In comparison to the es-
timate in (7), this construction permits to reduce substantially the last term
(representing bending in the bulk) so that it disappears from the global en-
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FI1GURE 6: The explicit construction close to a straight boundary.

ergy balance. Then, the crucial competition is between the first two terms of
(7), i.e. bending and stretching in the boundary layer, and gives p = h/e,'/?
and an energy scaling proportional to €,%2h. This shows that the energy in
the branching construction resides essentially in the boundary layers, which
are localized both in a p-neighborhood of the exterior boundary dw and in a
p-neighborhood of the interior boundaries, given by the set of discontinuity
points of Vdist(z, dw).

The construction sketched above can be made precise and extended to the
full three-dimensional elasticity problem, for details see [9, 19]. We simply
quote here the final result, which holds for smooth domains w under the
assumption that Wsp has globally at least quadratic growth, in the sense
that

Wap(F) > cdist?(F, SO(3)), (8)

and locally no more than quadratic growth, in the sense that there is 6 > 0
such that
Wap(F) < ddist*(F, SO(3)) for dist(F, SO(3)) < 6. (9)

We remark that since the upper bound (9) is only assumed to hold locally,
the assumptions (8) and (9) are compatible with the behavior Wsp(F') — oo
as det /' — 0 and the constraint det F' > 0.

Theorem 1. Let w C R? be a bounded piecewise C* domain, and Wsp satisfy
(8-9). Then, there are constants c,, and C, depending only on w such that
for any e, € (0,1) and sufficiently small h one has

1
co€>?h < inf - / Wsp(Vp)dz < Cpe,*/?h

wx(0,h)
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where the infimum is taken over all maps ¢ : w x (0, h) — R® which satisfy
the boundary condition

(1 —€)xy
o) = | (1 — &)y

for (x1,22) € Ow, and z3 € (0, h).

The proof of the upper bound is based on the extension of the construc-
tion discussed above to generic domain, and on a precise bookkeeping of all
different energy contributions. Theorem 1 also contains a lower bound, which
does not depend on any specific assumption on the deformation (‘ansatz-free
lower bound’). The proof of the lower bound builds upon the idea mentioned
above, i.e., that the leading-order energy contribution is completely deter-
mined by the boundary layer alone, which corresponds to the first two terms
in (7). To make this idea precise, one needs a rigidity result, that was derived
by Friesecke, James and Miiller in [29]. Precisely, one argues by contradic-
tion, and shows that if there was a sequence of deformations with energy
scaling less he,*?, then in the limit they would converge, in suitable sub-
domains close to the boundary, to an affine isometric deformation. But the
latter cannot satisfy the boundary condition, giving the sought contradiction.
Details of the proof are given in [9, 19].

We finally remark that the same scaling estimate holds with the three-
dimensional elasticity replaced by the geometrically linear and geometrically
nonlinear von Kédrmdan energy, see [8, 9, 19]. A similar energy-scaling result
has been independently obtained, for a related problem with partially Dirich-
let and partially periodic boundary conditions, by Jin and Sternberg [34, 35]
within the geometrically linear von Karman model.

4 Anisotropic compression

In this section we extend the analysis to the case of anisotropic compression,
restricting ourselves to the simplified scalar model. In 1994 Ortiz and Gioia
[48] proposed to study the two-dimensional von Kérméan energy by means
of scalar deformations of the form (5), and obtained the simplified model
Igix, as defined in (4), for the case of films under isotropic compression. The
same approach can be extended in a natural way to the case of anisotropic
compression, and indeed a first discussion in this direction appeared in [30],
where experiments on compressed paper and plastic sheets have been pre-
sented, showing an interesting change in behavior between isotropically and
uniaxially compressed sheets, see Figure 7.
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(a) (b)

FIGURE 7: Experimental pictures of compressed paper sheets, from [30]. (a):
an isotropically compressed sheet, with e, = 0.04 and h/diamw = 1073,
Folds start from the boundary and coarsen for various lengths towards the
interior in a rather unstructured way. (b): a uniaxially compressed sheet,

with 69) =0, 69) = 0.04, and h/diamw = 0.5 - 1073. Folds are essentially
normal to the direction of maximal compression, and coarsen in the interior.

We choose coordinates which diagonalize the average in-plane compres-
sion, and neglect possible superimposed rotations. Further, we focus from
the beginning on the reduced two-dimensional problem. Precisely, we replace
the boundary condition (2) with

(1 — 69))1’1
Y)=|[@a1- 6&2))1'2 on Jw,
0

where the small parameters 6&2) > 69) > 0 represent compression in the xs
and z; direction respectively. The one-dimensional ansatz, which now reads

Y(r) = ((1— 69))1’1, (1- 69)1’2, w(x)), leads to
IQD [wscalaw] =~ (269))2 |LU| -+ (26&2))2 Ig',[@ |: 26&2)w,w:|

where the reduced functional

I glu,w] = / [(Vu)® — 1}2 + 26u} + 0% V?ul? dx

depends on the rescaled deformation u = w 2¢? and on the parameters

3 e — M h
= — s o = ————.
2 (217
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FIGURE &: Phase diagram in the (o/l;, 3) plane as obtained from Theorem
2. Three regimes are present: in A the affine deformation is optimal, in B
the branching pattern, in C the roof-type construction. See Figure 9 for
the patterns and energy scalings. The two marked points @ = (0.004, 0) and
b = (0.002,1) represent the position on this diagram of the experimental
results of Figure 7.

(Here and below, u; = Ou/dx;.) For the case of isotropic compression,
i.e. B =0, this functional reduces to the Gioia-Ortiz eikonal functional gy,
defined above.

The most interesting regime in the study of I, is the one where both
parameters are small, i.e., the limit in which the film is compressed in an
almost isotropic way. We stress, however, that the results obtained with the
scalar model should be seen only as a first approximation to the experimental
situation, due to the mentioned differences in behavior between the scalar
and the more realistic vectorial model.

For concreteness we shall consider a simple geometry, in which the domain
is a rectangle, R = (0,1;) x (0,l3), with [y > [;. As boundary condition, we
shall impose u = 0 on the boundary OR. At this stage the problem has four
independent real parameters: o, 3, [; and l;. One of them (say, [;) can be
eliminated by rescaling. Indeed, if we let u*(r) = Mu(r/\) we get

mem:%mwAmy
Furthermore, for large l5 we expect the limiting energy to be linear in /5, hence
we seek a phase diagram in the plane (3,0/l;), and expect optimal energy
scalings of the form inf I, 3 o l1l5f (0 /11, 3), which are valid for ly > ;.
Figure 8 shows the resulting phase diagram, and Figure 9 illustrates the
different patterns and energy scalings. If o is large, precisely, if ¢ > [; and
Bo? > 2 (region A), the bending energy dominates and the trivial solution
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u = 0 gives the optimal scaling of the energy, which is proportional to the
area ljly. For o/l; < 8 < (0/l1)™? (region B) a complex folding pattern
develops. In the central part of the sample low-energy states have regions of
alternating us ~ =1, whose width scales as o'/32%/%371/3, separated by walls
of width . Approaching the boundary the oscillation period decreases. This
construction is essentially the same used in the previous section to relax the
uniaxial compression. Finally, for § < o/l < 1 (region C') the functional
behaves as Ig, and the optimal energy scaling is given by the smoothed
distance to the boundary. The different patterns are illustrated in Figure 9.

These results can be summarized in the following Theorem.

Theorem 2. There are universal constants ¢ and C' such that in any rect-
angle R = (0,1y) x (0,l3) with ly > 1; one has

of (%5) lily <inf I, [u, R] < C'f (%ﬁ) hly

where the infimum is taken over functions u € W?(R,R) which satisfy u = 0
on OR, and
f(2,y) = min (1, max(z, y), z*/*y'/%) .

As in Theorem 1, the upper bound can be obtained by making the
sketched constructions precise, but the lower bound needs a different ar-
gument. In particular, the latter can be proven by contradiction using a
compactness result obtained for the eikonal functional Igy = I, by Ambro-
sio, De Lellis and Mantegazza [2] and independently by DeSimone, Kohn,
Miiller and Otto [24]. This permits to show that a sequence whose energy
would tend to zero faster than claimed in Theorem 2 would converge weakly
to zero and, at the same time, strongly to a map whose gradient is every-
where of length one. But this is a contradiction. The complete argument is
given in [19].

This result shows that the scalar approximation predicts two different
regimes at small h. If the compression is isotropic, only the long-wavelength
compression is captured by this approximation. The resulting pattern is
smooth, and qualitatively well approximated by the distance function. The
discussion in Section 3 shows that small-scale oscillations which refine to-
wards the boundary are superimposed on a finer scale, and reduce the energy
down to linear order in the thickness h. If instead the compression is approx-
imately uniaxial, the scalar approximation predicts very different patterns,
where no large-scale structure is present, but only fine-scale oscillations. The
energy scaling is also in this case too high (the optimal energy scaling is linear
in h, see [19]), but in both cases the scalar approximation correctly identifies
the patterns associated with the largest length scale in the problem.
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Ficure 9: Illustration of the three different types of patterns found in the
phase diagram of Figure 8, and corresponding energy scalings.

5 Concluding remarks

We have presented an analysis of the elastic problem arising in thin-film blis-
tering from the viewpoint of the direct method of the (nonconvex) calculus of
variations, which bypasses the Euler-Lagrange equations by focusing directly
on qualitative properties of low-energy states. In particular, we have derived
the optimal energy scaling by means of a combination of explicit construc-
tions, for the upper bounds, and rigidity arguments, for the lower bounds.
This approach is markedly different from the classical buckling-postbuckling
analysis, which is based on the study of linear stability and of the leading non-
linear corrections. As already pointed out by Ortiz and Gioia [48], the regime
in which many folds appear is well beyond the critical one for buckling. In
particular, in a domain of size L the buckling threshold can be estimated by
comparing the bending energy of the buckled state, proportional to h2e,/L?
per unit area, with the energy of the (undistorted) affine deformation, which
is proportional to €, per unit area. The buckling threshold, corresponding
to loss of linear stability for the affine state, is ¢ = L. In typical experiments
o ranges from from a few percent of L to much less than L [48, 31], for
example in the sheets represented Figure 7 we have o/L = 0.004 and 0.002
respectively. Therefore blistering experiments explore the deeply nonlinear
regime 0 < L, named folding regime in [48], which is far from the buckling
threshold and characterized by the formation of a large number of folds.
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