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Abstract

A notion of (average) fractal Euler number for subsets of R
d with

infinite singular complexes is introduced by means of rescaled Eu-
ler numbers of infinitesimal ε-neighbourhoods. For certain classes of
self-similar sets we calculate the associated Euler exponent and the
(average) fractal Euler number with the help of the Renewal theorem.
Examples like the Sierpinski gasket or carpet are provided.

1 Introduction

The Euler characteristic of a finite cell complex K in the Euclidean space R
d

is given by

χ(K) =
d∑

k=0

(−1)kαk

where αk denotes the number of k-cells of K. If βk is the k-th Betti number of
K, i.e. the rank of the k-th homology group of K, the Euler-Poincaré formula

χ(K) =

d∑
k=0

(−1)kβk

shows that χ(K) does not depend on the special decomposition of the com-
plex K (for more details see, e.g. Dold [1]). In this way the Euler character-
istic is a homological, homotopic and topological invariant. For appropriate
classes of sets from convex geometry, differential geometry and geometric
measure theory χ is well defined and special calculation methods are known

∗Max-Planck-Institute for Mathematics in the Sciences, llorente@mis.mpg.de
†Uni Jena, winter@minet.uni-jena.de

1



(for one of them compare Section 4). For fractal subsets of R
d, however,

the associated complexes are typically infinite and the Euler number in the
classical sense is not determined.

Until now, very little is known about the topological structure of self-
similar sets, which have been extensively studied in other respects (see, for
example, [2] and the references therein). In the present paper we introduce
the notion of limit or fractal Euler number for some classes of self-similar
sets. In particular, we obtain self-similar sets with equal fractal dimensions
and different fractal Euler numbers (see Subsection 2.3).

The main idea is the following: for nice classical singular sets M like
(compact) Lipschitz submanifolds the Euler number of parallel sets Mε co-
incides with that of M for sufficiently small ε > 0 and may be calculated
by a generalised Gauss-Bonnet formula (cf. [11]). It turns out that for more
general compact sets F ⊂ R

d the ε-neighbourhoods

Fε := {x ∈ R
d : inf

y∈F
d(x, y) ≤ ε}

admit the classical Euler characteristic χ(Fε). (Here d(·, ·) denotes the Eu-
clidean metric.) We suppose now that χ(Fε) is determined for all ε > 0. In
this case the following notions are well defined. Let b be the diameter of the
compact set F ⊂ R

d.

Definition 1.1. The Euler exponent of F is the number

s = inf{t ≥ 0 : εt |χ(Fε)| is bounded}.
Definition 1.2. If the limit

χf (F ) := lim
ε↘0

(ε

b

)s

χ(Fε)

exists, then it is called the fractal Euler number of the set F .

The diameter b in the definition is a normalisation to ensure scaling in-
variance of the limit (compare Corollary 2.1). Unfortunately, the existence of
such limits is a rare event. From the study of local quantities of self-conformal
sets like densities or tangent measure distributions it is well-known that, in
general, average limits provide better results. It turns out that this is a useful
tool for our purposes, too.

Definition 1.3. If the limit

χa
f(F ) := lim

δ↘0

1

|log δ|
∫ 1

δ

(ε

b

)s

χ(Fε)
dε

ε

exists, then it is called the average fractal Euler number of the set F .
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In both definitions we could work with upper and lower limits leading
to the quantities χf(F ), χ

f
(F ) and χa

f(F ), χa
f
(F ), respectively, for all sets

F ⊂ R
d with unbounded χ(Fε) as ε ↘ 0. In the present paper, however, we

are interested in finding sufficient conditions for the existence of the (average)
limits. We restrict our considerations to the special case of self-similar sets
F and assume that the Euler numbers of parallel sets Fε exist. Moreover,
if S1, . . . , SN are the similarity mappings generating F , we assume that the
overlap function

R(ε) = χ(Fε) −
N∑

i=1

χ((SiF )ε)

of the set F satisfies
εγ |R(ε)| ≤ c, (1.1)

for some positive constants γ < s and c. This and the scaling behaviour of
F admit the application of the Renewal theorem from probability theory to
our problem. Appropriate calculations show that in this situation the Euler
exponent s coincides with the similarity dimension of F . Moreover, χa

f(F ) is
calculated in terms of the contraction ratios of the maps S1, . . . , SN . Under
additional conditions on the contraction ratios also the fractal Euler limit
χf (F ) exists (see Theorem 1). More tractable sufficient conditions for the
existence of (average) fractal Euler numbers are discussed in the second part
of the paper where we specify the results to the convex ring (Theorem 2). In
this setting direct calculations of limits are possible. Examples are provided.
For self-similar sets on the real line fractal Euler numbers essentially coincide
with the rescaled limit of the classical notion of gap counting function (cf.
[2]). As a corollary of Theorem 1 we obtain the existence of average limits
for the gap counting function.

The paper is organised as follows. In Section 2 the main results are
formulated and illustrated with some examples. First a general existence
theorem of fractal Euler numbers for self-similar sets is discussed, while in
Subsection 2.2 we restrict to self-similar sets with neighbourhoods in the
convex ring. After some examples illustrating the concept and the calculation
methods, in 2.4 we treat the special case of self-similar sets in R. Section 3 is
devoted to the proof of Theorem 1. For this purpose an appropriate version
of the Renewal theorem is presented and its consequences for average limits
are discussed. In Section 4 we recall the notion of Euler characteristic in
the convex ring setting and discuss the consequences for neighbourhoods of
self-similar sets to be in the convex ring. In Section 5 Theorem 2 is proved
and extensions to a larger class of self-similar sets are discussed.

Acknowledgment The authors would like to thank Prof. Martina Zähle for
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pointing out these interesting problems to us and for many fruitful discussions
and invaluable suggestions.

2 Main results and examples

2.1 Existence theorem

Let Si : R
d → R

d, i = 1, . . . , N , be contracting similarities. Denote the
contraction ratio of Si by ri ∈ (0, 1) and let rmax := maxi=1,...,N ri. It is a well
known fact in fractal geometry (cf. Hutchinson [5]), that for such a system
{S1, . . . , SN} of similarities there is a unique, non-empty, compact subset F
of R

d such that S(F ) = F , where S is the set mapping defined by

S(A) =

N⋃
i=1

SiA, A ⊆ R
d.

F is called the self-similar set associated with {S1, . . . , SN}. Moreover, the
unique solution σ of

∑N
i=1 rσ

i = 1 is called the similarity dimension of F .
Throughout the paper, whenever we refer to a self-similar set, we keep these
notations. The system {S1, . . . , SN} is said to satisfy the open set condition
(OSC) if there exists an open, non-empty, bounded subset U ⊂ R

d with⋃
i SiU ⊆ U and SiU ∩ SjU = ∅ for all i 
= j. {S1, . . . , SN} is said to satisfy

the strong separation condition (SSC) if SiF ∩ SjF = ∅ for all i 
= j.
To formulate our main result the following concept is needed. Let h > 0.

A finite set of positive real numbers {y1, ..., yN} is called h-arithmetic if h is
the largest number such that yi ∈ hZ for i = 1, . . . , N . If no such number h
exists for {y1, ..., yN}, the set is called non-arithmetic.

From now on we assume that the Euler characteristic χ(Fε) of the ε-
neighbourhoods is defined for ε > 0, i.e. we restrict to those self-similar sets
F for which all Betti numbers of the singular complex of the parallel sets
Fε are finite for all ε > 0. Note that this assumption is the base of the
whole concept. Without it the definitions of fractal Euler numbers would
not make much sense. In this situation the geometric invariance of the Euler
characteristic and the fact that

(SiF )ε = Si(Fε/ri
) (2.1)

imply that also χ((SiF )ε) is well defined. This allows to define the overlap
function R : (0, +∞) → Z of F by

R(ε) = χ(Fε) −
N∑

i=1

χ((SiF )ε). (2.2)
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The name is motivated by the fact that R(ε) is closely related to the set
O(ε) =

⋃
i�=j(SiF )ε ∩ (SjF )ε, called the overlap of Fε (compare Section 2.3

and [10]). It turns out that the overlap function is the crucial object to study
for deciding whether (average) fractal Euler numbers exist or not.

The following theorem gives sufficient conditions for the existence of the
(average) fractal Euler number of a self-similar set F . The stated formula
shows that, in case it exists, the (average) fractal Euler number only depends
on the similarity dimension, the contraction ratios and the overlap function
of F .

Theorem 1. Let F be a self-similar set with diameter b and similarity di-
mension s. Suppose that the Euler numbers of Fε are defined for all ε > 0.
Furthermore, assume that the overlap function R has a discrete set of discon-
tinuities and satisfies condition (1.1). Then the Euler exponent of F equals
s and the following holds:

(i) The average fractal Euler number χa
f(F ) exists and

χa
f (F ) =

1

µ

(∫ 1

0

εs−1R(bε) dε +
N − 1

s

)
, (2.3)

where µ = −∑N
i=1 rs

i log ri.

(ii) If {− log r1, . . . ,− log rN} is non-arithmetic, the fractal Euler number
χf (F ) exists and equals χa

f (F ).

We prove this theorem in Section 3. In general, the calculation of Euler
numbers is difficult. Also, condition (1.1) on the overlap function might be
difficult to verify. In order to show that Theorem 1 allows explicit calculations
of fractal Euler numbers - at least for some classes of self-similar sets - we
restrict the setting to a subclass of cell complexes, namely to the convex ring.

Before doing this we want to point out some general properties of fractal
Euler numbers. First observe that whenever the fractal Euler number χf (F )
of a set F exists, then the average counterpart χa

f (F ) exists as well and
coincides with χf(F ). It is also immediate from the Definitions 1.2 and
1.3 that some invariance properties of the Euler characteristic carry over to
the limits if they exist, namely the scaling invariance, which is due to the
normalisation constant b in the definitions, and the invariance with respect
to Euclidean motions. Corollary 2.1 states the invariance for χa

f implying
the same result for χf . For λ > 0, define λF := {λx : x ∈ F} and for an
Euclidean motion g let gF := {gx : x ∈ F}.
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Corollary 2.1. (Scaling and motion invariance). Let F be a subset of R
d.

Assume that χa
f (F ) exists. Then, for λ > 0 and g an Euclidean motion,

χa
f (λF ) and χa

f (gF ) exist and coincide with χa
f(F ).

Note that the above corollary is a direct consequence of the existence
of the limit in Definition 1.3. It holds, in particular, if the conditions in
Theorem 1 are satisfied.

2.2 Results for the convex ring

The convex ring Rd is the family of all sets that are finite unions of compact
convex subsets of R

d. Rd is closed with respect to unions and intersections.
Moreover, the Euler characteristic χ is well defined for all elements of Rd,
which are also refered to as polyconvex sets, and the following additivity
property holds for A, B ∈ Rd:

χ(A ∪ B) = χ(A) + χ(B) − χ(A ∩ B). (2.4)

Convex ring and Euler characteristic in this class of sets are discussed in
more detail in Section 4. Here we just point out that the notion of Euler
characteristic in the convex ring coincides with that for cell complexes for all
polyconvex sets. One of the advantages of this setting is that it allows to give
sufficient geometric conditions easy to verify for the existence of (average)
fractal Euler numbers, as the following theorem shows. Let ∂A denote the
(topological) boundary of a set A ⊂ R

d. Note that by A ⊂ B we mean that
A is a proper subset of B.

Theorem 2. Let F be a self-similar set. Assume there exists a set M ∈ Rd

such that ∂M ⊂ F ⊂ M and

Si(M) ∩ Sj(M) = Si(∂M) ∩ Sj(∂M) (2.5)

for all i 
= j. Then the following is true:

(i) The average fractal Euler number χa
f(F ) exists and formula (2.3) holds.

(ii) If {− log r1, . . . ,− log rN} is non-arithmetic, the fractal Euler number
χf (F ) exists and equals χa

f (F ).

Assume that for a self-similar set F and for some δ > 0, the δ-neighbour-
hood of F is polyconvex. It turns out that this is equivalent to assuming
that all its neighbourhoods are polyconvex (compare Proposition 4.5). This
is a consequence of the self-similarity of F and the fact that neighbourhoods
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Figure 1: The Sierpinski gasket ∆ is the self-similar set associated to the list
{S1, S2, S3} of similarities each mapping the triangle M on the right hand
side to one of the smaller triangles SiM with contraction ratio 1

2
.

of polyconvex sets are polyconvex. Hence the Euler characteristic of neigh-
bourhoods as well as the overlap function R of F are well defined in this
situation. Moreover, it turns out that R has a discrete set of discontinuities
(cf. Proposition 4.6). The only possible accumulation point of discontinuities
of R is 0. Thus the assumption Fδ ∈ Rd for some δ > 0 already implies some
of the assumptions in Theorem 1. If we assume additionally the remain-
ing one, namely that the overlap function R satisfies condition (1.1), then
the assertions of Theorem 1 hold. Therefore, the assumptions in Theorem 1
simplify in the polyconvex setting.

In Theorem 2 we assume the existence of a polyconvex set M being a
”good approximation” of the set F and satisfying certain boundary condi-
tions that prevent strong overlapping in F and make R bounded.

Sometimes, as for Sierpinski gasket and the Sierpinski carpet, the convex
hull [F ] of a self-similar set F is a suitable set M for Theorem 2. Recall that
the convex hull of a set K ⊂ R

d is defined as [K] =
⋂{C : K ⊂ C, C convex}.

Example 2.2. (Sierpinski gasket) The Sierpinski gasket ∆ satisfies the as-
sumptions of Theorem 2 for the set M = [∆] (compare Figure 1). Each of the
intersections SiM ∩SjM is a single point wk, (k 
= i 
= j), of their boundary,
implying equation (2.5). Thus χa

f(∆) exists.

If a self-similar set F in R
d can be described by a cut out procedure of an

initial set A ∈ Rd, then, as far as no point from the boundary of A is removed
in the cut out process, A is a suitable set M for Theorem 2, compare for
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instance Example 2.5. Note that totally disconnected self-similar sets in R
d

with d ≥ 2 are naturally excluded by the conditions of Theorem 2. For self-
similar sets in R we refer to Section 2.4. However, it is not difficult to find self-
similar sets not fitting into the framework of Theorem 2 to which Theorem 1
still applies. Example 5.6 and Proposition 5.7 exhibit this phenomenon.

2.3 Examples

Here we present some examples of self-similar sets F , to which Theorem 2
can be applied to obtain their (average) fractal Euler numbers, including the
Sierpinski gasket and the Sierpinski carpet. In all the examples an appropri-
ate set M is easily determined and the conditions on M are easily verified,
implying already the existence of χa

f(F ). To calculate the actual value of
χa

f (F ) using formula (2.3), we need to determine the overlap function R of
F .

Before turning to the examples we discuss the overlap function R in more
detail. In the convex ring we have the following useful formula for R, which
is due to the inclusion-exclusion principle (4.2) for the Euler characteristic
(compare Section 4):

R(ε) =
N∑

k=2

(−1)k−1
∑

1≤i1<...<ik≤N

χ ((Si1F )ε ∩ . . . ∩ (SikF )ε) . (2.6)

Observe that all sets (SiF )ε and their intersections are polyconvex such that
all Euler numbers in this formula are defined. In examples often very few of
the intersections in (2.6) are non-empty and have to be considered for R(ε).
Since the number of non-empty intersections can not increase as ε ↘ 0, this
formula proves to be particularly useful for small ε > 0.

Since the overlap function R assumes only integer values and since it has a
discrete set of discontinuities, it is a piecewise constant function with integer
steps at discontinuity points and constant integer values in between. In many
examples the set of discontinuities is in fact finite, such that R is bounded
and condition (1.1) is trivially satisfied. As we will see in the examples and,
in general, in Section 5, the conditions in Theorem 2 imply this finiteness. In
the examples we fix the diameter b of the self-similar sets to be 1, avoiding
this constant in the formulas. By the scaling invariance (cf. Corollary 2.1)
the diameter does not affect the limits.

Example 2.3. (Sierpinski gasket ∆ - continued) We calculate χa
f (∆). The

only discontinuity point of R is u =
√

3
12

, being the radius of the incircle of the
middle triangle of ∆ (compare Figure 1). For ε ≥ u, the neighbourhood ∆ε
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Figure 2: ε-neighbourhoods of the Sierpinski gasket for ε ≥ u (left) and ε < u
(middle and right). Note that for ε < u, the sets (Si∆)ε ∩ (Sj∆)ε remain
convex and disjoint as ε ↘ 0.

is convex as well as the sets (Si∆)ε, implying R(ε) = χ(∆ε)−
∑

χ((Si∆)ε) =
−2. For ε < u, ∆ε is not convex anymore (cf. Figure 2). But now the
intersection (Si∆)ε ∩ (Sj∆)ε is a convex set, i 
= j, while the intersection of
all three sets (Si∆)ε is empty. In equation (2.6) just the terms for k = 2
remain. Thus R(ε) = (−1)

(
χ((S1∆)ε ∩ (S2∆)ε) + χ((S1∆)ε ∩ (S3∆)ε) +

χ((S2∆)ε ∩ (S1∆)ε)
)

= −3. Now formula (2.3) yields the average fractal
Euler number of ∆:

χa
f (∆) = −us

µs
= − us

log 3
≈ −0.098.

Example 2.4. (Sierpinski carpet) The Sierpinski carpet Q is the self-similar
set associated to a system of 8 similarities Si each mapping the square H =
[0, 1√

2
]2 to one of the small squares 1, . . . , 8 with contraction ratio 1

3
(cf.

Figure 3). Q has similarity dimension s = log 8
log 3

. As for the Sierpinski gasket,

Q satisfies Theorem 2 for the set H = [Q], the convex hull of Q, and, since
all contraction ratios are the same, the theorem ensures the existence of the
average fractal Euler number χa

f (Q). To determine χa
f(Q) we look at the

overlap function R. Again it has only one point of discontinuity, namely
u = 1

6
√

2
. For ε ≥ u, Qε as well as (SiQ)ε are convex, implying R(ε) =

1 − 8 = −7, by (2.2). For ε < u we consider the intersection structure of
the sets (SiQ)ε and use formula (2.6). There are non-empty intersections
of 2 and of 3 of these sets, all being convex, but no intersections of higher
order. (S3Q)ε, for instance, intersects (S2Q)ε and (S4Q)ε and also the set
(S3Q)ε∩ (S2Q)ε∩ (S4Q)ε is non-empty. All together there are 12 intersection
of two sets and 4 intersections of three sets, implying R(ε) = −12 + 4 = −8.
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Figure 3: Sierpinski carpet Q and the square H = [0, 1√
2
]2.

Integration according to formula (2.3) yields

χa
f (Q) = −us

µs
= − us

log 8
≈ −0.019.

In the following example we compare the average fractal Euler numbers of
two self-similar sets with equal dimension but different topological structure.

Example 2.5. (U sets) We modify the construction of the Sierpinski carpet
by considering only seven similarities, again each mapping the square H =
[0, 1√

2
]2 in Figure 3 (right) to one of the squares 1, . . . , 7. But this time we

include a rotation for some of the maps. For the set U1 we rotate the squares
1 and 7 by angle π, 4 by π

2
and 3 by 3π

2
. For U2 we rotate 1, 2, 6 and 7 by

π, 4 and 5 by π
2

and 3 by 3π
2

(compare Figure 4). The so defined self-similar

sets U1 and U2 both have similarity dimension s = log 7
log 3

. Their convex hull

[U1] = [U2] = H is not an appropriate set for Theorem 2, but U1 and U2

satisfy the conditions of this theorem for the set U =
⋃

i S
1
i H =

⋃
i S

2
i H ,

where the Sk
i , i = 1, . . . , 7, are the similarities generating the set Uk.

Since all contraction ratios are the same, the average fractal Euler num-
bers χa

f(U1) and χa
f(U2) exist. Their values differ, since the overlap functions

R1 of U1 and R2 of U2 are different. Both have the same unique discontinuity
point u = 1

18
√

2
and their values coincide for ε ≥ u: R1(ε) = R2(ε) = 1 − 7 =

−6, by equation (2.2). But for ε < u, R1(ε) and R2(ε) assume different val-
ues. Analysing the intersection structure of the sets (Sk

i Uk)ε for Uk, equation
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Figure 4: Self-similar sets with equal dimension but different fractal Euler
numbers.

(2.6) yields R1(ε) = −10 and R2(ε) = −12. By (2.3) and with µ = log 3, the
average fractal Euler numbers are:

χa
f (U1) = −4

us

µs
= −4

us

log 7
≈ −0.015,

and

χa
f(U2) = χa

f(U1) − 2
1

µ

∫ u

0

εs−1dε = −6
us

log 7
≈ −0.023.

Note that U1 and U2 have different numbers of ”holes of radius u”, namely
4 and 6, respectively. This is reflected in the average fractal Euler numbers.

In all the examples considered so far we found a unique discontinuity
point u for the overlap function R. We can give u a geometric meaning
as the ”radius of the largest holes” in the corresponding self-similar set F ,
or, more precisely, as the maximum distance to F of points in the union
of the bounded connected components of the complement of F . But this
unique discontinuity point is due to the simplicity of the examples, where all
”holes” were either ”largest holes” or iterated copies of them. The situation
is not always as simple as the following example of a modified Sierpinski
carpet shows. Moreover, in contrast to the previous examples in this one the
fractal Euler number χf exists. (The non-existence of the the fractal Euler
number in the previous examples can be easily seen by comparing εs

kχ(Fεk
)

for different sequences εk ↘ 0, also see Example 2.8.)
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Figure 5: Modified Sierpinski carpet

Example 2.6. Starting from the square M = [0, 1√
2
]2, the self-similar set

F is generated by a system of 27 similarities each mapping M to one of the
subsquares described in Figure 5. Three of the similarities have contraction
ratio 1

3
, while twelve of them have ratio 1

6
and the remaining twelve ratio 1

12
.

Thus the similarity dimension s of F is the unique solution of 3
3s + 12

6s + 12
12s =

1 (s ≈ 1.818), and the non-arithmetic case applies. Since F satisfies the
conditions of Theorem 2 for M , χf (F ) exists. The overlap function of F has
two discontinuity points corresponding to the radii u1 = 1

6
√

2
and u2 = 1

12
√

2

of the two holes in S(M):

R(ε) =

⎧⎨
⎩

−28 if 0 ≤ ε < u1

−27 if u1 ≤ ε < u2

−26 if u2 ≤ ε < 1

Hence, by formula (2.3), χf(F ) = − (u1)s+(u2)s

µs
≈ −0.021.

2.4 Self-similar sets in R

We consider self-similar sets F in R, generated by contracting similarities Si :
R → R, i = 1, . . . , N , with similarity dimension s. Without loss of generality
we assume that F has diameter 1. Suppose that the system {S1, . . . , SN}
satisfies the SSC. Then there is a positive distance between each two of the
sets SiF and we can arrange the indices i such that SiF is situated to the left
of Si+1F . For i = 1, ..., N−1, let bi denote the length of the gap between SiF
and Si+1F , that is, bi = d(SiF, Si+1F ) = min{|x − y| : x ∈ SiF, y ∈ Si+1F}.

Following Falconer [2], the gap counting function of F is defined as

G(ε) = #{complementary intervals of F with length > ε}.
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Moreover, we define the gap limit of F by

G(F ) := lim
ε↘0

εsG(ε) (2.7)

and the average gap limit of F by

Ga(F ) := lim
δ↘0

1

|log δ|
∫ 1

δ

εsG(ε)
dε

ε
,

in case the limits exist. Falconer gave sufficient conditions for the existence of
the gap limit (2.7) and provided a formula in terms of the gaps bi (compare [2,
Proposition 7.5]). Here we obtain the same result as a corollary of Theorem 1.
Moreover we give sufficient conditions for the average gap limit to exist.

The main point to observe is the close relation between the gap count-
ing function and the Euler characteristic of neighbourhoods of F . First note,
that all neighbourhoods Fε are finite unions of compact intervals, hence poly-
convex. Moreover, their Euler characteristic, being the number of their con-
nected components, is determined by the number of gaps of F of length
greater than 2ε:

χ(Fε) = 1 + G(2ε). (2.8)

This relation between both expressions results in a similar interdependence
of their rescaled limits, as the following corollary to Theorem 1 shows.

Corollary 2.7. Let F be a self-similar set in R with diameter 1 and similar-
ity dimension s. Suppose that the system {S1, . . . , SN} generating F satisfies
the SSC. Then the Euler exponent of F equals s and the following holds:

(i) The average fractal Euler number and the average gap limit always exist
and are given by

Ga(F ) = 2sχa
f(F ) =

1

µs

N−1∑
i=1

bi
s, (2.9)

where µ = −∑N
i=1 rs

i log ri.

(ii) If {− log r1, . . . ,− log rN} is non-arithmetic, both, fractal Euler num-
ber χf (F ) and gap limit G(F ), exist and coincide with their averaged
counterparts.

Proof. Let ui = bi

2
denote the radius of the i-th first level gap (i = 1, . . . , N −

1). It is not difficult to see, that −R(ε) is the number of first level gaps of
radius greater than ε, i.e.

R(ε) = −#{ui > ε : i = 1, . . . , N − 1} = −
N−1∑
i=1

1[ui,1](ε).

13



In particular, this implies that R(ε) = 0 for small ε (i.e. for ε < mini ui).
Therefore, Theorem 1 can be applied. χa

f (F ) exists and it holds

χa
f (F ) =

1

µ

(
−

N−1∑
i=1

∫ 1

ui

εs−1dε +
N − 1

s

)
=

1

µs

N−1∑
i=1

us
i .

Now (2.8) implies the existence of the average gap limit Ga(F ), since

Ga(F ) = lim
δ↘0

1

|log δ|
∫ 1

δ

εsG(ε)
dε

ε
= lim

δ↘0

1

|log δ|
∫ 1

δ

εsχ(Fε/2)
dε

ε
= 2sχa

f (F ),

proving (i). In case {− log r1, . . . ,− log rN} is non-arithmetic, χf(F ) exists
and coincides with χa

f(F ), implying that the gap limit G(F ) exists and is
given by

G(F ) = lim
ε↘0

εsG(ε) = 2s lim
ε↘0

εsχ(Fε) = 2sχf(F ).

This completes the proof.

As with other lacunarity parameters, such as the Minkowski content (see
[2],[3],[8]), for many interesting self-similar sets fractal Euler number and gap
limit do not exist. This leads to considering their average counterparts, as
in the following example of the middle-third Cantor set.

Example 2.8. Let C be the middle-third Cantor set, which is generated by
the similarities S1(x) = 1

3
x and S2(x) = 1

3
x + 2

3
. Therefore, r1 = r2 = 1

3
,

b1 = 1
3

and s = log 2
log 3

. Since C is not h-arithmetic with h = log 3, the existence

of χf(C) and G(C) is not guaranteed by Corollary 2.7. In fact, both numbers
do not exist: Since the gap counting function of C is

G(ε) = 2k − 1 for 3−(k+1) < ε ≤ 3−k,

the sequences (εk) = (1
2
3−k) and (ε̃k) = 3−k, k ∈ N provide different limits as

k → ∞, namely

lim
k→∞

εs
kG(εk) = 2−s < 1 = lim

k→∞
ε̃s
kG(ε̃k)

and similarly

lim
k→∞

εs
kχ(Cεk

) = 2−2s < 2−s = lim
k→∞

ε̃s
kχ(Cε̃k

) = 1.

On the other hand, formula (2.9) yields Ga(C) = 1
2 log 2

≈ 0.721 and χa
f (C) =

2−(s+1)

log 2
≈ 0.466.
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3 Proof of Theorem 1

3.1 Renewal theorem

For proving Theorem 1 we need the Renewal theorem which we state and
discuss now. Let P be a Borel probability measure with support contained
in [0,∞) and µ =

∫∞
0

tP (dt) < ∞. Let z : R → R be a function with a
discrete set of discontinuities satisfying

|z(t)| ≤ c1e
−c2|t| ∀t ∈ R (3.1)

for some constants 0 < c1, c2 < ∞. It is well known in probability theory
that under the above conditions on z the equation

Z(t) = z(t) +

∫ ∞

0

Z(t − τ)P (dτ) (3.2)

has a unique solution Z(t) in the class of functions satisfying limt→−∞ Z(t) =
0. Equation (3.2) is called renewal equation and the asymptotic behaviour
of its solution as t → ∞ is given by the so-called Renewal theorem. We
quote the following discrete version of the Renewal theorem from Levitin
and Vassiliev [9, p. 198], which is adapted to the fractal setting and where a
complete proof is provided (also compare Falconer [2, Corollary 7.3, p. 122]).
A function g : R → R is said to be asymptotic to a function f : R → R,
g ∼ f , if for all ε > 0 there exists a number D = D(ε) such that

(1 − ε)f(t) ≤ g(t) ≤ (1 + ε)f(t) for all t > D. (3.3)

Theorem 3.1. (Renewal Theorem) Let 0 < y1 ≤ y2 ≤ . . . ≤ yN and
p1, . . . , pN be positive real numbers such that

∑N
i=1 pi = 1. For a function z

as defined above, let Z : R → R be the unique solution of the renewal equation

Z(t) = z(t) +
N∑

i=1

piZ(t − yi) (3.4)

satisfying limt→−∞ Z(t) = 0.

(i) If the set {y1, ..., yN} is non-arithmetic, then

lim
t→∞

Z(t) =
1

µ

∫ ∞

−∞
z(τ)dτ.

(ii) If {y1, ..., yN} is h-arithmetic for some h > 0 then

Z(t) ∼ h

µ

∞∑
k=−∞

z(t − kh).
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Moreover, Z is uniformly bounded in R.

Theorem 3.1 implies that in the non-arithmetic case the limit limt→∞ Z(t)
exists, while in the h-arithmetic case Z is asymptotic to some periodic func-
tion of period h (i.e. to some function f with f(t + h) = f(t) for all t ∈ R).

The latter is sufficient for the limit limT→∞ 1
T

∫ T

0
Z(t)dt to exist as the fol-

lowing lemma shows.

Lemma 3.2. (i) Let f ∈ L1
loc(R) be a periodic function with period h > 0,

i.e. f(t + h) = f(t) for all t ∈ R, and let L :=
∫ h

0
f(t)dt. Then the

limit

lim
T→∞

1

T

∫ T

0

f(t)dt

exists and equals h−1L.

(ii) If g : R → R is a function such that g ∼ f , then the limit

lim
T→∞

1

T

∫ T

0

g(t)dt

exists and equals h−1L.

Proof. (i) For T > 0 choose n ∈ N such that nh < T ≤ (n + 1)h. Then

1

T

∫ T

0

f(t)dt =
1

T

(
n−1∑
i=0

∫ (i+1)h

ih

f(t)dt +

∫ T

nh

f(t)dt

)
.

By the periodicity of f , the right hand side is bounded from above by 1
T
(nL+∫ h

0
|f(t)| dt) and from below by 1

T
(nL − ∫ h

0
|f(t)| dt). Since f ∈ L1

loc(R), the
stated limit follows by letting T → ∞.
(ii) Fix some ε > 0. On one hand (3.3) implies

1

T

∫ T

0

g(t)dt ≤ 1

T

(∫ D

0

g(t)dt + (1 + ε)

∫ T

D

f(t)dt

)

for T > D and thus

lim sup
T→∞

1

T

∫ T

0

g(t)dt ≤ (1 + ε)h−1L.

On the other hand (3.3) yields

(1 − ε)h−1L ≤ lim inf
T→∞

1

T

∫ T

0

g(t)dt

The statement follows by letting ε ↘ 0.
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As a direct consequence of the Renewal theorem and Lemma 3.2 we have
the following

Corollary 3.3. Under the assumptions of Theorem 3.1 the following limit
always exists and equals to the expression on the right hand side:

lim
T→∞

1

T

∫ T

0

Z(t)dt =
1

µ

∫ ∞

−∞
z(τ)dτ.

Proof. For {y1, ..., yN} being h-arithmetic, just note that the function f(t) =
h
µ

∑∞
k=−∞ z(t − kh) in Theorem 3.1(ii) is uniformly bounded and periodic

and apply Lemma 3.2(ii) to g(t) = Z(t). In the non-arithmetic case the limit
limt→∞ Z(t) exists and the assertion follows by applying Lemma 3.2 to g(t) =
Z(t) which is asymptotic to the constant function f(t) ≡ limt→∞ Z(t).

3.2 Proof of Theorem 1

The following statement describes the structure of ε-neighbourhoods of gen-
eral compact sets K ⊂ R

d for large ε. A consequence is that the Euler
characteristic χ(Kε) of the neighbourhoods exists and equals 1 for these ε.
We make use of this fact in the proof of formula (2.3).

Recall that a set A ⊂ K is called a strong deformation retract of K if
there is a homotopy θ : K × [0, 1] → K such that θ(·, 0) = id, θ(K, 1) ⊂ A
and θ(a, t) = a for all a ∈ A and t ∈ [0, 1]. The map θ(·, 1) : K → A is called
a retraction.

Proposition 3.4. Let b be the diameter of the compact set K ⊂ R
d. Then,

for ε ≥ b, the convex hull [K] of K is a strong deformation retract of the
parallel set Kε and χ(Kε) = 1.

Proof. Fix ε ≥ b. By construction, [K] ⊂ Kε. Let Π[K] be the metric
projection from R

d onto [K]. It is not difficult to see that for all x ∈ Kε

the line segment connecting x and Π[K](x) is contained in Kε. Therefore, the
mapping θ : Kε × [0, 1] → Kε defined by

θ(x, t) := (1 − t)x + tΠ[K](x)

is a homotopy satisfying θ(·, 0) = id, θ(x, 1) = Π[K](x) ∈ [K] for all x ∈ Kε,
and θ(x, t) = x for all x ∈ [K] and t ∈ [0, 1]. Hence, [K] is a strong
deformation retract of Kε. The latter implies that the homology groups of
the singular complexes of [K] and Kε are isomorphic, and χ(Kε) = 1 follows
from the contractability of the convex set [K].
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Considering the definition of the overlap function R and equation (2.1),
which implies χ((SiF )ε) = χ(Fε/ri

) for i = 1, . . . , N , we can write the follow-
ing for the Euler characteristic of Fε:

χ(Fε) =

N∑
i=1

χ(Fε/ri
) + R(ε) (3.5)

Define
Z(t) = be−stχ(Fbe−t) (3.6)

for t ≥ 0 and Z(t) = 0 for t < 0. Using (3.5) we obtain

Z(t) = be−st

(
N∑

i=1

χ(Fbe−(t+log ri)) + R(be−t)

)

=
N∑

i=1

rs
i be

−s(t+log ri)χ(Fbe−(t+log ri)) + be−stR(be−t)

The terms of the sum over i satisfying t + log ri ≥ 0 can be replaced by
rs
i Z(t + log ri). Then we have

Z(t) =
∑

t+log ri≥0

rs
i Z(t + log ri) + z(t) (3.7)

where, for t ≥ 0,

z(t) = be−stR(be−t) +
∑

t+log ri<0

be−stχ(Fbe−(t+log ri)) (3.8)

and, for t < 0, z(t) = 0.
Since Z(t) = 0 for t < 0, we can add the zeros for t + log ri < 0 in the

sum in (3.7) to obtain

Z(t) =
N∑

i=1

rs
i Z(t + log ri) + z(t). (3.9)

The function z(t) can be simplified, to see that the term containing the
overlap function really is the important one. Noting that be−(t+log ri) > b
for t + log ri < 0, by Proposition 3.4, the Euler characteristic χ(Fbe−(t+log ri))
equals 1 whenever it occurs in z(t). Using indicator functions 1[ri,1] defined
by 1[ri,1](y) = 1 if y ∈ [ri, 1] and 1[ri,1](y) = 0 else, we can write (3.8) as

z(t) = be−st

(
R(be−t) +

N∑
i=1

1[ri,1](e
−t)

)
. (3.10)
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Now observe that (3.9) is a renewal equation for Z and that, trivially,
limt→−∞ Z(t) = 0. The assumptions on the overlap function R ensure that
z has a discrete set of discontinuities. Moreover, condition (1.1) implies the
existence of positive constants c1 := b(cb−γ + N) and c2 := s − γ > 0 such
that

|z(t)| ≤ be−st(
∣∣R(be−t)

∣∣+ N) ≤ c1e
−c2t

for t ≥ 0. Thus condition (3.1) is satisfied and we can apply Theorem 3.1
with pi = rs

i and yi = − log ri. There are two cases to consider.
The non-arithmetic case. If {− log r1, . . . ,− log rN} is non-arithmetic,

the limit

lim
t→∞

Z(t) = b lim
t→∞

e−stχ(Fbe−t) = b lim
ε↘0

(ε

b

)s

χ(Fε) = bχf (F )

exists and equals the integral

1

µ

∫ ∞

0

z(τ)dτ =
1

µ

∫ 1

0

z(− log r)
dr

r

where we substituted r = e−τ to obtain the right hand side and µ =
−∑N

i=1 rs
i log ri. Since

z(− log r) = brs

(
R(br) +

N∑
i=1

1[ri,1](r)

)
,

integration yields

χf(F ) =
1

µ

(∫ 1

0

rs−1R(br)dr +

N∑
i=1

∫ 1

0

rs−11[ri,1](r)dr

)

=
1

µ

(∫ 1

0

rs−1R(br)dr +
N − 1

s

)
.

This completes the proof of (ii) of Theorem 1. For the non-arithmetic case,
(i) easily follows from (ii), since χa

f(F ) = χf (F ) in case χf (F ) exists.
The h-arithmetic case. If {− log r1, . . . ,− log rN} is h-arithmetic, Cor-

ollary 3.3 states that the limit

lim
T→∞

1

T

∫ T

0

Z(t) dt = b lim
δ↘0

1

|log δ|
∫ 1

δ

(ε

b

)s

χ(Fε)
dε

ε
= bχa

f(F )

exists and equals
1

µ

∫ ∞

0

z(τ)dτ.

Hence, repeating the calculations from the non-arithmetic case, we obtain
formula (2.3) for the h-arithmetic case. This completes the proof of Theo-
rem 1.
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4 Convex ring and fractal Euler number

4.1 Euler characteristic in Rd

Here we briefly introduce the convex ring Rd and the Euler characteristic in
this class of sets. We follow the lattice theoretic approach of Klee [7] and
Rota [12]. For more detailed explanations compare [6] and the references
therein.

A subset C of R
d is said to be convex if for any two points x, y ∈ C the

line segment connecting them is a subset of C. Denote by Kd the collection
of all compact convex sets in R

d. We call a set polyconvex if it is a finite
union of compact convex sets. Since the intersection of two convex sets is
convex, union and intersection of polyconvex sets are again polyconvex sets.
That is, the family of polyconvex sets in R

d is closed with respect to unions
and intersections. This family is usually referred to as the convex ring and
denoted by Rd. Note that ∅ ∈ Kd ⊆ Rd.

Definition 4.1. A valuation on Rd is a function ν : Rd → R such that
ν(∅) = 0 and, for all A, B ∈ Rd,

ν(A ∪ B) = ν(A) + ν(B) − ν(A ∩ B). (4.1)

By iterating the identity (4.1) we obtain the so called inclusion-exclusion
principle for the valuation ν:

ν
( n⋃

i=1

Ai

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

ν(Ai1 ∩ ... ∩ Aik), (4.2)

whenever A1, . . . , An ∈ Rd.
The Euler characteristic should be a valuation that assigns the value 1 to

non-empty convex sets C ∈ Kd. Hadwiger [4] considered extensions of this
trivial valuation on Kd to the convex ring Rd and showed the existence and
uniqueness of such an extension, as the following theorem states.

Theorem 4.2. [14, Thm. 3.4.12] There exists a unique valuation χ on the
convex ring Rd, such that χ(C) = 1 whenever C ∈ Kd.

This valuation χ on Rd is called the Euler characteristic. We emphasize
again that for polyconvex sets this notion of Euler characteristic coincides
with the more general notion of Euler characteristic for cell complexes. For
any set A ∈ Rd, χ(A) can be determined by choosing a decomposition into
compact convex sets and using the inclusion-exclusion principle. Note that,
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according to Theorem 4.2, χ(A) is independent of the choice of the decom-
position of A.

Denote by Ed the Euclidean group on R
d generated by translations and

rotations. A valuation ν on Rd is said to be motion invariant if

ν(gA) = ν(A)

for all g ∈ Ed and A ∈ Rd, where gA = {g(a) : a ∈ A}. A valuation ν on
Rd is scaling invariant (or homogeneous of degree 0 ) if χ(λA) = χ(A) for all
λ > 0 and A ∈ Rd, where λA := {λa : a ∈ A}. Note that the convex ring is
closed with respect to Euclidean motions and scaling, i.e. with A also gA and
λA are polyconvex, and that χ is a motion and scaling invariant valuation.

The following lemma collects some basic properties of polyconvex sets
and their ε-neighbourhoods, which we use frequently in the sequel. For con-
venience we sometimes use the ”0-neighbourhood” A0 to denote the set A
itself. Observe that (iii) is a special case of Proposition 3.4, however, we
include a very simple proof of this fact for the convex ring setting.

Lemma 4.3. For a set A ∈ Rd the following holds:

(i) Aε ∈ Rd for all ε > 0.

(ii) χ(Aε), as a function of ε, has a finite set of discontinuities in (0,∞)
and limε↘0 χ(Aε) = χ(A).

(iii) χ(Aε) = 1 for all ε ≥ b, where b denotes the diameter of A.

Proof. Assertion (i) follows immediately from the fact that neighbourhoods
of convex sets are convex. For a proof of (ii) and (iii), let C1, . . . , Cn ∈ Kd

be sets such that A =
⋃n

k=1 Ck. Then by the inclusion-exclusion principle,

χ(Aε) = χ

(
n⋃

k=1

Ck
ε

)
=

n∑
k=1

(−1)k−1
∑

1≤i1<...<ik≤n

χ
(
Ci1

ε ∩ . . . ∩ Cik
ε

)
. (4.3)

Now observe that each of the sets Ci1
ε ∩ . . . ∩ Cik

ε in the sum is convex
and has either Euler characteristic 0 or 1. If Ci1 ∩ . . . ∩ Cik 
= ∅ then
χ (Ci1

ε ∩ . . . ∩ Cik
ε ), as a function of ε, is constant equal to 1, while in case

Ci1 ∩ . . . ∩ Cik = ∅, χ (Ci1
ε ∩ . . . ∩ Cik

ε ), as a function of ε, has exactly one
discontinuity point α > 0 where the Euler characteristic jumps from 0 to 1.
Thus each of the terms in the finite sum (4.3) has at most one discontinuity
point, implying that χ(Aε), as a function of ε, has a finite number of discon-
tinuities in (0,∞). χ(Aε) → χ(A) as ε ↘ 0 follows since χ(Aε) is continuous
(from the right) at 0.
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(iii) Observe that for ε ≥ b the sets Ci1
ε ∩ . . . ∩ Cik

ε are non-empty and
convex and therefore have Euler characteristic one. Applying this to (4.3)
and noting that

∑
1≤i1<...<ik≤n 1 = (n

k) and
∑n

i=1(−1)k−1 (n
k) = 1, by the

binomial formula, assertion (iii) follows.

Remark 4.4. Lemma 4.3 (i) implies that for any polyconvex set A, the Euler
exponent s of A is 0, since |χ(Aε)| is bounded. Thus χf(A) = limε↘0 χ(Aε)
and so, by Lemma 4.3 (ii),

χf (A) = χ(A).

Hence for polyconvex sets the fractal Euler number coincides with the classi-
cal Euler characteristic, a further justification of the concepts introduced in
this paper.

4.2 Self-similar sets with ε-neighbourhoods in Rd

Given a self-similar set F , it is very easy to decide, whether it fits into the
convex ring setting, i.e. whether its ε-neighbourhoods are polyconvex sets, or
not. Either all neighbourhoods are polyconvex or none.

Proposition 4.5. Let F be a self-similar set. Then the following statements
are equivalent:

(i) For all ε > 0, Fε ∈ Rd.

(ii) There is an ε > 0 such that Fε ∈ Rd.

Proof. We prove (ii) ⇒ (i), the other direction is trivial. Assume Fε ∈ Rd

for some ε > 0. By Lemma 4.3 (i), Fδ ∈ Rd for all δ > ε.
Let now δ < ε and n ∈ N such that δ > εrmax

n. We can write F as the
union of its n-th level cylinder sets implying

Fδ =
⋃

ik∈{1,...,N}
(Si1 ◦ . . . ◦ SinF )δ. (4.4)

Observe that (Si1 ◦ . . . ◦ SinF )δ = Si1 ◦ . . . ◦ Sin(Fδ/ri1
...rin

). Since δ
ri1

...rin
≥

δ
rn
max

> ε, we have Fδ/ri1
...rin

∈ Rd. Thus Fδ, being the finite union of poly-

convex sets in (4.4), is an element of Rd.

According to Proposition 4.5, it is sufficient to investigate an arbitrarily
chosen single neighbourhood Fε of F . If it is polyconvex all neighbourhoods
of F are, else none is. The value ε can be chosen large (i.e. ε ≥ b) such
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that the ε-neighbourhood is simply connected and has no ”inner structure”,
simplifying the investigation. However, there are self-similar sets with non-
polyconvex neighbourhoods, e.g. the von Koch curve or self-similar sets in
R

d, d ≥ 2, satisfying the SSC.
In view of Proposition 4.5 it is clear that the overlap function R is well

defined if we assume that Fε ∈ Rd for some ε > 0. But with this assumption
we can even say more about the overlap function, namely that R has a
discrete set of discontinuities:

Proposition 4.6. Let F be a self-similar set with polyconvex neighbourhoods.
Then the overlap function R : (0,∞) → R has a discrete set of discontinu-
ities.

Proof. Let δ > 0. Since Fδ and (SiF )δ are in Rd, by Lemma 4.3 (ii), χ(Fδ+ε)
and χ((SiF )δ+ε) have, as functions of ε, a finite set of discontinuities in (0,∞).
Therefore, the overlap function R(ε) = χ(Fε) −

∑N
i=1 χ((SiF )ε) has a finite

set of discontinuities in (δ,∞). Since this holds for each δ > 0, R has a
discrete set of discontinuities in (0,∞).

Note that 0 is the only possible accumulation point of discontinuities of
the overlap function R.

5 Classes of self-similar sets with (average)

fractal Euler number

In this section we discuss the class of self-similar sets F satisfying the con-
ditions of Theorem 2 and some extension of this class. In the examples in
Section 2.3 one can see that the ε-neighbourhoods of F can be described in
terms of the set M of Theorem 2. Depending on ε we can find a level n
such that Fε coincides with the union of the ε-neighbourhoods of all n-th
level iterated images Si1 ◦ . . . ◦ SinM of the set M . Lemma 5.1 shows that
this is true for the whole class of self-similar sets satisfying the conditions of
Theorem 2, in fact, that it is even true for a larger class.

Let F be a self-similar set with diameter b. We define the function

n(ε) := min{n ∈ N0 : rn
maxb ≤ ε}.

For A ⊂ R
d, let A0 := A and for n = 1, 2, . . ., define An :=

⋃N
i=1 Si(A

n−1).

With ∂A, A and
◦
A we denote the (topological) boundary, closure and interior

of the set A, respectively.
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Lemma 5.1. Assume there exists a compact set M ⊂ R
d such that ∂M ⊂

F ⊂ M . Then for all ε ≥ b
Fε = Mε. (5.1)

More generally,
Fε = (Mm)ε (5.2)

for all integers m ≥ n(ε) and ε > 0. In particular, if M ∈ Rd, then Fε ∈ Rd

for all ε > 0.

Proof. Let M ⊂ R
d be given as above and ε ≥ b. Then it is clear that

M ⊂ Fε. On the other hand, for x ∈ Mε \ M we have d(x, ∂M) ≤ ε and,
since ∂M ⊂ F , x ∈ Fε. Therefore, Mε = M ∪ (Mε \ M) ⊆ Fε. The reversed
inclusion is clear since F ⊂ M , thus (5.1) holds.

To prove (5.2) we first note that, by definition of n(ε), ε
ri1

...rim
≥ ε

r
n(ε)
max

≥ b

for any m ≥ n(ε) and ij ∈ {1, . . . , N} (j = 1, . . . , m). Therefore, by (5.1),
Mε/(ri1

...rim) = Fε/(ri1
...rim ) implying

(Mm)ε =
N⋃

i1=1

. . .
N⋃

im=1

Si1 ◦ . . . ◦ Sim

(
Mε/(ri1

...rim )

)

=

N⋃
i1=1

. . .

N⋃
im=1

Si1 ◦ . . . ◦ Sim

(
Fε/(ri1

...rim )

)
= Fε.

Finally, if M ∈ Rd, then Fε ∈ Rd follows directly from (5.1) and Propo-
sition 4.5.

Remark 5.2. Clearly, if the set M in Lemma 5.1 is convex, then M = [F ].
As pointed out before, for many examples of self-similar sets the set M = [F ]
satisfies ∂M ⊂ F ⊂ M . However, as Example 2.5 shows, there are self-similar
sets satisfying the conditions of Lemma 5.1 with M 
= [F ].

If a set M ∈ Rd of Lemma 5.1 exists for a self-similar set F , then Propo-
sition 4.6 implies that the overlap function R has a discrete set of discon-
tinuities. The following lemma shows that for the class of self-similar sets
satisfying the conditions of Theorem 2 the set of discontinuities of the (piece-
wise constant) function R is even finite implying that R is bounded.

Lemma 5.3. If there exists a set M ∈ Rd such that ∂M ⊂ F ⊂ M and

Si(M) ∩ Sj(M) = Si(∂M) ∩ Sj(∂M) (5.3)
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for all i 
= j, then the overlap function R has a finite set of discontinuities
and is bounded. Moreover,

lim
ε↘0

R(ε) =

N∑
k=2

(−1)k−1
∑

1≤i1<...<ik≤N

χ(Si1M ∩ . . . ∩ SikM). (5.4)

Proof. It suffices to show that

(SiF )ε ∩ (SjF )ε = (SiM)ε ∩ (SjM)ε (5.5)

for ε > 0 and i 
= j. By the inclusion-exclusion principle, this implies, that
the overlap function can be written as

R(ε) =
N∑

k=2

(−1)k−1
∑

1≤i1<...<ik≤N

χ((Si1M)ε ∩ . . . ∩ (SikM)ε)

= χ(Mε) −
N∑

i=1

χ((SiM)ε)

By Lemma 4.3 (ii), each term in the last sum has, as a function of ε, a finite
set of discontinuities in (0,∞), implying the same for R. Therefore, since R
is a piecewise constant function, we conclude that it is bounded. Formula
(5.4) follows immediately.

To complete the proof we show equation (5.5). Since SiF ⊂ SiM , one
of the inclusions follows immediately. To prove the remaining one, let x ∈
(SiM)ε∩(SjM)ε. We show that d(x, Si∂M) ≤ ε. Assume the contrary. Then,
x ∈ SiM (x ∈ (SiM)ε \ SiM implies d(x, Si∂M) ≤ ε.) Since x ∈ (SjM)ε

we can find y ∈ SjM such that d(x, y) ≤ ε. Now the assumption implies
that on one hand y ∈ SiM ∩ SjM since d(x, (SiM)c) > ε. On the other
hand y /∈ Si∂M , a contradiction to (5.3). Thus d(x, Si∂M) ≤ ε, implying
that x ∈ (Si∂M)ε ⊂ (SiF )ε. The same arguments apply to j. Hence x ∈
(SiF )ε ∩ (SjF )ε, completing the proof of (5.5).

Remark 5.4. Condition (5.3) in Lemma 5.3 cannot be removed. Consider,
for example, a modified Sierpinski gasket with strong overlap as defined by
the following system of similarities in R

2: S1x = 2
3
x, S2x = 2

3
x + (1

3
, 0) and

S3x = 1
3
x + (1

3
, 1√

3
). The convex hull of this self-similar set satisfies the

conditions of M in Lemma 5.3 except (5.3) but its overlap function does not
have a finite set of discontinuities.

Remark 5.5. If, in addition to the conditions of Lemma 5.3, we have
S(M) ⊂ M (which is always true for convex M), then {S1, . . . , SN} sat-

isfies the OSC for the set
◦

M : condition (5.3) implies Si(
◦

M) ∩ Sj(
◦

M) = ∅

and S(M) ⊂ M obviously S(
◦

M) ⊂
◦

M .
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Observe that the set M satisfying the conditions in Lemma 5.3 is not
uniquely determined for a self-similar set F . In fact, if there is one, there
are many such sets. It is not difficult to see that, for instance, with M , also
the set S(M) satisfies the conditions. In the examples it is easy to find such
sets M with the assumption S(M) ⊂ M not satisfied. For the Sierpinski
gasket ∆, for example, the set M ′ being the union of the set S◦S[∆] and the
triangle w1w2w3 (compare Figure 1) satisfies the conditions of Lemma 5.3
but not S(M ′) ⊂ M ′. But this condition must be satisfied, if we want to
use the interior of M ′ as the open set of the OSC. It is, however, not clear
if this assumption is really needed. We conjecture that, whenever a set M
of Lemma 5.3 exists, one can also find such a set M with S(M) ⊂ M . Note

that, if S(M) ⊂ M , the fact
◦

M ∩ F 
= ∅ implies that
◦

M is also a suitable
open set for the strong open set condition, which in R

d is equivalent to the
OSC (cf. [13]).

Proof of Theorem 2. By Lemma 5.1, the existence of a set M for F as
assumed in Theorem 2 implies that Fε ∈ Rd for ε > 0. Moreover, Lemma 5.3
states that under the assumptions of Theorem 2 the overlap function R of
F has a finite set of discontinuities and that R is bounded. Therefore, the
conditions of Theorem 1 are satisfied and the assertions follow directly. �

Although the conditions in Theorem 2 provide a reasonable class of self-
similar sets for which the (average) fractal Euler number exist, the following
example shows that there are still interesting self-similar sets satisfying the
conditions of Theorem 1 that are not included in the class covered by The-
orem 2. In particular, the condition ∂M ⊂ F can be relaxed (cf. Proposi-
tion 5.7 ).

Example 5.6. Let U3 be the self-similar set in Figure 6 (left) obtained in
the same way as U1 and U2 in Example 2.5 with the obvious changes in the
choice of the similarities. Proceeding as in the examples in Section 2.3, we
obtain

R(ε) =

{
1 − 7 = −6 if ε ≥ u
−12 + 7 = −10 if 0 < ε < u

where u = 1
18

√
2
. Therefore,

χa
f (U3) =

1

µ

(∫ 1

0

εs−1R(ε) dε +
N − 1

s

)
= −4us

µs
= − 4us

log 7
≈ −0.015.

The above example motivates the following Proposition that gives some
sufficient geometric conditions for R(ε) to be bounded in the case when ∂M
is not a subset of F .
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Figure 6: U-set U3, which does not meet the assumptions of Theorem 2, and
Cantor set U4 with non-polyconvex neighbourhoods.

Proposition 5.7. Let F be a self-similar set. Assume there is a set M ∈ Rd

such that F ⊂ M and

SiM ∩ SjM = SiA ∩ SjA (5.6)

for all i 
= j, where A = ∂M ∩ F . Let V = {y ∈ R
d \ M : d(y, ∂M) <

d(y, A)}. If

(SiM)ε ∩ (SjM)ε ∩ SiV = (SiM ∩ SjM)ε ∩ SiV (5.7)

for all i 
= j and all ε > 0, then the overlap function R has a finite set of
discontinuities. Moreover, equation (5.4) holds.

Proof. First we show that the assumptions imply

(SiF )ε ∩ (SjF )ε = (SiM)ε ∩ (SjM)ε (5.8)

for ε > 0 and i 
= j.
Since SiF ⊂ SiM , one of the inclusions in (5.5) follows immediately. To

prove the remaining one, let x ∈ (SiF )ε ∩ (SjF )ε.
(i) For x ∈ SiV , conditions (5.7) and (5.6) imply x ∈ (SiA∩SiA)ε and, since
A ⊂ F , x ∈ (SiF ∩ SjF )ε ⊆ (SiF )ε ∩ (SjF )ε, proving (5.8) in this case.
(ii) For x /∈ SiV , we show that d(x, SiA) ≤ ε. Assume the contrary. Then,
clearly, x ∈ SiM . (x ∈ (SiM)ε \ SiM implies d(x, SiA) ≤ d(x, Si∂M) ≤ ε
since x /∈ SiV .) Since x ∈ (SjM)ε we can find y ∈ SjM such that d(x, y) ≤
ε. Now the assumption implies that on one hand y ∈ SiM ∩ SjM since
d(x, (SiM)c) > ε, on the other hand y /∈ SiA, a contradiction to (5.6). Thus
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d(x, SiA) ≤ ε, implying that x ∈ (SiA)ε ⊂ (SiF )ε. The same arguments
apply to j (we can assume that x /∈ SjV , otherwise we are in case (i)).
Hence x ∈ (SiF )ε ∩ (SjF )ε, completing the proof of (5.8).

Since (5.8) holds, we can now proceed as in the proof of Lemma 5.3.

Remark 5.8. Note that, as a consequence of equation (5.2), we can replace
χ(Fε) with χ((Mn(ε))ε) in the Definitions 1.2 and 1.3 of the (average) fractal
Euler number, whenever the conditions of Lemma 5.1 are satisfied. Therefore,
one can study the asymptotic behaviour of

(
ε
b

)s
χ(Fε) =

(
ε
b

)s
χ((Mn(ε))ε) by

applying the Renewal theorem directly to the equation

χ((Mn(ε))ε) =

N∑
i=1

χ((Mn(ε/ri))ε/ri
) + R̃(ε)

where

R̃(ε) = χ((Mn(ε))ε) −
N∑

i=1

χ((Mn(ε)−1)ε/ri
).

On the other hand, it is clear that the conditions of Lemma 5.1 can not be
satisfied by self-similar sets satisfying the SSC. Therefore one could extend
the notion of (average) fractal Euler number to this class of self-similar sets
by using the formula

χf (F ) = lim
ε↘0

(ε

b

)s

χ((Mn(ε))ε),

and its average counterpart, with M = [F ] as a definition.
We illustrate this possible extension with the following example. Consider

the Cantor set in R
2 described in Figure 6 (right). It is not difficult to

determine the function R̃ of this set:

R̃(ε) =

⎧⎨
⎩

−3 for 1
6
≤ ε

−4 for 1
6
√

2
≤ ε < 1

6

0 for ε < 1
6
√

2

Thus R̃ is a bounded function with only two discontinuities and the redefined
”average fractal Euler number” of this self-similar set exists and can easily
be calculated.
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