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BALLS HAVE THE WORST BEST SOBOLEV INEQUALITIES

F. MAGGI AND C. VILLANI

Abstract. Using transportation techniques in the spirit of Cordero-Erausquin,
Nazaret and Villani [7], we establish an optimal non-parametric trace Sobolev in-
equality, for arbitrary locally Lipschitz domains in R

n. We deduce a sharp variant
of the Brézis-Lieb trace Sobolev inequality [4], containing both the isoperimet-
ric inequality and the sharp Euclidean Sobolev embedding as particular cases.
This inequality is optimal for a ball, and can be improved for any other bounded,
Lipschitz, connected domain. We also derive a strengthening of the Brézis-Lieb
inequality, suggested and left as an open problem in [4]. Many variants will be
investigated in a companion paper [10].
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1. Motivations and main results

The main purpose of this paper is to establish various sharp trace Sobolev inequal-
ities in domains of R

n and discuss their connection with other inequalities. Before
stating our results, let us recall briefly some of the background.

1.1. Optimal trace Sobolev inequalities. Sobolev inequalities are among the
most famous and useful functional inequalities in analysis. They express a strong
integrability and/or regularity property for a function f in terms of some integrabil-
ity property for some derivatives of f . The most basic example is the following: for
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each n ≥ 2 and p ∈ [1, n) there is a finite constant Sn(p) such that for all measurable
functions f : R

n → R vanishing at infinity,

(1) ‖f‖Lp�(Rn) ≤ Sn(p)‖∇f‖Lp(Rn), p� :=
np

n− p
.

Here as in all the sequel of the paper, R
n is equipped with the n-dimensional

Lebesgue measure, and, by definition, ‖∇f‖Lp(Rn) is the Lp(Rn) norm of the function
|∇f |, where | · | stands for a given norm on R

n, say the Euclidean norm. Following
Lieb and Loss [9], we say that f vanishes at infinity if

∀a > 0, Ln
[{x ∈ R

n; |f(x)| ≥ a}] < +∞,

where Ln is the n-dimensional Lebesgue measure. This vanishing condition is about
optimal: if it is not fulfilled, f cannot belong to any Lebesgue space, although ∇f
may very well lie in Lp(Rn) (such is the case if f coincides with a nonzero constant
out of a set of finite measure).

We shall not try to review the gigantic literature studying the many variants
of Sobolev inequalities involving higher-order or fractional derivatives, exponents
p ≥ n, functions on Riemannian manifolds, or on open domains of R

n. This latter
variant is the one we shall focus on in the present work: throughout the paper, we
shall consider functions defined on an open set (domain) Ω ⊂ R

n. We shall not
necessarily require Ω to be bounded, but we shall always assume that it is locally
Lipschitz. By this we mean that in the neighborhood of any x0 ∈ ∂Ω, the set Ω
may be written as the epigraph of a well-chosen Lipschitz function, in a well-chosen
coordinate system [8, p. 127]. In more concrete words, this means that the boundary
∂Ω is locally Lipschitz and that Ω lies “on one side” of its boundary ((0, 1) ∪ (1, 2),
for instance, does not satisfy this assumption, but (0, 1) ∪ (2, 3) does).

If Ω has finite Lebesgue measure, the condition that f vanish at infinity becomes
void, and in particular does not prevent f to be a nonzero constant; so, an additional
condition should be imposed to control the integrability of f in terms of that of its
gradient. One possibility is to supplement the Lp(Ω) bound on ∇f with some Lq(Ω)
bound for f ; if q < p�, the resulting inequality is still of interest. A classical choice
is q = p, in accordance with the definition of the Sobolev space W 1,p(Ω) as the space
of Lp functions on Ω whose gradient also lies in Lp.

Another possibility, which is the one we shall adopt here, is to introduce an Lq

bound on the trace of f on ∂Ω. This leads to a “trace Sobolev inequality”:

(2) ‖f‖Lp�(Ω) ≤ A‖∇f‖Lp(Ω) + C‖f‖Lq(∂Ω).
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Here, for simplicity we wrote ‖f‖Lq(∂Ω) in place of ‖ tr f‖Lq(∂Ω), where tr is the trace
operator, whose definition is recalled in the Appendix. Moreover, ∂Ω is implicitly
equipped with the (n− 1)-dimensional Hausdorff measure Hn−1, as in all the rest of
the paper.

For a given domain Ω, there is in general a range of admissible parameters q in
inequality (2). However, there is a rather natural choice, namely

(3) q = p� :=
np�

n− 1
=

(n− 1)p

n− p
.

Indeed, this is the only value for which the second term in the right-hand side of (2)
has the same homogeneity as the other terms. In particular, this choice is the only
hope to obtain inequalities which hold true unconditionally on Ω. By the way (see
the Appendix), p� is the maximum exponent q such that

∇f ∈ Lp(Ω) =⇒ f ∈ Lq
loc(∂Ω).

Throughout the present paper, this will be our choice for q. The resulting inequality,

(4) ‖f‖Lp�(Ω) ≤ A‖∇f‖Lp(Ω) + C‖f‖
Lp�

(∂Ω)
,

will be called the homogeneous trace Sobolev inequality. It does hold true
for all domains Ω with locally Lipschitz boundary; we do not need to give a precise
reference for this fact, since the present paper will include a complete proof. In
certain cases (mainly for p = 2 and Ω bounded) the homogeneous trace Sobolev
inequality has been studied in depth in a classical paper by Brézis and Lieb [4] from
1985.

When Ω is the whole Euclidean space R
n, the value of the optimal constant

Sn(p), and the optimal functions in inequality (1) have been identified long ago,
independently by Aubin [1], Rodemich (unpublished) and Talenti [13]. A rather
short proof (very different from those of the above-mentioned authors) can be found
in [7], together with additional references. Apart from this particular case, the
picture is not so neat and many problems are still open. This is true in particular
for trace Sobolev inequalities in open sets of R

n, and even more so for Sobolev
inequalities on Riemannian manifolds. These questions have remained popular to
this date, because they provide some of the simplest instances in which one can
thoroughly study the influence of the geometry on the solution of certain analytical
variational problems.

One among several main results obtained by Brézis and Lieb can be stated as
follows: For any bounded Lipschitz open domain Ω ⊂ R

n there exists a finite constant
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Cn(Ω) such that, for all measurable functions f : Ω → R,

‖f‖L2�(Ω) ≤ Sn(2)‖∇f‖L2(Ω) + Cn(Ω)‖f‖
L2�

(∂Ω)
.

The norm used above is the Euclidean norm. The important point is that the
same constant Sn(2) which works for the Euclidean case, also works in the present
context of trace Sobolev inequality. The proof is clever but not so difficult; it uses
the properties of harmonic functions, and therefore seems to apply only to the case
p = 2.

Some natural questions were left open in that paper: What about the constant
Cn(Ω)? Can one generalize the above inequality to other values of p? To our
knowledge these questions have remained open since then. A more subtle problem
suggested by Brézis and Lieb was the possible validity of the stronger inequality

‖f‖2
L2�(Ω) ≤ Sn(2)2‖∇f‖2

L2(Ω) + C ′
n(Ω)2‖f‖2

L2�
(∂Ω)

.

Also this problem seems to have remained open, apart from the case of the Euclidean
ball, solved a few years ago by Carlen and Loss [6], and independently by Zhu [15].
Both papers used some specific properties of the case p = 2, for which there is
a conformal symmetry, so that trace Sobolev inequalities in a half-space can be
transformed into trace Sobolev inequalities in the ball. Carlen and Loss actually
exploited the conformal symmetry in a systematic and beautiful way, thanks to the
principle of “competing symmetries” which they had developed earlier in [5].

1.2. Isoperimetry. The Isoperimetric Theorem states that, among all domains in
R

n with given volume (or measure), balls have the smallest surface. This is expressed
by the isoperimetric inequality: if Ω has finite measure,

(5)
|∂Ω|
|Ω|n−1

n

≥ |Sn−1|
|Bn|n−1

n

,

where Bn := B1(0) is the unit ball in R
n, and Sn−1 = ∂Bn is the unit sphere. The

symbol | · | here stands for the n-dimensional Lebesgue measure Ln when applied to
Ω and Bn, and for the (n−1)-dimensional Hausdorff measure Hn−1 when applied to
∂Ω and Sn−1. This inequality is insensitive to the choice of the norm, and equality in

it holds only when Ω is a ball. We call the quantity |∂Ω|/|Ω|n−1
n the isoperimetric

ratio IPR(Ω); so the Isoperimetric Theorem states that balls (and only balls) have
the smallest isoperimetric ratio.

It is well-known that Sobolev inequalities are intimately related to isoperimetric
inequalities. This relation is implicit in, for instance, Talenti’s proof of (1), based on



BALLS HAVE THE WORST BEST SOBOLEV INEQUALITIES 5

the Coarea Formula; it can be made even more explicit by considering the optimal
Sobolev inequality for p = 1 in R

n, in the form

‖f‖Ln/(n−1)(Rn) ≤ Sn(1)‖∇f‖TV (Rn), Sn(1) =
1

n|Bn| 1
n

=
1

IPR(Bn)
,

where TV stands for the total variation norm. When Ω is, say, a bounded Lipschitz
domain, then the formula

‖1Ω‖TV = |∂Ω|
is an immediate consequence of the Gauss-Green Theorem on Ω and of the definition
of total variation of a measure so the sharp Sobolev inequality for p = 1 reduces to
the isoperimetric inequality when one plugs in f := 1Ω.

1.3. New trace Sobolev inequalities. In this paper, we shall establish several
new Sobolev inequalities with trace. We shall give a new proof of the Brézis-Lieb
inequality, and at the same time improve and generalize it in several ways:

- by getting rid of the dependence of the second constant on the domain Ω: our
inequality will be valid on any locally Lipschitz domain, bounded or not, with an
explicit constant C independent of Ω, and in fact it will be optimal with respect to
both constants A and C, considered separately;

- by generalizing it to all values of p ∈ [1, n);

- by generalizing it to all norms on R
n, not necessarily Euclidean;

- by proving the stronger variant evoked by Brézis and Lieb, where the norms are
raised to adequate powers.

To summarize, we shall derive the following two inequalities:

(6) ‖f‖p

Lp�(Ω)
≤ Sp

n(p)‖∇f‖p
Lp(Ω) + Cp

n(p)‖f‖p

Lp�
(∂Ω)

;

(7) ‖f‖Lp�(Ω) ≤ Sn(p)‖∇f‖Lp(Ω) + T−1
n (p)‖f‖

Lp�
(∂Ω)

.

In the above the norm may or may not be the Euclidean norm, but the constant
Sn(p) will always be the optimal constant for the corresponding Sobolev inequality
in R

n, and the constants Cn(p) and T−1
n (p) will be independent of Ω. We shall not

give an explicit bound for Cn(p), but it would be very easy to deduce such a bound
from our arguments. As for Tn(p), on the other hand,

Tn(p) =
‖1Bn‖

Lp�
(Bn)

‖1Bn‖Lp�(Sn−1)

=

(
|Sn−1| 1

n−1

|Bn| 1
n

)n−p
p

= (n|Bn|1/n)1/p�

= Sn(1)−1/p�

,
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where the norm defining the unit ball (and the unit sphere) here is dual to the norm
used in the definition of ‖∇f‖Lp. With such a constant Tn(p), there is equality in (7)
when f = 1Bn , and it follows that

- inequality (7) contains the isoperimetric inequality as a particular case, for all
values of p (not just p = 1 as in the classical interpretation);

- the constant T−1
n (p) is optimal in (7), in the class of constants which do not

depend on Ω.
The fact that our results hold unconditionally on the norm is certainly not the

most important point here; by the way, it only makes sense when one is interested in
sharp constants, since all norms on R

n are equivalent. Yet it has the merit to show
that the Euclidean structure appearing in the original Sobolev problem is really not
crucial – nor are its links with harmonic functions.

1.4. Generalized isoperimetry. We defined above the isoperimetric ratio of a
domain Ω ⊂ R

n with finite measure. We shall now introduce a quantity which can
be thought of as a functional variant of that isoperimetric ratio.

Let Ω be a locally Lipschitz domain in R
n; we define IPR(p,Ω) as the largest

admissible constant R in the inequality

‖f‖Lp�(Ω) ≤ Sn(p)‖∇f‖Lp(Ω) +R−1/p�‖f‖
Lp�

(∂Ω)
.

When |Ω| < ∞, by plugging the constant function 1 in the definition of IPR(p,Ω),
we see that

IPR(p,Ω) ≤ IPR(Ω).

On the other hand, it follows from (7) that

IPR(p,Ω) ≥ IPR(p, Bn) = IPR(Bn),

so IPR(p, ·) achieves its minimum on the ball, just as the classical isoperimetric
ratio. We shall show that, if p > 1 and Ω is bounded, connected, and is not a ball,
then actually IPR(p,Ω) > IPR(p, Bn). This shows that, in some sense, only balls
have the worst optimal trace Sobolev inequalities.

This rigidity theorem looks quite similar to the usual discussion of equality cases
for the isoperimetric equality (and its proof will actually use it), but there are some
differences to be noted. First, the functional isoperimetric ratio IPR(p, ·) can be
defined for domains with infinite measure. Next, it can be much larger than the
classical isoperimetric ratio, and in some sense it is much more sensitive to the
local geometry of Ω. A first trivial remark in this direction is that if Ω is not
connected, and has a connected component which is a ball (no matter how small),
then IPR(p,Ω) = IPR(p, Bn). Even in the class of connected domains, our rigidity
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theorem does not apply to unbounded domains, or to the case p = 1: for both cases
we shall construct simple counter-examples showing that IPR(p,Ω) = IPR(p, Bn)
does not force Ω to be a ball. Roughly speaking, it is sufficient that Ω has portions
of its boundary looking very much like the boundary of a ball.

1.5. Non-parametric Sobolev inequalities. The proofs of both (6) and (7) will
rest on a more general inequality:

(8)
‖∇f‖Lp(Ω)

‖f‖Lp�(Ω)

≥ Φ

(‖f‖
Lp�

(∂Ω)

‖f‖Lp�(Ω)

)
,

where Φ : [0,∞) → R is a nonincreasing function, whose graph will be given ex-
plicitly as a parametric curve, depending only on n and p. For any value of p,
this single inequality contains as limit cases the sharp homogeneous trace Sobolev
inequality (6) and the sharp isoperimetric inequality (5); indeed, these two inequal-
ities can be recovered by studying the behavior of Φ(T ) close to T = 0 and Φ = 0
respectively. As for inequality (7), it expresses the fact that Φ lies above the line
passing through its two extreme points: a consequence of the concavity of Φ.

To be just a bit more explicit, assume that we can prove

Φ(T ) ≥ S−1
n (p)

[
1 −
(

T

Tn(p)

)p]
;

then, from the definition of Φ follows at once the inequality

‖f‖Lp�(Ω) ≤ Sn(p)‖∇f‖Lp(Ω) + T−1
n (p)‖f‖

Lp�
(∂Ω)

.

Let us now explain why inequality (8) is “completely optimal”. For any locally
Lipschitz domain Ω ⊂ R

n and T ≥ 0, define

Φ
(p)
Ω (T ) := inf

{
‖∇f‖Lp(Ω); ‖f‖Lp�(Ω) = 1, ‖f‖

Lp�
(Ω)

= T
}
.

By definition Φ = Φ
(p)
Ω is the biggest curve such that the inequality (8) is always

satisfied for functions f on Ω; it defines what one may call a non-parametric
optimal (trace) Sobolev inequality, in the sense that no a priori form for ΦΩ

(power, sum of powers, etc.) is assumed. It is quite hard to understand exactly
what geometrical properties of Ω the function ΦΩ reflects; one can already remark
that ΦΩ is invariant under rotations, translations or dilations, and that

Φ
(p)
Ω (T0) = 0, T0 := IPR(Ω)1/p�

,



8 F. MAGGI AND C. VILLANI

as soon as Ω has finite measure (consider the constant function f := |Ω|−1/p�
). Our

main result can be recast as

Φ
(p)
Ω (T ) ≥ Φ(p)

n (T ), ∀T ∈ [0, Tn(p)],

where Φ
(p)
n is the curve associated with Bn, and Tn(p) is the abscissa where Φ

(p)
n

vanishes, i.e. IPR(Bn)1/p�
.

1.6. Optimal transportation. At least as interesting as our main results is the
way we obtain them: by a transportation argument.

The optimal transportation problem, also known as Monge-Kantorovich mini-
mization problem, made its way in partial differential equations thanks to Brenier’s
seminal 1987 work [2]. After McCann’s PhD Thesis, optimal transportation tools
were used by a number of authors (such as Alesker, Ball, Barthe, Caffarelli, Carlen,
Carrillo, Cordero-Erausquin, Gangbo, Dar, McCann, Milman, Naor, Nazaret, Otto,
Schmuckenschläger, and the second author) to study various classes of functional
inequalities with geometric content. An account of these works, together with a
lot of related material, can be found in the second author’s book [14], especially
Chapters 6 and 9.

In particular, links between mass transportation and optimal Sobolev inequalities
were first explored in a recent paper by Cordero-Erausquin, Nazaret and Villani [7].
In that work, a direct and simple proof of (1) was derived from a mass transportation
approach. The present paper can be considered as the sequel of that earlier work;
the very same strategy which was used there will be adapted here to form the core
of our analysis.

Just as in [7], the crucial point here will not be the minimization property of
the optimal transportation, but the fact that it provides a simple, well-behaved
monotone change of variables between two given probability densities.

It is rather striking to see how this idea is efficient in solving a problem for which
classical methods have already been tried and failed. For instance, it is quite difficult
to figure out how to use the classical tools of rearrangement, unless the domain Ω
is symmetric and the values at the boundary are assumed to be constant. There is
however a price to pay: just as the proof in [7], the arguments in the present paper
will probably appear somewhat mysterious and non-natural to many a reader, in
contrast with the standard tools of calculus of variations underlying most of the
theory of sharp Sobolev inequalities.

On the other hand, the fact that our method works so well for this particular,
quite specific problem does not imply that it should be so efficient for other prob-
lems. Various methods have been developed to tackle related problems in calculus of
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variations, and it is probably easy to find problems where transportation arguments
do not work, while more conventional tools still apply.

In a nutshell, our strategy is the following: normalize the Lp�
norm of f to 1,

so that |f |p�
defines a probability density; and then transport it to |g|p�

, where g
is an optimizer for the Sobolev inequality in the whole space, truncated on a ball
and normalized to have unit Lp�

norm. For each such g, the method of [7] can be
applied and yields a Sobolev-like inequality with a trace term; yet none of these
inequalities is strong enough for our purpose (none of them, for instance, does imply
the Brézis-Lieb inequality, even in the non-sharp form considered in [4]). It is only
the collection of all these inequalities, which makes the job.

1.7. Main theorems. Our most striking results are summarized in the following
next three theorems. In all three statements, we choose once for all an arbitrary
norm | · | in R

n (n ≥ 2), an exponent p ∈ [1, n), and we define

p′ :=
p

p− 1
, p� :=

np

n− p
, p� :=

(n− 1)p

n− p
.

The ball Bn and the sphere Sn−1 are defined with respect to the chosen norm. We
use the dual norm, defined by

|y|∗ := sup{x · y; |x| ≤ 1},
to define the Lp norm of vector-valued functions such as ∇f .

Theorem 1 (optimal non-parametric trace Sobolev inequality). Let Ω be a
locally Lipschitz open domain in R

n. For all T ∈ [0,∞), define

(9) Φ
(p)
Ω (T ) := inf

{
‖∇f‖Lp(Ω); ‖f‖Lp�(Ω) = 1, ‖f‖

Lp�
(Ω)

= T
}
,

where the infimum is taken over all locally integrable functions f defined on Ω and
vanishing at infinity. Let also

Φ(p)
n := Φ

(p)
Bn ,

(10) Tn(p) :=
‖1Bn‖

Lp�
(Bn)

‖1Bn‖Lp�(Sn−1)

=

(
|Sn−1| 1

n−1

|Bn| 1
n

)n−p
p

= (n|Bn|1/n)1/p�

= Sn(1)−1/p�

,

Then the ball Bn has the lowest Φ-curve:

Φ
(p)
Ω ≥ Φ(p)

n on [0, Tn(p)].
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Moreover, this particular curve is given for p > 1 by the parametric curve G =

Φ
(p)
n (T ), where G, T (to be thought of as gradient norm and trace norm, respectively)

depend on t ∈ [0,+∞] as follows:

(11) T (t) :=

⎡⎢⎢⎣ |Sn−1|1/(n−1) tn

(1 + tp′)n

∫ t

0

sn−1 ds

(1 + sp′)n

⎤⎥⎥⎦
1/p�

(12) G(t) := |Sn−1|1/n

(
n− p

p− 1

) (∫ t

0

sn−1+p′ ds

(1 + sp′)n

)1/p

(∫ t

0

sn−1 ds

(1 + sp′)n

)1/p� .

In particular, T (0) = Tn(p), G(0) = 0, and T (+∞) = 0, G(+∞) = S−1
n (p), where

Sn(p) is the optimal constant in the Sobolev inequality (1).

For p = 1, the curve Φ
(1)
n is just the straight line with slope −1, joining (0, an) to

(an, 0), where an = S−1
n (1) = Tn(1).

As a consequence, if one defines Φ̃
(p)
n := Φ

(p)
n 1[0,Tn(p)], then the following Sobolev-

type inequality holds true: For all locally integrable functions f : Ω → R, vanishing
at infinity,

‖∇f‖Lp(Ω) ≥ ‖f‖Lp�(Ω) Φ̃(p)
n

(‖f‖
Lp�

(∂Ω)

‖f‖Lp�(Ω)

)
.

Moreover, if p > 1, Ω is connected and f achieves equality in the above inequality,
then Ω is a ball Br(x0) and f takes the form

(13) f(x) =
±1

(a + b|x− x0|p′)
n−p

p

, x ∈ Br(x0),

for some a, b, r > 0.

Remarks. (i) Depending on the values of p and n, the integrals in (11) and (12)
can sometimes be evaluated explicitly into rational functions. Here is an
example: for p = 2, n = 3, then

T (t) =
√

2t1/2(1 + t2)−1/6(Arctan(t)(1 + t2)2 − t+ t3)−1/6.
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In the general case, it is possible to express them in terms of hypergeometric
functions, but it is not clear that this remark is useful at all.

(ii) The study of trace Sobolev inequalities on the ball performed by Carlen

and Loss [6] actually includes a study of Φ
(2)
n . Even though the notation

and presentation is somewhat different from ours (which can be explained
in part by the fact that we discovered this reference after completing the
present study), the reader should have no trouble making the connection
between these two approaches.

Theorem 2 (doubly optimal homogeneous trace Sobolev inequality). Let
Ω be a locally Lipschitz open domain in R

n. Let Sn(p) be the optimal constant in
the Sobolev inequality (1), and let Tn(p) be defined by (10). Then, for all locally
integrable functions f : Ω → R, vanishing at infinity,

(14) ‖f‖Lp�(Ω) ≤ Sn(p)‖∇f‖Lp(Ω) + T−1
n (p)‖f‖

Lp�
(∂Ω)

.

Moreover, if p > 1 and Ω is a bounded, connected Lipschitz domain which is not
a ball, then there exists a constant C(p,Ω) < T−1

n (p) such that for all integrable
functions f : Ω → R,

(15) ‖f‖Lp�(Ω) ≤ Sn(p)‖∇f‖Lp(Ω) + C(p,Ω)‖f‖
Lp�

(∂Ω)
.

Theorem 3 (p-power trace Sobolev inequality). Let Ω be a locally Lipschitz
open domain in R

n, and let Sn(p) be the optimal constant in the Sobolev inequal-
ity (1). Then there is a constant C = Cn(p), depending only on n and p, such that
for all locally integrable functions f : Ω → R, vanishing at infinity,

(16) ‖f‖p

Lp�(Ω)
≤ Sp

n(p)‖∇f‖p
Lp(Ω) + Cp‖f‖p

Lp�
(Ω)
.

Theorem 1 is the key to the other results. Indeed, to establish inequalities (14)

and (16), it will be sufficient to establish properties of Φ
(p)
n , and this we shall do by

using its explicit parametric form. A simple study of Φ
(p)
n close to T = 0 will lead

us to conclude that

∀T ∈ [0, Tn(p)], Φ(T ) ≥ S−1
n (p)[1 − (CT )p]1/p;

this at once implies (16). An intricate computation will reveal that Φ
(p)
n is concave

(a property which by the way is not true for all domains, as we shall see later), and,
as a consequence,

∀T ∈ [0, Tn(p)], Φ(T ) ≥ S−1
n (p)[1 − T/Tn(p)];
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this at once implies (14). The rigidity statement contained in Theorem 2 will be
proven separately; the proof rests on classical functional inequalities, plus the strict

concavity of Φ
(p)
n for p > 1.

The optimal functions (13) will play a crucial role in the proof of (1), since they are
optimizers in the main inequality; we shall transport an arbitrary function onto such
a minimizer. The case p = 1 is somewhat degenerate and will be treated separately

by a simpler argument. Although the curve Φ
(p)
n does converge to Φ

(1)
n as p → 1,

there are no minimizers for p = 1 (apart from the two end-points), while for p > 1
there are minimizers for all values of T ∈ [0, Tn(p)]... except for the end-point at

T = 0! In fact, when p→ 1 in the parametric expression of Φ
(p)
n , the first end-point

corresponds to t ≤ 1, the second one to t > 1, and the whole line corresponds to
t = 1+.

The most relevant information about the curves Φ is summarized in Figure 1.

Sn(p)
−1

Tn(p)

this value is the isoperimetric ratio

the curve is strictly
concave

the value at the origin is the inverse of the optimal
Sobolev constant; the curve here is flat and behaves
like a − bT p

None of the points below
the graph can be obtained
for any function on any domain

T = ‖f‖
Lp�

(∂Ω)
/‖f‖Lp�(Ω)

G = ‖∇f‖Lp(Ω)/‖f‖Lp�(Ω)

at this point the curve is differentiable
of the ball, raised to power 1/p�;

Figure 1. Typical shape of Φ
(p)
n on [0, Tn(p)] for p > 1

A bit more should be said about the case p = 1. As we saw, in that particular
case the isoperimetric inequality can be read at the level of either the horizontal or
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the vertical part of the graph. This can be understood intuitively by the fact that
approximate minimizers are obtained by choosing the indicator function of the whole
ball, and then redefine it to be 0 on a very small neighborhood of a given portion of
the boundary. The loss in the trace norm will be exactly compensated by the gain
in the total variation of the gradient; this one-for-one trade property explains the
fact that the line has unit slope. The inequality which we are considering here is the
following generalization of the isoperimetric inequality: For all functions f ∈ BV (Ω),
satisfying

‖f‖
L

n
n−1 (Ω)

≥ |Bn|n−1
n ,

one has

(17) ‖∇f‖TV (Ω) + ‖f‖L1(∂Ω) ≥ |Sn−1|.
If f varies in the class of indicator functions, we are once again facing the usual
isoperimetric inequality. As a matter of fact, inequality (17) can be established

directly from the usual Sobolev inequality (1): define f̃ = f1Ω on R
n, then

‖f̃‖
L

n
n−1 (Rn)

= ‖f‖
L

n
n−1 (Ω)

;

on the other hand, it is a simple exercise about traces of functions with bounded
variations [8, p. 177] that

‖∇f̃‖TV (Rn) = ‖∇f‖TV (Ω) + ‖f‖L1(∂Ω).

Then we can apply (1) in the form

‖f̃‖
L

n
n−1 (Rn)

≤ Sn(1)‖f̃‖TV (Rn)

and get (17).

1.8. Organization of the paper. The proofs of Theorems 1, 2 and 3 will stretch
from Sections 2 to 4.

In Section 2, we shall establish a “mother inequality”, based on a transportation
argument. From the point of view of n-dimensional analysis, this is the key section;
even though the scheme of the proof is quite simple, there are a few technical dif-
ficulties, partly caused by our will to treat general assumptions. The core of the
proof is the short Subsection 2.2 (a bit more than one page), most of the rest is just
technique.

From the mother inequality we later deduce Theorem 1 in Section 3. Theorems 2
and 3 are then obtained from a study of Φ, as sketched above. The rigidity statement
is established separately in Section 4.
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We made the choice to present rather detailed proofs, and in particular did not
assume preliminary knowledge of the homogeneous trace Sobolev inequality, even
in non-sharp form. In the Appendix we recall all the needed facts about the trace
operator, starting from scratch. For the convenience of the reader, we have used one
single source, namely the book of Evans and Gariepy [8], as a reference source for
technical details about Sobolev functions; and one other source, namely the second
author’s book [14] as a reference source for optimal transportation theory. Thus,
all the proofs in the present paper can be fully completed with just the help of the
above-mentioned paper [7] and the two textbooks [8, 14].

1.9. Further remarks and open problems. Before starting the proofs, we make
a few final comments about the results, and sketch some open problems. Many
extensions of our method will be considered in our companion paper [10].

First, Theorem 3 is in fact a result about the behavior of Φ
(p)
n (T ) close to T = 0.

It is natural to ask whether the same behavior holds true for any ΦΩ, with the same
optimal constant C, or whether on the contrary this behavior forces Ω to be a ball.
The following inequality (which can be derived with just a little more effort than we

spent to show Φ
(p)
Ω (0) = S−1

n (p)) seems to indicate that, in some sense, ΦΩ always
behave like the ball near T = 0: If BR ⊂ Ω, then for every s ∈ (0, 1),[

1 −
(

1 − |BR|
|Ω|
)
sp�

]1/p�

Φ(p)
n (IPR(Bn)1/p�

s) ≥ Φ
(p)
Ω (IPR(Ω)1/p�

s).

Similarly, it is natural to ask about rigidity theorems stated in terms of ΦΩ:

for instance, it is tempting to conjecture that if Φ
(p)
Ω (T ) = Φ

(p)
n (T ) for some T ∈

(0, Tn(p)], then Ω is a ball. The value T = 0 should be taken out from such a

statement, since a simple scaling argument proves Φ
(p)
Ω (0) = S−1

n (p) for all domains
Ω. Also, as in Theorem 2, one should assume that p > 1, and that Ω is bounded
and connected. Indeed, we shall present an unbounded connected domain which
has the same Φ(p) curve as the ball, for all values of p; and a bounded connected
domain whose Φ(1) curve coincides with that of the ball on a non-trivial interval [0, a].
Once all these possible causes for failure have been removed, we would bet that the

conjecture is true: if the equality Φ
(p)
Ω (T ) = Φ

(p)
n (T ) holds true for some T = 0 and

some p > 1, and Ω is bounded, Lipschitz, connected, then Ω is a ball. Would the

infimum in the definition of Φ
(p)
Ω (T ) be attained automatically, this conjecture would

be a simple consequence of the end of Theorem 1.
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Another question of interest is whether one can merge inequalities (14) and (16)
into a single stronger inequality such as

(18)
Φ

(p)
n (T )

S−1
n (p)

+

(
T

Tn(p)

)p

≥ 1.

This only amounts to a fine study of the function Φ
(p)
n , which is just a function

of one real variable... yet this does not at all appear as a simple matter, and we
did not succeed in establishing or disproving this inequality. The proof should be

quite more subtle than our proof for the concavity of Φ
(p)
n , which is already quite

tricky. Numerical plots using the explicit expressions did seem to support the validity
of (18).

Finally, here is a list of the questions which will be addressed in [10]:

(i) It is natural to ask whether the trace Sobolev inequality can be significantly
reinforced if one has additional information about the domain Ω, preventing
it to be a ball. In some particular cases, like half-spaces or angular sectors,
one can guess the optimizers, and show that the trace term can be omitted
in the Sobolev inequality. We say that a domain Ω is a “gradient domain”
if the following Sobolev inequality holds true: ‖f‖Lp�(Ω) ≤ A‖∇f‖Lp(Ω). Ob-
viously such domains should have infinite measure, but this condition is not
sufficient. In [10] we shall derive a simple sufficient criterion by a variant
of our method. Exterior angular sectors satisfy our criterion, and for such
domains our method yields optimal constants.

(ii) It is interesting to ask what happens if one drops the requirement T ≤ Tn(p)
and allows T to take all values in R+. Since the set of all admissible values
of ‖∇f‖Lp(Ω)/‖f‖Lp�(Ω) in terms of ‖f‖

Lp�
(∂Ω)

/‖f‖Lp�(Ω) is made of vertical

lines, a seemingly equivalent question is to consider all the possible values of
‖f‖Lp�(Ω) in terms of ‖∇f‖Lp(Ω) and ‖f‖

Lp�
(∂Ω)

. In the study of this prob-

lem, the Sobolev inequality enters in competition with the trace inequality
expressing the domination of ‖f‖

Lp�
(∂Ω)

by ‖∇f‖Lp(Ω) and ‖f‖Lp�(Ω) (Theo-

rem A.3 in the Appendix). This extension does not look immediate at all;
in [10] we shall present some partial results about this problem.

(iii) Since it was shown in [7] that some Gagliardo-Nirenberg interpolation in-
equalities could be treated in exactly the same way as sharp Sobolev inequali-
ties, it is natural to expect that one can adapt the proofs in the present paper
to produce sharp Gagliardo-Nirenberg inequalities with trace term. We shall
present such extensions in [10].
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(iv) As limit cases of these sharp inequalities we shall derive new trace inequalities
of Faber-Krahn and of logarithmic Sobolev type.

(v) The ideas developed in this paper can be adapted also to deal with the so-
called critical case p = n, for which the usual Sobolev inequality should
be replaced by the Moser-Trudinger inequality. Although the underlying
philosophy is just the same as in the case p < n, these limit inequalities need
a bit more care. This adaptation will be considered in detail in [10].

2. Mother inequality

Let Ω be a locally Lipschitz open domain in R
n, and p ∈ (1, n). We denote

by W 1,1
loc (Ω) the space of functions which are locally integrable in Ω, and whose

distributional gradient ∇f is integrable on every bounded subset of Ω. It is important
to distinguish this space from the larger space W 1,1

loc (Ω), made of functions such that
∇f is integrable on every compact subset of Ω. As we recall in the Appendix,
functions in W 1,1

loc (Ω) admit a trace (which somehow justifies our unusual notation

with Ω), while functions in W 1,1
loc (Ω) do not necessarily.

For simplicity we shall use the symbol f for the trace of a function f . We also
use the notation

p′ =
p

p− 1
, p� =

np

n− p
, p� =

(n− 1)p

n− p
.

We let | · | be an arbitrary norm on R
n, | · |∗ its dual norm, and write

‖∇f‖Lp(Ω) =

(∫
Ω

|∇f(x)|p∗ dx
)1/p

.

The goal of this section is to establish the following two results:

Proposition 4 (mother inequality). Let Ω be a locally Lipschitz open domain
in R

n, and p ∈ [1, n). Let f and g be two nonnegative functions in W 1,1
loc (Ω) and

L1
loc(R

n), respectively. Assume that g is supported in a ball of radius R (possibly
infinite), centered at y0 ∈ R

n. Further assume that

‖f‖Lp�(Ω) = ‖g‖Lp�(Rn) = 1.

Then

(19) n‖g‖p�

Lp�
(Rn)

≤ p�

(∫
Rn

g(y)p�|y − y0|p′ dy
)1/p′

‖∇f‖Lp(Ω) +R‖f‖p�

Lp�
(∂Ω)

.



BALLS HAVE THE WORST BEST SOBOLEV INEQUALITIES 17

Proposition 5 (homogeneous trace Sobolev inequality). Let Ω be a locally
Lipschitz open domain in R

n, and p ∈ [1, n). Then, there are constants A and C,
only depending on n and p, such that for all functions f ∈ W 1,1

loc (Ω), vanishing at
infinity,

(20) ‖f‖Lp�(Ω) ≤ A‖∇f‖Lp(Ω) + C‖f‖
Lp�

(∂Ω)
.

In particular, f automatically belongs to Lp�
(Ω) if its gradient belongs to Lp(Ω; Rn)

and its trace belongs to Lp�
(∂Ω).

It seems clear that inequality (20) follows from inequality (19). Indeed, suppose
that g is any fixed nonnegative function such that

∫
gp�

= 1,
∫
g(y)|y|p′ dy < +∞

and g is supported in a bounded set. Then (19) transforms into

(21) 0 < K ≤ C1‖∇f‖Lp(Ω) + C2‖f‖p�

Lp�
(∂Ω)

,

where f is an arbitrary nonnegative function on Ω with ‖f‖Lp� = 1. A cheap
argument allows one to deduce (20) from (21): If ‖f‖

Lp�
(∂Ω)

≤ 1, then (since p� ≥ 1)

(21) implies

K ≤ C1‖∇f‖Lp(Ω) + C2‖f‖Lp�
(∂Ω)

.

Therefore, the inequality

K ≤ C1‖∇f‖Lp(Ω) + max(K,C2)‖f‖Lp�
(∂Ω)

holds true independently of the value of ‖f‖
Lp�

(∂Ω)
, as soon as ‖f‖Lp� = 1. By

homogeneity, (20) holds true for all nonnegative functions f which lie in Lp�
(Ω). To

remove the nonnegativity restriction, we note that for any function f ∈ W 1,1
loc (Ω),

one has ∇|f | = (sgn f)(∇f) [8, p. 130], so that

‖f‖Lp�(Ω) = ‖|f |‖Lp�(Ω), ‖∇f‖Lp(Ω) = ‖∇|f |‖Lp(Ω), ‖f‖
Lp�

(Ω)
= ‖|f |‖

Lp�
(Ω)
.

Here we used the fact that the trace operator commutes with the absolute value
operator (Theorem A.2 in the Appendix).

It seems that we just established Proposition 5 from Proposition 4, and so we just
have to prove the latter. There are however two loopholes in that line of reasoning.
The first is that we proved (20) by assuming that ‖f‖Lp�(Ω) is finite. It seems
intuitive that this restriction can be removed by a density argument, but one should
be careful when handling such arguments in a possibly unbounded domain. The
second loophole is that actually, to establish (4) in full generality, we shall be led
to use inequality (20) as a helpful technical tool! Yet the whole reasoning is not
doomed: it will appear that a certain level of generality for inequality (19) will be
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enough to prove inequality (20) in a more general context, which in turn will enable
to prove (19) in a still more general context, etc. So both Propositions 4 and 5 will
be established at the same time, in several runs.

2.1. Preparations. Let f and g be as in Proposition 4, and let Let F := 1Ωf
p�

,
G := gp�

; by assumption, both F and G are probability densities. Without loss of
generality, we assume y0 = 0 in Proposition 4. An easy truncation and monotonicity
argument in inequality (19) (replace g by C(R)1BR(0)g and let R → ∞) allows to
deduce the case R = ∞ from the case R < +∞. Therefore, in all the sequel of this
section we assume that g is compactly supported (R < +∞).

By Brenier’s Theorem [3], or rather the slightly more general version established by
McCann (see [12] or [14, Corollary 2.30]) there exists a proper lower semicontinuous
convex function ϕ : R

n → R ∪ {+∞} such that

(∇ϕ)# (F dx) = Gdx.

Here the symbol “#” is used for the operation of measure-theoretical push-forward
(recall that if ψ : X → Y and µ is a measure on X then ψ#µ(A) := µ(ψ−1(A)) for
every A ⊂ Y ). Moreover, ∇ϕ is the gradient of ϕ, which in view of Rademacher’s
theorem [8, p. 81] can be understood either as the distributional, or as the classical
gradient of ϕ: it is a locally bounded measurable function defined almost everywhere
in the interior U of the convex set Dom(ϕ) where ϕ is finite.

Remark. The existence of ∇ϕ can be proven by elementary techniques which do not
involve Sobolev inequalities of any kind.

As proven by McCann (see [12] or [14, Theorem 4.8]), the Monge-Ampère equation

(22) F (x) = G(∇ϕ(x)) det∇2
Aϕ(x)

holds true F (x) dx-almost everywhere; in this context it is just a change of variable
formula. Here ∇2

Aϕ stands for the Aleskandrov Hessian of ϕ, which is nothing but
the absolutely continuous part of the distributional Hessian of ϕ in U . This result is
strongly based on Aleksandrov’s Theorem [8, p. 242] about the almost everywhere
second differentiability of convex functions.

Since G is compactly supported (R < +∞), ϕ can be assumed to be Lipschitz,
and, in particular, finite everywhere (so U = R

n). Let us give a short proof. First,
∇ϕ takes its values in the support of G (see [14, Theorem 2.12 (ii)]; the theorem
is stated there only in the case when F has finite moments of second order, but
the general case can be proven just the same, or deduced by approximation). As a
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consequence, ∂ϕ(U) ⊂ ∇ϕ(U) ⊂ BR(0). Now consider the Lipschitz convex function

ϕ̃(x) = sup
|y|≤R

[x · y − ϕ∗(y)].

It is clear that ϕ̃ ≤ ϕ∗∗ = ϕ. For any x ∈ U , there exists y ∈ ∂ϕ(x) ⊂ BR(0),
and then x · y − ϕ∗(y) = ϕ(x), which shows that ϕ̃(x) ≥ ϕ(x). The conclusion is
that ϕ̃ coincides with ϕ on U ; as a consequence, ∇ϕ̃ also coincides with ∇ϕ on
U . But the complementary of U is of zero measure for F dx, because it is made of
the complementary of Dom(ϕ), which is negligible, and of the boundary of this set,
which has zero Lebesgue measure. We infer that

∇ϕ̃#(F dx) = ∇ϕ#(F dx).

Thus, replacing ϕ by ϕ̃ if necessary, we may assume that ϕ is R-Lipschitz.

2.2. Basic transportation argument. We can now start the core of the proof, in
the same manner as in [7]. The main technical point lies in the justification of an
integration by parts, which will be temporarily left apart.

Let f be a nonnegative locally integrable function on Ω, vanishing at infinity, such
that ∇f ∈ Lp(Ω), f ∈ Lp�

(∂Ω) and ‖f‖Lp�(Ω) = 1. We also consider a nonnegative
function g, supported in the ball BR(0), R < +∞, such that ‖g‖Lp�(Rn) = 1. We

define F := f p�
and G := gp�

.
By playing with the exponents and using the definition of push-forward, we can

write ∫
Rn

gp�

=

∫
Rn

g−p�/n(y) gp�

(y) dy =

∫
Ω

g−p�/n(∇ϕ(x)) f p�

(x) dx.

By (22) and the arithmetic-geometric inequality,∫
Ω

g−p�/n(∇ϕ(x)) f p�

(x) dx =

∫
Ω

(det∇2
Aϕ(x))1/nf p�(1−1/n)(x) dx

≤ 1

n

∫
Ω

∆Aϕ(x) f p�(1−1/n)(x) dx,

where ∆Aϕ is the trace of ∇2
Aϕ.

Since ∇2
Aϕ is bounded from above by the distributional Hessian ∇2ϕ, it follows

that its trace is bounded from above by the distributional Laplacian ∆ϕ of ϕ. This
and integration by parts formally imply the inequality

(23)

∫
Ω

∆Aϕf
p� ≤ −p�

∫
Ω

∇ϕ · f p�−1∇f +

∫
∂Ω

∇ϕ · σ f p�

,
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where σ is the outer normal vector to Ω. We postpone the justification of this
integration by parts to the next subsection. Taking formula (23) for granted, let us
go on with the argument.

By Hölder’s inequality and the definition of push-forward, the first term can be
estimated as follows:

−p�

∫
Ω

∇ϕ · f p�−1∇f ≤ p�‖∇f‖Lp(Ω)

(∫
Ω

f p�

(x)|∇ϕ(x)|p′ dx
)1/p′

(24)

= p�‖∇f‖Lp(Ω)

(∫
Rn

gp�

(y)|y|p′ dy
)1/p′

.

The other term on the right-hand side of (23) is easily dealt with: since ∇ϕ takes
its values in BR(0), ∫

∂Ω

(∇ϕ · σ) f p� ≤ R

∫
∂Ω

f p�

= R‖f‖p�

Lp�
(∂Ω)

.

The conclusion is

(25)

∫
Ω

∆ϕf p� ≤ p�‖∇f‖Lp(Ω)

(∫
Rn

gp�

(y)|y|p′ dy
)1/p′

+R‖f‖p�

Lp�
(∂Ω)

.

To summarize: We have proven Proposition 4, taking the integration by parts
formula (23) for granted. And as explained in the beginning of this section, this
implies Proposition 5 if in the statement of that Proposition we admit f ∈ Lp�

(Ω).
These technical holes will be filled up in the next subsection. The reader who does

not care about technical details may safely skip this bit and start again at Section 3.

2.3. Integration by parts and related justifications. We shall now justify (23),
and at the same time complete the proofs of Propositions 4 and 5. To do so, we
shall use approximation arguments and regularization in the same spirit as in [7,
section 4]. With respect to that source, the main difference lies in the presence of a
boundary term; there are also minor simplifications due to the assumption R < +∞.
As we already warned, this will be a slightly technical business, which can be skipped
at first reading.

We divide the argument in four steps, by increasing order of generality.

In the first step, we assume that

Ω is bounded and f ∈ C1(Ω).
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Since ∆Aϕ is bounded above by the distributional Laplacian ∆ϕ, which is a
nonnegative measure, we can write∫

Ω

∆Aϕf
p� ≤

∫
Ω

∆ϕf p�

.

For each k ∈ {1, . . . , n}, ∂ϕ/∂xk is of bounded variation in Ω; Ω is bounded and
has Lipschitz boundary; and f is of class C1; so we are in a position to apply the
integration by parts formula for BV functions [8, Theorem 1, p. 177]:∫

Ω

∂

∂xk

∂ϕ

∂xk
f p�

= −
∫

Ω

∂ϕ

∂xk

∂f p�

∂xk
+

∫
∂Ω

∂ϕ

∂xk
σk f

p�

dHn−1,

where σk is the kth component of the unit normal vector σ. Here again, we make no
notational difference between ∂ϕ/∂xk and its trace on ∂Ω. Summing up all these
formulae, we obtain∫

Ω

∆ϕf p�

= −
∫

Ω

∇ϕ · ∇(f p�

) +

∫
∂Ω

∇ϕ · σ f p�

.

Since f is smooth, we can apply the chain-rule to rewrite the right-hand side as

−p�

∫
Ω

f p�−1∇ϕ · ∇f +

∫
∂Ω

∇ϕ · σ f p�

,

which proves (23).

Remark 6. Before turning to the second step, we note that all the rest of the
argument in the previous subsection can now be completed, and in particular we
now have a proof of Proposition 5 in the case when Ω is bounded and f ∈ C1(Ω).
This will be useful in the Appendix and in the next steps.

In the second step, we relax the assumption of smoothness for f , but we still
assume that

Ω is bounded.

In particular, since Ω is bounded and p� ≥ p, we know that f lies in Lp(Ω),
and therefore in the Sobolev space W 1,p(Ω). Since Ω is bounded and Lipschitz, we
can approximate f by a sequence fk ∈ C∞(Ω), such that fk −→ f in W 1,p(Ω) as
k → ∞ (see [8, p. 127]). Up to extracting a subsequence, we may also assume that
fk converges to f almost everywhere. Moreover, the continuity of the trace operator
from W 1,p(Ω) to Lp�

(∂Ω) (see Theorem A.3 in the Appendix; our proof uses the

first step above) implies that fk converges to f in Lp�
(∂Ω). Finally, the density of

C∞(Ω) in W 1,p(Ω) and the previously mentioned continuity property of the trace
operator also imply that the homogeneous trace Sobolev inequality (20) holds true
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for all f ∈ W 1,p(Ω); from this it follows that fk → f in Lp�
(Ω). To sum up, fk

converges to f almost everywhere, in W 1,p(Ω), Lp�
(Ω), and Lp�

(∂Ω).
From Step 1 we know that each fk satisfies∫

Ω

∆ϕf p�

k ≤ −
∫

Ω

∇ϕ · f p�−1
k ∇fk +

∫
∂Ω

∇ϕ · σ f p�

k .

It remains to pass to the limit in this inequality as k → ∞.
Since fk → f almost everywhere, Fatou’s lemma implies

(26)

∫
Ω

∆Aϕf
p� ≤ lim inf

k→∞

∫
Ω

∆Aϕf
p�

k .

Since fk converges to f in Lp�
(Ω), f p�−1

k converges to f p�−1 in Lp�/(p�−1) = Lp′(Ω);
on the other hand, ∇fk converges to ∇f in Lp(Ω). Combining this information with
the boundedness of ∇ϕ, we get

(27)

∫
Ω

f p�−1
k ∇ϕ · ∇fk −−−→

k→∞

∫
Ω

f p�−1∇ϕ · ∇f.

Finally, the boundedness of ∇ϕ implies the boundedness of its trace on ∂Ω (this
is a consequence of the nonnegativity of the trace operator), and we conclude that

(28)

∫
∂Ω

∇ϕ · σ f p�

k −−−→
k→∞

∫
∂Ω

∇ϕ · σ f p�

.

The combination of (26), (27) and (28) yields∫
Ω

∆ϕf p� ≤ −p�

∫
Ω

f p�−1∇ϕ · ∇f +

∫
∂Ω

∇ϕ · σ f p�

.

This concludes the proof of Proposition 4 for bounded Ω. It also follows that
Proposition 5 holds true as soon as Ω is bounded and f ∈ Lp�

(Ω), with constants
depending neither on Ω nor on ‖f‖Lp�(Ω).

In the third step of the justification, we relax the assumption of boundedness of
the domain.

For that we introduce a smooth cut-off function χ on R
n, with values in [0, 1],

identically equal to 1 on B1(0) and identically equal to 0 on R
n \B2(0), and we set

fε(x) := f(x)χ(εx); Ωε := Ω ∩B3/ε(0).
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Applying the result of Step 2, we have

(29)

∫
Ωε

∆ϕf p�

ε ≤ −p�

∫
Ωε

f p�−1
ε ∇ϕ · ∇fε +

∫
∂Ωε

∇ϕ · σ f p�

ε .

Our problem is now to pass to the limit in this equation as ε→ 0. For the term on the
left-hand side, this can be done by using just the monotone convergence theorem,
while for the last term on the right-hand side, it suffices to use the dominated
convergence theorem (recall that f ∈ Lp�

(∂Ω) and ∇ϕ ∈ L∞). The first term on the
right-hand side will require more work. Before handling it, we shall establish a few
bounds on fε.

Since fε is identically 0 close to the boundary of B3/ε(0), the trace of fε vanishes
on ∂Ωε ∩ B3/ε(0). So the trace of fε is only nonzero on ∂Ω \ B3/ε(0), and there it is
bounded by the trace of f . It follows that

‖fε‖Lp�
(∂Ωε)

≤ ‖f‖
Lp�

(∂Ω)
.

Using the Lp�
bound on f , we now show that ∇fε converges to ∇f . By the

formula ∇fε −∇f = ∇f(1 − χε) + f(∇χε), we can write

‖∇fε −∇f‖p
Lp(Ω) ≤ C

(∫
Ω

1|x|≥ε−1|∇f(x)|p dx+ εp

∫
Ω

1ε−1≤|x|≤2ε−1f(x)p dx

)
.

Since |∇f |p ∈ L1(Ω), the first term goes to 0 by dominated convergence. On the
other hand we can use Hölder’s inequality to bound the second term as follows:

εp

∫
Ωε

1ε−1≤|x|≤2ε−1f p(x) dx ≤ εp

(∫
Ωε

f p�

)p/p� (∫
Ωε∩A

1ε−1≤|x|≤2ε−1 dx

)p/n

≤ (|B2(0) \B1(0)| ‖f‖Lp�

)p
.

This proves our claim.
Now, by dominated convergence, fε1Ωε converges to f in Lp�

(Ω), and therefore

f p�−1
ε 1Ωε converges to f p�−1 in Lp′(Ω). Since also ∇ϕ is bounded, we conclude that∫

Ωε

f p�−1
ε ∇ϕ · ∇fε −→

∫
Ω

f p�−1∇ϕ · ∇f.

This concludes the argument and allows us to pass to the limit in (29) as ε→ 0:∫
Ω

∆ϕf p�

= −p�

∫
Ω

f p�−1∇ϕ · ∇f +

∫
∂Ω

∇ϕ · σ f p�

.
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As a consequence of this step, the integration by parts formula, and Proposition 4
as well, are fully justified. As for Proposition 5, it is proven under the additional
assumption that f lies in Lp�

, without boundedness assumption on Ω.

We now come to Step 4 of the argument, in which we relax the a priori assumption
that f ∈ Lp�

(Ω) in Proposition 5. Let Ω be an arbitrary locally Lipschitz domain
in R

n, and f a locally integrable measurable function, such that ∇f ∈ Lp(Ω) and

f ∈ Lp�
(∂Ω). Whenever 0 < a < M < +∞, we define

Ta,M(f) := (f − a)1a≤f≤M + (M − a)1f>M .

By the chain-rule for Sobolev functions [8, p. 130], we know that ∇Ta,M(f) =
(∇f)1a≤f≤M , and that Ta,M commutes with the trace operator (see Theorem A.2 in
the Appendix). Moreover, Ta,M does not increase any Lq norm. We deduce that

(30) ‖∇Ta,M (f)‖Lp(Ω) ≤ ‖∇f‖Lp(Ω); ‖Ta,M(f)‖
Lp�

(∂Ω)
≤ ‖f‖

Lp�
(∂Ω)

.

Now note that Ta,M(f) is bounded above by M , and vanishes outside of the set of
finite measure {x; f(x) ≥ a}; in particular it lies in Lp�

(Ω). A priori the Lp�
norm

of Ta,M(f) depends on M , but the bounds (30) and the trace Sobolev inequality
established at the end of Step 3 implies that this is not the case. We can now let M
go to infinity, then a go to 0, and use the monotone convergence theorem to conclude
that f is bounded in Lp�

. Another application of Step 3 concludes the proof. The
proofs of both Propositions 4 and 5 are now complete.

3. Study of Φ
(p)
n

The purpose of this section is to establish Theorems 1, 2 and 3, apart from the
rigidity theorem contained in Theorem 2. From Proposition 5 and the explanations
given in Subsection 1.7, we see that it is sufficient to

(i) prove the inequality (8):

‖∇f‖Lp(Ω) ≥ ‖f‖Lp�(Ω) Φ̃(p)
n

(‖f‖
Lp�

(∂Ω)

‖f‖Lp�(Ω)

)
,

where

Φ̃(p)
n := 1[0,Tn(p)]Φ

(p)
n .

(ii) show that Φ
(p)
n is a well-defined function (not just a parametric curve) on the

interval [0, Tn(p)];

(iii) prove that Φ
(p)
n (0) = S−1

n (p) and Φ
(p)
n (Tn(p)) = 0;
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(iv) show that

∀T ∈ [0, Tn(p)], Φ(p)
n (T ) ≥ S−1

n (p)[1 − (CT )p]1/p;

(v) establish the concavity of Φ
(p)
n (strict for p > 1) on the interval [0, Tn(p)].

These points will be addressed one after another. As we explained before, we only
consider the case p ∈ (1, n), since the case p = 1 can be treated directly.

3.1. Construction of Φ
(p)
n . Let, on R

n,

(31) wa,b(x) :=
1

(a+ b|x|p′)n−p
p

.

Recall that the norm used in (31) and the norm used in ‖∇f‖Lp are, by assumption,
dual to each other. For any choice of a, b > 0, the function wa,b is optimal in the
Sobolev inequality set in the whole space (this fact is well-known in the Euclidean
case; a proof in the general case can be found in [7]). When Ω = R

n, the invariance
of the Sobolev inequality under dilations, translations and multiplications makes it
useless to consider the whole family of functions wa,b; but in general we do not have
so much invariance and it will be important to allow various choices of a, b. We
define ga,b as the normalized truncation of wa,b to the unit ball Bn:

(32) ga,b :=
1Bn wa,b

‖wa,b‖Lp�(Bn)

.

We now apply Proposition 4 with an arbitrary function f in Lp�
(Ω) and g = ga,b.

Let
(33)

Ga,b := ‖∇ga,b‖Lp(Ω), Ya,b :=

(∫
Bn

ga,b(x)
p�|x|p′ dx

)1/p′

, Ta,b :=

(∫
Sn−1

gp�

a,b

)1/p�

.

With that choice (19) can be restated as

n

∫
Bn

gp�

a,b ≤ Ya,b

‖∇f‖Lp(Ω)

‖f‖Lp�(Ω)

+
1

p�

(‖f‖
Lp�

(∂Ω)

‖f‖Lp�(Ω)

)p�

.

On the other hand, it is easy to check that ga,b is optimal in this inequality. In fact,
an application of the divergence theorem and direct calculation yield the identities

n

∫
Bn

gp�

a,b = −p�

∫
Bn

y · gp�−1
a,b (y)∇ga,b dy +

∫
Sn−1

gp�

a,b;
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(34) −
∫

Bn

y · gp�−1
a,b (y)∇ga,b dy = Ga,bYa,b.

Note how, in fact, formula (34) suggest an optimality condition, determining the
optimizers of the Sobolev inequality, in the form of a first-order, integrable ordinary
differential equation.

Moreover, if Ω is connected, the study of cases of equality in this application of
inequality (19) can be performed in exactly the same way as in [7, Proposition 6]
(this point is not crucial to the rest of the paper, so we do not insist on it). We
conclude to the following

Proposition 7. Let Ω be a locally Lipschitz domain in R
n. For every locally inte-

grable f : Ω → R vanishing at infinity with ∇f ∈ Lp(Ω) we have, with the notation
above,

(35) Ya,bGa,b +
T p�

a,b

p�
≤ Ya,b

‖∇f‖Lp(Ω)

‖f‖Lp�(Ω)

+
1

p�

(‖f‖
Lp�

(∂Ω)

‖f‖Lp�(Ω)

)p�

;

Moreover, if Ω is connected, then equality holds in (35) if and only if there exist
λ ∈ R, x0 ∈ R

n, r > 0 such that

(36) Ω = Br(x0), f(x) = λwa,b

(
x− x0

r

)
.

Remark 8. If in the above argument we consider Ω = R
n and choose R

n in place
of Bn and wa,b(x)/‖wa,b‖Lp�(Rn) in place of ga,b then we prove as in [7] the sharp
Sobolev inequality on R

n, showing in particular that

‖∇wa,b‖Lp(Rn)

‖wa,b‖Lp�(Rn)

= S−1
n (p).

Let us now assume ‖f‖Lp�(Ω) = 1, and use the shorthands G := ‖∇f‖Lp(Ω),
T := ‖f‖

Lp�
(∂Ω)

. The preceding inequality can be rewritten as

(37) G ≥ Ga,b +
1

p�Ya,b

(
T p�

a,b − T p�
)

=: Φa,b(T ), a > 0, b > 0.

In particular, it is clear that

T = Ta,b =⇒ G ≥ Ga,b.

Therefore, the definition of Φ
(p)
n as Φ

(p)
Bn implies Φ

(p)
n (Ta,b) ≥ Ga,b. Since on the other

hand the function wa,b leads rise to the point (Ta,b, Ga,b) in the (T,G) diagram, we
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conclude that

Φ(p)
n (Ta,b) = Ga,b.

From (37) we see that there is another representation of Φ = Φ
(p)
n :

Φ(p)
n (T ) = sup

a,b>0
Φa,b(T ), ∀T ∈ {Ta,b : a, b > 0},

where the family of curves Φa,b is defined by

Φa,b(T ) = Aa,b − Ca,bT
p�

,

Aa,b :=

[
Ga,b +

T p�

a,b

p�Ya,b

]
, Ca,b =

1

p�Ya,b
.

See Figure 2 for a qualitative picture of what goes on.

3.2. Identification of Φ
(p)
n . We shall now identify the function Φ

(p)
n constructed

above, completing the proof of Theorem 1. It will be useful to define the variable

t = t(a, b) :=

(
b

a

)1/p′

∈ (0,∞),

and the functions

h(t) := tn−1(1 + tp
′
)−n,

ϕ(t) :=

∫ t

0

sn−1(1 + sp′)−nds =

∫ t

0

h(s)ds,

ψ(t) :=

∫ t

0

sn+p′−1(1 + sp′)−nds =

∫ t

0

sp′h(s)ds.

By simple calculations,

‖wa,b‖Lp�(Bn) =
1

(at)n/p� ‖w1,1‖Lp�(tBn);(38)

‖∇wa,b‖Lp(Bn) =
1

(at)n/p� ‖∇w1,1‖Lp(tBn);(39)
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the graph of

the curves Φa,b(T )
for various values of a, b

the curve Φa,b touches Φ

When b/a → 0, the left end-point

When b/a → ∞, the left end-point the right end-point approaches (Tn(p), 0)

of Φa,b approaches (0, S−1
n (p)),

the right end-point approaches the origin

Φ = Φ
(p)
n

at point (Ta,b, Ga,b)

of Φa,b goes down,

Figure 2. Φ
(p)
n as an envelope

Ga,b =
‖∇w1,1‖Lp(tBn)

‖w1,1‖Lp(tBn)

(40)

= |Sn−1|1/n

(
n− p

p− 1

)
ψ(t)1/p

ϕ(t)1/p� =: G(t);(41)

Ta,b =

( |Sn−1|1/(n−1)th(t)

ϕ(t)

)1/p�

=: T (t);(42)

Ya,b =
1

t

(
ψ(t)

ϕ(t)

)1/p′

=: Y (t).(43)
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Now, the conclusions of the previous subsection translate into Φ
(p)
n (T (t)) = G(t).

Moreover, Φ
(p)
n (T ) = sup0<t<∞ Φ[t](T ), where

Φ[t](T ) := G(t) +
1

p�Y (t)
(T (t)p� − T p�

).

3.3. End-points. The curve Φ
(p)
n crosses the G axis at S−1

n (p). This in fact is

a property shared by all Lipschitz domains Ω: Φ
(p)
Ω (0) = S−1

n (p). This can be
easily proved as follows: let us fix x0 ∈ Ω, r > 0 such that x0 + 2rBn ⊂ Ω,
ψ ∈ C∞

c (x0 +2rBn) with ψ(x0 + rx) = 1 for every x ∈ Bn and 0 ≤ ψ ≤ 1. For every
a, b > 0 we consider

f(x) = ψ(x)wa,b(x− x0), ∀x ∈ Ω.

Then
∫

∂Ω
f p�

= 0 and

‖∇wa,b‖Lp(rBn)

‖wa,b‖Lp�(2rBn)

≤ ‖∇f‖Lp(Ω)

‖f‖Lp�(Ω)

≤ ‖∇wa,b‖Lp(2rBn)

‖wa,b‖Lp�(rBn)

.

By changing variables and letting (b/a)1/p′ = t → ∞ we discover that Φ
(p)
Ω (0) ≤

S−1
n (p). On the other hand, by the Sobolev inequality on R

n the reverse inequality

holds too, and thus Φ
(p)
Ω (0) = S−1

n (p).

We next check that Φ
(p)
n crosses the T axis precisely at Tn(p):

lim
t→0

T (t) = n1/p� |Sn−1|1/p�−1/p�

= Tn(p).

Finally, since ϕ(+∞) < +∞, clearly T (+∞) = 0.

To summarize: the two end-points of the parametric curve Φ
(p)
n as t → 0 and

t→ ∞ are, respectively, (Tn(p), 0) and (0, S−1
n (p)).

3.4. Study of a parametric curve. Since T is continuous, its range contains the
whole of [0, Tn(p)]. We shall now get a more precise description by proving the
following properties of G, T and Y as functions of t:

Proposition 9. With the notation above, G(t) is strictly increasing as a function
of t ∈ (0,+∞), while T (t) are Y (t) are strictly decreasing; moreover,

G(0) = 0, G(∞) = S−1
n (p);

T (0) = Tn(p), T (∞) = 0;

Y (0) = [n/(n+ p′)]1/p′ , Y (∞) = 0.
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Furthermore, the following formulas hold:

G′(t) = G(t)

{
1

p

ψ′(t)
ψ(t)

− 1

p�

ϕ′(t)
ϕ(t)

}
;(44)

T ′(t) =
T (t)

p�

{
(th(t))′

th(t)
− ϕ′(t)
ϕ(t)

}
;(45)

Y ′(t) = Y (t)

{
1

p′
ψ′(t)
ψ(t)

− 1

p′
ϕ′(t)
ϕ(t)

− 1

t

}
.(46)

This proposition implies in particular that Φ
(p)
n is the graph of a smooth function

T �−→ G(T ).

Proof. The limit values of T have been already discussed in the previous subsection.
Formulas (44),(45) and (46) follow easily from a direct computation.

Monotonicity of G: Since ϕ′(t) = h(t), ψ′(t) = tp
′
h(t), ψ(t) < tp

′
ϕ(t) and p� > p,

we deduce

1

p

ψ′(t)
ψ(t)

− 1

p�

ϕ′(t)
ϕ(t)

>
h(t)

p�ϕ(t)ψ(t)

{
tp

′
ϕ(t) − ψ(t)

}
> 0

and thus G′(t) > 0, so G is increasing.

Limit values of G: By Remark 8, formula (40) and the dominated convergence
theorem, G(t) → S−1

n (p) as t → ∞. On the other hand, as t → 0, ϕ and ψ admit
the Taylor expansions ϕ(t) = tn/n + o(tn) and ψ(t) = tn+p′/(n + p′) + o(tn+p′); so
that

G(t) = c(n, p)

t(n+p′)/p

(n + p′)1/p
+ o(t(n+p′)/p)

tn/p�

n1/p� + o(tn/p�

)

,

and thus G(t) → 0 as t→ 0, since (n+ p′)p� > np.

Monotonicity of T : To establish it, it suffices to prove (th(t))′ϕ(t) − th(t)2 < 0.
Since

(47) h′(t) =
h(t)

t

{
n− 1 − np′

tp
′

1 + tp′

}
,

it suffices to check that

(48) nϕ(t)

{
1 − p′

tp
′

1 + tp′

}
< th(t), ∀t > 0.
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An integration by parts and the use of (47) show that

(49) nϕ(t) = th(t) + np′
∫ t

0

sp′h(s)

1 + sp′ ds

Thus (48) holds if

np′
∫ t

0

sp′h(s)

1 + sp′ ds ≤ np′
tp

′

1 + tp′
ϕ(t),

which is true since t �→ tp
′
(1 + tp

′
)−1 is increasing.

Limit values of Y : Trivially Y (+∞) = 0. By Taylor’s formula,

Y (t)p′ =
1

tp′

tn+p′

n+p′ + o(tn+p′)
tn

n
+ o(tn)

,

so that Y (0) = [n/(n+ p′)]1/p′.

Monotonicity of Y : Y is strictly decreasing if

tp
′
h(t)tϕ(t) < ψ(t)(th(t) + p′ϕ(t)),

an inequality which can be rewritten as

(50)
tp

′
ϕ(t)

ψ(t)
< 1 +

p′ϕ(t)

th(t)
.

Since (tp
′
ϕ(t))′ = p′tp

′−1ϕ(t) + tp
′
h(t), we have

(51) tp
′
ϕ(t) = ψ(t) + p′

∫ t

0

sp′−1ϕ(s)ds.

Plugging this into (50), we are led to ask whether

p′
∫ t

0

sp′−1ϕ(s) ds

ψ(t)
<
p′ϕ(t)

th(t)
,

or equivalently whether

1 >

{∫ t

0

sp′
1
s

∫ s

0
h(r) dr

1
t

∫ t

0
h(r) dr

ds

}{∫ t

0

sp′h(s)

h(t)
ds

}−1

.

This is true since the function

t �→ 1

th(t)

∫ t

0

h(r)dr
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is strictly increasing. Indeed, its first derivative is

th(t)2 − (th(t))′ϕ(t)

t2h(t)2
,

which is positive for every t > 0, as we noticed while we were studying the mono-
tonicity of T . �

3.5. Concavity of Φ
(p)
n . Let us now prove that Φ

(p)
n is concave on [0, Tn(p)]. In the

sequel, we shall use the shorthand Φ = Φ
(p)
n to alleviate notation.

Since G(t) = Φ(T (t)) and all functions involved are smooth, we know that

dΦ

dT
(T (t)) =

G′(t)
T ′(t)

.

We also know that Φ(T ) ≥ Φ[t](T ), with equality at T = T (t) and where Φ[t] is
concave and smooth. Thus, if Φ is concave, then it must be that

dΦ

dT
(T (t)) =

dΦ[t]

dT
(T (t)) = −T (t)p�−1

Y (t)
.

Our proof will split into two steps:

Step 1: We shall show that

G′(t)
T ′(t)

= −T (t)p�−1

Y (t)
;

Step 2: We shall show that

d

dt

(
T (t)p�−1

Y (t)

)
< 0.

From Step 1 we deduce that

d2Φ

dT 2
(T (t)) = − 1

T ′(t)
d

dt

(
T (t)p�−1

Y (t)

)
,

and then by Step 2 we deduce the (strict) concavity of Φ on [0, Tn(p)].

Proof of Step 1: Recall (34),

(52) p�G(t)Y (t) + T (t)p�

= n

∫
Bn

gp�

a,b, t = (b/a)1/p′.



BALLS HAVE THE WORST BEST SOBOLEV INEQUALITIES 33

On one hand, if tr = s,∫
Bn

wp�

a,b = |Sn−1|
∫ 1

0

rn−1dr

(a+ brp′)n−1
=

|Sn−1|
an−1tn

∫ t

0

sn−1ds

(1 + sp′)n−1
,

so that by (38)

n

∫
Bn

gp�

a,b =
n
∫

Bn w
p�

a,b

‖wa,b‖p�

Lp�(Bn)

=
n|Sn−1|1/n

t ϕ(t)1−1/n

∫ t

0

sn−1dr

(1 + sp′)n−1
.

An integration by parts reveals that∫ t

0

sn−1ds

(1 + sp′)n−1
=
t

n

{
h(t)(1 + tp

′
) + p′(n− 1)

ψ(t)

t

}
,

so that, by (52) we end up with

(53) p�G(t)Y (t) + T (t)p�

=
|Sn−1|1/n

ϕ(t)1−1/n

{
h(t)(1 + tp

′
) + p′(n− 1)

ψ(t)

t

}
.

What we wish to prove is

(54) G′(t)Y (t) + T (t)p�−1T ′(t) = 0;

by differentiating (53) we find that our goal is achieved if we can prove

(55) p�G(t)Y ′(t) =
d

dt

{ |Sn−1|1/n

ϕ(t)1−1/n

{
h(t)(1 + tp

′
) + p′(n− 1)

ψ(t)

t

}}
.

On one hand by (41), (43) and (46) we deduce that

p�G(t)Y ′(t) = p�|Sn−1|1/n

(
n− p

p− 1

)
ψ(t)1/p

ϕ(t)1/p�

1

t

(
ψ(t)

ϕ(t)

)1/p′ {
1

p′
ψ′(t)
ψ(t)

− 1

p′
ϕ′(t)
ϕ(t)

− 1

t

}
= (n− 1)p′|Sn−1|1/n ψ(t)

t ϕ(t)1−1/n

{
1

p′
ψ′(t)
ψ(t)

− 1

p′
ϕ′(t)
ϕ(t)

− 1

t

}
.

On the other hand, a rather lengthy computation shows that

d

dt

{ |Sn−1|1/n

ϕ(t)1−1/n

{
h(t)(1 + tp

′
) + p′(n− 1)

ψ(t)

t

}}
=

|Sn−1|1/n

t
(n− 1)p′

ψ(t)

ϕ(t)1−1/n

{
h(t)

p′ψ(t)
(1 + tp

′
)

(
1 − th(t)

nϕ(t)

)
− 1

n′
h(t)

ϕ(t)
− 1

t

}
.
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In particular (55) holds if and only if

1

p′
ψ′(t)
ψ(t)

− 1

p′
ϕ′(t)
ϕ(t)

=
h(t)

p′ψ(t)
(1 + tp

′
)

(
1 − th(t)

nϕ(t)

)
− 1

n′
h(t)

ϕ(t)
.

We multiply both sides by ϕ(t)ψ(t)/h(t) and then apply (49) to the term (1 −
[th(t)/nϕ(t)]) to deduce that our thesis is equivalent to

tp
′

p′
ϕ(t) +

(
1

n′ −
1

p′

)
ψ(t) = (1 + tp

′
)

∫ t

0

sp′h(s)

1 + sp′ ds.

Then, by (51), we can reduce to ask whether

(56)

∫ t

0

sp′−1ϕ(s) ds+
1

n′ψ(t) = (1 + tp
′
)

∫ t

0

sp′h(s)

1 + sp′ ds.

Since

d

dt

{
(1 + tp

′
)

∫ t

0

sp′h(s)

1 + sp′ ds

}
= p′tp

′−1

∫ t

0

sp′h(s)

1 + sp′ ds+ tp
′
h(t),

we deduce that

(1 + tp
′
)

∫ t

0

sp′h(s)

1 + sp′ ds = p′
∫ t

0

sp′−1

∫ s

0

rp′h(r)

1 + rp′ dr ds+ ψ(t).

Thus (56) is equivalent to 0 =
∫ t

0
sp′−1ζ(s)ds where

ζ(s) := p′
∫ s

0

rp′h(r)

1 + rp′ dr +
sh(s)

n
−
∫ s

0

h(r) dr.

We substitute in here the explicit form of h(s), to find that

ζ(s) = p′
∫ s

0

rn+p′−1

(1 + rp′)n+1
dr +

sn

n(1 + sp′)n
−
∫ s

0

rn−1

(1 + rp′)n
dr.

But
d

ds

{
sn

n(1 + sp′)n

}
=

sn−1

(1 + sp′)n
− sn+p′−1

(1 + sp′)n+1

and so ζ ≡ 0 and the proof of Step 1 is finished.

Proof of Step 2: Since T (t)p�−1/Y (t) = (|Sn−1|1/(n−1)tp
′+1h(t)/ψ(t))1/p′ we just

need to prove that (tp
′+1h(t)/ψ(t))′ < 0, i.e.,

tp
′+1h(t)tp

′
h(t) > [p′tp

′
h(t) + tp

′
(th(t))′]ψ(t).
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By (47) we have

(th(t))′ = nh(t)

{
1 − p′

tp
′

1 + tp′

}
,

so that we have reduced to ask whether

tp
′+1h(t)tp

′
h(t) > ψ(t)tp

′
h(t)

{
n + p′ − np′

tp
′

1 + tp′

}
,

or equivalently whether

(57) tp
′+1h(t) > ψ(t)

{
n+ p′ − np′

tp
′

1 + tp′

}
.

But, by (47)

ψ(t) =
tp

′+1

p′ + 1
h(t) −

∫ t

0

sp′+1

p′ + 1
h′(s) ds

=
tp

′+1

p′ + 1
h(t) −

∫ t

0

sp′

p′ + 1
h(s)

{
n− 1 − np′

sp′

1 + sp′

}
ds,

so that

(p′ + n)ψ(t) = tp
′+1h(t) + np′

∫ t

0

sp′h(s)
sp′

1 + sp′ ds

Thus (57) becomes

−np′
∫ t

0

sp′h(s)
sp′

1 + sp′ ds > −np′ψ(t)
tp

′

1 + tp′

which is true since t �→ tp
′
(1 + tp

′
)−1 is increasing. This remark concludes the proof

of Step 2 and of the concavity of Φ.

3.6. Behavior at the left end-point. Now we wish to show the existence of a
constant Cn(p) such that

Φ(p)
n (T ) ≥ S−1

n (p)
(
1 − (Cn(p)T )p

)1/p

on [0, Tn(p)]. Equivalently, we wish to check that for any value of t ∈ (0,∞),

G(t) ≥ S−1
n (p)

(
1 − (Cn(p)T (t))p

)1/p
,

which can be rewritten as

(58)

(
G(t)

G(∞)

)p

+ (Cn(p)T (t))p ≥ 1.
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Let ∆ be the line joining (0, S−1
n (p)) and (Tn(p), 0). For any T0 > 0 we can find

C so large that the curve G = S−1
n (p)[1−CT p]1/p lies below ∆ (and therefore below

the graph of Φ
(p)
n for T0 ≤ T . So all we have to do is prove (58) for T ≤ T0, i.e. for

t large enough.
Recall that [

G(t)

G(∞)

]p
=

(∫ t

0
sp′h(s) ds∫ s

0
h(s) ds

)p/p�

,

where both integrals admit a finite limit as t→ ∞. It follows that, as t→ ∞,[
G(t)

G(∞)

]p

= 1 − O

(∫ ∞

t

sp′h(s) ds+

∫ ∞

t

h(s) ds

)
.

Elementary integral estimates imply[
G(t)

G(∞)

]p
≥ 1 −K(n, p)t−(n−p)/(p−1), t > θ1(n, p)

for some constants K(n, p) and t(n, p) (which would be easy to compute explicitly).
Secondly,

T (t)p/p� ≥
( |Sn−1|1/(n−1)th(t)

ϕ(∞)

)1−p/n

≥ L(n, p)

(
tn−np′ tnp′

(1 + tp′)n

)1−p/n

≥ L(n, p) t−(n−p)/(p−1), ∀t > θ2(n, p),

for some constants L(n, p) and t′(n, p) (which again could easily be evaluated ex-
plicitly).

All in all, we deduce that(
G(t)

G(∞)

)p

+
(
CT (t)

)p ≥ 1+[CL(n, p)−K(n, p)]t−(n−p)/(p−1), ∀t > max(θ1(n, p), θ2(n, p)),

and to conclude the proof of (58) for t large enough it is sufficient to choose

Cn(p) :=
K(n, p)

L(n, p)
.

Remark 10. The bound which we just proved is sharp about the behaviour of Φ
near T = 0. Indeed, from the proof it is easy to check that the power p in (58) can
be replaced by no power q > p. On the other hand, to get a sharp estimate on the
behavior of Φ near G = 0, it is sufficient to consider Φ[0]:

Φ(p)
n (T ) ≥ 1

p�Y (0)

{
(T (p)

n )p� − T p�
}
.
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In particular, the graph of Φ is flat close to T = 0, but it is not vertical close to
G = 0.

4. Rigidity and counterexamples

The Sobolev inequality (14) cannot be improved, in the sense that both constants
appearing in its right-hand side are the smallest possible ones for this inequality to
apply to all domains.

The goal of this section is to complete the proof of Theorem 2 by proving that
under certain conditions, inequality (14) can be improved when it is applied to a
domain which is not a ball. In this study we shall be led to use some slightly more
advanced material about Sobolev inequalities, taken from Maz’ja’s book [11].

4.1. Rigidity. Let Ω be a connected, bounded, Lipschitz domain and let p ∈ (1, n).
Let ∆0 be the straight line joining the endpoints (0, S−1

n (p)) and (Tn(p), 0); from

the concavity of Φ
(p)
n we know that the graph of Φ

(p)
n lies above ∆0, and therefore so

does Φ
(p)
Ω .

We assume that Ω is not a ball, and wish to prove that there exists a straight line

∆, with endpoints (0, S−1
n (p)) and (a, 0), with a > Tn(p), such that the curve Φ

(p)
Ω

lies above ∆.
Since Ω is bounded and Lipschitz, its boundary can be described by a finite

number of Lipschitz charts, and therefore it is easy to check the following regularity
estimate: there exists a finite number C such that, for all open sets U ⊂ Ω,

|U |(n−1)/n

|∂U | ≤ C.

Then the following Poincaré estimate with sharp exponents [11, p. 168] holds true:
there exists a constant P = P (Ω) such that for all functions f : Ω → R,

(59) ‖f − 〈f〉‖Lp�(Ω) ≤ P‖∇f‖Lp(Ω),

where 〈f〉 = |Ω|−1
∫

Ω
f stands for the average value of f on Ω. Assume that

‖f‖Lp�(Ω) = 1, then we deduce

‖〈f〉‖Lp�(Ω) ≥ 1 − P‖∇f‖Lp(Ω).

In other words,

(60) |〈f〉| ≥ 1 − P‖∇f‖Lp(Ω)

|Ω|1/p� .
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Next, as a consequence of the continuity of the trace with sharp exponents (The-
orem A.3 in the Appendix), there is a constant R = R(Ω) such that

‖f − 〈f〉‖
Lp�

(∂Ω)
≤ R
(‖f − 〈f〉‖Lp�(Ω) + P‖∇f‖Lp(Ω)

) ≤ R(1 + P )‖∇f‖Lp(Ω).

Hence

‖f‖
Lp�

(∂Ω)
≥ ‖〈f〉‖

Lp�
(∂Ω)

− R(1 + P )‖∇f‖Lp(Ω)

= |〈f〉||∂Ω|1/p� − R(1 + P )‖∇f‖Lp(Ω).

Combining this with (60), we deduce that

‖f‖
Lp�

(∂Ω)
≥
(
|∂Ω|1/p�

|Ω|1/p�

)
− C‖∇f‖Lp(Ω),

where C := R(1 + P ) + P |∂Ω|1/p�
. This estimate can be rewritten as

‖f‖
Lp�

(∂Ω)
≥ IPR(Ω)1/p� − C‖∇f‖Lp(Ω),

where IPR(Ω) stands for the usual isoperimetric ratio, |∂Ω|/|Ω|(n−1)/n.
Since Ω is not a ball, the rigidity part of the isoperimetric theorem implies

IPR(Ω) > IPR(Bn), so

IPR(Ω)1/p�

> IPR(Bn)1/p�

= Tn(p).

In conclusion, we have shown that there exists δ > 0 such that for all f : Ω → R

with ‖f‖Lp�(Ω) = 1,

‖f‖
Lp�

(∂Ω)
≥ Tn(p) + δ − C‖∇f‖Lp(Ω).

Setting ε := δ/(2C), we deduce that

(61) ‖∇f‖Lp(Ω) ≤ ε =⇒ ‖f‖
Lp�

(∂Ω)
≥ Tn(p) + δ/2.

This shows that the curve Φ
(p)
Ω stays a positive distance away from the line ∆0 when

‖∇f‖Lp is smaller than ε.

From the fact that Φ
(p)
n is strictly concave and flat at the origin, it follows that

we can find a line ∆′, passing through the same first end-point as ∆0, with a higher

slope, such that Φ
(p)
n stays above ∆′ for ‖∇f‖Lp ≥ ε. Without loss of generality, we

can assume that ∆′ crosses the horizontal axis with abscissa at most Tn(p) + δ/2.

Then estimate (61) shows that the whole curve Φ
(p)
Ω stays above ∆′. See Figure 3

for a qualitative illustration of the proof.



BALLS HAVE THE WORST BEST SOBOLEV INEQUALITIES 39

S−1
n

Tn

∆0
∆′

δ/2

ε

Φn

ΦΩ

Figure 3. Proof of the rigidity theorem

In the rest of this section, we consider various counter-examples showing that the
assumptions made in the previous proof are all useful.

4.2. Non-connected counterexample. Let U be an arbitrary Lipschitz open do-
main, disjoint from Bn, and consider Ω = U ∪Bn. Considering functions defined on

Bn, it is easy to show that Φ
(p)
Ω ≤ Φ

(p)
Bn , for all values of p. Since the reverse inequality

is also true, we conclude that Φ
(p)
Ω = Φ

(p)
n ; in particular the Sobolev inequality (14)

cannot be improved.



40 F. MAGGI AND C. VILLANI

4.3. Unbounded domain. Now we shall exhibit an unbounded, locally Lipschitz,
connected domain Ω with finite measure, which differs from a ball but has the same
function Φ. The construction is inspired from an example in Maz’ja’s book [11,
p. 165]. For simplicity we consider p ∈ (1, 2) and n = 2, but the construction applies
in more generality. The proof itself is not very enlightening, and it will probably
be sufficient for the reader to have a look at Figure 4, which gives an idea of the
construction of Ω.

Figure 4. A sequence of shrinking mushrooms

Here follow some details. Let

θ ∈ (0, π/2), α > 0, ρ > 0,

be given. Define

β := ρ sin θ; γ := ρ cos θ.

Consider Ω[ρ, α, θ] defined as the union of the following four sets:

A := ρB2 ∩ (−∞, γ) × R,

R := (γ, γ + α) × (−β, β),

P+ := (γ, γ + α) × (β, β + α),

P− := (γ, γ + α) × (−β − α,−β).

We now iterate the construction: Let θk = αk = ρ2
k, where

max{ρk, αk + βk} < 1,
∞∑

k=0

ρ2
k <∞.
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We define Ω as the interior of the closure of
∞⋃

k=0

{(
(−γk, 2k) + Ω[ρk, αk, θk]

)
∪ (0, αk) × (−1, 1)

}
.

Of course Ω is open and connected. Since every compact set in R
2 meets at most a

finite number of elements from the union defining Ω, it follows that the boundary
of Ω is locally representable by (n− 1) dimensional Lipschitz maps. Furthermore Ω
has finite measure:

|Ω| ≤
∞∑

k=0

2αk + πρ2
k <∞.

Let us check that IPR(p,Ω) = IPR(p, B2).

Lemma 11. Let ρ, α, θ be given and let Ω[ρ, α, θ] be defined as above. Let f =
f [ρ, α, θ] be defined on Ω[ρ, α, θ] by

f ≡
(

1

πρ2

)(2−p)/2p

=: c(ρ, p) on A;

f = 0 on {γ + α} × [−β, β]; and f is radially symmetric decreasing on P+ (resp.
P−) with center (γ, β) and symmetric profile

�(t) :=
c(ρ, p)

α
t, t ∈ [0, α].

Then f is a Lipschitz function and
(i) ‖f‖Lp�(Ω[ρ,α,θ]) → 1 as θ → 0, θ/ρ→ 0, α/ρ→ 0;
(ii) ‖∇f‖Lp(Ω[ρ,α,θ]) → 0 as α/ρ→ 0, θ ρ/α→ 0;

(iii) ‖f‖p�

Lp�
(∂Ω[ρ,α,θ])

→ 2
√
π = (T

(p)
2 )1/p�

as θ → 0, α/ρ→ 0.

Proof. By explicit computations,∫
A

f p�

=
|A|
πρ2

= 1 +O(θ),

∫
R

f p�

= 2β

∫ α

0

(
c(ρ, p)

α

)p�

tp
�

dt =
2ρα sin θ

(p� + 1)πρ2

and ∫
P+∪P−

f p�

= 2
π

2

∫ α

0

(
c(ρ, p)

α

)p�

tp
�+1dt =

α2

(p� + 2)ρ2
.

This shows (i).
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Next, ∫
R

|∇f |p = 2βα

(
c(ρ, p)

α

)p

=
2ρ sin θ

αp−1(πρ2)(2−p)/2
=

2 sin θ

π(2−p)/2

ρp−1

αp−1
;

∫
P+∪P−

|∇f |p = 2
π

4
α2

(
c(ρ, p)

α

)p

=
πp/2

2

α2−p

ρ2−p
.

This shows (ii).
Finally, ∫

∂Ω[ρ,α,θ]

f p�

= 2(π − θ)ρc(ρ)p�

+ 2

∫ α

0

(
c(ρ, p)

α

)p�

tp
�

dt

=
2(π − θ)ρ√

πρ2
+

2α

(p� + 1)(πρ2)1/2

=
2(π − θ)√

π
+

2α

(p� + 1)
√
πρ
.

This concludes (iii), and the proof of the lemma. �

With this lemma at hand, it is easy to conclude. Assume that θk = αk = ρ2
k

and ρk → 0. By normalizing the function fk constructed above, one can define on
Ωk := Ω[θk, αk, ρk] a function gk such that ‖gk‖Lp�(Ωk) = 1, ‖∇gk‖Lp(Ωk) → 0 and

‖gk‖Lp�
(∂Ωk)

→ T
(p)
2 .

We now do the same construction on Ω, constructing such a function gk in

(−γk, 2k) + Ω[ρk, αk, θk],

letting gk ≡ 0 in the rest of Ω. Plugging these functions in the definition of ΦΩ

shows that there is a sequence of points in that curve which converges to (T
(p)
2 , 0).

So the Sobolev inequality (14) cannot be improved for that domain Ω.
This shows that IPR(p,Ω) = IPR(p, B2). Slightly more careful computations

show that actually the whole curve ΦΩ coincides with Φ
(p)
2 .

Of course in that example the Lipschitz norm of the charts used to describe the
boundary of Ω do blow up as k → ∞. If Ω is allowed to have infinite measure, it
is easy to construct a similar example in which these Lipschitz norms are uniformly
bounded (make the balls larger and larger, instead of smaller and smaller).
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4.4. Non-Lipschitz counterexample. It is rather easy to adapt the previous
counterexample into another one for which Ω is bounded but not Lipschitz: for
this make the subdomains Ωk shrink very rapidly, in such a way that you can pile
up an infinity of them in finite volume. This is more in the spirit of the counterex-
ample in Maz’ja [11, p.165], consisting of a bounded open set for which the Poincaré
inequality (59) fails. Note that the Poincaré inequality was precisely one of the
ingredients which we used to prove the rigidity statement for IPR(p,Ω).

4.5. Counterexample for p = 1. Assume Ω is bounded, Lipschitz and connected,

but now p = 1. Recall that in that situation, the curve Φ
(1)
n is a straight line with

slope −1 which crosses the vertical axis at the point (0, S−1
n (1)). Improving the

inequality (2) for this domain means finding a straight line with slope −k, k < 1,
passing through (0, S−1

n (1)) also, and lying below the graph of ΦΩ. It is clear that

this is impossible if Φ
(1)
Ω touches Φ

(1)
n for some value of T > 0.

To construct such a domain, consider the union Ω of two overlapping balls B1 and
B2 with unit radius, and let f := 1B1 . Both T0 := ‖f‖L1(∂Ω) and G0 := ‖∇f‖TV (Ω)

are nonzero, and they add up to the surface of the unit sphere, so that (T0, G0) lies

on the graph of Φ
(1)
n . The function f can be approximated in BV by functions in

W 1,1(Ω), so (T0, G0) also lies on the graph of Φ
(1)
Ω . This shows that the inequality (2)

cannot be improved for Ω.

Note that in this example, actually Φ
(1)
Ω coincides with Φ

(1)
n on the interval [0, T0],

but later departs from that curve. In particular, Φ
(1)
Ω is not concave. By perturba-

tion, it can be deduced that Φ
(p)
Ω is not concave either if p > 1 is small enough.

Appendix: The trace operator

Throughout the paper, we used some properties of the trace operator, which are
recalled in the sequel. The introduction of the trace is a slight variation of [8, sec-
tion 4.3]. In the statements below, Ω is a locally Lipschitz domain in R

n, with
(almost everywhere) outside unit normal vector σ. The restriction operator asso-
ciated to Ω is the operator mapping a function f ∈ C(Ω) to its restriction to ∂Ω.
Finally, we define BVloc(Ω) (resp. W 1,1

loc (Ω)) as the space of functions in L1
loc(Ω) whose

distributional derivative defines a finite measure (resp. integrable function) on each
bounded subset of Ω. Note carefully that these spaces differ from BVloc(Ω), W 1,1

loc (Ω),
for which the definition is the same apart from the replacement of “bounded” by
“compact”. The slightly unusual notation involving Ω is somehow justified by the
fact that functions in these spaces admit a trace, as recalled below.
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Definition A.1 (trace). (i) Let f ∈ BVloc(Ω). Then there exists g ∈ L1
loc(∂Ω),

uniquely defined Hn−1-almost everywhere on ∂Ω, such that for all compactly sup-
ported function ϕ ∈ C1(Rn; Rn),

(62)

∫
∂Ω

g(ϕ · σ) dHn−1 =

∫
Ω

f(∇ · ϕ) +

∫
Ω

ϕ · ∇f.

This function g is said to be “the” trace of f on ∂Ω and denoted tr f .

(ii) The mapping f �−→ tr f defines on BVloc(Ω) a nonnegative, linear extension
of the restriction operator, called the trace operator.

Apart from an elementary localization argument, the various statements in this
theorem can all be found in [8, sections 4.3 and 5.3], except for the fact that equa-
tion (62) characterizes the trace. This last property is equivalent to the following
statement: if ∫

∂Ω

g(ϕ · σ) dHn−1 = 0

for all compactly supported C1 vector field, then g = 0. Let us sketch a proof. As
in [8, p. 133], we may use a localization argument to reduce to the case in which Ω
is bounded and the boundary of Ω intersects the support of f only in a Lipschitz
graph defined by an equation of the form xn = γ(x1, . . . , xn−1), and σ ·en > 0, where
en stands for the last coordinate axis. With the help of γ, it is easy to extend σ
to a Lipschitz map σ, defined almost everywhereon the whole of Ω, and without
loss of generalitywe can assume that σ · en > 0 on a neighborhood U of the support
of f . Whenever χ is a Lipschitz function on U , so is ψ := χ/σ · en, and we can
find a sequence (ψk)k∈N of mappings in C1(U) converging uniformly to ψ. Choosing
ϕ := ψken, we get ∫

∂Ω

gψk(en · σ) dHn−1 = 0,

and by passing to the limit as k → ∞ we recover
∫

∂Ω
gχ dHn−1 = 0. Since χ is an

arbitrary Lipschitz function, it follows by a routine approximation argument that
g ≡ 0, which was our goal.

The additional properties which we used within the proofs of the present paper
are summarized in the next two theorems. We use the notation β(f) = β ◦ f .

Theorem A.2 (the trace commutes with composition). Let f ∈W 1,1
loc (Ω) and

let β be a Lipschitz function, such that β(0) = 0 and β ′ has a finite number of
discontinuities. Then tr [β(f)] = β(tr f).
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Theorem A.3 (sharp continuity of the trace). Let f ∈ L1(Ω) be such that

∇f ∈ Lp(Ω) for some p ∈ [1, n). Then tr f ∈ Lp�

loc(∂Ω). More precisely, if Ω is
bounded, then there exists a constant C = C(Ω) such that

‖ tr f‖
Lp�

(∂Ω)
≤ C(Ω)(‖f‖L1(Ω) + ‖∇f‖Lp(Ω).

Remarks A.4. (i) The statement in [8, p. 133] is ‖ tr f‖Lp(∂Ω) ≤ C(Ω)(‖f‖Lp(Ω))+
‖∇f‖Lp(Ω) for bounded Ω. For p = 1, this is just the same as above: the trace
operator is continuous from W 1,1(Ω) to L1(Ω). In fact it is also continuous
from BV (Ω) to L1(Ω) [8, p. 177].

(ii) If Ω is unbounded but has finite measure, the function 1 lies in W 1,1(Ω) but
its trace does not lie in L1(∂Ω). This shows that we can only hope for a local
statement in Theorem A.3.

(iii) The assumption in Theorem A.2 that β has only a finite number of discon-
tinuities is really not essential; we make it only for simplicity, and because
we will not need more. The key remark is that if f ∈W 1,1(Ω), then ∇f = 0
almost everywhere on f−1(E) for every E ⊂ R of null measure.

Proof of Theorem A.2. By an standard localization argument, we only need to con-
sider the case when Ω is bounded and f ∈ W 1,1(Ω). If f is continuous, the conclu-
sion is obvious. In the general, case, there exist a sequence (fk)k∈N of functions in
W 1,1(Ω)∩C(Ω) converging to f in W 1,1 norm (see [8, p. 127]). Let ϕ be a compactly
supported C1(Ω; Rn) function; for each k, we write∫

∂Ω

β(fk)(ϕ · σ) dHn−1 =

∫
Ω

β(fk)(∇ · ϕ) +

∫
Ω

ϕ · β ′(fk)∇fk.

Since fk converges to f inW 1,1 norm, the continuity of the trace operatorW 1,1(Ω) →
L1(∂Ω) implies that tr fk converges to tr f in L1(∂Ω). Since β is Lipschitz and
β(0) = 0, it follows that β(tr fk) converges to β(tr f) in L1(∂Ω), so∫

∂Ω

β(fk)(ϕ · σ) dHn−1 −→
∫

∂Ω

β(tr f)(ϕ · σ) dHn−1.

Similarly, the convergence of fk to f in L1(Ω) implies∫
Ω

β(fk)(∇ · ϕ) −→
∫

Ω

β(f)(∇ · ϕ).
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Finally, β ′(fk) converges in w ∗ −L∞(Ω) to β ′(f) and ∇fk converges to ∇f in
L1(Ω), so that ∫

Ω

ϕ · β ′(fk)∇fk −→
∫

Ω

ϕ · β ′(f)∇f.
By the chain-rule for Sobolev functions, this is also∫

Ω

ϕ · ∇β(f).

All in all, we have shown∫
∂Ω

β(tr f)(ϕ · σ) dHn−1 =

∫
Ω

β(f)(∇ · ϕ) +

∫
Ω

ϕ · ∇β(f),

and this implies the desired conclusion. �

Proof of Theorem A.3. The first statement follows from the second by an easy lo-
calization argument, so we assume from the beginning that Ω is bounded. As we
recalled above, the result for p = 1 is established in [8], so we assume p > 1. Let
βM(f) = f1|f |≤M +M1f>M −M1f<−M . Since βM(tr f) = tr (βM(f)), the theorem

will be proven if we can show an Lp�
bound on tr (βM(f)), independently of M . So

we just have to prove the theorem in the case when f is bounded.
In that case, f ∈ W 1,p(Ω) and we can approximate f by a family (fk)k∈N of

functions in W 1,p(Ω) ∩ C∞(Ω) (see [8, p. 127]). Again, by continuity of the trace
operator, fk converges Hn−1-almost everywhere to f on ∂Ω and Fatou’s lemma
implies

‖f‖
Lp�

(∂Ω)
≤ lim inf

k→∞
‖fk‖Lp�

(∂Ω)
.

So we just have to prove the theorem when f is smooth, say C1(Ω).

In that case, we apply the W 1,1 → L1 continuity result to the family f p�
, to get∫

∂Ω

f p� ≤ C

(∫
Ω

f p�

+

∫
Ω

|∇(f p�

)|
)
.

Here and below, the symbol C stands for various unrelated constants depending
only on Ω. By the chain-rule and Hölder’s inequality,∫

Ω

|∇(f p�

)| =

∫
Ω

f p�−1|∇f |

≤ ‖f p�−1‖Lp′ (Ω)‖∇f‖Lp(Ω) = ‖f‖p�−1

Lp�(Ω)
‖∇f‖Lp(Ω).
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Since p > 1, p� > 1 and for all δ > 0 we can find a constant Cδ such that(∫
Ω

|∇(f p�

)|
)1/p�

≤ δ‖f‖Lp�(Ω) + Cδ‖∇f‖Lp(Ω).

On the other hand, by elementary Lebesgue interpolation, up to increasing Cδ we
can write

‖f‖
Lp�

(Ω)
≤ δ‖f‖Lp�(Ω) + Cδ‖f‖L1(Ω).

Putting the above inequalities together, we deduce that for all η > 0 there is a
constant Cη such that(∫

∂Ω

f p�

)1/p�

≤ η‖f‖Lp�(Ω) + Cη(‖f‖L1(Ω) + ‖∇f‖Lp(Ω)).

Applying the trace Sobolev inequality (20) (which was proven for smooth functions
without any use of the continuity of the trace operator), we deduce

‖f‖
Lp�

(∂Ω)
≤ η S (‖f‖

Lp�
(∂Ω)

+ ‖∇f‖Lp(Ω)) + Cη(‖f‖L1(Ω) + ‖∇f‖Lp(Ω)).

If we choose η so small that Sη < 1/2, this implies

‖f‖
Lp�

(∂Ω)
≤ 2(Cη + 1)(‖f‖L1(Ω) + ‖∇f‖Lp(Ω)),

which was our goal. �
Remark A.5. Another way to conclude the theorem without using the trace Sobolev
inequality would be to use the Poincaré-type inequality

(63) ‖f − 〈f〉Ω‖Lp�(Ω) ≤ C‖∇f‖Lp(Ω),

where

〈f〉Ω :=
1

|Ω|
∫

Ω

f ;

note indeed that |〈f〉| ≤ C‖f‖L1(Ω). Inequality (63) is established in [8, p. 141] when
Ω is a ball. The general case can be found in Maz’ja’s book [11, p. 168], but it is
more involved, which is why we preferred to go through the trace Sobolev inequality
in the argument above.
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