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Geometric Rigidity of Conformal Matrices

Daniel Faraco∗ Xiao Zhong†

Abstract
We provide a geometric rigidity estimate à la Friesecke-James-

Müller for conformal matrices. Namely, we replace SO(n) by an arbi-
trary compact subset of conformal matrices, bounded away from 0 and
invariant under SO(n), and rigid motions by Möbius transformations.

1 Introduction

This paper is concerned with the so-called geometric rigidity estimates
for conformal matrices. Recently, Friesecke, James and Müller developed
a successful new approach to the classical problem of dimension reduc-
tion in nonlinear elasticity [7]. A fundamental ingredient was the follow-
ing rigidity estimate for the group of special orthogonal matrices of R

n,
SO(n) = {A ∈Mn×n : AtA = I, detA = 1}.
Theorem 1.1. Let Ω ⊂ R

n be a bounded Lipschitz domain and n ≥ 2. There
exists a constant C1 = C1(Ω) with the property that for each v ∈W 1,2(Ω,Rn),
there exists R ∈ SO(n) such that

‖Dv − R‖L2(Ω) ≤ C1‖distSO(n)(Dv)‖L2(Ω). (1.1)

Theorem 1.1 has been used after in a number of related problems con-
cerning dimension reduction, e.g [4], [9], [16] and [17]. In all the applications
it is crucial that the dependence between the left and right hand side is linear
and that the v is any general Sobolev mapping (the classical result of John
[13] gives an L2 − L∞ estimate valid for locally Bi-Lipschitz maps). Theo-
rem 1.1 makes quantitative the following classical result of Reshetnyak [18]
for sequences.
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Theorem 1.2. Let {vj} ∈W 1,2(Ω) be a weakly convergent sequence in W 1,2.
Then there exists R ∈ SO(n) such that

lim
j→∞

‖distSO(n)(Dvj)‖L2(Ω) = 0 ⇒ lim
j→∞

‖Dvj −R‖L2(Ω) = 0. (1.2)

A natural question raised by Theorem 1.1 is to determine when a quali-
tative rigidity theorem like Theorem 1.2 can be in fact made quantitative in
the sense of Theorem 1.1. That is, let E ⊂ Mn×n be such that for a weakly
convergent sequence {vj} ∈W 1,2(Ω) it holds that

lim
j→∞

‖distE(Dvj)‖L2(Ω) = 0 ⇒ lim
j→∞

‖Dvj −Dϕ‖L2(Ω) = 0 (1.3)

where ϕ ∈W 1,2(Ω,Rn) is such that Dϕ ∈ E a.e.
Then, does there exist a constant C(Ω) such that for every v ∈

W 1,2(Ω,Rn) there exists ϕ with Dϕ ∈ E and

‖Dv −Dϕ‖L2(Ω) ≤ C(Ω)‖distE(Dv)‖L2(Ω)? (1.4)

Canonical examples of set satisfying (1.3) are compact subsets of the n
dimensional conformal matrices

CO+(n) = {A ∈Mn×n : A = ρR, where ρ ∈ R+ and R ∈ SO(n)}.

In this work, we show that if E is a compact subset of CO+(n), invariant
under SO(n), and with 0 /∈ E a quantitative rigidity estimate holds (see
Theorem 1.4). Before stating the result, we need to recall that for E �
CO+(n), the solutions to the differential inclusion

Dϕ ∈ E, ϕ ∈W 1,2(Ω) (1.5)

are described by the Liouville Theorem.

Theorem 1.3 (Liouville Theorem). Let Ω ⊂ R
n, n ≥ 3 and let ϕ ∈

W 1,n(Ω,Rn) such that

Dϕ(x) ∈ CO+(n) a.e. x ∈ Ω. (1.6)

Then,

ϕ(x) = b+ Ax, or ϕ(x) = b+ AR
x− a

|x− a|2 (1.7)

where b ∈ R
n, a ∈ R

n \ Ω, A ∈ CO+(n) and R = diag(1, . . . ,−1).
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The Liouville Theorem has a long history. Liouville established it for C3

mappings in [15], Gehring for homeomorphisms in W 1,n(Ω,Rn) in [5] and
Reshetnyak removed the injectivity assumption in [18]. In fact, W 1,n is not
the borderline case. Iwaniec [11] proved that there exists a critical threshold
pn < n such that Liouville theorem holds for mappings in W 1,p(Ω,Rn), p ≥
pn. Moreover, Iwaniec and Martin [12] proved that if n = 2m and m an
integer then pn = m and the result is optimal. For n odd pn is conjectured
to be also n

2
.

Geometrically, the Liouville theorem relates CO+(n) with the special
Möbius group Mn. The Möbius group Möb(n) is the group generated by
reflections on spheres and hyperplanes. Then Mn consists of Möbius trans-
formations preserving orientation (see [1] for an introduction of the geometry
of the Möbius group and its discrete subgroups). It turns out that any Möbius
transform can be represented as the composition of an affine mapping and
an inversion respect to a sphere. Analytically, this yields the formula (1.7).

We are interested in compact subsets of CO+(n) invariant under SO(n)
and finitely connected. Let us introduce the notation

Em,M = (CO+(n) ∩B(0,M)) \B(0, m),

mSO(n) = {mR : R ∈ SO(n)}. (1.8)

Then our conditions on E imply that it can be represented by,

E = ∪n1
i=1E

mi,Mi ∪n2
i=1 miSO(n). (1.9)

In addition, since the sets E are compact the solutions to (1.5) are in
particular Möbius transforms. We denote them by ME

n (Ω). An interesting
new feature respect to the other nonlinear sets for which quantitative rigidity
estimates are available (e.g [2]) is that ME

n (Ω) contains non affine solutions.
We are now in the position to state the rigidity estimate:

Theorem 1.4. Let E ⊂ CO+(n) be compact, finitely connected, with 0 /∈ E
and such that

SO(n)E = E.

Let Ω′ � Ω ⊂ R
n, n ≥ 3 and Ω be a bounded domain. Then,

i) There exists a constant C2 = C2(E,Ω
′,Ω) such that for any v ∈

W 1,2(Ω,Rn) there exists ϕ ∈ ME
n (Ω′,Rn) such that

∫
Ω′
|Dϕ−Dv|2 ≤ C2

∫
Ω

distE
2(Dv). (1.10)
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ii) Let Ω be Lipschitz. Then, a constant C3 = C3(E,Ω) such that

∫
Ω

|Dϕ−Dv|2 ≤ C3

∫
Ω

distE
2(Dv)

exists if and only if E = ∪n2
i=1miSO(n).

Our approach to Theorem 1.4 is essentially a combination of ideas of [7]
with those developed by Reshetnyak in his study of the stability of Liouville
theorem respect to different parameters and classes of functions (See [20],
in particular Theorems 3.2 and 5.2). The paper is organized as follows. In
Section 2 we state some basic facts about Möbius mappings and solutions to
elliptic equations. Section 3 is devoted to prove Theorem 1.4 in the special
case where v = ϕ ∈ Mn. We provide an example showing that, if ME

n (Ω)
contains non affine mappings, a global estimate like in Theorem 1.4 (ii) does
not hold even in this simplified setting.

Section 4 constitutes the crux of the paper. We prove Theorem 1.4 for
Ω′ a ball. The proof works because E is related to elliptic equations globally
and locally. Globally, there exists a smooth uniformly convex mapping F :
R
n → R such that for every A ∈ E

F (Ai) = det(A), (1.11)

where Ai is any row of the matrix A. The existence of such a mapping F
enable us to write

v = w + z,

where each of the coordinates zi satisfies the equation

div(DF (Dzi)) = 0,

and
∫

Ω
|∇w|2 ≤ C

∫
Ω

distE
2(Dv). Hence, it suffices to prove Theorem 1.4 for

such a mapping z. Next, the regularity theory of elliptic equations implies
that zi enjoys a priori estimates. In particular, the modulus of continuity of
Dz is uniformly bounded. This allows the use of a compactness argument
to deduce that it is essentially enough to prove Theorem 1.4 for mappings z
such that

‖dist(Dz, I)‖L∞(Ω′) << 1 (1.12)

and the modulus of continuity of Dz is uniformly bounded. In this situation
we can use the local equation which is given by the tangent plane to CO+(n).
We proceed by adapting the ideas of Reshetnyak [20] to our situation. Beside
a Korn type inequality for the tangent plane to CO+(n), a degree argument
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involving the exponential map of Mn is needed to choose the Möbius map-
ping closest to z. In this way, one obtains a mapping ϕ′ ∈ Mn(Ω

′) satisfying
(1.10). However, these arguments do not imply that ϕ′ ∈ ME

n (Ω′). The de-
sired mapping ϕ is obtained by applying section 3 to ϕ′. Let us remark that
this is the only moment along the whole proof where the SO(n) invariance of
E is used. The last section is devoted to prove Theorem 1.4 for an arbitrary
Ω′ � Ω.

2 Notation and preliminaries

We will denote by C1, C2, ...., Cn constants which will be used during the
whole paper, whereas c1, c2, ......, cn will be used for different constants within
the same proof.

Concerning sets in R
n, we will use B for balls and B(a, r) where we want

to specify the center a and the radius r. For balls centered at the origin we
use Br = B(0, r). Given a ball B(a, r), hB = B(a, hr). For a measurable
set L, |L| denotes its Lebesgue measure. Let K ⊂ R

n and s ∈ R. Then
Ks = {y ∈ R

n : dist(y,K) ≤ s}.
Let A = (aij) ∈ Mn×n then |A| stands for the operator norm. Given a

closed set E ∈ Mn×n dist(A) = infB∈E |A− B|. Let us remark the choice of
the operator norm in our definition of the distance is motivated to simplify
the constants in section 3 but of course any other norm would do.

Let E be the set in Theorem 1.4. Since 0 /∈ E and E is compact there
exists 0 < m < M <∞ such that

E ⊂ Em,M (2.1)

where Em,M was introduced in (1.9).
We will used the notation E ′ for an auxiliary set different E but satisfying

the assumptions of Theorem 1.4. In particular it will satisfy (2.1) for some
other numbers m′ and M ′.

Given a closed set Ω ⊂ R
n, Mn(Ω) are Möbius transforms which are

finite in Ω, Mn(Ω1,Ω2) stands for Möbius transform mapping Ω1 onto Ω2.
Let us recall the notation

ME
n (Ω) = {ϕ ∈W 1,2(Ω) : Dϕ(x) ∈ E a. e.x ∈ Ω}.

We discuss now several basic properties of Mn(Ω) and more precisely of
ME

n (B). In particular we show in the first lemma that mappings ϕ ∈ ME
n (B)

can be handled in an uniform way. The main reason is that for ϕ ∈ ME
n (B)

ϕ−1(∞), the center of the sphere associated to ϕ, is bounded away from B
independently of ϕ. For the notation, recall that for ϕ ∈ Mn, ϕ(B) is a ball.
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Lemma 2.1. Let ϕ ∈ ME
n (B) and let m,M be the constants in (2.1). Then

the following three properties hold:

1. mn ≤ |ϕ(B)|
|B| ≤Mn.

2. ϕ ∈ Mn(h0B) where h0 = h0(
M
m

) > 1.

3. Let s < 1. Then there exists a number h1 = h1(s, E) < 1 such that
ϕ(sB) ⊂ h1ϕ(B) and sϕ(B) ⊂ ϕ(h1B).

Proof: Since for A ∈ CO+(n), |A|n = det(A), it follows that

|ϕ(B)| =

∫
B

Jϕ =

∫
B

|Dϕ|n

(1) follows from (2.1).
We prove (2) for ϕ ∈ ME

n (B) not affine. It follows from (1.7) that for
such ϕ there exists r ∈ R and a ∈ R

n. such that |Dϕ(x)| = r2|x−a|−2. Thus,
maxB |Dϕ| = r2distB(a)−2 and minB |Dϕ| = r2(distB(a)+diam(B))−2. Since
ϕ ∈ ME

n (B) we have that

r2distB(a)−2

r2(distB(a) + diam(B))−2
≤ M

m
,

i.e

distB(a) ≥ diam(B)√
M
m

− 1
.

Hence h0 = 1 + 2 1√
M
m

−1
.

For (3), we firstly observe there is no loss of generality in assuming that
B = B1 and ϕ(B1) = B1. The general case follows by considering similarities
TB, Tϕ(B) such that TB(B1) = B and Tϕ(B)(B1) = ϕ(B). Then the mapping
ϕ̃ = T−1

ϕ(B) ◦ϕ◦TB satisfies that ϕ̃(B1) = B1 and m2 ≤ |Dϕ̃| ≤M2. It is easy
to check that if the thesis holds for ϕ̃ it also holds for ϕ.

Therefore there is no loss of generality assuming ϕ ∈ ME
n (B1, B1). Since

1
M

≤ |Dϕ−1| ≤ 1
m

, (2) implies that ϕ−1 ∈ Mn(h0B1) for the same h0. Thus,
ϕ(∞) = b, with |b| ≥ h0.

On the other hand, ϕ(B1) = B1 implies that ϕ fixes Sn−1. Thus, it
conjugates with the mapping R = x

|x|2 (see [1, Theorem 3.2.4]). i.e ϕ(x) =

R ◦ ϕ ◦R(x). Putting x = 0 yields ϕ(0) = R ◦ ϕ ◦R(0) = R(b) = b
|b|2 . Recall
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now that Mn(B1, B1) is the group of isometries of (B1, d), where d denotes
the hyperbolic metric of B1 (see [1, chapter 3]). Thus, by triangle inequality,

d(ϕ(x), 0) ≤ d(ϕ(x), ϕ(0)) + d(ϕ(0), 0) = d(x, 0) + d(
b

|b|2 , 0). (2.2)

The hyperbolic distance is related with the Euclidean distance by the formula
d(x, 0) = log(1+|x|

1−|x|). Therefore we deduce from (2.2) that if x ∈ sB1 and

ϕ ∈ ME
n (B1, B1), |ϕ(x)| satisfies the inequality

|ϕ(x)| + 1

|ϕ(x)| − 1
≤ (s+ 1)(h0 + 1)

(s− 1)(h0 − 1)
.

Hence h1 in the claim (3) of the Lemma is implicitly defined by

h1 + 1

h1 − 1
≤ (s+ 1)(h0 + 1)

(s− 1)(h0 − 1)
.

The assertion sϕ(B) ⊂ ϕ(h1B). is equivalent to ϕ−1(sB) ⊂ h1B and hence
it follows from the above reasoning.

The following proposition relies on the fact that Mn is a finite dimen-
sional manifold and Mn(hB) is a compact manifold. Thus all metrics are
equivalent.

Proposition 2.2 ([20, Chapter 4. Lemma 2.5]). Let B = B(a, r) and
ϕ, ψ ∈ Mn(hB) with h > 1. Then there exists a constant C4 = C4(h) such
that for any x, y ∈ B we have that

|Dϕ(x) −Dψ(x)| ≤ C4

|B|
∫
B

|Dϕ−Dψ| (2.3)

and,

|Dϕ(x) −Dϕ(y)| ≤ 1

r
C4 max

B
|Dϕ||x− y|. (2.4)

The next lemma states that derivatives of Möbius transforms are like
constants in the following sense: If they are sufficiently close in a ball, they
are also close in a bigger ball.

Lemma 2.3 ([20, Chapter 4. Lemma 4.1]). Let ϕ ∈ Mn such that the
inequality

|ϕ(x) − x| ≤ rε
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holds for all x ∈ B(a, r), where ε > 0. Let h > 0. Then there exist constants
α = α(h) and C5 = C5(h) such that if ε < α then the inequality

|Dϕ(x) − I| ≤ C5ε

holds for all x ∈ hB.

We conclude the section by introducing the elliptic equations needed in
Section 4 and DeGiorgi-Nash’s Theorem on the regularity of the solutions.

Definition 2.4. Let F : R
n → R be a convex function. A mapping z =

(z1, ..., zn) : Ω → R
n is said to be F-harmonic if each of the coordinates zi

satisfies that
div(DF (Dzi)) = 0 in Ω.

Equivalently, zi minimizes
∫

Ω
F (Dv) respect to its own boundary values.

Proposition 2.5 ([3],[6]). Let z be an F-harmonic mapping in B. Let
F : R

n → R be a C∞ uniformly convex and such that |DF (A)| ≤ CF |A|,
|D2F | ≤ CF for CF > 0. Let 0 ≤ h < 1. Then, z ∈ C∞(hB) and there exists
a number 0 < α < 1, α = α(h, F ) and a constant C6 = C6(h, F ) such that

[Dz]Cα(hB) ≤ C6(

∫
B

|Dz|2) 1
2 .

3 ME
n as a subset of Mn

In this section we prove Theorem 1.4 for v ∈ Mn(Ω) \ME
n (Ω′). Firstly, we

reduce the situation to the case where E is connected in Proposition 3.1. The
essential point in the proof is Proposition 2.2 stating that if ϕ ∈ ME′

n thenDϕ
is Lipschitz and the Lipschitz constant depends only on E ′. Thus, there is no
loss of generality assuming E = Em.M . We treat this case in Proposition 3.2.
The essential observation for the proof of Proposition 3.2 is that if ϕ /∈
ME

n (Ω′), then there exists a ball B̃ ⊂ Ω \ Ω′ with |B̃| 1
n ≈ dist(Ω′, ∂Ω) such

that for x ∈ B̃, Dϕ(x) /∈ E. This, and that for ϕ ∈ ME
n the oscillation of

|Dϕ| is uniformly controlled, provides us a constant C = C(Ω′, E) such that

min{
∫

Ω′
dist2

MSO(n)(Dϕ),

∫
Ω′

dist2
mSO(n)(Dϕ)} ≤ C

∫
B̃

distE
2(Dϕ).

Therefore, we can conclude by means of Theorem 1.1.
If one tries to follow a similar scheme for proving an estimate up to the

boundary one faces the situation of the Example 3.3 presented at the end of
the section.
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Proposition 3.1. Let E,Ω′,Ω as in Theorem 1.4 and let {Ei}Ii=1 be the
connected components of E. Then, there exists C7 = C7(E,Ω

′,Ω) such that
for every ϕ ∈ Mn(Ω)

min
i
{
∫

Ω′
dist2

Ei
(Dϕ)} ≤ C7

∫
Ω

dist2
∪iEi

(Dϕ). (3.1)

Proof: By induction, it is enough to prove the theorem for E having two
connected components E = E1 ∪ E2. Let m1 = minE1 |A| ≤ maxE1 |A| =
m2 < minE2 |A| = M1 ≤ maxE2 |A| = M2 and ρ = M1 −m2 = dist(E1, E2)
(Here we use the invariance of E under SO(n)). We firstly observe that there
exist constants c1 = c1(E), c2 = c2(E) such that if either |A| ≥ 2M2 or
|A| ≤ 1

2m1
then

distEi
(A) ≤ c1distE(A), (3.2)

and distE(A) ≥ c2.
Let ΩE = {x ∈ Ω′ : 1

2m1
≤ |Dϕ(x)| ≤ 2M2}. Suppose that |ΩE| ≤ 1

2
|Ω|.

Then we have that 2|Ω \ ΩE| ≥ |Ω| and therefore

∫
Ω

dist2
E1

(Dϕ) ≤ c1

∫
Ω\ΩE

distE
2(Dϕ)dx+ 4M2

2 |Ω|

≤ c1

∫
Ω\ΩE

distE
2(Dϕ)dx+

8M2
2

c2
c2|Ω \ ΩE|

≤ c3

∫
Ω\ΩE

distE
2(Dϕ),

and (3.1) holds. Hence, we can assume that |ΩE| ≥ 1
2
|Ω|.

Now, if

distE1(Dϕ(x)) ≥ ρ

2
,

for every x ∈ ΩE it would follow that

distE2(Dϕ(x)) ≤ c4distE(Dϕ),

with c4 = 4
ρ
M2. Together with (3.2) we would have that

distE2(Dϕ(x)) ≤ max{c1, c4}distE(Dϕ)

for all x ∈ Ω and (3.1) would be trivial.
Since the same argument works if we exchange E1 and E2 we are left to

the case where there exist two points x1, x2 ∈ ΩE such that

distE(Dϕ(x1)) = distE1(Dϕ(x1)) ≤ ρ

2
,
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distE(Dϕ(x2)) = distE2(Dϕ(x2)) ≤ ρ

2
.

Then, since Ω is connected we can assume Ω′ to be connected. Thus, there
exists x0 ∈ Ω′ with |Dϕ(x0)| = M+m

2
and consequently distEi

(Dϕ(x0)) = ρ
2

for i = 1, 2. Since Ω′ � Ω, there is no loss of generality assuming the existence
of r1 = r1(Ω

′,Ω) such that B(x0, r1) ⊂ Ω′. Furthermore, since 2|ΩE| ≥ |Ω|
and Ω is bounded there exists r2 = r2(Ω, n) such that B(x0, r2) ⊂ ΩE .

Now it follows from Proposition 2.2 that Dϕ|B(x0,r2) is Lipschitz with
a constant L(E, r2). Thus, there is new r3 = r3(Ω,Ω

′, E) such that on
B(x0, r3), distE(Dϕ(x)) ≥ ρ

4
. But now this implies that∫

Ω

distE
2(Dϕ) =

∫
Ω\ΩE

distE
2(Dϕ) +

∫
ΩE

distE
2(Dϕ)

≥
∫

Ω\ΩE

distE
2(Dϕ) +

∫
B(x0,r3)

distE
2(Dϕ)

≥
∫

Ω\ΩE

distE
2(Dϕ)dx+ c5ρ

2rn3 ≥ c6

∫
Ω′

dist2
E1

(Dϕ),

where c6 = max{ c5ρ2rn
3

M2
2 |Ω′| , c

2
1}. The proof is concluded.

Proposition 3.2. Let Ω′,Ω and E as in Theorem 1.4. Let E ⊂ E ′. Then,
there exists a constant C8 = C8(Ω,Ω

′, E ′) such that for every ϕ ∈ ME′
n (Ω)

there exists ϕΩ′ ∈ ME
n (Ω′) satisfying∫

Ω′
|Dϕ−DϕΩ′|2 ≤ C8

∫
Ω

distE
2(Dϕ). (3.3)

Proof: By Theorem 1.1 and Proposition 3.1 it suffices to prove the thesis
for

E = Em,M

0 < m < M <∞.
Let ϕ ∈ ME′

n (Ω) and suppose that ϕ|Ω′ /∈ ME
n (Ω′). Then either

maxΩ′ |Dϕ| > M or minΩ′ |Dϕ| < m. We consider the two possibilities
separately.

Case maxΩ′ |Dϕ| > M.
Let d = dist(Ω′, ∂Ω). We will deduce (3.3) from the next two claims:
There exists c1 = c1(Ω,Ω

′, E) such that

(max
Ω′

d
2

|Dϕ| −M)2 ≤ c1

∫
Ω

distE
2(Dϕ). (3.4)
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There exists c2 = c2(Ω,Ω
′) such that if minΩ′ |Dϕ| < M we have that

(max
Ω′

d
2

|Dϕ| −M) ≥ c2(M − min
Ω′

|Dϕ|). (3.5)

Let us supposed we have proved (3.4) and (3.5) and deduce the thesis
from them. Indeed, (3.4) and (3.5) imply that if x ∈ Ω′ and |Dϕ(x)| ≤ M ,
then it holds that

dist2
MSO(n)(Dϕ(x)) ≤ c3

∫
Ω

distE
2(Dϕ),

with c3 = c1
c22

. On the other hand if |Dϕ(x)| ≥M , then dist2
MSO(n)(Dϕ(x)) =

distE
2(Dϕ(x)). Hence,

∫
Ω′

dist2
MSO(n)(Dϕ) ≤ c3

∫
Ω

distE
2(Dϕ) (3.6)

and thus (3.3) would follow from Theorem 1.1 with ϕΩ′ = Ax where A ∈
MSO(n).

To prove the claims (3.4) and (3.5) we need further notation. Since ϕ ∈
ME′

n (Ω) we have that |Dϕ(x)| = r2|x − a|−2 where r ∈ R and a ∈ R
n \ Ω.

Let x0 ∈ Ω′ be such that |Dϕ(x0)| = maxΩ′ |Dϕ| > M and let L(t) : R → R
n

be defined by L(t) = x0 + t a−x0

|a−x0| . By triangle inequality if x ∈ B(L(d
4
), d

4
)

then |Dϕ(x)| ≥ M . Thus for such an x

distE(Dϕ(x)) = |Dϕ(x)| −M = distMSO(n)(Dϕ(x)). (3.7)

Therefore we can apply Theorem 1.1 to ϕ in B(L(d
4
), d

4
). Together with

(3.7) it yields an Rϕ ∈ SO(n) such that

∫
B(L(d

4
), d

4
)

|Dϕ−MRϕ|2 ≤ c4

∫
B(L(d

4
), d

4
)

distE
2(Dϕ). (3.8)

Since ϕ ∈ Mn(Ω), ϕ ∈ Mn(B(L(d
4
, 4d

4
)). Thus, we can apply Proposi-

tion 2.2 to obtain

‖Dϕ−MRϕ‖L∞(B(L(d
4
), d

4
)) ≤

C4(4)

|B(L(d
4
), d

4
)|

∫
B(L(d

4
), d

4
)

|Dϕ−MRϕ|. (3.9)

Combining (3.8), (3.9) and triangle inequality yields

(|Dϕ(L(
d

2
))| − |MRϕ|)2 ≤ c1

∫
Ω

distE
2(Dϕ), (3.10)
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with c1 = c4C4(4)

|B(L(d
4
), d

4
)| . We have obtained the desired (3.4).

For (3.5), we observe that the function f(t) = |Dϕ(L(t))| is convex and
increasing for t < d. Let |Dϕ(x1)| = minΩ′ |Dϕ(x)|. Then |Dϕ(x1)| = f(t1)
where t1 = |x1 − a| − |a − x0|. Since f(0) > M , t1 < 0 and by triangle
inequality −t1 ≤ diam(Ω′). Now since f is convex it holds that

f(
d

2
) − f(0) ≥ d

−2t1
(f(0) − f(t1)). (3.11)

Replacing f by its values, we see that (3.11) is indeed (3.5) with c2 = d
2diam(Ω′) .

Therefore the proof is concluded in the case maxΩ′ |Dϕ| > M .
Case minΩ′ |Dϕ| < m.
By considering the inverse mapping ϕ−1 we will reduce the situation to

the case maxΩ′ |Dϕ| ≥ M . Since ϕ ∈ ME′
n (Ω) we can apply Proposition 2.1

to find a constant s = s(E ′,Ω′,Ω) such that dist(ϕ(Ω′), ∂ϕ(Ω)) ≥ s. Hence
we can argue as in the previous case with ϕ−1 in the place of ϕ and 1

m
in the

place of M . We obtain that if infΩ′ |Dϕ(x)| < m, there exists c5 = c5(E, s),
R ∈ SO(n) and B ⊂ ϕ(Ω) \ ϕ(Ω′) with |B| ≥ c6s

n such∫
ϕ(Ω′)

| 1

m
R −Dϕ−1|2 ≤ c5

∫
B

dist2
1
m
SO(n)(Dϕ

−1) (3.12)

and for all x ∈ B |Dϕ−1(x)| ≥ 1
m

. Now recall that if ϕ ∈ ME′
n (Ω) mn ≤

Jϕ ≤ Mn and that for ρ ∈ R distρSO(n)(Dϕ(x)) = |ρ − |Dϕ(x)||. Therefore
we can change variables in 3.12 to obtain that∫

Ω′
|mR−1 −Dϕ|2 ≤ c7

∫
ϕ−1(B)

dist2
mSO(n)(Dϕ) (3.13)

with c7 = c7(E,E
′,Ω′,Ω). We also used that |A − B| = |A||B||A−1 − B−1|.

Finally for x ∈ ϕ−1(B) |Dϕ(x)| < m and hence dist2
mSO(n)(Dϕ(x)) =

distE
2(Dϕ(x)). Thus, the desired estimate∫

Ω′
|mR−1 −Dϕ|2 ≤ c7

∫
ϕ−1(B)

dist2
E(Dϕ) (3.14)

follows and the proof is concluded.

In the following example E = Em,M .

Example 3.3. There exists a sequence ϕj ∈ Mn(B1) such that

lim
j→∞

infψ∈ME
n (B1)

∫
B1

|Dϕj −Dψ|2∫
B1

distE
2(Dϕj)

= ∞.

12



Proof:
Let ϕ = r x−λe1

|x−λe1|2 with λ and r chosen so that |Dϕ(e1)| = M and

|Dϕ(−e1)| = m where e1 = (1, 0..., 0). Let us consider the sequence

ϕj = r
x−(λ− 1

j
)e1

|x−(λ− 1
j
)e1|2 and set tj = |Dϕj(e1)| − M . On one hand, we have

that ∫
B1

distE
2(Dϕj) ≤ t2j |{x ∈ B1 : distE

2(Dϕj) > 0}|
= t2j |{x ∈ B1 : |Dϕj| ≥ M}|.

(3.15)

On the other hand, let ψ ∈ ME
n (B1) and ϕj defined as above with 1

j
≤

λ−1
2

. Then ϕj and ψ ∈ Mn(hB) for some h > 1, h not depending of j. Thus,
Proposition 2.2 yields a constant c1 = C4(h) such that

t2j = (|Dϕj(e1)| −M)2 ≤ |Dϕj(e1) −Dψ(e1)|2

≤ c1

∫
B1

|Dϕj −Dψ|2. (3.16)

If we put (3.15) and (3.16) together, we obtain that

infψ∈ME
n (B1)

∫
B1

|Dϕj −Dψ|2∫
B1

distE
2(Dϕj)

≥ c1
|x ∈ B1 : |Dϕj| ≥M | ,

which proves the claim.

4 Proof of Theorem 1.4 in a ball

The starting point for the proof of Theorem 1.1 in [7] is that thanks to the
structure of the set SO(n) it suffices to prove Theorem 1.1 for mappings
whose components are uniformly Lipschitz harmonic functions. We start
along the same lines than in [7] since E enjoys a nice structure as well.

4.1 Reduction to Lipschitz mappings

Proposition 4.1. Let E ⊂ Em,M . There exists constants C9 = C9(n),
C10 = C10(M) such that if v ∈W 1,2(B) there exists vM ∈W 1,∞(Ω) such that

• ‖DvM‖L∞(B) ≤ C9M and

• ∫
B
|Dv −DvM |2 ≤ C10

∫
B

distE
2(Dv).
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Proof: The appendix A.1 in [7] yields vM satisfying

• ‖DvM‖L∞(B) ≤ c1M

• ∫
B
|Dv −DvM |2 ≤ c2

∫
{x∈B:|Dv|≥2M} |Dv|2.

Since if |A| ≥ 2M , |A| ≤ 2distE(A) we are done.

4.2 Reduction to an F-harmonic mapping

As SO(n) is related to harmonic functions so is CO+(n) to n-harmonic func-
tions. However since the n-harmonic equation is degenerate the arguments
below yield a wrong exponent in (4.6). Instead we take advantage of E being
a compact subset of CO+(n) bounded away from 0. Then we can modify | · |n
near 0 and ∞ to relate E to minimizers of a variational problem

∫
Ω
F (Dv),

where F has the appropriate growth.
Throughout the section the n-tuple of n-vectors (A1, A2, . . . , An) stands

for the matrix with rows (A1, A2, . . . , An) and (Cof(A))ij = ∂ij det(A).

Lemma 4.2. There exists a function ψ : R → R such that the function
F (A) : R

n → R defined by F (A) = ψ(|A|) satisfies DF (A) ≤ CF (1 + |A|)
and 1

CF
≤ D2F (A) ≤ CF with CF = CF (E). Moreover, for every A ∈ E

it holds that (DF (A1), DF (Ai), DF (An)) = Cof(A). Equivalently Cof(A) =
DF̃ where F̃ (A) =

∑n
i=1 F (Ai).

Proof: Let F (A) = ψ(|A|). Then a direct calculation gives that

DF (A) = ψ′(|A|) A|A| , D2F (A) =ψ
′′
(|A|)( A|A| ⊗

A

|A|)

+
ψ′(|A|)
|A| (I − A

|A| ⊗
A

|A|).
(4.1)

If we put

ψ1(x) = n(n− 1)(

∫ x

0

∫ y

0

zn−2χ(0,M)(z) + (1 − χ(0,M)(z))M
n−2dzdy),

ψ1(x) = xnχ0,M + ((1 − χ(0,M)(x))ax
2 + bx + c with a, b ≥ 0 and it satisfies

the claims of the Lemma 4.2 except in a neighborhood of the origin. Then
we consider ψ2(x) = max{(m1

2
)n−2x2, ψ1(x)}. This new function satisfies the

claims but it is not smooth. We repair this by replacing ψ2 by a smooth
approximation of it in a neighborhood of m1

2
. Let r and ε be small numbers,
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and ϕ ∈ C∞
0 (m1

2
− 2r, m1

2
+ 2r) ϕ = 1 on (m1

2
− r, m1

2
+ r) and let ρε be an

approximation of the identity. Then setting

ψε,r = ϕ(ρε ∗ ψ2) + (1 − ϕ)ψ2

for ε and r small enough it is not hard to check that F (A) = ψε,r(|A|) satisfies
all the conditions concerning regularity in the stament of the lemma.

Finally, if A = (A1, A2, ..., An) ∈ CO+(n), det(A) = |A|n = |Ai|n
where |Ai| is the Euclidean norm of the vector Ai. Thus, if A ∈
E we have that F̃ (A) = n det(A) for A ∈ E and that DF̃ (A) =
(DF (A1), DF (Ai), DF (An)) = Cof(A) as claimed.

Set h(A) = DF̃ (A) − Cof(A).

Lemma 4.3. Let v ∈W 1,2(B,Rn). Then

v = w + z,

where z is an F-harmonic mapping in B and w ∈W 1,2
0 (B,Rn) is such that

∫
B

|Dw|2 ≤ CF

∫
B

|h(Dv)|2.

Proof: To obtain the decomposition we solve the following system

{
Div(DF̃ (Dz)) = 0 in B
z = v on ∂B.

(4.2)

Here the operator Div means taking the divergence of the rows of matrix.
Observe that by the definition of F̃ the system decouples so that in fact we
are solving n scalar equations. In the case DF̃ (A) = A, (4.2) is equivalent
to Div(Dw) = Div(h(Dv)) for w = v − z. In this nonlinear situation (4.2)
means that {

Div(A(x,Dw)) = −Div(h(Dv)) in B
w = 0 on ∂B,

(4.3)

where A(x, ξ) = DF̃ (Dv(x)− ξ)−DF̃ (Dv(x)) is an A-harmonic type of op-
erator. From the uniform convexity of F , and the subsequent strong mono-
tonicity of DF it follows that

∫
B

|Dw|2 ≤ CF

∫
B

〈DF̃ (Dv −Dw) −DF̃ (Dv), Dw〉. (4.4)
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Plugging (4.3) into (4.4) and using Hölder’s inequality we obtain

∫
B

|Dw|2 ≤ CF

∫
B

|h(Dv)|2, (4.5)

as desired.

Remark 4.4. Let v be CM-Lipschitz. Since h is uniformly Lipschitz in
B(0, 2M), we have that |h(Dv)| ≤ c1distE(Dv) and therefore Lemma 4.3
reads as ∫

B

|Dw|2 ≤ C11

∫
B

|distE(Dv)|2. (4.6)

In addition, ∫
B

|Dz|2 ≤
∫
B

|Dv|2 + |distE(Dv)|2.

Now if v is C9M-Lipschitz distE(Dv) ≤ c2(M +m) and thus

∫
B

|Dz|2 ≤ C12,

with C11 = C11(M), C12 = C12(M).

4.3 Compactness

In the case of SO(n) it is proved in [7] the existence of a constant C such
that for any harmonic function z, there is R ∈ SO(n) such that

‖R−Dz‖L∞(hB) ≤ C(

∫
B

dist2
SO(n)(Dz))

1
4 , (4.7)

for h < 1. In our setting, we do not know how to obtain this type of
explicit estimate. However, the regularity of F -harmonic functions allows
to use a compactness argument to prove an expression like (4.7), where

(
∫
B

dist2
SO(n)(Dz))

1
4 is replaced by ρ1(

∫
B

distE
2(Dz)). Here, ρ1(ε) is an un-

known increasing function that at least converges to 0 as ε goes to 0.

Lemma 4.5. Let h < 1 and B1 the unit ball. There exists a function ρ1(ε)
with limε→0 ρ1(ε) = 0 such that for every F-harmonic mapping z there exists,
ϕ ∈ ME

n (B1) satisfying

‖Dϕ−Dz‖L∞(hB1) ≤ ρ1(

∫
B1

distE
2(Dz)). (4.8)
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Proof: Let

δ(z) = inf
ϕ∈ME

n (B1)
‖Dϕ−Dz‖L∞(hB1), and

ρ1(ε) = sup{δ(z) : z F-harmonic ,

∫
B1

dist2
E(Dz) ≤ ε}.

Clearly ρ1 is a positive bounded decreasing function whence
limε→0 ρ1(ε) = η exists. Let us argue by contradiction by assuming that
η > 0. This means that there exists a sequence of F-harmonic mappings
{zj} such that δ(zj) ≥ η

2
. But

∫
B1

distE
2(Dzj) ≤ 1

j
, (4.9)

i.e limj→0

∫
B1

distE
2(Dzj) = 0. Since E is a compact set it follows that∫

B1
|Dzj|2 ≤ c1, c1 = c1(E). Therefore there is no loss of generality assuming

that Dzj → Dϕ weakly in L2(B1) for some ϕ ∈ W 1,2(Ω). Furthermore, by
Proposition 2.5 and Ascoli-Arzela theorem Dzj converge to Dϕ uniformly on
compact subsets of B1. This together with (4.9) this yields that Dϕ ∈ E
a.e.x. Given that E is bounded, Dϕ ∈ W 1,∞(B1) and therefore, by Theo-
rem 1.3, ϕ ∈ ME

n (B1). Finally, Dzj → Dϕ uniformly in hB1, which contra-
dicts that η > 0 and proves the claim.

4.4 Linearization and Local estimate

We start this section by recalling how the geometry of CO+(n) and of Mn

are related (a detailed account of this is given in [20]). We denote the tangent
plane to CO+(n) at the identity matrix by TCO+(n). It can be seen that

A ∈ TCO+(n) ⇐⇒ A+ At

2
=

1

n
Tr(A)I.

Thus,

Θ(A) = |A+ At

2
− 1

n
Tr(A)I|

is equal to the distance from A to TCO+(n). It follows from the definition of
Θ that the set of functions {u : Du ∈ TCO+(n)} is a finite dimensional vector

space of dimension d = (n+2)(n+1)
2

. We denote it by Σn. Now recall that Mn

is a Lie group isomorphic to the classical group of matrices SOo(n + 2, 1).
Alternatively one can arrive to Σn as the Lie Algebra of Mn isomorphic to

17



so(n + 2, 1). Let {ui}di=1 be a basis of Σn. Then we consider the projection
ΠΣn,B1 : W 1,p(B1) → Σn defined by

f →
d∑
i=1

ui
1

|B1|
∫
B1

〈f, ui〉. (4.10)

We will need the following Korn type of inequality first proved by Reshet-
nyak [19]. We refer to [20] for an extended discussion about this type of linear
operators.

Theorem 4.6 ([20, Chapter 3, Theorem 3.2]). Let 1 < p < ∞.
Then There exists a constant C13 = C13(p) such that for every function
g ∈W 1,p(B,Rn) we have that

‖D(g) −DΠΣn(g)‖Lp(B) ≤ C13‖Θ(D(g))‖Lp(B).

The following proposition and corollary originate from Reshetnyak’s
study of the stability of the Möbius group in terms of quasiconformality
when the distortion is closed to 1 [20]. It is based on the following consider-
ation: If a mapping g happens to satisfy that ΠΣn(g) = 0, then Theorem 4.6
implies that ‖D(g)‖Lp(B) ≤ ‖Θ(D(g))‖Lp(B). We would like to apply this
argument to the mapping f − x. Of course, ΠΣn(f − x), does not need to be
0. In Proposition 4.7 we use an homotopy argument to prove that if f − x
is small, we can find a desired ϕ so that ΠΣn(f ◦ ϕ − x) = 0. Let us re-
mark that for this it is not needed to control Df − I . However to replace
distTCO+(n)(A− I) by distCO+(n)(A), it is needed that DA− I is small, and
hence we need to have control over D(f ◦ ϕ) − I. It turns out that this is
rather complex in the quasiconformal setting [20] but it is much simpler in
our situation. This is due to the fact that the modulus of continuity of Df
can be assumed to be bounded independently of f .

In the Corollary 4.8 we use the Taylor expansion of dist2
CO+(n) to express

the local estimate in the form needed for the next section.

Proposition 4.7. Let 0 ≤ h ≤ 1, γ1, γ2 positive constants, B = B(a, r) an
arbitrary ball and f ∈ C1,α((1 + h)B) such that

[Df ]Cα((1+h)B) ≤ γ1r
−α.

Then there exists a positive number δ1(h, γ2), a non increasing function
ρ2(ε) with limε→0 ρ2(ε) = 0 and a constant C14 such that, if

‖Df − I‖L∞((1+h)B) ≤ ε ≤ δ1

then, there exists ϕ ∈ Mn(2B) satisfying the next three properties:
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1. ‖D(f ◦ ϕ− x)‖L2(B) ≤ C14‖Θ(D(f ◦ ϕ− x))‖L2(B),

2. ‖D(f ◦ ϕ− x)‖L∞(B) ≤ ρ2(ε) and

3. ‖ϕ− x‖W 1,∞(2B) ≤ rγ2.

The function ρ2 depends on the modulus of continuity of Df and C14 =
C13(2), where C13 was introduced in Theorem 4.6.

Proof:
Since both the assumptions and the claim depend on Df , there is no loss

of generality assuming that f(0) = 0. We can also assume that B = B1. The
case of an arbitrary ball follows by composing with similarities.

For every continuous mapping we define Λf : Σn → Σn by u → ΠΣn(f ◦
ϕu − x) where ΠΣn = ΠΣn,B1 is the projection from W 1,p(B1,R

n) → Σn

defined in (4.10) and ϕu = exp(u). Here exp is the exponential mapping from
Σn to Mn (Observe that using the isomorphism between Mn and SOo(n +
2, 1) it is not hard to obtain an explicit expression of exp. Denoting by F
the isomorphism between Mn and SOo(n+2, 1), exp(u) = F−1(exp(dF (u)),
where exp is the matrix exponential in Mn+2×n+2). The following properties
of the exponential will be useful:

a) Let us declare M(s) = max{‖ϕu(x) − x‖W 1,∞(2B) : u ∈ B(0, s) ⊂ Σn}.
Then, since all the topologies in Mn are the same,

lim
s→0

M(s) = 0. (4.11)

b) Let us state Λ = ΛI . One of the properties defining the exponential
mapping is that d

dt
ϕtu(x)|0 = u(x). It is easy to see that this implies

that for any
h ∈ Σn, Λ′(0)h = h.

Hence, the inverse function theorem tells us that there exists s0 > 0
such that Λ maps B(0, s0) homeomorphically into Σn. In particular,
degΛ(0, B(0, s0)), the topological degree of Λ at zero in B(0, s0), is 1.

Due to (4.11) we can assume without loss of generality that

M(s0) ≤ γ2. (4.12)

Let s ≤ s0, then we have that

|Λf(u) − Λ(u)||B(0,s) =|ΠΣn(f ◦ ϕu − ϕu)|
≤‖ΠΣn‖‖ϕu|Df − I|‖L∞((1+h)B) ≤ c1ε,

(4.13)
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where ‖‖ stands for the operator norm of ΠΣn and

c1 = ‖ΠΣn‖ max
x∈B,u∈B(0,s0)

|ϕu(x)|. (4.14)

By (4.12) we have that c1 ≤ ‖ΠΣn‖(1 +M(s0)) ≤ ‖ΠΣn‖(1 + γ2).
Let us declare

m(s) = min
∂B(0,s)

|Λ(u)|.

Since Λ is an homeomorphism inB(0, s0) and Λ(0) = 0 we have that 0 < m(s)
for every r < s0. Moreover, since ϕu → x uniformly

lim
s→0

m(s) = 0. (4.15)

Then we define sε by

sε = inf{s : m(s) ≥ c1ε+ ε}.
where c1 is defined in (4.14). Then, (4.15) implies that

lim
ε→0

sε → 0. (4.16)

Now, the definition of sε and (4.13) yield that if sε ≤ s0, then

tΛ + (1 − t)Λf(u) �= 0 for u ∈ ∂B(0, sε). (4.17)

Thus, deg(0, B(0, sε)) remains constant through the homotopy (This is stan-
dard see [10] chapter 14 or [14]).

Let us declare δ1 = m(s0)
c1+1

. If ε < δ1, then sε < s0 and thus,
degΛf

(0, B(0, sε)) = degΛ(0, B(0, sε)) = 1. Therefore, there exists u ∈
B(0, sε) such that Λf(u) = 0. When we apply Theorem 4.6 to f ◦ϕu−x, (1)
follows.

To prove (2) we observe that

|D(f ◦ ϕu(x)) − I| ≤ |Df(x) − I| + |Df(x)||Dϕu(x) − I|
+ |Dϕu(x)||Df(ϕu(x)) −Df(x)|.

By definition we have that |Df(x) − I| ≤ ε, that |Dϕu(x) − I| ≤ M(sε)
and that |ϕu(x) − x| ≤M(sε). Hence, using the Hölder regularity of Df we
obtain that

|D(f ◦ ϕu(x) − x)| ≤ ε+ (1 + ε)M(sε) + γ1((1 +M(sε))M(sε)
α) = ρ2(ε).

Finally, (4.16) and (4.11) imply that limε→0 ρ2(ε) = 0 as desired. The propo-
sition is proved since M(s0) ≤ γ2 by (4.12), which yields (3).
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Corollary 4.8 (Local estimate). Let 0 < h ≤ 1, γ1, γ2 > 0 and B(a, r) a
ball. Then there exists δ2 = δ2(h, γ1, γ2, α) and C15 such that if f satisfies

1. [Df ]Cα((1+h)B) ≤ γ1r
−α and

2. ‖Df − I‖L∞((1+h)B) ≤ δ,

then there exists ϕ ∈ Mn(2B) with ‖ϕ(x) − x‖W 1,∞(2B) ≤ rγ2 and

∫
B

|D(f ◦ ϕ) − I|2 ≤ C15

∫
B

dist2CO+(n)(D(f ◦ ϕ)).

Proof:
The corollary is proved by plugging the results from the previous propo-

sition into the Taylor expansion of distCO+(n). By Taylor we have that

|dist2
CO+(n)(A)| = c1|Θ(A− I)|2 +O(|A− I|4).

Therefore,
|Θ(A− I)|2 ≤ c2|dist2

CO+(n)(A)| +O(|A− I|4). (4.18)

We first require that δ2 ≤ δ1 to apply Proposition 4.7 to the mapping f
and find the desired ϕ. Using Proposition 4.7 (1), putting A = D(f ◦ ϕ) in
(4.18), and rearranging the resulting expression yield

∫
B

|D(f ◦ ϕ) − I|2 ≤ c3

∫
B

dist2
CO+(n)(D(f ◦ ϕ))

+ c4

∫
B

|D(f ◦ ϕ) − I|4.
(4.19)

We finally impose that δ also satisfies c4ρ
4
2(δ) ≤ 1

2
ρ2

2(δ). Then Proposition 4.7
(2) implies that c4|D(f ◦ ϕ) − I|4 ≤ 1

2
|D(z ◦ ϕ) − I|2. Hence, we can absorb

c4
∫
B
|D(f ◦ ϕ) − I|4 to the left hand side to conclude that

∫
B

|D(f ◦ ϕ− I)|2 ≤ c5

∫
B

dist2
CO+(n)(D(f ◦ ϕ)), (4.20)

as desired.

4.5 Theorem 1.4 in a Ball

In this section we put all the information obtained before together to obtain
the Theorem 1.4 in a ball. We state it as a separate proposition for later
uses.
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Proposition 4.9. Let E ⊂ CO+(n) be compact, finitely connected with

SO(n)E = E,

and 0 /∈ E. Let B a ball. Then there exists a constant C16 = C16(E) such
that for any v ∈W 1,2(4B,Rn) there exists ϕ ∈ ME

n (B,Rn) such that

∫
B

|Dϕ−Dv|2 ≤ C16

∫
4B

distE
2(Dv). (4.21)

The sketch of the proof is the following: Let

ε =

∫
4B

distE
2(Dv).

Using Subsections 4.1,4.2 one finds that it is enough to prove the proposition
for z an F -harmonic mapping such that Dz is uniformly Hölder in B′ ⊂ 4B.
Next section 4.3 yields ϕ1 ∈ ME

n (4B) such that

‖Dϕ1 −Dz‖L∞(B′) ≤ ρ1(ε).

Then, changing variables with ϕ1 we discover that the mapping f = z ◦ ϕ−1
1

fulfills the condition required in Corollary 4.8, the local estimate, in a ball
B′′ ⊂ ϕ1(B

′). Therefore Corollary 4.8 yields ϕ2 such that

∫
B′′′

|D(z ◦ ϕ−1
1 ◦ ϕ2) − I|2 ≤

C

∫
B′′′

dist2
CO+(n)(Dz ◦ ϕ−1

1 ◦ ϕ2).

(4.22)

where B′′′ ⊂ B′′. Setting ϕ3 = ϕ−1
2 ◦ ϕ1, we can change variables by ϕ3

finding that ∫
2B

|Dz −Dϕ3|2 ≤ C

∫
4B

dist2
CO+(n)(Dz). (4.23)

where 2B ⊂ ϕ−1
3 (B′′′). The existence of the balls B′, B′′, B′′′ fulfilling the

properties used above is essentially a consequence of the Lemma 2.1.
Finally, since ϕ3 might be in Mn(2B) \ ME

n (B) we use Proposition 3.2
to find ϕ4 ∈ ME

n (B) such that

∫
B

|Dϕ3 −Dϕ4|2 ≤ C

∫
4B

dist2
CO+(n)(Dϕ3).

From here, the proof is concluded by reiterative use of triangle inequality.
We now give the detailed argument.

22



Proof of Proposition 4.9 By a change of variables with a similarity it is
enough to prove the estimate in B1 ⊂ 4B1. We start by using the Lemma 2.1
to select the appropriate balls. Let 0 < h0, h1, h2 < 1 be such for any
ϕ ∈ ME

n (4B) the following inclusions hold:

ϕ(2B) ⊂ h0ϕ(4B), (h0 + 3h1)ϕ(4B) ⊂ ϕ(4B) and

(h0 + 2h1)ϕ(4B) ⊂ ϕ(h24B).
(4.24)

Next, we reduce to a smooth mapping. Firstly we apply Proposition 4.1
to v in 4B to obtain a C9M Lipschitz mapping vM . We prove Proposition 4.9
for vM . By the Lipschitz bound we have that

∫
B

|DvM −m|2 ≤ c1,

c1 = c1(E). Hence we can assume that

∫
4B

distE(DvM)2 ≤ ε0, (4.25)

for 0 < ε0 to be determined later. For mappings vM such that 4.25 does not
hold, 4.21 is fulfilled with ϕ(x) = mx and C16 = 1

ε0
c1.

Let z be the F-harmonic mapping obtained by applying Lemma 4.3 to
vM in 4B. Since

∫
4B

|Dz|2 ≤ C12 by Remark 4.4, Proposition 2.5 yields that
for any h < 1

[Dz]Cα(h4B) ≤ c2, (4.26)

with c2 = c2(C6, C12, h). Furthermore, the inequality distE
2(M1) ≤

c3(distE
2(M1 +M2) + |M2|2), (4.6) and (4.25) imply that

∫
4B

distE
2(Dz) ≤ c4ε0.

Next, we apply Lemma 4.5 to find the existence of ϕ1 ∈ ME
n (4B) such

that
‖Dz −Dϕ1‖L∞(h24B) ≤ ρ1(ε), (4.27)

where ε =
∫

4B
distE

2(Dz).
We want to translate these estimates to the domain ϕ1(4B). It follows

from Lemma 2.1 that
c5 < |ϕ1(4B)| ≤ c6, (4.28)

c5 = c5(E), c6 = c6(E). Define r1 > 0 by,

|B(0, 1)|rn1 = c6 (4.29)
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to guarantee that diam(ϕ1(4B)) ≤ 2r1.
Using that ϕ ∈ ME

n (4B) we deduce

‖D(z ◦ ϕ−1
1 ) − I‖L∞(ϕ1(h24B))

≤ ‖Dϕ−1
1 ‖L∞((ϕ1(h24B))‖Dz −Dϕ1‖L∞(h24B)

≤ 1

m
ρ1(ε).

(4.30)

In addition, by (4.26) we have

[D(z) ◦ ϕ−1
1 ]Cα(ϕ1(h24B)) ≤ ‖Dϕ−1

1 ‖L∞((ϕ1(h24B))[Dz]Cα(h24B)

≤ c7
m
,

with c7 = c7(h2,M). Furthermore, by Lemma 2.1, Proposition 2.2 and (4.28),
Dϕ−1

1 is uniformly continuous in ϕ1(h24B). Hence, there exists c8 = c8(h2, E)
such that

[D(z ◦ ϕ−1
1 )]Cα(ϕ1(h24B))) ≤ c8 ≤ c9r

−α
1 (4.31)

by 4.29.
Since by (4.24) (h0 +2h1)ϕ1(4B) ⊂ ϕ1(h24B)), we intend to apply Corol-

lary 4.8 with B = (h0 + h1)ϕ1(4B), f = z ◦ ϕ1, h = h1 γ1 = c9 and
γ2 = h1

r1
. Now, by (4.25) we can impose for ε0 that ρ1(ε0) ≤ mδ(E, h1).

Thus, (4.30) and (4.31) imply that all the requirements of Corollary 4.8 are
fulfilled. Hence, we are provided with ϕ2 ∈ Mn such that∫

(h0+h1)ϕ1(4B)

|D(z ◦ ϕ−1
1 ◦ ϕ2) − I|2

≤ c10

∫
(h0+h1)ϕ1(4B)

dist2
CO+(n)(Dz ◦ ϕ−1

1 ◦ ϕ2).

(4.32)

with c10 = C15. Let ϕ3 = ϕ−1
2 ◦ ϕ1. By Proposition 4.7 (3) and our choice of

γ2 we have
‖ϕ2 − x‖W 1,∞((h0+h1)ϕ1(4B)) ≤ h1. (4.33)

In addition, ϕ1 ∈ ME
n (h24B). It follows that ϕ−1

3 = ϕ−1
1 ◦ ϕ2 ∈ ME′

n ((h0 +
h1)ϕ(4B)) for some E ′ = E ′(E). Therefore, there exist constants c11 =
c11(E), c12 = c12(E) such that

c11Jϕ−1
3

(x) = c11|Dϕ−1
3 (x)|n ≤ |Dϕ−1

3 (x)|2 ≤ c12|Dϕ−1
3 (x)|n = c12Jϕ−1

3
(x).

Hence if we change variables in (4.32) by ϕ−1
3 we obtain∫

ϕ−1
3 ((h0+h1)ϕ1(4B))

|Dz −Dϕ3|2 ≤ c13

∫
ϕ−1

3 ((h0+h1)ϕ1(4B))

dist2
CO+(n)(Dz)

24



where c13 = c(c11, c12). Now we investigate what is ϕ−1
3 ((h0 + h1)ϕ1(4B)).

By (4.33) we have that that

h0ϕ1(4B) ⊂ ϕ2((h0 + h1)ϕ1(4B)) ⊂ (h0 + 2h1)ϕ1(4B).

On the other hand, ϕ1 ∈ ME
n (4B) so (4.24) implies that

2B ⊂ ϕ−1
1 (h0ϕ1(4B)) ⊂ ϕ−1

3 ((h0 + h1)ϕ(4B)) ⊂ 4B.

Thus, ∫
2B

|Dz −Dϕ3|2 ≤ c13

∫
4B

dist2
CO+(n)(D(z)) (4.34)

as desired.
The last obstruction is that ϕ3 = ϕ−1

2 ◦ ϕ1 is not necessarily in ME
n (2B)

due to ϕ−1
2 . However (4.33) implies that ϕ3 ∈ ME′

n (2B) for E ′ depending on
E. Since distE

2(Dϕ3) ≤ distE
2(Dz) + |Dz−Dϕ3|2 we can apply Lemma 3.2

to find ϕ ∈ ME
n (B) such that

∫
B

|Dϕ−Dz|2 ≤
∫
B

|Dϕ−Dϕ3|2 + |Dz −Dϕ3|2)

≤ c14

∫
4B

distE
2(Dz),

(4.35)

where c14 = 2c13 + C8.
Lastly, we translate the estimate from z to v.∫

B

|Dv −Dϕ4|2 ≤C
∫
B

|Dv −DvM |2.

+

∫
B

|DvM −Dz|2 +

∫
B

|Dz −Dϕ4|2,
(4.36)

Therefore, using again that distE
2(A) ≤ distE

2(B)+|A−B|2 for A,B ∈Mn×n

together with Proposition 4.1, Remark 4.4 and the estimate (4.35) we can
conclude that ∫

B

|Dv −Dϕ4|2 ≤ c15

∫
4B

distE
2(Dv), (4.37)

where c15 = c15(C10, CF , c14).

5 Proof of Theorem 1.4

The arguments in Section 4 can be modified to be applied to a compact
set Ω′ instead of a ball, but several technical problems arise. Therefore, we
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have preferred to keep Section 4 simple and prove Theorem 1.4 for a generic
compact set by a covering argument. The idea is as follows: We can suppose
that the compact set Ω′ is a finite union of overlapping balls {Bi}. Therefore
we can apply Proposition 4.9 to each Bi. This yields a family of Möbius
transforms {ϕi} such that Dϕi is closed to Dv in Bi. This implies that if
we take two balls Bi, Bj Dϕi is close to Dϕj in Bi ∩ Bj . The fundamental
property of Möbius mappings used here is Lemma 2.3. Lemma 2.3 says that
if we choose the parameters correctly, Dϕj is close to Dϕi not only in Bi∩Bj

but in the whole of Ω′. Therefore if we choose a ball B0, Dϕ0 is close to Dϕi
for any Bi such that Bi intersects B0. Moreover, given an arbitrary ball B′

we can link it with B0 by a finite chain of pairwise intersecting balls. It is
not hard to see that it follows that the Möbius map ϕ′ corresponding to B′ is
close to ϕ0 in Ω′ as well. Therefore all the ϕi are close to each other in Ω′ and
hence any of them is close to v in the whole Ω′. The following proposition
shows that this can be made rigorous.

Proposition 5.1. Let Ω′ � Ω ⊂ R
n with Ω connected. Then there exists

a constant C17 = C17(E,Ω
′,Ω) and E ′ ⊂ CO+(n), E ′ depending on Ω′ and

E,such that for any v ∈W 1,2(Ω,Rn) there exists ϕ ∈ ME′
n (Ω) such that∫

Ω′
|Dϕ−Dv|2 ≤ C17

∫
Ω

distE
2(Dv). (5.1)

Proof:
Firstly, we observe that it is enough to prove the estimate assuming that∫

Ω

distE
2(Dv) ≤ ε0 (5.2)

as in the proof of Proposition 4.9.
Let r = dist(Ω′,Ω). Since Ω′ is compact there exists a family of balls

{B(xi,
r
16

)}ni=1 such that Ω′ ⊂ ∪ni=1B(xi,
r
16

) with n = n(Ω′). Since Ω′ can be
assumed to be connected for each xi there exist x′i, yi such that B(yi,

r
16

) ⊂
B(xi,

r
8
) ∩ B(x′i,

r
8
). We set Bi = B(xi,

r
8
). Then Ω′ ⊂ ∪ni=1B

i and 8Bi ⊂ Ω.
In addition given any two balls B0, B′ ∈ {Bi}ni=1 there exist two chains
of balls {Bj}mj=1 ⊂ {Bi}ni=1 and, {Pj}mj=1 such that B1 = B0, Bm = B′,
2Pj ⊂ 2Bj ∩ 2Bj+1 and |Pj| ≥ crn.

We apply Proposition 4.21 to 2B0 to find the existence of ϕ0 ∈ ME
n (2B0)

such that ∫
2B0

|Dv −Dϕ0|2 ≤ c1

∫
8B0

distE
2(Dv),

c1 = C16. We plan to show that ϕ0 ∈ ME
n (Ω′) and that∫

B′
|Dv −Dϕ0|2 ≤ c2

∫
Ω

distE
2(Dv). (5.3)

26



Clearly, the thesis follows from (5.3) since B′ ∈ {Bi}ni=1 was arbitrary.
Application of Proposition 4.21 in each of the balls 2Bj , yields ϕj ∈

ME
n (Bj) such that

∫
2Bj

|Dv −Dϕj|2 ≤
∫

Ω

distE
2(Dv). (5.4)

Then it is easy to see that proving (5.3) is equivalent to proving that

∫
B′
|Dϕj −Dϕj−1|2 ≤ c1

∫
Ω

distE
2(Dv), (5.5)

for every j = 1...m.
Set θj = ϕ−1

j−1 ◦ ϕj. Then (5.4) and Proposition 2.2 imply that for x ∈ Pj

max
Ω′

{|Dθj(x) − I|, |Dθ−1
j (x) − I|} ≤ c3|Dϕj −Dϕj−1|2

≤ c4

∫
Ω

distE
2(Dv)

(5.6)

where in the first inequality we have used that ϕj , ϕj−1 ∈ ME
n (Pj).

Let h = h(Ω′,Ω) be such that for every B, B̃ ∈ {Bi}ni=1 2B ⊂ hB̃. Let
α(h) be given by Lemma 2.3. Then we firstly imposed that ε0c4 ≤ α(h).
Thus, by (5.6) and Lemma 2.3 we have that for x ∈ B′

|Dθj(x) − I|2 ≤ c5

∫
Ω

distE
2(Dv), x ∈ B′, (5.7)

where c5 = C5c4, C5 being defined in Lemma 2.3. To estimate |Dϕj−Dϕj−1|
by c6|Dθj(x) − I| with c6 = c6(E) it is enough that ϕj, ϕj−1 ∈ ME′

n (Ω′)
for a set E ′ depending only on E. To achieve this we further require that
ε0C5 ≤ 1

diam(Ω)2n
, This yields,

max{|ϕ−1
j−1 ◦ ϕj(x) − x|, |ϕ−1

j ◦ ϕj−1(x) − x|} < 1

4n
.

Therefore, ϕj((
3
2
− 1

4n
)B′)) ⊂ ϕj−1(

3
2
B′) ⊂ ϕj((

3
2

+ 1
4n

)B′)). Thus, for
every j ϕm(5

4
B′) ⊂ ϕj(

3
2
(B′)) ⊂ ϕm(2B′). In particular this means that ϕi

are finite in (3
2
B′). Proposition 2.2 implies that for all x in B′

|Dϕj(x)| ≤ c6
|B′|

∫
B′
|Dϕ| ≤ c6(

|ϕj(B′)|
|B′| )

1
n

≤ c6(
|ϕm(2B′)|

|B′| )
1
n ≤ c7.
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where c6 = C4, C4 being from Proposition 2.2 and c7 = 2Mc6. We use
here that ϕm ∈ ME

n (2B′). We can argue similarly for ϕ−1
j obtaining that

ϕj ∈ ME′
n (B′) as desired. Then, (5.3) follows from (5.7). The Proposition is

proved.

Finally, Theorem 1.4 (i) is proved by Proposition 5.1 and Proposition 3.2.
(ii) is proved combining Example 3.3 and Theorem 1.1.

Acknowledgments

We thank Stefan Müller for bringing the problem to our attention and
for many interesting discussions and suggestions. This work was partially
supported by was partially supported by the EU Research Training Net-
works HYperbolic and Kinetic Equations, contract HPRN-CT-2002-00282
and Phase Transitions in crystalline solids, contract FMRX-CT 98-0229.
Part of this research took place while D.F was visiting Wuhan Institute of
Physics and Mathematics, the Chinese Academy of Sciences in April, 2003.
He would like to thank the institute for the hospitality.

References

[1] Beardon, A. F. The geometry of discrete groups. Corrected reprint of
the 1983 original. Graduate Texts in Mathematics, 91. Springer-Verlag,
New York, (1995).

[2] Chaudhuri, N; Müller, S. Rigidity estimate for two incompatible wells.
Calc. Var. Partial Differential Equations 19 (2004), no. 4, 379–390.

[3] De Giorgi, E. Sulla differenziabilité e l’analiticité delle estremali degli
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