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FROM SIGNAL TRANSDUCTION TO SPATIAL PATTERN FORMATION IN E. COLI:
A PARADIGM FOR MULTI-SCALE MODELING IN BIOLOGY

RADEK ERBAN∗ AND HANS G. OTHMER†

Abstract The collective behavior of bacterial populations provides an example of how cell-level decision-making
translates into population-level behavior, and illustrates clearly the difficult multi-scale mathematical problem of
incorporating individual-level behavior into population-level models. Here we focus on the flagellated bacterium
E. coli, for which a great deal is known about signal detection, transduction and cell-level swimming behavior.
We review the biological background on individual and population-level processes and discuss the velocity-jump
approach used for describing population-level behavior based on individual-level intracellular processes. In par-
ticular, we generalize the moment-based approach to macroscopic equations used earlier [21] to higher dimensions
and show how aspects of the signal transduction and response enter into the macroscopic equations. We also
discuss computational issues surrounding the bacterial pattern formation problem and technical issues involved
in the derivation of macroscopic equations.
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1. Introduction. Appropriate responses to signals in the environment are a sine qua non for survival of any
organism, and thus sophisticated means of detecting external signals, transducing them into internal signals, and
altering behavioral patterns appropriately have evolved. Many organisms use a random-walk search strategy to
search for food when the signals are spatially uniform, and bias movement appropriately when a suitable change
in signal is detected. A well-studied example of this is the motion of flagellated bacteria such as E. coli which
serves as the primary example in this paper. However, the methods presented here can be applied to any random
walker after suitable modification of the underlying biological details.

One of the ways that motile systems may respond to environmental signals is by changing their speed or the
frequency of turning, a process called kinesis. Chemokinesis, which involves changes in speed or turning frequency
in response to chemicals, has been studied most in E. coli, which has 4-6 helical flagella and swims by rotating
them [66, 55]. When rotated counterclockwise (CCW) the flagella coalesce into a propulsive bundle and lead
to a “run” [9], but when rotated clockwise (CW) the bundle dissociates and the cell tumbles in place, thereby
generating a random direction for the next run. A stochastic process generates the runs and tumbles, and in an
attractant gradient, runs that carry the cell in a favorable direction are extended. The cell senses spatial gradients
as temporal changes in receptor occupancy and changes the probability of CCW rotation (the bias) on a fast time
scale. Adaptation returns the bias to baseline on a slow time scale, enabling the cell to detect and respond to
further concentration changes. The motion of E. coli can be characterized as a velocity jump process [46] because
an individual runs in given direction, but at random instants of time it stops to choose a new velocity, and the
time spent in the latter stage is small compared to the run length. As we will see later, this description provides
the starting point for deriving macroscopic equations that incorporate microscopic behavior.

E. coli has five receptor types which communicate with the flagellar motors via a biochemical pathway
(described in more detail later) that ends in the motor control protein CheY [22]. CCW is the default state in
the absence of the phosphorylated CheY, which binds to motor proteins and increases CW rotation. Attractant
binding to a receptor reduces the phosphorylation rate of CheY and thereby increases the bias, which constitutes
the fast response to a signal. Adaptation involves changes in the methylation state of the receptor, which is set by
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Table 1.1

Examples of the time scales of basic processes in E.coli

Characteristic time Process Reference(s)

0.01 sec ligand binding, receptor phosphorylation [12], [71]
0.1 sec mean tumbling time [8]
1 sec mean running time [8]

several seconds adaptation time, receptor methylation [62], [71]
hour(s) proliferation [30]
2-3 days pattern formation experiments [15], [16]

the balance between methylation of sites by the methyltransferase CheR and demethylation by the methylesterase
CheB. These key steps, excitation via reduction in CheYp when a receptor is occupied, and adaptation via
methylation of the receptors, have been incorporated in mathematical models of signal transduction [64, 3, 45],
but important aspects of signal transduction are still not understood. For example, E. coli can sense and adapt
to ligand concentrations spanning five orders of magnitude, and can detect a change in occupancy of the aspartate
receptor Tar of as little as 0.1% [10]. The gain of the system, defined as the change in bias divided by the change
in receptor occupancy, can be as high as 55 [58], and a long-standing question is where in the pathway from ligand
to motor this high gain resides. Thus the major characteristics of individual behavior that must be captured by
models, are (i) fast changes in the bias in response to a change in signal, (ii) slow adaption to maintained stimuli,
and (iii) high gain or sensitivity.

In addition to the complex individual behavior just described, bacterial populations exhibit various collective
behaviors, including spatial pattern formation, quorum sensing, and formation of biofilms. Of course these involve
individual-level responses to signals, but they arise in populations that may comprise millions of individual
bacteria, which raises the question of how to incorporate the individual behavioral rules into the population-level
models. As is shown in Table 1.1, the relevant physical processes occur over a vast range of time scales, and
thus E. coli is a perfect paradigm of multi-scale modeling in biology. Usually microscopic aspects of individual
behavior are incorporated into macroscopic descriptions phenomenologically, but recently significant progress on
closing the gap between micro- and macroscopic models has been made, and how this is done is described later.
A start on this was made in [21] where the 1D problem of bacterial chemotaxis was solved for a simple model that
describes some essential behavioral aspects of E. coli, and here we extend this approach to higher dimensions.

In Section 2 we review the cell-level processes involved in signal transduction, motor control, and pattern
formation in E. coli. Since some readers may wish to skip these details, the paper is written so that this section
can be omitted on a first reading. In Section 3, we discuss a cartoon description that captures much of the
essential behavior of the detailed signal transduction network, and then describe the theoretical methods that
have been used to address the problems encountered in trying to lift the cell-level behavior to a population-level
description. Next we provide the generalization of the one-dimensional method from [21] to higher dimensions.
The method in [21] cannot be used directly and must be modified in more than one space dimension. We use two
methods to treat this problem, both of which lead to the multidimensional counterparts of equations derived in
[21]. In Section 4, we derive a macroscopic equation (4.40) using a very general setup, and we derive the classical
chemotaxis equation (4.44) for bacterial movement by specializing the general theory. In Section 5, we discuss
another approach to deriving multidimensional macroscopic equations, which leads to hyperbolic models for
chemotaxis. In Section 6, we show some illustrative numerical results. Finally, we discuss the possible extension
of the methods to modeling of bacterial pattern formation and discuss new computational methods that may
prove useful in this context in Section 7.

2. The biochemical and biophysical aspects of individual and collective behavior in E. coli.
Understanding how complex networks produce the desired output in response to signals and how that output is
buffered against the inevitable fluctuations in the molecular levels of the components is a major problem in biology,
whether in the context of gene control networks in development, or at the level of cells or organisms. Chemotaxis
in E. coli provides an excellent model system for understanding how reliable cell-level behavior emerges from a
complex signal transduction and control network, in large part because all the major components are known, yet
there are fundamental issues that remain to be understood. In this section we describe the cell-level processes
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involved in signal transduction and motor control, and discuss pattern formation in populations of E. coli.

2.1. Signal transduction and adaptation. As was described earlier, E. coli alternates two basic behav-
ioral modes based on counterclockwise and clockwise flagellar rotation to search for food or escape an unfavorable
environment. Counterclockwise rotation pushes the cell forward in a straight ”run” with a speed s = 10−20µm/sec
and clockwise rotation of flagella triggers a random ”tumble” that reorients the cell. In the absence of an extra-
cellular signal the duration of both runs and tumbles are exponentially distributed, with means of 1 s and 10−1 s,
respectively, and in a gradient of attractant the cell increases or decreases the run time according as it moves in a
favorable or unfavorable direction. During a run the bacteria move at approximately constant speed in the most
recently chosen direction, and new directions are generated during tumbles. The distribution of new directions is
not perfectly uniform on the unit sphere, but has a slight bias in the direction of the preceding run.

This mechanism by which bacteria move in favorable directions is often called chemotaxis, but it is more
precisely called chemokinesis since it involves changes in the frequency of turning, not in the direction of movement.
However the term chemotaxis is so widely used in the context of bacteria that we adopt it here to describe the
process by which a cell alters its movement in response to an extracellular chemical signal. A schematic of the
signal transduction pathway is shown in Figure 2.1(a). The key aspects of behavior that must be explained by a
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Fig. 2.1. (a) The signal transduction pathway in E. coli. Chemoreceptors (MCPs) span the cytoplasmic membrane (hatched
lines), with a ligand-binding domain on the periplasmic side and a signaling domain on the cytoplasmic side. The cytoplasmic
signaling proteins, denoted Che in the text, are identified by single letters, e.g., A = CheA. ( From [64], with permission.) (b) A
detail of the motor (From Access Research Network (http://www.arn.org/docs/mm), with permission).

model are as follows.

(1) The response of a tethered cell to a small step change in the signal in a spatially uniform environment occurs
within 2-4 seconds [9]. This is also approximately the mean period during which cell motion persists up a positive
spatial gradient of attractant, and is thus the time scale over which changes in concentration during movement
are measured [9]. This response time is considered optimal, because statistical fluctuations make measurements
over shorter time scales less accurate [7, 6]. Large changes in chemoeffector concentration, which saturate the
cell’s chemoreceptors, can increase the response time to several minutes [67]. As in many other sensory systems,
the signal transduction pathway in E. coli adapts to constant stimuli (cf. Figure 2.2(a)), by which we mean that
after a change in signal the cell’s response, defined as a change in the bias from its baseline value, eventually
returns to zero. As a result, the signal transduction system can respond to stimuli ranging over 4-5 orders of
magnitude [10].

(2) E. coli is sensitive to small changes in chemoeffector levels: cells can respond to slow exponential increases
in attractant levels that correspond to rates of change in the fractional occupancy of chemoreceptors as small as
0.1% per second [8, 58]. High sensitivity is also seen when cells are subjected to small impulses or step increases in
attractant concentration. The gain of the system, defined as the change in bias divided by the change in receptor
occupancy, can be as high as 55 [58], and a long-standing question is where in the pathway from ligand to motor
this high gain resides. One source is apparent cooperative binding of CheYp to the motor proteins. The analysis
done in Spiro, et al. [64] showed that in the absence of cooperativity in signal transduction, a Hill coefficient of
at least 11 for binding of CheYp at the motor was needed to explain the observed gains of 3-6 [64], and recent
experiments have confirmed this prediction [18] (cf. Figure 2.2(b)). However, this does not account for all of
the highest observed gains, and it has recently been shown that the stage between aspartate binding and CheYp
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Fig. 2.2. (a) The measured response of CheYp to addition and removal of attractant or repellent for wild type cells (upper),
and the response of a mutant that lacks two key enzymes in the signal transduction pathway (lower) (From [63], with permission).
(b) The clockwise bias of a single flagellum as a function of the CheYp concentration (From [18], with permission). The curve can
be fit with a Hill function of the form R(Y ) = Y H/(KH + Y H), where R(Y ) is the response, Y is the CheYp concentration, and K
is the half-maximal concentration. The estimated Hill coefficient is H = 10.2 ± 1.

concentration has an amplification 35 times greater than expected [63]. None of the existing models of the full
signal transduction system incorporate this source of gain [64, 3, 45], but a model that describes the initial stage
of transduction has been developed [1]. It remains to incorporate this into a model for the entire pathway.

Some of the details involved in signal transduction are as follows. Extracellular signals are detected by
transmembrane receptors, which in turn generate intracellular signals that control the flagellar motors (see Figure
2.1(a)). Aspartate, the attractant most commonly used in experiments, binds directly to the periplasmic domain
of its receptor, Tar. The cytoplasmic domain of Tar forms a stable complex with the signaling proteins CheA and
CheW, and the stability of this complex is not affected by ligand binding [27]. The signaling currency is in the
form of phosphoryl groups (∼P), made available to the CheY and CheB proteins through autophosphorylation of
CheA. CheYp initiates flagellar responses by interacting with the motor to enhance the probability of clockwise
rotation. CheBp is part of a sensory adaptation circuit that terminates motor responses. MCP complexes have
two alternative signaling states. In the attractant-bound form, the receptor inhibits CheA autokinase activity; in
the unliganded form, the receptor stimulates CheA activity. The overall flux of phosphoryl groups to CheB and
CheY reflects the proportion of signaling complexes in the inhibited and stimulated states. Changes in attractant
concentration shift this distribution, triggering a flagellar response. The ensuing changes in CheB phosphorylation
state alter its methylesterase activity, producing a net change in MCP methylation state that cancels the stimulus
signal (see Stock et al. [68] for a review).

Several detailed mathematical models for signal transduction and adaptation have been developed [64, 3, 45].
The model in Spiro, et al. [64] is based on the assumption that Tar is the only receptor type, that the Tar-
CheA-CheW complex does not dissociate, and that Tar, CheA, and CheW are found only in this complex. The
primary objective is to model the response to attractant, which probably involves only increases in the average
methylation level above the unstimulated level of about 1.5-2 methyl esters per receptor [11], and for this reason
the model only incorporates the three highest methylation states of Tar, and only the phosphorylated form of CheB
(CheBp) has demethylation activity. In Figure 2.3 (a) we illustrate the various states of the receptor complex
and the transitions between them. We use T to represent the concentration of Tar-CheA-CheW complex and
L to represent ligand concentration. A p subscript indicates a phosphorylated species and numerical subscripts
indicate the number of methylated sites on Tar. The details of all assumptions underlying the model and the
kinetics of the reactions in this figure are given in Spiro et al. [64].

A qualitative description of how the system works is as follows (cf. Figure 2.3 (b)). The ligand binding
reactions are the fastest, and thus a step increase in attractant first shifts the equilibrium among the receptor
states in Figure 2.3(a) toward the ligand-bound states at the bottom face of the box. This increases the fraction
of receptors in the sequestered states (LT2, and possibly LT3). These states have much lower autophosphorylation
rates than the corresponding unliganded states, and therefore the equilibrium next shifts toward states containing
unphosphorylated CheA, which are in the front face of the box. The level of phosphorylated CheA (CheAp) is
thus lowered, causing less phosphate to be transfered to CheY, yielding a lowered level of CheYp. As a result,
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(a) (b)

Fig. 2.3. (a) Illustration of the ligand-binding, phosphorylation, and methylation reactions undergone by the Tar-CheA-CheW
complex (denoted by T ) in the full model. ( From [64], with permission.)(b) A schematic that shows the three primary processes and
their temporal ordering. Of course the processes overlap in time, but for explanatory purposes we separate them.

tumbling is suppressed, and the cell’s run length increases. This constitutes the excitation response of the system.

Next the methylation and demethylation reactions — the slowest reactions in this system — begin to influence
the response. Ligand-bound receptors are more readily methylated than unliganded receptors, and the lowered
level of CheAp causes a decrease in the level of CheBp, thereby reducing its demethylation activity. As a
result, the equilibrium shifts in the direction of the higher methylation states, toward the right face of the box.
The autophosphorylation rate of CheA is faster when the associated Tar-CheA-CheW complex is in a higher
methylation state, and so there is finally a shift back toward the states containing CheAp, at the rear face of the
box. As a result, CheYp returns to its prestimulus level, and thus so does the bias of the cell. This constitutes
the adaptation response. The net effect of the increase in attractant is thus to shift the distribution of receptor
states toward those which are ligand-bound and more highly methylated, but the total level of receptor-complex
containing CheAp (the sum of the states at the rear face of the box) returns to baseline, leaving the cell capable
of responding to a further change in ligand concentration. In order to obtain perfect adaptation, the level of
phosphorylated receptor must return to its pre-stimulus level, and this occurs because CheA autophosphorylates
more when the receptor is more highly methylated.

The mathematical description of the model is based on mass action kinetics and singular perturbation of
certain steps [64]. Numerical solution of the equations in [64] show that the model can capture most aspects of
the stimulus-response behavior, including the response to small and large steps, and to slow ramps. At present
it is not understood how such detailed microscopic models can be incorporated into macroscopic models, but the
essential aspects of the dynamics can be captured by a much simpler ‘cartoon’ model that will be described in
Section 3.3.1.

2.2. Motor control. The effect of changes in CheYp is to change the bias of the motor, and thus another
component of a model is to describe the interaction of CheYp with the motor proteins at the flagellar switch
[17]. At present it is estimated that there are about 30 binding sites for CheYp on the motor, and hence 30
equations describing their occupancy states, but singular perturbation techniques can reduce this to a single
equation describing the switching of the motor between the two rotational states. The kinetic rates for these
transitions depend on CheYp and can be estimated from data in [18]. Finally, a cell has a much higher bias than
an individual flagellum, and in Spiro et al. [64] it is shown that this can be understood by invoking the ‘voting
hypothesis’ for the collective behavior of the flagella. Details on how this is implemented are given in [60].

2.3. Pattern formation. It is relatively recently that the importance of multicellular organization in
prokaryotes, aside from examples such as Myxoccus xanthus, has been recognized [61]. It is now known that inter-
cellular communication and coordination are widespread in prokaryotes, and many different classes of signaling
molecules have been identified. Current interest in this phenomenon stems from the discovery of quorum-sensing
molecules such as the N-acyl homoserine lactones, and their possible role in biofilm formation [23]. A connec-
tion with the behaviors described here comes from evidence that the initial micro-colonies may be formed by
aggregation of bacteria, and that active motility plays a role in the formation of biofilms because it can counter
repulsive forces at the surface being colonized and thus foster successful attachment. Much simpler, and more
tractable from the modeling standpoint, examples of pattern formation arise in E. coli, S. typhimurium, and
B. subtilis colonies [15, 16, 61] (cf. Figure 2.4). Pattern formation in E. coli, which we focus on here, involves
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sensing of extracellular signals and alterations in the swimming behavior of individuals, as well as production of
the attractant. However, spatial patterns can involve millions of cells, and heretofore modeling of them has been
primarily phenomenological; details of the cell-level behavior has not been incorporated into the equations that
describe cell populations.

(a) (b) (c)

Fig. 2.4. Spatial patterns that arise in E. coli. Light denotes high cell density. (From [15], with permission.)

Experimental work has defined the conditions under which complex spatial patterns can arise [15, 5, 4, 16, 44].
One type of experiment is done on agar plates with agar concentration low enough that the bacteria can swim
freely. Different spatial patterns can form when E. coli in a chemotactically inert environment are stressed by
a variety of conditions, any of which is called an inducer, including introduction of components of the TCA
cycle (e. g. malate, fumarate or succinate), antibiotics, and cold shock [14]. Aggregation is in response to the
production of aspartate and/or glutamate: aspA− cells cannot produce secreted aspartate in response to inducers
and do not aggregate under conditions that induce aggregation in wild-type cells [14]. In the experiments, a
medium containing an inducer such as succinate is added to the agar, and cells are then introduced at one point
in space. Pattern changes occur on a time scale of hours and growth and division are essential. The doubling time
is constant at about 2 hrs under all conditions studied [14]. Much is known about the response when succinate
is the inducer: cells internalize it, and it provides precursors for certain steps in the TCA cycle that end in the
production and secretion of aspartate.

The initial response in the on-agar experiments involves significant growth and division at the site of inocu-
lation. Initially bacteria disperse from the inoculation site, but as aspartate concentration increases they respond
chemotactically and the aggregate becomes denser. As a result, succinate is depleted locally and aspartate pro-
duction begins to drop. Cells at the boundary of the aggregate still receive the succinate diffusing inward and
continue to produce aspartate. Thus a ring of aspartate-producing cells may develop and move radially outward.
The progression of the patterns radially outward is complicated and depends on the concentration of succinate. At
low succinate concentrations the ring may propagate outward without breaking up, but at higher concentrations
it breaks up into spots (cf. Figure 2.4). If the concentration is not too high the spots are aligned radially (cf.
Figure 2.4(a)), at least until the radius is very large, in which case new spots appear between the old ones. The
radial sequence of spots is formed by a repetition of the sequence that initiated the first ring. The local cell density
in a spot grows, causing an increase in the aspartate, the local density at a spot increases further, the succinate
becomes depleted locally, and the spot disintegrates, bacteria move from the spot towards the faint front, join the
front, and a new spot forms above the old spot. The faint front consists of cells that are aggregating in a fluted
pattern at the leading edge, and these form the basis of the next ring. At not too high succinate concentrations
the cells in one ring simply migrate radially to the next ring. However, if the succinate concentration is high
enough the production of aspartate is high enough in the parabolic ‘chains’ that form at the leading edge, and
a spot forms on a ray at an angle between those of the nearest spots in the preceding ‘generation’ (cf. Figure
2.4(b)). The speed at which the front moves is constant and inversely proportional to the succinate concentration,
and the radius at which the ring collapses into spots is also inversely proportional to the succinate concentration.
Both follow from the fact that at higher concentrations aspartate production is higher chemotaxis stronger. This
is the experimentally-observed sequence of spatio-temporal patterning that models must replicate.

Several models for pattern formation in B. subtilus and S. typhimurium based on Keller-Segel type equations
or hydrodynamic models have been proposed [4, 73, 72, 36, 41]. Additional mechanisms that are incorporated
include nonlinearity in the chemotactic coefficient [73], a second repellent field, or the autocatalytic production
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of attractant triggered by waste [4, 72]. In addition to the fact that the biochemistry of signal transduction
and behavioral response is different and largely unknown in these genera, there are significant differences in the
pattern formation between them. Salmonella is closest to E. coli, but still very different: in the former patterns
grow from an existing lawn of bacteria, while in the latter patterns emerge from point inoculation sites, and
patterns in Salmonella are less symmetrical and less structured than in E. coli. Thus, while similar processes are
involved, the details are quite different in the two systems. Brenner et al. [13] model E. coli patterns and couple
a Keller-Segel chemotaxis equation with equations for succinate and aspartate. They show that the movement
of the swarm rings may be due to the depletion of succinate around the band of bacteria: chemotaxis holds the
band together, but the net motion is not caused directly by chemotactic fluxes. In contrast, aggregates result
from a purely chemotactic response in the system, depending only weakly on environmental conditions. However
their analysis is based on a phenomenological approach to chemotaxis, and does not incorporate the individual
response into the macroscopic equations. More recently, Mittal et al. [44] have proposed a non-mechanistic,
formal model for spot formation in E. coli that provides insight into some of the controlling processes.

2.4. Biofilms. The patterns formed in the experiments described in the previous section are examples of
rudimentary biofilms, which in general are complex structures that comprise microorganisms such as bacteria
embedded in a polysaccharide matrix and attached to a surface. Biofilms are responsible for a large percentage
of the infections in the body, including oral infections, gastrointestinal tract infections, and infections associated
with implanted and prosthetic devices. In mixed populations bacteria may communicate with each other within
a biofilm, and they can secrete molecules that signal when the population has reached a critical threshold.
This process, called quorum sensing, is responsible for the expression of various factors that control synthesis of
virulence factors and other substances. It is also known that there is increased antibiotic resistance in biofilm
communities, which may make it difficult to combat infections and colonizations of surfaces. In addition, bacteria
within biofilms may be protected from the normal immune response, in that leukocytes or phagocytes may be
unable to reach them. There is also evidence that specific selective forces act in a biofilm, which lead to new cell
types via facilitated gene exchange. Interested readers may consult [2, 19, 54, 57] for further details.

3. Mathematical models for bacterial chemotaxis. To date, most macroscopic models take the form
of partial differential equations based on phenomenological assumptions relating the macroscopic cell velocity to
signal gradients, etc, as described later. Such models can often explain aggregation qualitatively, but they are
very restrictive quantitatively. To explain aggregation quantitatively, one must first have a detailed model of a
single cell of the type described earlier, but then one must lift this to the collective behavior of the population of
individuals. In this section we first show how the phenomenological route to the classical chemotaxis equations
can be partially justified using a velocity-jump process with phenomenological descriptions of how the motion of
individuals is biased by a signal. Then we develop the equations that incorporate intracellular dynamics and we
summarize the main results in one space dimension from [21]. In the remainder of the paper, we generalize the
ideas from [21] to higher dimensions.

3.1. The classical phenomenological approach. In the absence of external queues, many organisms use
a random walk strategy to determine their pattern of movement. The random walk may be in physical space and
is then called a space-jump process, or it may be in velocity space and involve discontinuous changes in the speed
or direction generated by a Poisson process, in which case it is called a velocity-jump process [46]. If the walkers
are non-interacting the former leads to a renewal equation in which the kernel governs the waiting time between
jumps and the redistribution after a jump [46]. By suitable choices of these functions the movement of organisms
released at a point in a uniform environment is described by the solution of the standard diffusion equation on
a sufficiently long time scale. Thus, in an appropriate continuum limit the cell density n, measured in units of
cells/LN , where L denotes length and N = 1, 2 or 3, satisfies the diffusion equation

(3.1)
∂n

∂t
= D∆n.

The cell flux is given by j = −D∇n, and if we define the average cell velocity u by the relation j = nu, then we
see that for pure diffusive spread u = −D∇n/n.

The simplest description of cell motion in the presence of an attractant or repellent is obtained by adding a
7



directed component to the diffusive flux to obtain

(3.2) j = −D∇n+ nuc

where uc is the macroscopic chemotactic velocity. The taxis is positive or negative according as uc is parallel or
anti-parallel to the direction of increase of the chemotactic substance. The resulting evolution equation is

(3.3)
∂n

∂t
= ∇ · (D∇n− nuc),

and this is called a chemotaxis equation. Commonly used constitutive equations postulate that

(3.4) uc = χ(S)∇S,

where S is the concentration of the chemotactic substance and the function χ(S) is called the chemotactic
sensitivity. When χ(S) > 0, the tactic component of the flux is in the direction of ∇S and the taxis is positive.
With this postulate (3.3) can be written in the form

(3.5)
∂n

∂t
= ∇ · (D∇n− nχ(S)∇S).

If a diffusible chemottractant is produced or degraded its evolution can be described by the reaction-diffusion
equation

(3.6)
∂S

∂t
= DS∆S + r(S, n)n,

where r is the net rate of production of the attractant per unit of cell density. We call the system of equations
(3.5) – (3.6) Keller-Segel [37, 38] or classical chemotaxis system.

Another method, based on a continuous time reinforced random walk in which the walker modifies the
transition probabilities of an interval for successive crossings, is developed in [48] for a single tactic substance,
and in [52] for multiple substances. More recent results are given in [51, 34].

This phenomenological approach poses the problem of connecting microscopic and macroscopic descriptions
very clearly, namely, how does one justify the constitutive assumption (3.4) to describe taxis, and in particular,
how can one incorporate microscopic responses of individual cells into population-level functions such as the
chemotactic sensitivity. We begin by describing a general stochastic process that can model the movement of
swimming bacteria and then describe a simple example that can be worked out in detail to understand minimal
properties needed in more complex models. A related approach for amoeboid chemotaxis is given in [20].

3.2. The velocity-jump process without internal dynamics. In the absence of interaction between
particles or bias in their movement due to imposed external signals, the velocity-jump process leads to the
transport equation

(3.7)
∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λp(x, v, t) + λ

∫
V

T (v, v′)p(x, v′, t)dv′,

for the density of particles at x ∈ Ω ⊂ R
N , moving with velocity v ∈ V ⊂ R

N at time t ≥ 0 [46]. λ is the turning
rate and 1/λ is a measure of the mean run time between velocity jumps. Here λ is constant, but later may be
space-dependent and depend on internal and external variables as well. The turning kernel T (v, v′), which may
also be space-dependent, gives the probability of a velocity jump from v′ to v if a jump occurs, and implicit in
the above formulation is the assumption that the choice of a new velocity is independent of the run length. When
applied to the bacterium E.coli, the turning frequency depends on the extracellular signal, as transduced through
the signal transduction and motor control system.

The backward equation that corresponds to (3.7) has been derived from the underlying stochastic velocity-
jump process by Stroock [69] to describe the motion of bacteria. It has also been derived and analyzed in a more
general framework by Papanicolaou [53], and if we assume additional regularity of the process, one can derive
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(3.7) rigorously as the forward equation of the velocity-jump process. The transport equation (3.7) is similar to
the Boltzmann equation, in which case the right hand side is an integral operator that describes collision of two
particles. It is known that the long-time behavior of solutions of transport equations is that of a diffusion process
under suitable hypotheses [40, 29], and for (3.7) the diffusion tensor can be directly related to properties of the
turning kernel [32]. The effect of externally-imposed biases on the turning rate or the turning kernel then leads
to the classical chemotaxis equation under various hypotheses [49]. To understand how internal dynamics must
modulate turning behavior to produce this equation we first analyze a simple example.

3.2.1. The telegraph process. The simplest example that illustrates how localization or aggregation of
walkers depends on the parameters of the jump process is given by a 1D version of (3.7) called the telegraph
process. Suppose that a particle moves along the x-axis at a speed s±(x) that depends on x and its direction of
travel, and that at random instants of time it reverses direction. Let p±(x, t) be the density of particles that are
at (x, t) and are moving to the right (+) and left (−). Then p±(x, t) satisfy the following equations (cf. [47, 32])

∂p+

∂t
+
∂(s+p+)
∂x

= −λp+ + λp−

(3.8)
∂p−

∂t
− ∂(s−p−)

∂x
= λp+ − λp−.

The density of particles at (x, t) is n(x, t) ≡ p+(x, t) + p−(x, t), and the flux is j ≡ (s+p+ − s−p−). These satisfy
the equations

∂n

∂t
+
∂j

∂x
= 0

(3.9)
∂j

∂t
+ λj = −s+ ∂

∂x
(s+p+) − s−

∂

∂x
(s−p−) + λ(s+p− − s−p+)

and the initial conditions n(x, 0) = n0(x), j(x, 0) = j0(x), where n0 and j0 are determined from the initial
distribution of p+ and p−. When the speed and turning rate are constant the system reduces to the telegraph
equation

(3.10)
∂2n

∂t2
+ 2λ

∂n

∂t
= s2

∂2n

∂x2
.

This process has been studied by many authors [70, 24, 28, 35, 43, 59, 46].

The diffusion equation results by formally taking the limit λ→ ∞, s→ ∞ with s2/λ ≡ 2D constant in (3.10),
but this can be made more precise because the equation can be solved explicitly. The fundamental solution of
(3.10) can be expressed in terms of the modified Bessel functions [74] and using asymptotic properties of these
functions one can show [74] that

(3.11) n(x, t) =
1√

4πDt
e
−
x2

4Dt + e−λtO(ζ2),

where ζ ≡ x/st. Therefore when x
 st the telegraph process can be approximated by a diffusion process. If we
define τ = ε2t and ξ = εx, where ε is a small parameter, then (3.10) reduces to

(3.12) ε2
∂2n

∂τ2
+ 2λ

∂n

∂τ
= s2

∂2n

∂ξ2
.

The diffusion regime defined by the exact solution now becomes

x

st
= ε

ξ

sτ

and this requires only that ξ/(sτ) ≤ O(1). In the limit ε→ 0 the exact solution can be used to show that (3.12)
again reduces to the diffusion equation, both formally and rigorously (for t bounded away from zero). However this
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shows that the approximation of the telegraph process by a diffusion process hinges on the appropriate relation
between the space and time scales, not necessarily on the limit of speed and turning rate tending to infinity, as
is well known.

To illustrate how variable speeds and turning rates affect the existence of nonuniform steady states, which
can be interpreted as aggregations, consider the system (3.9) on the interval [0, 1] and impose Neumann (no-flux)
boundary conditions at both ends. We wish to know under what conditions, if any, these equations have time-
independent, non-constant solutions for p± when s± ≡ s±(x) are not constants. Under steady state conditions the
first equation implies that j is a constant, and the boundary conditions imply that j ≡ 0. Therefore s+p+ = s−p−,
and the second equation reduces to

∂

∂x
(s+p+) =

[
λ
s+ − s−

s+s−

]
s+p+.

This is a first order equation for s+p+ whose solution is

p+(x) =
s+(0)p+(0)
s+(x)

exp
[
λ

∫ x

0

s+ − s−

s+s−
dξ

]
,

and the condition of vanishing flux gives p−. It follows that

(3.13) n(x) = c

(
1

s+(x)
+

1
s−(x)

)
exp

[
λ

∫ x

0

s+ − s−

s+s−
dξ

]
.

where the constant c is computed in such a way that
∫ 1

0 n(x)dx is the total number of cells in the unit interval.
From this one can determine how the distribution of s± affects the distribution of p. In particular, if s± are not
constant then p± are also non-constant. This is most easily seen if s+(x) = s−(x), for then it follows directly
from (3.13) that cells accumulate at the minima of the speed distribution. In any case, this simple model shows
that cells can aggregate in a time-independent gradient by only modifying their speed.

One can also ask if cells can aggregate by maintaining a constant speed and only modifying their turning
rate, either in relation to their spatial position, their direction of travel, or both. This will be analyzed in detail
in the following section, but the essence of the effects can be understood as follows. Suppose that s+ = s− = s
in (3.9), and that the turning rate depends on both position and direction of travel. Rewrite (3.9) in the form

∂p+

∂t
+ s

∂p+

∂x
= −λ+p+ + λ−p−

(3.14)
∂p−

∂t
− s

∂p−

∂x
= λ+p+ − λ−p−

where λ± = λ±(x). Further, write

λ± =
λ+ + λ−

2
± λ+ − λ−

2
≡ λ0 ± λ1

and then (3.14) can be written in the equivalent form

∂n

∂t
+
∂j

∂x
= 0

(3.15)
∂j

∂t
+ 2λ0j = −s2∂n

∂x
− 2sλ1n

Suppose that these equations are defined on the interval [0, 1] and that homogeneous Neumann data is imposed
on the boundary. Under steady states conditions it follows directly that j(x) ≡ 0, and that

n(x) = c exp
[
−2
s

∫ x

0

λ1(ξ)dξ
]
.
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where the constant c is computed in such a way that
∫ 1

0 n(x)dx is the total number of cells in [0, 1]. Consequently,
there is no aggregation if λ1 ≡ 0. Therefore, if only the turning rate is spatially variable, then there must be a
difference between the turning rates of left- and right-moving cells [47]. We can also formally define a chemotactic
velocity in the limit in which the time-derivative of j is negligible, namely uc = −sλ1/λ0 and if λ1 is proportional
to the gradient of an attractant or repellent field, the usual form given in (3.4) results.

The diffusion approximation to the transport equation in arbitrary space dimensions has been studied in [49],
where it is shown that in general the bias in the turning rate must be an odd function of the velocity in order to
obtain a nontrivial chemotactic velocity. Hillen and Stevens [33] have done a more complete analysis of hyperbolic
chemotaxis equations in one space dimension, and in particular, prove local and global existence results for the
(3.9) when s± and λ± depend on the external signal and the system (3.9) is coupled with the parabolic equation
for the external signal. As here, they conclude that two different mechanisms can lead to aggregation, namely

• The turning rates of the right and left moving individuals are different.

• The speed s depends on the external signal, which for time-independent non-constant signals, is equiv-
alent to the statement that the speed of s depends on the spatial variable x.

In reality the speed of a bacterium is approximately constant, and as we noted earlier, bacteria use modulation
of the run length to aggregate. In order to understand how modulation of the turning behavior is related to the
signal, we have to introduce the internal dynamics into the model. This is done in the next section.

3.3. Incorporation of internal dynamics. To have a predictive population-level model, one must first
have a detailed model of a single cell of the type described earlier and then, one must lift this to the collective
behavior of the population of individuals. To incorporate internal dynamics, we introduce the vector of internal
state variables y = (y1, y2, . . . , ym) ∈ R

m, which can include the concentration of receptors, proteins, etc. inside
the cell, and let S(x, t) = (S1, S2, . . . , Sd) ∈ R

d denote the signals in the environment. The existing deterministic
models (see Section 2.1) of individual bacterial behavior can all be cast in the form of a system of ordinary
differential equations that describe the evolution of the intracellular state, forced by the extracellular signal.
Thus

(3.16)
dy
dt

= f(y, S)

where f : R
m × R

d → R
m describes the particular model. We showed in [21] that for non-interacting walkers

such as bacteria, the internal dynamics can be incorporated in the transport equation as follows. Let p(x, v, y, t)
be the density of bacteria in a (2N + m)−dimensional phase space with coordinates (x, v, y), where x ∈ R

N is
the position of a cell, v ∈ V ⊂ R

N is its velocity and y ∈ Y ⊂ R
m is its internal state, which evolves according to

(3.16). The evolution of p is governed by the transport equation

(3.17)
∂p

∂t
+ ∇x · vp+ ∇y · fp = −λ(y)p+

∫
V

λ(y)T (v, v′, y)p(x, v′, y, t)dv′

(see [21] [Section 3]). Here, as before, we assume that the random velocity changes are the result of a Poisson
process of intensity λ(y). The kernel T (v, v′, y) gives the probability of a change in velocity from v′ to v, given that
a reorientation occurs. The kernel T is non-negative and satisfies the normalization condition

∫
V
T (v, v′, y)dv = 1.

The objective is to derive an evolution equation for the macroscopic density

(3.18) n(x, t) =
∫

Y

∫
V

p(x, v, y, t)dvdy

of individuals. As we discussed earlier, two essential components in the chemotactic response to an attractant are
the rapid decrease in the motor control protein CheYp, and the slow return of this protein to it’s pre-stimulus
level in the face of a constant stimulus (cf. Figure 2.2). Therefore, as a first step toward understanding how
internal dynamics can be incorporated into macroscopic descriptions, we consider a highly-simplified model of
signal transduction which has similar properties to the realistic signal transduction models described earlier.
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Change
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Signal 

Fig. 3.1. A schematic of the essential components of signal transduction in an adapting system. Usually excitation is much
faster than adaptation.

3.3.1. Cartoon internal dynamics and their properties. Suppose that the temporal variation of the
chemokinetic signal seen by a bacterium is given by C(t). The major components of signal transduction that
must be incorporated in the cartoon model are the excitation and adaptation steps, as illustrated schematically
in Figure 3.1. This schematic can be translated into a linear model as follows [47]. Suppose that there are two
internal state variables y1 and y2, and that these variables evolve according to the system of equations

(3.19)
dy1
dt

=
C(t) − (y1 + y2)

te
,

dy2
dt

=
C(t) − y2

ta
.

The magnitude of te reflects the time scale for excitation, and the magnitude of ta reflects the time scale for
adaptation.

If the signal is transmitted via receptors, and if we assume that binding equilibrates rapidly and the signal is
a given function of the fraction of receptors bound, then the input signal C(t) will have the form

(3.20) C(t) = G

(
S(x, t)

KD + S(x, t)

)
≡ g(S(x, t)).

where G(·) is a given function, S(x, t) is the extracellular signal at time t and the current position of cell x ≡ x(t),
and KD is the binding constant [8].

Next, we suppose that the deviation from the basal response is a function of y1. Then this simple scheme
can be viewed as having two input pathways, an excitatory one that stimulates the production of y1 and hence
increases the response, and an inhibitory one that increases the production of y2, which in turn shuts off the
response. We call y1 the excitation or controller variable, because later it will be used to control the turning rate.

Since this system is linear the solution can be obtained analytically, and for the special case in which y1(0) =
y2(0) = 0 and C(t) is a step function of amplitude from 0 to C1 that turns on at t = 0, the solution is as follows

(3.21) y1 =
C1ta
ta − te

(e−t/ta − e−t/te), y2 = C1(1 − e−t/ta).

From this one sees that if te 
 ta, then for t� te, y1 relaxes to

y1(t) ∼ C1e
−t/ta ≡ C1 − y2(t).

This is just the pseudo-steady-state value of y1 which is gotten by setting dy1/dt = 0. We note from (3.19) that
when the stimulus C(t) is constant the steady state level of y1 is zero, i.e., the response adapts perfectly to any
constant stimulus, but the level of y2 does not adapt.

The typical response for a single step in the stimulus from 0 to C1 when te < ta is shown in Figure 3.2(a),
where one can see that neither y1 nor y2 exceed C1. The response to two step changes that are well separated
compared to the adaptation time are shown Figure 3.2(b).

To understand the role played by adaptation on the level of the controller variable, we consider the time
course of y1 in a cell moving in a static gradient. If excitation is rapid compared to adaptation and the change
in the signal, we may set y1 = C(t) − y2 = ta

dy2
dt and thus only have to solve for y2 along a specified path. Thus

it is convenient to differentiate the second equation in (3.19) and to solve the resulting equation for dy2
dt . We find

that u ≡ dy2
dt satisfies

(3.22)
du
dt

+
1
ta
u =

1
ta

dC
dt
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Fig. 3.2. The phase plane for the model adapting system described by (3.19).

For a cell that begins at x0 and moves with a velocity v through a time-invariant concentration field S(x), we
have

dC
dt

= g′(S(x0 + vt)) v · ∇S,

and using this (3.22) can be solved for any specified cell path. Note that if ta = ∞ then y2 is identically constant
and y1 simply tracks the stimulus. To show that adaptation can play a significant role in the motion of a cell,
we suppose that S(x) varies linearly, that g is the identity, and we consider an infinite domain. Since the signal
distribution is linear, and g′ = 1, the gradient S′ is constant, and the right-hand side of (3.22) is constant.

Suppose that cells move at a constant speed for a fixed time τ , at which point they choose a new direction
randomly. One finds that

(3.23) u(τ) = e−τ/tau(0) ± ωh(τ)

where

ω ≡ |v|S′ and h(τ) = (1 − e−τ/ta).

Therefore at the end of the first step the initial level is decremented by the exponential factor γ0 = e−τ/ta and an
amount γ1 = ωh(τ) is added or subtracted, depending on the direction of motion. If the step length is constant
the controller level after n steps is the solution of the difference equation

(3.24) un ≡ u(nτ) = γ0un−1 ± γ1

and it follows that the solution is given by

(3.25) un = γn
0 u0 + γ1

[
±γn−1

0 ± γn−2
0 + · · · ± γ0

]
.

If the choice of direction is unbiased the expected value of the quantity in brackets is zero, since the walk is then
symmetric. However if the run time, and hence the step length, is not fixed at τ , but is biased appropriately, the
outcome is different.

To see this consider two, two-step realizations of this process. Suppose that the first cell first moves to the
right and then to the left, whereas the second cell first moves to the left and then to the right. The controller
level in the first cell at time 2τ is

u−(2τ) = e−τ/tau+(τ) − ωh(τ)(3.26)
= e−2τ/tau(0) − ωh2(τ)(3.27)

whereas the level in the second cell is

u+(2τ) = e−τ/tau−(τ) + ωh(τ)(3.28)
= e−2τ/tau(0) + ωh2(τ).(3.29)
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Here the superscript denotes that direction of travel at the current time or the time just prior to a turn. From
these results one sees that the outcome is not symmetric, and in fact, the cell that most recently moves up-gradient
has the higher level of controller. In other words, the cells carry memory of their paths with them, and the most
recent portion of the path is most important. If for instance the turning rate depends on the controller, then
the turning rate becomes a function of the past history of the cell, as is needed in the bacterial example. In
particular, if the turning rate as defined later is of the form λ = λ0 − by1, then the cell moving leftward at 2τ
has a higher probability of turning than does the cell moving rightward at 2τ . From this observation (together
with conclusions of Section 3.2.1), one can formulate an heuristic argument that shows that adaptation may be
important in determining whether or not cells aggregate at the high point of an attractant.

In contrast, when adaptation is infinitely slow, then we may take y2 = 0 and y1 = C(t). In this case the
controller variable tracks the external signal with perfect fidelity, and as a result, there is no dependence of the
controller level on the path. As we showed in Section 3.2.1, when the controller only affects the turning rate this
cannot lead to aggregation. For any finite rate of adaptation the difference between the controller level in the
rightward and leftward moving cells at 2τ is 2ωh2(τ), which goes to zero as ta → ∞.

This discussion, which was based on individual paths of bacteria, suggests that excitation and adaptation
are essential components for aggregation of bacterial populations. To make the connection between microscopic
models and the classical macroscopic chemotaxis equations rigorous, we briefly describe the approach developed
in [21].

3.4. Asymptotic methods for deriving the chemotaxis equation with internal dynamics. A
macroscopic evolution equation for the cell density n in 1D that incorporates taxis based on internal dynam-
ics and no interaction between walkers was first derived in [21]. Let p±(x, y, t) to be the density of walkers that
are at (x, t) with the internal state y and are moving to the right (left), and suppose that the internal state evolves
according to (3.16). Then p±(x, y, t) satisfy the equations

(3.30)
∂p+

∂t
+ s

∂p+

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p+

]
= λ(y)

[
−p+ + p−

]
,

(3.31)
∂p−

∂t
− s

∂p−

∂x
+

m∑
i=1

∂

∂yi

[
fi(y, S)p−

]
= λ(y)

[
p+ − p−

]
.

In [21] we used the cartoon model (3.19) – (3.20) of internal dynamics and we supposed that the signal S, was
time-independent. Thus the governing equations for the internal state are (3.19) with C(t) replaced by g(S(x)).
We identified the response with the turning frequency λ(y), and assumed linear dependence of λ on y1:

(3.32) λ(y) ≡ Response = λ0 − by1,

where λ0 is the basal turning frequency for a fully-adapted cell and b is a positive constant. The term by1 describes
the change in the turning frequency in response to a signal, and the negative sign accounts for the fact that an
increase of y1 should produce a decrease in turning rate. The linear turning rate (3.32) is reasonable for shallow
gradients of the signal, which is the case treated in detail in [21]. Under these assumptions, we obtained the
hyperbolic chemotaxis equation

(3.33)
∂2n

∂t2
+ 2λ0

∂n

∂t
=

∂

∂x

(
s2
∂n

∂x
− g′(S(x))

2bs2ta
(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n
)

using a hyperbolic scaling of time and space, and the classical chemotaxis equation (3.5), valid for large time,

(3.34)
∂n

∂t
=

∂

∂x

(
s2

2λ0

∂n

∂x
− g′(S(x))

bs2ta
λ0(1 + 2λ0ta)(1 + 2λ0te)

S′(x)n
)

using a parabolic scaling of space and time (these scalings are defined later). This equation was derived for shallow
gradients of the signal, and may not even apply for large gradients, but that form is widely-used for macroscopic
models. In either the form (3.33) or (3.34) one can identify the chemotactic sensitivity (3.4) as

(3.35) χ(S) = g′(S(x))
bs2ta

λ0(1 + 2λ0ta)(1 + 2λ0te)
.
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and this clearly depends on parameters of the internal dynamics.

Next we address the derivation of chemotaxis equations in two and three space dimensions, which is not a
straight-forward extension of the derivation in 1D because additional velocity moments appear. We show here
two methods to treat this problem leading to a multidimensional counterparts of equations (3.33), (3.34). The
first method, based on the ideas from [21] and [32, 49], leads to the parabolic classical chemotaxis equation. In
Section 4, we derive a macroscopic equation using a very general setup and we derive the classical chemotaxis
equation (4.44) for bacterial movement from the general theory. In Section 5, we discuss another approach of
deriving the macroscopic equations based on ideas from [21] and [31]. This leads to a multidimensional form of
equation (3.33).

4. Chemotaxis equations from the transport equation in higher dimensions. In order to derive a
macroscopic equation for the density n (given by (3.18)) from the transport equation (3.17), we have to specify the
internal dynamics f(y, S), the turning rate λ(y) and the turning kernel T (v, v′, y). As before, we use the cartoon
internal dynamics (3.19) – (3.20), the linear turning rate (3.32), and a space-dependent but time-independent
scalar signal S. We introduce new internal variables (z1, z2) that measure deviations from the steady state, and
hence vary over R2, by

(4.1) y1 = z1, y2 = g(S(x)) + z2 ⇔ z1 = y1, z2 = y2 − g(S(x)).

Then the internal dynamics (3.19) – (3.20) and the turning rate (3.32) are now

(4.2)
dz1
dt

=
dy1
dt

=
g(S(x)) − (y1 + y2)

te
=

−z1 − z2
te

,

(4.3)
dz2
dt

=
dy2
dt

− dg(S(x))
dt

=
g(S(x)) − y2

ta
− g′(S(x))∇xS · v = −z2

ta
− g′(S(x))∇xS · v,

(4.4) λ(y) ≡ λ(z) = λ0 − bz1,

where v is the velocity of the cell, S : R
N → [0,∞) is the external signal and ta, te, λ0, b, are constants satisfying

ta > te ≥ 0, λ0 > 0 and b > 0.

In general the turning kernel might depend on the internal state, for example if cells are permanently polarized,
but here we assume that is independent of the internal state, which is the case for bacterial chemotaxis. In view
of the previous simplifications, the transport equation (3.17) now reads

∂p

∂t
+ ∇x · vp+

∂

∂z1

[(
−z1 − z2

te

)
p

]
+

∂

∂z2

[(
−z2
ta

− g′(S(x))∇xS · v
)
p

]
=

(4.5) = − (λ0 − bz1) p+
∫

V

(λ0 − bz1)T (v, v′)p(x, v′, z, t)dv′,

where p ≡ p(x, v, z, t) is the number density of individuals at point x with velocity v and with internal state
z = (z1, z2) at time t. To simplify the notation, we will drop the index x in ∇x and from now on, we will denote
the spatial gradient by ∇ ≡ ∇x. Later we stipulate precise restrictions on the kernel.

To find the macroscopic evolution equation(s) for the density n(x, t), we define the following moments with
respect to internal variables1

(4.6) M(x, v, t) =
∫

R2
p(x, v, z, t)dz,

1We assume throughout that the initial data has compact support in (x, v, z)-space, and therefore the following moments are
well-defined.
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(4.7) M1(x, v, t) =
∫

R2
z1 p(x, v, z, t)dz,

(4.8) M2(x, v, t) =
∫

R2
z2 p(x, v, z, t)dz,

(4.9) M11(x, v, t) =
∫

R2
(z1)2p(x, v, z, t)dz, and M12(x, v, t) =

∫
R2
z1z2 p(x, v, z, t)dz.

Then multiplying equation (4.5) by 1, z1 and z2 respectively, and integrating the resulting equations with respect
to z = (z1, z2), we obtain

(4.10)
∂M

∂t
+ ∇ · vM = −λ0M + λ0

∫
V

T (v, v′)M(x, v′, t)dv′ + bM1 − b

∫
V

T (v, v′)M1(x, v′, t)dv′,

(4.11)
∂M1

∂t
+ ∇ · vM1 = −

(
λ0 +

1
te

)
M1 −

1
te
M2 + λ0

∫
V

T (v, v′)M1(x, v′, t)dv′

+ bM11 − b

∫
V

T (v, v′)M11(x, v′, t)dv′,

(4.12)
∂M2

∂t
+ ∇ · vM2 = −g′(S(x))∇S · vM −

(
λ0 +

1
ta

)
M2 + λ0

∫
V

T (v, v′)M2(x, v′, t)dv′

+ bM12 − b

∫
V

T (v, v′)M12(x, v′, t)dv′.

Next, we have two possibilities: we can either integrate the equations (4.10) – (4.12) with respect of v to derive
moment equations as was done for 1D in [21], or we can use a scaling argument and asymptotic analysis. The
moment approach introduces higher order velocity moments into the moment equations, and consequently, we
cannot use the 1D method directly from [21]. We will discuss this issue in Section 5: here, we begin with the
parabolic scaling argument. First of all, we restrict consideration to the case of shallow gradients of the signal.
Roughly speaking, if the gradient of the signal is small, then the new internal variable (z1, z2) are close to zero
and consequently, the higher order moments M11, M12 are much smaller than the lower order moments and they
can be neglected (see [21][Lemma 6.2]). Hence equations (4.10) – (4.12) lead to the following equations

(4.13)
∂M

∂t
+ ∇ · vM = −λ0M + λ0

∫
V

T (v, v′)M(x, v′, t)dv′ + bM1 − b

∫
V

T (v, v′)M1(x, v′, t)dv′,

(4.14)
∂M1

∂t
+ ∇ · vM1 = −

(
λ0 +

1
te

)
M1 −

1
te
M2 + λ0

∫
V

T (v, v′)M1(x, v′, t)dv′,

(4.15)
∂M2

∂t
+ ∇ · vM2 = −g′(S(x))∇S · vM −

(
λ0 +

1
ta

)
M2 + λ0

∫
V

T (v, v′)M2(x, v′, t)dv′.

At present we consider a general turning kernel with the technical properties given in Section 4.1 and derive a
general macroscopic equation for the cellular density n(x, t) based on these.
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4.1. Properties of the turning kernel. The standing assumptions on the turning kernel T (v, v′) and the
mathematical consequences of them are stated here without proof. The interested reader can consult [32] for the
proofs of results in this section. Suppose that v ∈ V, where V ⊂ R

N is a bounded set symmetric with respect to
the origin. Denote K = {u ∈ L2(V ) |u ≥ 0} and let T ∈ L2(V × V ) be such that

(4.16) T (v, v′) ≥ 0,
∫

V

T (v, v′)dv = 1.

The assumptions (4.16) are natural as T denotes a probability of the velocity jump from v′ to v given that the
jump occurs. We will make use of the following assumptions on the kernel T :

(A1) There are functions u0 �≡ 0, φ, and ψ ∈ K with the properties that φ vanishes at most on a set of
Lebesgue measure zero, and such that for all (v, v′) ∈ V × V we have u0(v)φ(v′) ≤ T (v′, v) ≤ u0(v)ψ(v′).

(A2) Denote

Z = {f ∈ L2(V ) |
∫

V f(v)dv = 0}. Then sup
f∈Z,f �=0

∫
V (T (v, v′)f(v′))2dv′∫

V
f2(v)dv

< 1.

(A3)
∫

V
T (v, v′)dv′ = 1.

Define the integral operators T : K → K and T ∗ : K → K as:

T f =
∫

V

T (v, v′)f(v′)dv′, T ∗f =
∫

V

T (v′, v)f(v′)dv′.

Note, that T and T ∗ are compact and their spectral radius is 1. By virtue of (4.16) and (A3), both T and T ∗

have an eigenvalue 1. For our purposes, it will be convenient to define the operator A : L2(V ) → L2(V ) and its
adjoint A∗ : L2(V ) → L2(V ) as follows:

(4.17) Af = −f + T f, A∗f = −f + T ∗f.

The properties of A and A∗ are given in the following theorem.

Theorem 4.1. Let us suppose that the turning kernel T ∈ L2(V × V ) satisfies (4.16) and (A1)-(A3). Then

(i) 0 is a simple eigenvalue of A and the corresponding eigenfunction is φ(v) ≡ 1.

(ii) Let us denote µ2 = 1 − ‖T ‖<1>⊥ . Then all nonzero eigenvalues satisfy −2 < Reµ < −µ2 < 0, and to
within a scalar factor there is no other positive eigenfunction.

(iii) There is a decomposition L2(V ) =<1> ⊕ <1>⊥ and we have the estimate∫
V

ψAψdv ≤ −µ2‖ψ‖2

L2(V )
, for all ψ ∈<1>⊥ .

Proof. See [32] [Theorem 2.4].

4.2. Parabolic limit. To study the macroscopic behavior for large times one can use the parabolic scaling of
space and time, as described in [32, 49] and [21]. Let T = 1 sec, L = 1 mm and s0 = 10µ/sec be the characteristic
scales for space, time and velocity, respectively. Let N0 be a scale factor for the particle density, and define the
dimensionless variables

(4.18) x̂ =
x

L
t̂ =

t

T
v̂ =

v

s0
M̂ =

M

N0
M̂1 =

M1

N0
and M̂2 =

M2

N0
.

Denote λ̂0 ≡ λ0T, b̂ ≡ bT , and t̂a ≡ ta
T

and introduce the scaling parameter ε. The parabolic scales of space and
time are given by

(4.19) T1 =
1
ε2
T, L1 =

1
ε

s0
L/T

L,
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and using these, the dimensionless equations take the form

(4.20) ε2
∂M̂

∂t̂
+ ε∇ · v̂M̂ = −λ̂0M̂ + b̂M̂1 + λ̂0

∫
V

T̂ (v̂, v̂′)M̂(x̂, v̂′, t̂)dv̂′ − b̂

∫
V

T̂ (v̂, v̂′)M̂1(x̂, v̂′, t̂)dv̂′,

(4.21) ε2
∂M̂1

∂t̂
+ ε∇ · v̂M̂1 = −

(
λ̂0 +

1
t̂e

)
M̂1 −

1
t̂e
M̂2 + λ̂0

∫
V

T̂ (v̂, v̂′)M̂1(x̂, v̂′, t̂)dv̂′,

(4.22) ε2
∂M̂2

∂t̂
+ ε∇ · v̂M̂2 = −εg′(Ŝ(x̂))∇Ŝ · v̂M̂ −

(
λ̂0 +

1
t̂a

)
M̂2 + λ̂0

∫
V

T̂ (v̂, v̂′)M̂2(x̂, v̂′, t̂)dv̂′.

For simplicity, we drop the hats in equations (4.20) – (4.22) and we use the notation (4.17) to rewrite the equations
(4.20) – (4.22) in the following form.

(4.23) ε2
∂M

∂t
+ ε∇ · vM = λ0AM − bAM1,

(4.24) ε2
∂M1

∂t
+ ε∇ · vM1 = λ0AM1 −

1
te
M1 −

1
te
M2,

(4.25) ε2
∂M2

∂t
+ ε∇ · vM2 = −εg′(S(x))∇S · vM + λ0AM2 −

1
ta
M2.

As was argued in [21], one can assume that all dimensionless parameters in (4.23) – (4.25) are O(1). Moreover,
assuming the regular perturbation expansion

M = M0 + εM1 + ε2M2 + · · · , M1 = M0
1 + εM1

1 + ε2M2
1 + · · · , M = M0

2 + εM1
2 + ε2M2

2 + · · · ,

substituting this into equations (4.23) – (4.25) and comparing terms of equal order in ε, we obtain

ε0 : λ0AM0 − bAM0
1 = 0(4.26)

λ0AM0
1 − 1

te
M0

1 − 1
te
M0

2 = 0(4.27)

λ0AM0
2 − 1

ta
M0

2 = 0(4.28)

ε1 : ∇ · vM0 = λ0AM1 − bAM1
1(4.29)

∇ · vM0
1 = λ0AM1

1 − 1
te
M1

1 − 1
te
M1

2(4.30)

∇ · vM0
2 + g′(S(x))∇S · vM0 = λ0AM1

2 − 1
ta
M1

2(4.31)

ε2 :
∂M0

∂t
+ ∇x · vM1 = A

(
λ0M

2 − bM2
1

)
.(4.32)

By virtue of Theorem 4.1, the operator A has no positive eigenvalues, and consequently (4.28) implies that
M0

2 = 0. Similarly, (4.27) implies that M0
1 = 0. Finally, using Theorem 4.1 again, we see that M0 is independent

of velocity, i.e. M0 ≡M0(x, t). Therefore (4.30) – (4.31) give

M1
1 = (teλ0A− I)−1

M1
2 and M1

2 = ta (taλ0A− I)−1
g′(S(x))∇S · vM0.

From (4.29) we obtain

(4.33) AM1 =
1
λ0

∇ · vM0 +
bta
λ0

A (teλ0A− I)−1 (taλ0A− I)−1
g′(S(x))∇S · vM0.
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Theorem 4.1 guarantees that the inverses of the operators (teλ0A − I) and (taλ0A− I) exist, but A is singular.
However, as 0 is a simple eigenvalue of A, one can define the pseudo-inverse operator B as

B = (A |<1>⊥)−1 ,

and then (4.33) reads

(4.34) M1 = B 1
λ0

∇ · vM0 +
bta
λ0

(teλ0A− I)−1 (taλ0A− I)−1
g′(S(x))∇S · vM0 + C,

where C ∈<1>, i.e. C is independent of v. Finally, (4.32) implies that the left hand side

∂M0

∂t
+ ∇ · vM1

is in the range of the operator A. Consequently, using a Fredholm alternative, the left hand side must be L2-
orthogonal to the constant function, i. e.

∫
V

∂M0

∂t
+ ∇ · vM1dv = 0.

This, together with (4.34), implies that

(4.35) |V |∂M
0

∂t
+

1
λ0

∇ ·
∫

V

vBv · ∇M0dv +
bta
λ0

∇ ·
∫

V

v (teλ0A− I)−1 (taλ0A− I)−1
v · g′(S(x))M0∇Sdv = 0.

Note that the term
∫

V
∇ · vCdv vanishes as C is independent of v. If we define the diffusion tensor and the

chemotactic tensor as

(4.36) D = − 1
|V |λ0

∫
V

v ⊗ Bvdv,

(4.37) χ(S) =
bta

|V |λ0
g′(S(x))

∫
V

v ⊗ (teλ0A− I)−1 (taλ0A− I)−1 vdv.

then (4.35) reads

(4.38)
∂M0

∂t
= ∇ · (D∇M0 −M0 χ(S)∇S).

Finally (3.18) implies that the density of cells n is given by

(4.39) n(x, t) =
∫

Z

∫
V

p(x, v, z, t)dvdz =
∫

V

M(x, v, t)dv = |V |M0(x, t) + O(ε),

and if we neglect the O(ε) term (4.38) leads to the following general evolution equation for n :

(4.40)
∂n

∂t
= ∇ · (D∇n− nχ(S)∇S).

This equation has the form of a classical chemotaxis equation (3.5), but the diffusion and the chemotactic sen-
sitivity are tensors. It reduces to the classical chemotaxis equation provided that the tensors (4.36) and (4.37)
are isotropic, i.e. provided that D and χ(S) are scalar multiples of the identity. This occurs for many turning
kernels T – see e.g. [32][Theorem 3.5]. For example, velocity jumps in E. coli have the property that the speed of
individuals is essentially constant during the motion and the new direction is chosen randomly. For this system
we consider the velocity jump process with fixed speed s, but variable direction, where the turn angle distribution
is constant, i.e.,

(4.41) V = sSN−1, T (v, v′) =
1
|V | ,
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where SN−1 is the unit sphere in R
N . Then we can easily evaluate all terms in the equation (4.40). Direct

calculation gives B = −I, and consequently, (4.36) implies that

(4.42) D = − 1
|V |λ0

∫
V

v ⊗ Bvdv =
1

|V |λ0

∫
V

v ⊗ vdv =
s2

Nλ0
I.

Similarly, one has (teλ0A− I)−1 = (1 + teλ0)−1I +C1 and (taλ0A− I)−1 = (1 + taλ0)−1I +C2 where C1 and C2

are independent of v. Consequently, (4.37) implies

χ(S) =
bta

|V |λ0
g′(S(x))

∫
V

v ⊗ (teλ0A− I)−1 (taλ0A− I)−1
vdv =

(4.43) =
bta

|V |λ0
g′(S(x))

1
1 + teλ0

1
1 + taλ0

∫
V

v ⊗ vdv = g′(S(x))
bs2ta

Nλ0(1 + teλ0)(1 + taλ0)
.

Hence, using (4.42) and (4.43) in (4.40), we derive the chemotaxis equation (3.5) for n, viz.,

(4.44)
∂n

∂t
=

s2

Nλ0
�n−∇ ·

(
n g′(S(x))

bs2ta
Nλ0(1 + teλ0)(1 + taλ0)

∇S
)

This generalizes the derivation in [21] to an arbitrary space dimension N . To make the connection with the 1D
problem more precise, consider the transport equation (4.5) in 1D with the turning kernel given by (4.41). Then
there are only two velocities s and −s and the right hand side of (4.5) can be written in the form

− (λ0 − bz1) p+
∫

V

(λ0 − bz1)T (v, v′)p(x, v′, z, t)dv′ = (λ0 − bz1)
[
−p(x, v, t) +

1
2

(p(x, v, t) + p(x,−v, t))
]

=

(4.45) =
(
λ0

2
− b

2
z1

)
[−p(x, v, t) + p(x,−v, t)] .

Consequently, we can write (4.5) in the form of 1D-equations (3.30) and (3.31) where the parameters λ0, b are
divided by 2. The factor of 1/2 represents the probability of a jump in either direction, whereas in the earlier
formulation particles were forced to reverse direction when they turned. With this in mind (4.44) is equivalent
to (3.34) for N = 1.

5. Hyperbolic models for chemotaxis. In this section we discuss another method for the derivation of
macroscopic equations which is related to the method used in [21]. However, the correspondence with [21] is
not complete because movement in higher dimensions introduces velocity moments that reflect the correlations
between different directions. In Section 4, we derived the equations (4.13) – (4.15) for internal moments M, M1

and M2 defined by (4.6) – (4.8). For simplicity, we consider only the isotropic turning kernel given by (4.41).
Then (4.13) – (4.15) read as follows.

(5.1)
∂M

∂t
+ ∇ · vM = −λ0M + λ0

1
|V |

∫
V

M(x, v′, t)dv′ + bM1 − b
1
|V |

∫
V

M1(x, v′, t)dv′,

(5.2)
∂M1

∂t
+ ∇ · vM1 = −

(
λ0 +

1
te

)
M1 −

1
te
M2 + λ0

1
|V |

∫
V

M1(x, v′, t)dv′,

(5.3)
∂M2

∂t
+ ∇ · vM2 = −g′(S(x))∇S · vM −

(
λ0 +

1
ta

)
M2 + λ0

1
|V |

∫
V

M2(x, v′, t)dv′.

To analyze these we define the following moments

(5.4) n(x, t) =
∫

V

∫
R2
p(x, v, z, t)dzdv =

∫
V

M(x, v, t)dv,
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(5.5) ni(x, t) =
∫

V

∫
R2
zip(x, v, z, t)dzdv =

∫
V

Mi(x, v, t)dv, i ∈ {1, 2},

(5.6) jk(x, t) =
∫

V

∫
R2
vkp(x, v, z, t)dzdv =

∫
V

vkM(x, v, t)dv, k ∈ {1, . . . , N},

(5.7) jk
i (x, t) =

∫
V

∫
R2
vkzip(x, v, z, t)dzdv =

∫
V

vkMi(x, v, t)dv, k ∈ {1, . . . , N}, i ∈ {1, 2},

(5.8) jkl(x, t) =
∫

V

∫
R2
vkvlp(x, v, z, t)dzdv =

∫
V

vkvlM(x, v, t)dv, k, l ∈ {1, . . . , N},

(5.9) jkl
i (x, t) =

∫
V

∫
R2
vkvlzip(x, v, z, t)dzdv =

∫
V

vkvlMi(x, v, t)dv, k, l ∈ {1, . . . , N}, i ∈ {1, 2}.

Here, n(x, t) is the particle density, n1(x, t), n2(x, t) are moments with respect to the internal variables and
jk(x, t), k = 1, . . . , N are fluxes. Multiplying the equations (5.1) – (5.3) by 1, v1, v2, . . . , vN respectively and
integrating the resulting equation with respect to v, we obtain the following 3(N + 1) moment equations

(5.10)
∂n

∂t
+

N∑
k=1

∂jk

∂xk
= 0,

(5.11)
∂jk

∂t
+

N∑
l=1

∂jkl

∂xl
= −λ0j

k + bjk
1 , k = 1, 2, . . . , N,

(5.12)
∂n1

∂t
+

N∑
k=1

∂jk
1

∂xk
= − 1

te
n1 −

1
te
n2,

(5.13)
∂jk

1

∂t
+

N∑
l=1

∂jkl
1

∂xl
= −

(
λ0 +

1
te

)
jk
1 − 1

te
jk
2 , k = 1, 2, . . . , N,

(5.14)
∂n2

∂t
+

N∑
k=1

∂jk
2

∂xk
= − 1

ta
n2 − g′(S(x))∇S ·

⎛
⎜⎜⎜⎜⎝

j1

j2

...
jN

⎞
⎟⎟⎟⎟⎠ ,

(5.15)
∂jk

2

∂t
+

N∑
l=1

∂jkl
2

∂xl
= −

(
λ0 +

1
ta

)
jk
2 − g′(S(x))∇S ·

⎛
⎜⎜⎜⎜⎝

jk1

jk2

...
jkN

⎞
⎟⎟⎟⎟⎠ , k = 1, 2, . . . , N.

This system of 3(N + 1) equations for 3(N + 1) moments n, ni, j
k, jk

i , i = 1, 2, k = 1, 2, . . . , N, also contains
higher-order (internal-)velocity moments jkl, jkl

i , k, l ∈ {1, . . . , N}, i = 1, 2. To close this system we choose the
moment closure

(5.16) jkl =
s2

N
nδkl, jkl

i =
s2

N
niδkl, for k, l ∈ {1, . . . , N}, i ∈ {1, 2}
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and then equations (5.10) – (5.15) take the form

(5.17)
∂n

∂t
+

N∑
k=1

∂jk

∂xk
= 0,

(5.18)
∂jk

∂t
+
s2

N

∂n

∂xk
= −λ0j

k + bjk
1 , k = 1, 2, . . . , N,

(5.19)
∂n1

∂t
+

N∑
k=1

∂jk
1

∂xk
= − 1

te
n1 −

1
te
n2,

(5.20)
∂jk

1

∂t
+
s2

N

∂n1

∂xk
= −

(
λ0 +

1
te

)
jk
1 − 1

te
jk
2 , k = 1, 2, . . . , N,

(5.21)
∂n2

∂t
+

N∑
k=1

∂jk
2

∂xk
= − 1

ta
n2 − g′(S(x))∇S ·

⎛
⎜⎜⎜⎜⎝

j1

j2

...
jN

⎞
⎟⎟⎟⎟⎠ ,

(5.22)
∂jk

2

∂t
+
s2

N

∂n2

∂xk
= −

(
λ0 +

1
ta

)
jk
2 − s2

N
g′(S(x))

∂S

∂xk
n, k = 1, 2, . . . , N.

This system is closed and one can follow the analysis from [21] to derive (on a time scale O(1) sec, and a space
scale O(1 − 10) mm) a hyperbolic version of the classical chemotaxis equation

(5.23)
1
λ0

∂2n

∂t2
+
∂n

∂t
=

s2

Nλ0
�n−∇ ·

(
g′(S(x))

bs2ta
Nλ0(1 + teλ0)(1 + taλ0)

∇S n
)
.

In particular, equation (5.23) is equivalent to (3.33) if λ0 and b are interpreted according to (4.45) and according
to comments after (4.45). Moreover, the asymptotic behavior of the damped wave equation (5.23) is given by
(4.44), which suggests that the moment closure (5.16) is appropriate. This closure is used in [31] for systems
without internal dynamics, and some estimates of the error are given there.

6. An illustrative numerical example. The macroscopic descriptions of chemotaxis embodied in either
the modified classical chemotaxis equation (5.23) or the classical chemotaxis equation (4.44) are approximations
to the original transport equation and the stochastic process describing movement that underlies it. The computa-
tional results for 1D reported in [21] show that the macroscopic equations capture the behavior of the microscopic
movement process very well, and here we show the results for a multidimensional example.

We suppose that all parameters are dimensionless, and we choose b = 1, te = 0, ta = 1, λ0 = 1, g = Identity,
and use the turning kernel given by (4.41) with s = 0.1. This incorporates the fact that s is small on the relevant
macroscopic time and space scales. We consider the motion of the individuals in the rectangle Ω = [0, 20]× [0, 10]
with the stationary continuous piecewise linear signal S(x) given as follows: S(x) is 0 on the boundaries of
rectangle Ω, S(x) is piecewise linear with maximum at the point (12, 6) and S(12, 6) = 8. We suppose that all
cells are initially at the point (10,3), i.e., that n(x, 0) is proportional to Dirac delta function δ(10,3). Moreover, we
assume that all individuals are perfectly adapted at t = 0, and we use no-flux boundary conditions.

To simulate the random walk of individuals, we consider an ensemble of 106 particles. Each particle is
described by its position (x1, x2), its internal state y and its velocity s(cos(θ), sin(θ)) where θ is the direction of
travel. We use a small time step dt = 0.01 (i.e., the unbiased turning frequency divided by 100). During each
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Fig. 6.1. The time evolution of the density of individuals for times T = 200 (upper) and T = 2000, (lower). The solution
of (4.44) is on the left and the stochastic simulation with 106 individuals is shown on the right. The values of parameters, initial
condition and the underlying signal are given in the text.

time step the particle moves with speed s in the chosen direction θ and we integrate the internal dynamics to find
the change of y. At the end of each time step, a random number from [0, 1] is generated and compared with the
probability of the turn λ(y)dt. If the turn occurs, a random angle θ ∈ [0, 2π) is generated and during the next
time step the bacterium moves with the new velocity s(cos(θ), sin(θ)).

In Figure 6.1 we compare the results of the stochastic simulation of the random walk with the solutions of the
classical chemotaxis equation (4.44). We see that the macroscopic equation gives quantitatively similar results to
the stochastic simulations.

7. Discussion. Our purpose here was to derive the macroscopic chemotaxis equation for the evolution of
a population by incorporating internal dynamics for the detection and processing of, and response to, external
signals. This led to the equations (4.40), (4.44) and (5.23), but required that we use sufficiently simple descriptions
of the internal dynamics that capture the essential characteristics of microscopic behavior. In particular, we
were able to show how characteristics of the signal transduction and behavioral response are reflected in the
chemotactic sensitivity. The motivating problem was the behavior of flagellated bacteria, but the mathematical
approach presented here can be applied to any biological system provided that we appropriately describe the
signal transduction and response. Of course the entire analysis is based on the premise that the transport
equation describes the microscopic process, and this is known to be true for non-interacting walkers in a fixed
signal field. Whether the same equation still holds when the walkers interact directly or produce and degrade
a diffusible signal is an open question. Other restrictions used in the analysis are that the signal gradient be
small in an appropriate sense, and that the internal dynamics be close to equilibrium. The limitations of the
former remain to be determined, but the limitation of the latter may not be so important unless adaptation is
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slow compared to the time scale of movement.

The derivation of macroscopic evolution equations for the density becomes more difficult if one attempts to
incorporate more details of signal transduction and the behavioral response. Even if one assumes that the internal
dynamics are close to equilibrium so that a linearized response can be used, still, it is difficult to extract the slow
linear modes and the dependence of the response on the signal from the nonlinear evolution equations. As we
indicated earlier, the signal transduction network in E. coli is very complicated, but the input-output behavior
is very simple, and as we showed in [21], the cartoon model reflects the dynamics very well. In general this will
not be true, and methods for systematically incorporating complex internal dynamics are needed.

Another difficulty arises in dense aggregates, in which the walkers interact directly, or perhaps indirectly via
the signal field. Chemotaxis equations for indirectly-interacting particles have been derived by Stevens [65], who
shows that the chemotaxis system can be derived in suitable limits. That analysis is based on the assumption
that the microscopic velocity of cells is proportional to the gradient of a smoothed density of the attractant. This
assumes that cells measure the gradient and speed up in proportion to its magnitude, but as we described earlier,
this is not the case for bacteria, nor for many amoeboid cells. A different approach in which finite-volume effects
are included formally is given in [50]. The derivation of continuum limits of interacting particle systems based
on a more realistic description of how cells sample the environment and process the signals involves significant
technical difficulties and has not been done at present. Harder still is the problem in which the cells interact
directly via receptors on their membranes or, in the bacterial case, via interaction of their flagella. Here it is
not even known whether continuum limits exist in general, but heuristics-based continuum models for bacterial
populations have been used very effectively [41].

The technical difficulties involved in rigorous derivation of continuum limits suggest that alternate computa-
tional approaches may be useful, and in the remainder of this section we describe such methods. In the case of
bacterial pattern formation (see Section 2.3), a naive approach would be to simulate the random walk of bacteria
using direct Monte Carlo simulation, but there are several obstacles to doing this. Firstly, the number of bacteria
is very large: there are approximately 50K bacteria initially, they divide every 2 hours, and the time scale of
interest is days. Secondly, the present models of signal transduction can involve 20 or more ordinary differential
equations, and these equations have to be solved along the trajectory of each bacterium. Consequently, the direct
Monte Carlo simulation of the experimental setup is currently not possible on the time scale of interest. Thus
there is a need to develop new computational techniques, and the bacterial colony patterns can be viewed as a
test problem of the predictive power of any method for lifting cell-level behavior to macroscopic, population-level
descriptions.

Let us begin with a simple example to illustrate the ideas behind a new approach [39] (one method was
already applied to bacterial chemotaxis in [60]). Suppose that the evolution of the density of individuals n is
given by the known partial differential equation

(7.1)
∂n

∂t
= L(n)

where L is an operator on a suitable Banach space, and suppose we are interested in the steady states of the
system. A naive approach would be to use a PDE solver for (7.1), and compute the solution for times t large
enough that further changes in time are acceptably small. However, in the case of PDEs, we can also use what
is usually a faster approach – we can use a Newton-Raphson type of iterative method to solve the steady state
equation L(n) = 0. Of course either approach is impossible without L(n), but in such cases we assume that the
microscopic model of the dynamics provides a time-stepper — a method to compute the state of the system
at time t + dt from the state of the system at time t. This can then be used together with a Newton-GMRES
iteration for finding the steady states and doing bifurcation analysis in the absence of L(n) (see e.g. [42], [39] and
references therein).

If we are interested in the slow dynamics of the system, one way to speed up the direct simulations is to
use what is called the coarse integration method. The idea of coarse integration is sketched in Figure 7.1(a).
It is based on explicitly assuming that there is a separation of time scales such that higher-order moments of a
distribution relax quickly to functionals of lower-order moments, in particular, in the bacterial case we assume
that the system is described in terms of density only on a long time scale. The analysis in earlier sections shows
when this is appropriate under the conditions used to derive the chemotaxis equation. The simplest computational
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Fig. 7.1. (a) Schematic illustration of the coarse integration method. First we run the full microscopic model for a short time
dt, which will allow the dynamics to approach a ‘slow manifold’ (dot-dashed line) parametrized by density. Then we evolve the
system on the slow manifold for another short time δt and use the information about density in the interval [t + dt, t + dt + δt] to
find the density at time t + dt + δt + T by an appropriate extrapolation.
(b) Schematic illustration of the gap-tooth scheme. We choose a macroscopic space step dx and macroscopic meshpoints xk that
are dx apart. To determine the values of the density n(xk) at meshpoints, we construct a small domain (a ‘tooth’) around each
meshpoint, and we run the stochastic simulation only in the teeth with suitably chosen boundary conditions.( Figure from [60], with
permission.)

algorithm is as follows. First we run the full Monte Carlo simulation for a short time dt (see Figure 7.1 (a)), which
will allow us to compute the density of individuals n(t+ dt) from the density of individuals n(t). This will allow
the fast processes to equilibrate, i.e., to approach a ‘slow manifold’ parametrized by the density n. Next we run
the dynamics on the slow manifold for another short time interval δt to find density n(t+dt+ δt). Finally, we use
simple extrapolation based on the values of n in the interval [t+dt, t+dt+ δt] to find the value of the solution at
time t+dt+δt+T where T is a macroscopic time. Theoretical justification of the projective integration was done
in the case of ordinary differential equations with a gap in the spectrum in [25], and the method was applied with
a Monte Carlo simulation of bacterial chemotaxis in [60]. Clearly, the method can speed up the computations
provided T � dt+ δt.

One can also reduce the simulations from large spatial domains to small ones using the gap-tooth scheme
[26, 56]. The idea is the following. Consider the one-dimensional problem as it is schematically drawn in Figure
7.1 (b). We choose a macroscopic space step dx and macroscopic meshpoints xk with distance dx apart. We are
interested at the values of the density of particles n(xk) at meshpoints, and to compute them we construct the
small domain (a tooth) around each meshpoint defined by the interval [xk − h, xk + h], and we run the stochastic
simulation only in teeth. Clearly, the method can speed up the computations provided dx� h and provided that
we can introduce good boundary conditions for each tooth (see e.g. [26], [56] and references there). Finally, we
can also combine the gap-tooth scheme with coarse integration to connect ”small space, short time” simulations
with ”large space, long time” evolution. This combination is called patch dynamics [39].

To summarize this discussion, if the direct simulations are too slow to obtain results in a reasonable amount
of time, one has to build some computational superstructure around the Monte Carlo simulator to answer macro-
scopic questions computationally using microscopic models. The advantages and disadvantages of the computa-
tional methods presented above require further investigation, and this is ongoing research.
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