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PENGFEI GUAN, XI-NAN MA, AND FENG ZHOU

1. introduction

This paper is a sequel to [15] on geometric fully nonlinear partial differential equations
associated to the Christoffel-Minkowski problem. In [15], we considered the existence of
convex solutions of the following equation:

Sk(uij + uδij) = ϕ on S
n,(1.1)

where Sk is the k-th elementary symmetric function and uij the second order covariant
derivatives of u with respect to orthonormal frames on S

n, and where a function u ∈ C2(Sn)
is called convex if

(1.2) (uij + uδij) > 0, on S
n.

It is known that (e.g., see [24, 11]) ∀v ∈ C2(Sn),∫
Sn

xmSk(vij(x) + v(x)δij)dx = 0, ∀m = 1, 2, ..., n + 1.

A necessary condition for equation (1.1) to have a solution is∫
Sn

xiϕ(x)dx = 0, ∀i = 1, 2, ..., n + 1.(1.3)

Condition (1.3) is also sufficient for the Minkowski problem, which corresponding to k = n

in equation (1.1). In this case, equation (1.1) is the Monge-Ampère equation corresponding
to the Minkowski problem:

(1.4) det(uij + uδij) = ϕ on S
n.

The Minkowski problem has been settled completely by Nirenberg [21] and Pogorelov [22]
for in dimension 2 and by Cheng-Yau [5] and Pogorelov [24] for general dimensions. From
their work, for any positive function ϕ ∈ C2(Sn) satisfying the necessary condition (1.3),
Monge-Ampère equation (1.4) always has a convex solution.

Research of the first author was supported in part by an NSERC Discovery Grant. Research of the second
and third author were supported by Shanghai Priority Academic Discipline, the grants from Ministry of
Eduction of China and NSF of China.
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At the another end k = 1, equation (1.1) corresponds to the Christoffel problem and it
has the following simple form:

(1.5) ∆u + nu = ϕ on S
n,

where ∆ is the Beltrami-Laplace operator of the round unit sphere. The operator L = ∆+n

is linear and self-adjoint. From the linear elliptic theory, equation (1.1) is solvable if and only
if ϕ is orthogonal to the kernel of the operator L = ∆ + n. Since n is the second eigenvalue
of the operator −∆, the kernel of L is exactly span{x1, ..., xn+1}. Therefore, condition
(1.3) is necessary and sufficient for the solvability of equation (1.5). In general, a solution
to equation (1.5) is not necessary convex (this is the point Christoffel overlooked while
he made the premature claim in [7]). Alexandrov [1] constructed some positive analytic
function ϕ satisfying (1.3) such that equation (1.1) has no convex solution. The convexity
of solution u to equation (1.1) is equivalent to a positive lower bound of the eigenvalues
of spherical Hessian (uij + uδij) which in turn are exactly the principal radii of convex
hypersurface with u as its support function. Alexandrov’s examples indicate that when
k < n, there exists no such bound. Equation (1.5) is linear on S

n, a necessary and sufficient
condition for the existence of convex solutions of (1.5) was found by reading off from the
explicit construction of the Green function by Firey [8].

For the intermediate cases 1 < k < n, the situation is much more delicate. Let’s first
define the admissible solutions for equation (1.1). Let S be the space consisting all n × n

symmetric matrices. For any symmetric matrix A ∈ S, Sk(A) is defined to be Sk(λ), where
λ = (λ1, ..., λn) are the eigenvalues of A. Γk defined in [9] can be written equivalently as
the connected cone in S containing the identity matrix determined by

(1.6) Γk = {A ∈ S : S1(A) > 0, ..., Sk(A) > 0}.

By the works of [3], [17] and [19], k-convex functions are the natural class of functions where
equation (1.1) is elliptic.

Definition 1.1. For 1 ≤ k ≤ n, let Γk as in (1.6). If u ∈ C2(Sn), we say u is k-convex if
W (x) = {uij(x) + u(x)δij} is in Γk for each x ∈ S

n. We observe that u is convex on S
n if

u is n-convex. Furthermore, u is called an admissible solution of (1.1) if u is k-convex and
satisfies (1.1).

When k �= n, the class of admissible solutions of equation (1.1) is much larger (e.g.,
[3]). We treated the intermediate Christoffel-Minkowski problem in [15] as a convexity
problem for fully nonlinear equations and a sufficient condition was found there. The
convexity is a fundamental problem in the theory of nonlinear elliptic partial differential
equations. Equation (1.1) is a special form of some general fully nonlinear equations related
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to Weingarten curvature functions. One particular class of equations is the following,
Sk(uij + δiju)
Sl(uij + δiju)

= ϕ on S
n,(1.7)

where 0 ≤ l < k ≤ n. It is known that admissible solutions of equation (1.7) are exactly
k-convex functions. In the special case k = n, the equation is related to the problem of
prescribing j-th Weingarten curvature Wj(κ) of a convex hypersurface M ⊂ R

n+1 proposed
by Alexandrov [2] and Chern [6], where Wj(κ) = Sj(κ1, · · · , κn) and κ = (κ1, · · · , κn)
the principal curvatures of M . When k = n, admissible solutions of (1.7) are exactly
convex functions, the problem was addressed in [11]. For general 0 ≤ l < k ≤ n, equation
(1.7) corresponds to the problem of prescribing quotient of Weingarten curvatures on outer
normals of a convex hypersurface in R

n+1. In this case, admissible solutions of (1.7) are
not necessary convex. As a first result of this paper, we establish a convexity criterion for
equation (1.7).

Theorem 1.2. (Full Rank Theorem) Suppose u is an admissible solution of (1.7) such
that W = (uij +δiju) is semi-definite on S

n. If {(ϕ −1
k−l )ij +ϕ

−1
k−l δij} is semi-positive definite

everywhere on S
n, then W is positive definite on S

n.

Another objective of this paper is regarding the existence of admissible solutions of equa-
tion (1.1). We note that when k = 1, equation (1.1) is exactly (1.5). (1.3) is the necessary
and sufficient condition for (1.1) to be solvable. When k = n, admissible solutions of (1.1)
are exactly convex functions. The existence of admissible solutions follows from the works
of Nirenberg, Cheng-Yau and Pogorelov. Though a sufficient condition for the existence
of convex solution of equation (1.1) was given in [15], the general existence of admissible
solution of equation (1.1) was left open. Here, we prove that condition (1.3) is also the
necessary and sufficient condition for the existence of admissible solutions of equation (1.1).

Theorem 1.3. (Existence) Let ϕ(x) ∈ C1,1(Sn) be a positive function, suppose ϕ satisfies
(1.3), then equation (1.1) has a solution. More precisely, there exist constant C depending
only on n, α,min ϕ, and ||ϕ||C1,1(Sn) and a C3,α (∀ 0 < α < 1) k-convex solution u of (1.1)
such that:

||u||C3,α(Sn) ≤ C.(1.8)

Furthermore, if ϕ(x) ∈ C l,γ(Sn) (l ≥ 2, γ > 0), then u is C2+l,γ. If ϕ is analytic, u is
analytic.

Alexandrov [2] and Pogorelov [23] studied some general form of fully nonlinear geomet-
ric equations on S

n under various structural conditions. They obtained some regularity
estimates under the assumption that solution is convex. We will extend their regularity
estimates for admissible solutions in Proposition 2.7. We will also prove a uniqueness re-
sult for admissible solutions in Proposition 3.1. The uniqueness result, together with the
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regularity estimates, enable us to establish existence of admissible solutions under general
structural conditions in section 3 via degree argument. One consequence of our existence
results in section 3 together with Theorem 1.2 is the following.

Theorem 1.4. Suppose there is an automorphic group G of S
n which has no fixed points.

Suppose ϕ ∈ C∞(Sn) is positive and G-invariant. If in addition {(ϕ −1
k−l )ij +ϕ

−1
k−l δij} is semi-

positive definite everywhere on S
n, then equation (1.7) has a G-invariant convex smooth

solution u. In particular, for such ϕ, there is a strictly convex smooth hypersurface M ⊂
R

n+1 such that the quotient of Weingarten curvatures Wn−l(κ)
Wn−k(κ) on the outer normals of M

is exactly ϕ.

We remark that the reason to impose group invariant condition in Theorem 1.4 is the
same as in [11], since for l �= 0, equation (1.7) does not have variational structure. For this
reason, it is found in [11] that condition (1.3) is neither sufficient, nor necessary for the
existence of admissible solutions of (1.7).

The organization of the paper is as follows. In the next section, we will establish a priori
estimates for general fully nonlinear equations on S

n under some structure conditions. In
section 3, we prove a general existence result containing Theorem 1.3 as a special case.
Theorem 1.4 will also be proved there. Finally, we prove Theorem 1.2 in section 4.

Acknowledgement: Part of the work was done while the first author was visiting Max-
Planck Institute for Mathematical Sciences in Leipzig in 2001. He would like to thank
Professor J. Jost for the invitation and MPI for the hospitality. We would also like to thank
J. Urbas for bringing question regarding the existence of admissible solution of equation
(1.1) to us at Isaac Newton Institute in March 2001.

2. Structural conditions and regularity estimates

We establish the a priori estimates for admissible solutions of equation (1.1) in this
section. We note that for any solution u(x) of (1.1), u(x) + l(x) is also a solution of the
equation for any linear function l(x) =

∑n+1
i=1 aixi. We will confine ourselves to solutions

satisfying the following orthogonal condition∫
Sn

xiu dx = 0, ∀i = 1, 2, ..., n + 1.(2.1)

When u is convex, it is a support function of some convex body Ω. Condition (2.1) implies
that the Steiner point of Ω coincides with the origin.

In the case of k = 1, equation (1.1) is a linear, a priori estimates for solution u satisfies
(2.1) follows from standard linear elliptic theory. When k = n, equation (1.1) is the Monge-
Ampère equation, the admissible solutions are exactly the convex functions, the a priori
estimates were obtained in [21, 5, 24]. For the intermediate case 1 < k < n, the a priori
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estimates for convex solutions of equation (1.1) were proved in [15]. Here we establish a
priori estimates for admissible solutions. We note equation (1.1) will be uniformly elliptic
once C2 estimates are established for u (see [3]). By the Evans-Krylov Theorem and the
Schauder theory, one may obtain higher derivative estimates for u. Therefore, we only need
to get C2 estimates for u.

In fact, the a priori estimates we will prove are valid for a general class of fully nonlinear
elliptic equations on S

n. We consider the following equation:

(2.2) Q(uij + uδij) = ϕ̃ on S
n.

Following [3], we specify some structure conditions so that (2.2) is elliptic. Let Γ be
an open symmetric subset in R

n, that is, for λ ∈ Γ and any permutation σ, σ · λ =
(λσ(1), · · · , λσ(n)) ∈ Γ. We assume

(2.3) Γ is a convex cone and Γ ⊆ Γ1,

where Γ1 = {λ | ∑n
j=1 λj > 0}. It is clear that (1, 1, · · · , 1) ∈ Γ. We assume that Q is a C2

function defined in Γ ⊆ Γ1, and satisfies the following conditions in Γ:

(2.4)
∂Q

∂λi
(λ) > 0 for i = 1, 2, . . . , n and λ ∈ Γ,

(2.5) Q is concave in Γ,

and for M > 0, there is δM > 0 such that for λ ∈ Γ with Q(λ) ≤ M ,

(2.6)
n∑

i=1

∂Q

∂λi
(λ) ≥ δM .

Set

Γ̃ = {W | W is a symmetric matrix whose eigenvalues λ = (λ1, · · · , λn) ∈ Γ}.
We note that since Γ ⊂ Γ1, for W ∈ Γ̃, the eigenvalues λi of W satisfies |λi| ≤ (n− 1)λmax,
where λmax is the largest eigenvalue of W . From a result in section 3 in [3], Q is concave
in Γ implies Q is concave in Γ̃ and condition (2.4) implies ( ∂Q

∂Wij
) is positive definite for all

W = (Wij) ∈ Γ̃. If there is no confusion, we will also simply write Γ for Γ̃ in the rest of the
paper.

Remark 2.1. We note that S
1
k
k and general quotient operator (Sk

Sl
)

1
k−l (0 ≤ l < k ≤ n)

satisfy the structure conditions (2.3)-(2.6) with Γ = Γk and one may take δM = 1 for all
M > 0.

Definition 2.2. We say a function u ∈ C2(Sn) is Γ-admissible if W (x) = (uij(x) +
δiju(x)) ∈ Γ for all x ∈ S

n. If u is Γ-admissible and satisfies equation (2.2), we call u

an admissible solution of (2.2).



6 PENGFEI GUAN, XI-NAN MA, AND FENG ZHOU

The condition (2.4) is a monotonicity condition which is natural for the ellipticity of
equation (2.2), as we will see that the concavity condition (2.5) is also crucial for C2 and
C2,α estimates. The condition (2.6) appears artificial, but it follows from some natural
conditions on Q. For example, in order that equation (2.2) has an admissible solution for
some ϕ̃ with sup ϕ̃ = M , there must exist W ∈ Γ such that Q(W ) = M . By conditions
(2.3)-(2.5), we have

(2.7) Q(t0I) ≥ M, for some t0 > 0,

where I is the identity matrix.

Lemma 2.3. Suppose that Q satisfies (2.3)-(2.5). Set Qij(W ) = ∂Q(W )
∂Wij

for W = (Wij) ∈ Γ.

(1) If Q satisfies (2.7) and

(2.8) limt→+∞Q(tW ) > −∞, for all W ∈ Γ,

then there is δM > 0 depending on Q and t0 in (2.7) such that (2.6) is true.
(2) If Q satisfies

(2.9) limt→+∞Q(tW1 + W2) > −∞, for all W1,W2 ∈ Γ,

then
∑

i,j Qij(W )Wij > 0 for all W ∈ Γ.

We also refer [14] for related treatment of (2.3)-(2.5) and (2.7).
Proof. By the concavity condition (2.5),

(2.10) Q(tI) ≤ Q(W ) +
∑
i,j

Qij(W )(tδij − Wij).

The concavity condition (2.5) and (2.8) implies that d
dtQ(tW ) ≥ 0 for all W ∈ Γ. That is∑

i,j Qij(W )Wij ≥ 0 for all W ∈ Γ. By the monotonicity condition (2.4), there exists ε > 0
such that Q(2t0I) ≥ M + ε. Since Q(W ) ≤ M , (2.6) follows from (2.10) by letting t = 2t0.

We now prove the second statement in the lemma. Since Γ is open, for each W ∈ Γ, there
is δ > 0 such that W̃ = W−δI ∈ Γ. In turn, tW̃+δI ∈ Γ for all t > 0. Set g(t) = Q(tW̃+δI).
By concavity of Q and condition (2.9), we have g

′
(1) ≥ 0, that is,

∑
i,j Qij(W )W̃ij ≥ 0. In

turn, by condition (2.4) we get
∑

i,j Qij(W )Wij ≥ δ
∑

i Q
ii(W ) > 0. �

We now switch our attention to a priori estimates of solutions of equation (2.2).

Proposition 2.4. Suppose Q satisfies the structural conditions (2.3)- (2.6), suppose u ∈
C4(Sn) is an admissible solution of equation (2.2), then there is C > 0 depending only on
Q(I) in (2.7), δ in (2.6) and ‖ϕ‖C2 such that

0 < λmax ≤ C,(2.11)
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where λmax is the largest eigenvalue of the matrix (uij + δiju). In particular, for any
eigenvalue λi(x) of (uij(x) + δiju(x)),

(2.12) |λi(x)| ≤ (n − 1)C, ∀x ∈ S
n.

Proof. When Q = S
1
k
k and u is convex, this is the Pogorelov type estimates (e.g., [24]).

Here we will deal with general admissible solutions of Q under the structure conditions. It
seems that the moving frames method is more appropriate for equation (2.2) on S

n.
(2.12) follows from (2.11) and the fact Γ ⊂ Γ1. Also the positivity of λmax follows from

the assumption that Γ ⊂ Γ1. We need to estimate the upper bound of λmax. Assume the
maximum value of λmax is attained at a point x0 ∈ S

n and in the direction e1, so we can
take λmax = W11 at x0. We choose an orthonormal local frame e1, e2, ..., en near x0 such
that uij(x0) is diagonal, so W = {uij + δiju} is also diagonal at x0.

For the standard metric on S
n, we have the following commutator identity

W11ii = Wii11 − Wii + W11.

By the assumption, (Qij) is positive definite. Since W11ii ≤ 0 at x0, , it follows that at this
point

0 ≥ QiiW11ii = QiiWii11 − QiiWii + W11Q
ii.(2.13)

By concavity condition (2.5),∑
i

Qii(W )Wii ≤
∑

i

Qii(W ) + Q(W ) − Q(I) =
∑

i

Qii(W ) + ϕ̃ − Q(I).(2.14)

Next we apply the twice differential in the e1 direction to equation (2.2), we obtain

QijWijk1 = ∇1ϕ̃,

Qij,rsWij1Wrs1 + QijWij11 = ϕ̃11.

By the concavity of Q, at x0 we have

QiiWii11 ≥ ϕ̃11.(2.15)

Combining (2.14), (2.15) and (2.13), we see that

0 ≥ ϕ̃11 −
∑

i

Qii − ϕ̃ + W11

n∑
i=1

Qii + Q(I).

By assumption, ϕ̃ ≤ M for some M > 0. From condition (2.6),
∑n

i=1 Qii ≥ δM > 0. It
follows that W11 ≤ C. �

Corollary 2.5. If u ∈ C4(Sn) is an admissible solution of equation (1.1) (so W (x) =
(uij(x) + u(x)δij) ∈ Γk,∀x ∈ S

n), then 0 < maxx∈Sn λmax(x) ≤ C.
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In order to obtain a C2 bound, we need a C0 bound for u. In the case of the Minkowski
problem (k = n), such crucial C0 bound was established by Cheng-Yau in [5] and for general
k with convexity assumption in [15]. The arguments rely on the convexity assumption. Here,
we use the a priori bounds in Proposition 2.4 to get a C0 bound for general admissible
solutions of equation (2.2). The similar argument was also used in [11].

Lemma 2.6. For any Γ-admissible function u, there is a constant C depending only on n,
maxx∈Sn λmax(x) and maxSn |u| such that,

‖u‖C2 ≤ C.(2.16)

Proof. The bound on the second derivatives follows directly the fact W (x) = (uij(x) +
δiju(x)) ∈ Γ ⊂ Γ1. The bound on the first derivatives follows from interpolation. �

Now we establish the C0-estimate. The proof is based on a rescaling argument.

Proposition 2.7. Suppose Q satisfies structure conditions (2.3)-(2.6). If u is an admissible
solution of equation (2.2) and u satisfies (2.1), then there exists a positive constant C

depending only on n, k, ‖ϕ̃‖C2 and Q such that,

||u||C2 ≤ C.(2.17)

Proof. We only need to get a bound on ‖u‖C0 . Suppose there is no such bound, then
∃ul(l = 1, 2, ...) satisfying (2.1), there is a constant C̃ independent of l, and Q(W l) = ϕ̃l

(where W l = (ul
ij + δiju

l)), with ϕ̃l satisfies

||ϕ̃l||C2 ≤ C̃, sup ϕ̃ ≤ 1, ||ul||L∞ ≥ l.

Let vl = ul

||ul||L∞ , then

||vl||L∞ = 1.(2.18)

By Proposition 2.4, we have for any eigenvalue λi(W l(x)) of W l(x),

|λi(W l(x))| ≤ (n − 1)λmax(W l) ≤ C,(2.19)

where λmax(W l) is the maximum of the largest eigenvalues of W l on S
n and the constant

C is independent of l. Let W̃ l = (vl
ij + δijv

l) and from (2.19) vl satisfies the following
estimates

|λi(W̃ l(x))| ≤ (n − 1)λmax(W̃ l) ≤ C

||ul||L∞
−→ 0.(2.20)

In particular, ∆vl + nvl → 0.
On the other hand, by Lemma 2.6, (2.18) and (2.20), we have

||vl||C2 ≤ C.
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Hence, there exists a subsequence {vli} and a function v ∈ C1,α(Sn) satisfying (2.1) such
that

vli −→ v in C1,α(Sn), with ||v||L∞ = 1.(2.21)

In the distribution sense we have

∆v + nv = 0 on S
n.

By linear elliptic theory, v is in fact smooth. Since v satisfies (2.1), we conclude that, v ≡ 0
on S

n. This is a contradiction to (2.21). �

We have established C2 a priori estimates for equation (2.2). The higher regularity
would follow from the Evans-Krylov Theorem and the Schauder theory if we can ensure the
uniform ellipticity for equation (2.2). That can be guaranteed by the following condition,

(2.22) limW→∂ΓQ(W ) = 0.

Theorem 2.8. Suppose Q satisfies the structure conditions (2.3)-(2.6) and condition (2.22),
and ϕ̃ > 0 on S

n, then for each 0 < α < 1, there exists a constant C depending only on
n, α,min ϕ̃, ‖ϕ̃‖C1,1(Sn) and Q such that

||u||C3,α(Sn) ≤ C,(2.23)

for all admissible solution u of (2.2) satisfying (2.1). If in addition Q ∈ C l for some l ≥ 2,
then there exists a constant C depending only on n, l, α,min ϕ̃, ‖ϕ̃‖Cl,1(Sn) and Q such that

||u||Cl+1,α(Sn) ≤ C.(2.24)

In particular, the estimate (2.24) is true for any admissible solution of (1.1) and (2.1) with
ϕ̃ = ϕ

1
k .

Proof. We verify that equation (2.2) is uniformly elliptic. By Proposition 2.7 and condition
(2.22), the set {W (x) ∈ Γ| Q(W (x)) = ϕ̃(x),∀x ∈ S

n} is compact in Γ. Since Q ∈ C1,
equation (2.2) is uniformly elliptic by condition (2.4). �

3. Existence via degree theory

The main object of this section is to establish existence result for equation (1.1). With the
a priori estimates established in the previous section, one may wish to apply the continuity
method to get the existence. This leads to study the linearized operator L of the Hessian
operator in (1.1). L is self-adjoint (e.g., [5] and [24]). In the cases k = 1, n, the kernel
of L is exactly the span of the linear coordinate functions x1, x2, ..., xn+1. By the stan-
dard implicit function theorem, L is surjective to some appropriate function space modulus
span{x1, ..., xn+1}. The continuity method yields the existence. For the case 1 < k < n,
we are not able to verify that the kernel of L is span{x1, ..., xn+1}, though it contains
span{x1, ..., xn+1}.
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We will use degree theory argument for the existence. In fact, the argument applies
to equation (2.2). In order to compute the degree, we need some uniqueness result. The
following uniqueness result is known as when u is a support function of some convex body,
e.g., by Alexandrov’s moving planes method. But we need to treat the uniqueness prob-
lem for general admissible solutions. If equation (2.2) carries a variational structure, such
uniqueness result can be proved by integral formulas as in [6]. Here we use a simple a priori
estimates argument to obtain a general uniqueness result in this direction.

Proposition 3.1. Suppose that Q satisfies condition (2.4) and (2.5). Assume that

(3.1)
∑
i,j

Qij(W )Wij > 0 for each W ∈ Γ with Q(W ) = Q(I).

If u is an admissible solution of equation of the following equation

Q(uij + δiju) = Q(I) on S
n,(3.2)

then u = 1 +
∑n+1

j=1 ajxj for some constants a1, · · · , an+1.

Proof. By concavity, for W = (Wij) ∈ Γ,

(3.3) Q(I) ≤ Q(W ) +
∑
i,j

Qij(W )(δij − Wij) = Q(W ) +
n∑
i

Qii(W ) −
n∑
i,j

Qij(W )Wij .

Also by the symmetry, Q11(I) = · · · = Qnn(I) =
Pn

i=1 Qii(I)
n .

If u is an admissible solution of (3.2), we know u ∈ C2 by definition. By the Evans-
Krylov Theorem and the Schauder theory, u ∈ C∞. Let W (x) = (uij(x) + δiju(x)) and

H(x) = traceW (x) = ∆u(x) + nu(x). Since Qjj(I) =
Pn

i=1 Qii(I)
n ,∀j, by concavity, for all

x ∈ S
n,

Q(W (x)) ≤ Q(I) +
∑
i,j

Qij(I)(Wij(x) − δij) = Q(I) +
∑n

i=1 Qii(I)
n

H(x) −
n∑

i=1

Qii(I).

As Q(W (x)) = Q(I) and
∑n

i=1 Qii(I) > 0, we get

(3.4) H(x) ≥ n, ∀x ∈ S
n.

We want to show H(x) ≤ n for all x ∈ S
n. Assume the maximum value of H(x) is

attained at a point x0 ∈ S
n. We choose an orthonormal local frame e1, e2, ..., en near x0

such that uij(x0) is diagonal, so W = {uij + δiju} is also diagonal at x0. For the standard
metric on S

n, we have the following commutator identity

Hii = ∆Wii − nWii + H.
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Since Q(W (x)) = Q(I), it follows from (3.3) that
∑n

i=1 Qii(W ) ≥ ∑n
i=1 Qii(W )Wii. As

Hii ≤ 0 at x0,

0 ≥
n∑

i=1

Qii(W )Hii =
n∑

i=1

Qii(W )∆Wii − n

n∑
i=1

Qii(W )Wii + H

n∑
i=1

Qii(W )

≥
n∑

i=1

Qii(W )∆Wii − n

n∑
i=1

Qii(W )Wii + H

n∑
i=1

Qii(W )Wii.(3.5)

Applying ∆ to Q(W ) = Q(I), and by the concavity of Q, we obtain at x0,

Qii(W )∆Wii ≥ ∆Q(I) = 0.(3.6)

Combining (3.6) and (3.5),

n

n∑
i=1

Qii(W )Wii ≥ H

n∑
i=1

Qii(W )Wii.

By assumption (3.1),
∑n

i=1 Qii(W )Wii > 0, we get n ≥ H(x0). Combining (3.4), we
conclude that H(x) = n,∀x ∈ S

n. Therefore, u − 1 ∈ span{x1, · · · , xn+1}. �

Remark 3.2. By Lemma 2.3, conditions (2.3)-(2.5) and (2.9) imply (3.1). We note that
conditions (2.5) and (2.22) implies Q(W ) ≥ 0 for all W ∈ Γ. Therefore, (3.1) follows from
(2.3)-(2.5) and (2.22).

For α > 0, l ≥ 0 integer, we set,

Al,α = {f ∈ C l,α(Sn) : f satisfying (2.1)}.(3.7)

For R > 0 fixed, let

OR = {w ∈ Al,α : w is Γ-admissible and ‖w‖Cl,α(Sn) < R}.(3.8)

In addition to the structural conditions on Q in the previous section, we need some further
conditions on Q in (2.2) to ensure general existence result. We assume that there is a smooth
strictly monotonic positive function F defined in R+ = (0,∞), such that ∀u ∈ C2(Sn) with
W = (uij + uδij) ∈ Γk, Q satisfies the orthogonal condition,

(3.9)
∫

Sn

F (Q(W (x)))xm = 0,∀m = 1, 2..., n + 1.

Proposition 3.3. Suppose Q satisfies the structural conditions (2.3)-(2.6), (2.22) and
the orthogonal condition (3.9). Then for any positive ϕ̃ ∈ C1,1(Sn) with ϕ(x) = F (ϕ̃(x))
satisfies (2.1), equation (2.2) has an admissible solution u ∈ A3,α,∀0 < α < 1 satisfying

||u||C3,α(Sn) ≤ C,

where C is a constant depending only on Q, α,min ϕ, and ||ϕ||C1,1(Sn). Furthermore, if
ϕ(x) ∈ C l,γ(Sn) (l ≥ 2, γ > 0), then u is C2+l,γ.
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Proof. For each fixed 0 < ϕ̃ ∈ C∞(Sn) with ϕ = F (ϕ̃) satisfying (2.1), and for 0 ≤ t ≤ 1,
we define

Tt(u) = F (Q({uij + uδij})) − tϕ − (1 − t)Q(I).(3.10)

Tt is a nonlinear differential operator which maps Al+2,α into Al,α. If R is sufficiently large,
Tt(u) = 0 has no solution on ∂OR by the a priori estimates in Theorem 2.8. Therefore, the
degree of Tt is well-defined (e.g., [20]). As degree is a homotopic invariant,

deg(T0,OR, 0) = deg(T1,OR, 0).

At t = 0, by Remark 3.2 and Proposition 3.1, u = 1 is the unique solution of (2.2) in OR.
We may compute the degree using formula

deg(T0,OR, 0) =
∑
µj>0

(−1)βj ,

where µj are the eigenvalues of the linearized operator of T0 and βj its multiplicity. Since
Q is symmetric, it is easy to show that the linearized operator of T0 at u = 1 is

L = ν(∆ + n),

for some constant ν > 0. As the eigenvalues of the Beltrami-Laplace operator ∆ on S
n

are strictly less than −n, except for the first two eigenvalues 0 and −n. There is only one
positive eigenvalue of L with multiplicity 1, namely µ = nν. Therefore,

deg(T1,OR, 0) = deg(T0,OR, 0) = −1.

That is, there is an admissible solution of equation (2.2). The regularity and estimates of
the solution follows directly from Theorem 2.8. �

Proof of Theorem 1.3. Theorem 1.3 follows from the above Proposition, since Q(W ) =

S
1
k
k (W ) satisfies conditions (2.3)-(2.6) and (2.22). The orthogonal condition (3.9) follows

from (1.3). �

Remark 3.4. Since the C2 a priori bound in Proposition 2.7 is independent of the lower
bound of ϕ̃ (we note it is used only for the C2,α estimate), Proposition 3.3 can be used to
prove existence of C1,1 solutions to equation (2.2) in the degenerate case. To be more precise,
if Q satisfies the structural conditions (2.3)-(2.6), (2.22) and the orthogonal condition (3.9).
Then for any nonnegative ϕ̃ ∈ C1,1(Sn) with ϕ(x) = F (ϕ̃(x)) satisfies (2.1), equation (2.2)
has a solution u ∈ C1,1(Sn). For equation (1.1), we can do a little better. One can prove
that if ϕ ≥ 0 satisfying (1.3) and ϕ

1
k−1 ∈ C1,1, then equation (1.1) has a C1,1 solution (see

[13] and [12] for the similar results for the degenerate Monge-Ampère equation). For this,
we only need to rework Proposition 2.4. Instead, we estimate H = ∆u + nu. Following the
same lines of proof of Proposition 2.4, the desired estimate can be obtained using two facts:
(1), for f = ϕ

1
k−1 , we have |∇f(x)|2 ≤ Cf(x) for all x ∈ S

n, where C depending only on



THE CHRISTOFEL-MINKOWSKI PROBLEM III 13

C1,1 norm of f ; (2), for k > 1 and Q = S
1
k
k ,

∑n
i=1 Qii(W ) ≥ 1

kS
− 1

k(k−1)

k (W )S
1

k−1

1 (W ) (for a
proof, see Fact 3.5 on page 1429 in [16]).

The structural conditions (2.3)-(2.6) and (2.22) are satisfied for the quotient operator
Q(W ) = (Sk(W )

Sl(W ) )
1

k−l with Γ = Γk for any 0 ≤ l < k. Also, constant is the unique solution
of Q(W ) = 1 in A2,α by Proposition 3.1. Unfortunately, the orthogonal condition (3.9) is
not valid in general by some simple examples in [11]. Nevertheless, as in [11], we have the
following existence result.

Proposition 3.5. Suppose Q satisfies the structural conditions (2.3)-(2.6) and (2.22).
Assume ϕ̃ ∈ C l,1(Sn) (l ≥ 1) is a positive function. Suppose there is an automorphic
group G of S

n which has no fixed points. If ϕ̃ is invariant under G, i.e., ϕ̃(g(x)) = ϕ̃(x)
for all g ∈ G and x ∈ S

n. Then there exists a G-invariant admissible function u ∈ C l+2,α

(∀0 < α < 1), such that u satisfies equation (2.2). Moreover, there is a constant C depending
only on α,min ϕ̃, and ‖ϕ̃‖Cl,1(Sn), such that

||u||Cl+1,α(Sn) ≤ C.

In particular, for any positive G-invariant positive ϕ ∈ C1,1(Sn), equation (1.7) has a k-
convex G-invariant solution.

Proof. We only sketch the main arguments of the proof. Since any G-invariant function is
orthogonal to span{x1, ..., xn+1} by [11]. Therefore, u = 1 is the unique G-invariant solution
of (2.2) by Proposition 3.1. We again use degree theory. This time, we consider G-invariant
function spaces:

Ãl,α = {f ∈ C l,α(Sn) : f is G-invariant},
and

ÕR = {w is k-convex, w ∈ Ãl,α : ‖w‖Cl,α(Sn) < R}.
One may compute that the degree of Q is not vanishing as in the proof of Theorem 3.3

(see also [11]). �

We will prove Theorem 1.2 in the next section. Here will use it together with Proposition
3.5 to prove Theorem 1.4.

Proof Theorem 1.4. For 0 ≤ t ≤ 1, we define ϕt = (1 − t + tϕ
−1
k−l )−k+l. Certainly

ϕt is G-invariant and {(ϕt

−1
k−l )ij + ϕt

−1
k−l δij} is semi-positive definite everywhere on S

n. We
consider equation

(3.11)
Sk

Sl
(ut

ij + utδij) = ϕt.
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Applying degree theory as in the proof of Proposition 3.5, there exists admissible solution
ut of equation (3.11) for each 0 ≤ t ≤ 1. When t = 0, u0 = 1 is the unique solution by
Proposition 3.1 and it is convex. By the continuity of degree argument and Theorem 1.2,
ut is convex for all 0 ≤ t ≤ 1. �

4. A convexity criterion for spherical quotient equations

Now we turn to the convexity of the solutions of equation (1.7). In order to prove Full
Rank Theorem 1.2, as in [15], we need to establish the following deformation lemma for
the Hessian quotient equation (1.7). The proof below follows lines in [15] by explore some
special algebraic structural properties of the quotient operator. The proof involves some
direct but lengthy computations. In a forthcoming article, we will deal with this type of
convexity problem for general elliptic concave fully nonlinear equations.

For W = {uij + δiju}, we rewrite (1.7) in the following form

F (W ) =
Sk(W )
Sl(W )

= ϕ on S
n,(4.1)

and let

Fαβ :=
∂F

∂Wαβ
, Fαβ,rs :=

∂2F

∂Wαβ∂Wrs
.(4.2)

We note that Fαβ is positive definite for W ∈ Γk.

Lemma 4.1. (Deformation Lemma) Let O ⊂ S
n be an open subset, suppose u ∈ C4(O) is

a solution of (1.7) in O, and that the matrix W = {Wij} is semi-positive definite. Suppose
that there is a positive constant C0 > 0, such that for a fixed integer (n − 1) ≥ m ≥ k,
Sm(W (x)) ≥ C0 for all x ∈ O. Let φ(x) = Sm+1(W (x)) and let τ(x) be the largest
eigenvalue of {−(ϕ− 1

k−l )ij(x) − δijϕ
− 1

k−l (x)}. Then there are constants C1, C2 depending
only on ||u||C3 , ||ϕ||C1,1 , n and C0, such that the following differential inequality holds in
O,

(4.3)
n∑

α,β

Fαβ(x)φαβ(x) ≤ (k − l)(n − m)ϕ
k−l+1

k−l (x)Sm(W (x))τ(x) + C1|∇φ(x)| + C2φ(x),

where Fαβ are defined by (4.2).

Proof. The proof will follow mainly the arguments in [15], which in turn were motivated
by Caffarelli-Friedman [4], Korevaar-Lewis [18].

For two functions defined in an open set O ⊂ S
n, y ∈ O, we say that h(y) � k(y) provided

there exist positive constants c1 and c2 such that

(h − k)(y) ≤ (c1|∇φ| + c2φ)(y).(4.4)
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We also write h(y) ∼ k(y) if h(y) � k(y) and k(y) � h(y). Next, we write h � k if the
above inequality holds in O, with the constant c1, and c2 depending only on ||u||C3 , ||ϕ||C2 ,
n and C0 (independent of y and O). Finally, h ∼ k if h � k and k � h. We shall show that

n∑
α,β=1

Fαβφαβ � (k − l)(n − m)ϕ
k−l+1

k−l Sm(W )τ.(4.5)

For any z ∈ O, let λ1 ≥ λ2... ≥ λn be the eigenvalues of W at z. Since Sm(W ) ≥ C0 > 0
and u ∈ C3, for any z ∈ S

n, there is a positive constant C > 0 depending only on ||u||C3 ,
||ϕ||C2 , n and C0, such that λ1 ≥ λ2... ≥ λm ≥ C.

Let G = {1, 2, ...,m} and B = {m+1, ..., n} be the “good” and “bewared” sets of indices.
Define Sk(W |i) = Sk((W |i)) where (W |i) means that the matrix W excluding the i-column
and i-row, and (W |ij) means that the matrix W excluding the i, j columns and i, j rows. Let
ΛG = (λ1, ..., λm) be the “good” eigenvalues of W at z, for the simplicity of the notations,
we also write G = ΛG if there is no confusion. In the following, all calculations are taken
at the point z using the relation “�”, with the understanding that the constants in (4.4)
are under control.

For each z ∈ O fixed, we choose a local orthonormal frame e1, ..., en so that W is diagonal
at z, and Wii = λi,∀i = 1, ..., n. Let

Sij =
∂Sm+1(W )

∂Wij
, Sij,rs =

∂2Sm+1(W )
∂Wij∂Wrs

.

We note that Sij is diagonal at the point since W is diagonal. Notice that φα =∑
i,j SijWijα, we find that (as W is diagonal at z),

0 ∼ φ(z) ∼ (
∑
i∈B

Wii)Sm(G) ∼
∑
i∈B

Wii, (so Wii ∼ 0, i ∈ B).(4.6)

This relation yields that, ∀1 ≤ t ≤ m,

St(W ) ∼ St(G), St(W |j) ∼
{

St(G|j), if j ∈ G;
St(G), if j ∈ B.

(4.7)

St(W |ij) ∼

⎧⎪⎨
⎪⎩

St(G|ij), if i, j ∈ G;
St(G|j), if i ∈ B, j ∈ G;
St(G), if i, j ∈ B, i �= j,

Also,

0 ∼ φα ∼ Sm(G)
∑
i∈B

Wiiα ∼
∑
i∈B

Wiiα.(4.8)

According to [15],

Sij ∼
{

Sm(G), if i = j ∈ B;
0, otherwise,

(4.9)
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Sij,rs =

⎧⎪⎨
⎪⎩

Sm−1(W |ir), if i = j, r = s, i �= r;
−Sm−1(W |ij), if i �= j, r = j, s = i;
0, otherwise.

(4.10)

Since φαα =
∑

i,j [S
ij,rsWrsαWijα + SijWijαα], combining (4.6), (4.8) and (4.10), it follows

that for any α ∈ {1, 2, ..., n},

φαα =
∑
i�=j

Sm−1(W |ij)WiiαWjjα −
∑
i�=j

Sm−1(W |ij)W 2
ijα +

∑
i

SiiWiiαα

= (
∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i,j∈B
i�=j

+
∑

i,j∈G
i�=j

)Sm−1(W |ij)WiiαWjjα

− (
∑
i∈G
j∈B

+
∑
i∈B
j∈G

+
∑

i,j∈B
i�=j

+
∑

i,j∈G
i�=j

)Sm−1(W |ij)W 2
ijα +

∑
i

SiiWiiαα.(4.11)

From (4.8) and (4.7), we have

∑
i∈B
j∈G

Sm−1(W |ij)WiiαWjjα ∼
[ ∑

j∈G

Sm−1(G|j)Wjjα

]∑
i∈B

Wiiα ∼ 0.(4.12)

Similarly, ∑
i∈G
j∈B

Sm−1(W |ij)WiiαWjjα ∼ 0.(4.13)

By (4.8), ∀i ∈ B fixed and ∀α,

−Wiiα ∼
∑
j∈B
j �=i

Wjjα.

Then, (4.7) yields, ∑
i,j∈B
i�=j

Sm−1(W |ij)WiiαWjjα ∼ −Sm−1(G)
∑
i∈B

W 2
iiα,(4.14)

and ∑
j∈G,i∈B

Sm−1(W |ij)W 2
ijα ∼

∑
i∈B,j∈G

Sm−1(G|j)W 2
ijα.(4.15)

Inserting (4.7), (4.12)-(4.15) into (4.11), we obtain as in [15],

φαα ∼
∑

i

SiiWiiαα − 2
∑
i∈B
j∈G

Sm−1(G|j)W 2
ijα − Sm−1(G)

∑
i,j∈B

W 2
ijα.(4.16)
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So we have

∑
α,β

Fαβφαβ =
n∑

α=1

Fααφαα ∼ Sm(G)
n∑

α=1

∑
i∈B

FααWiiαα

−2
n∑

α=1

∑
i∈B
j∈G

Sm−1(G|j)FααW 2
ijα − Sm−1(G)

n∑
α=1

∑
i,j∈B

FααW 2
ijα.(4.17)

Since F is homogeneous of order k − l,
∑

α FααWαα = (k − l)ϕ. Commuting the covariant
derivatives, it follows that

n∑
α=1

∑
i∈B

FααWiiαα =
n∑

α=1

∑
i∈B

Fαα(Wααii + Wii − Wαα)

∼
n∑

α=1

∑
i∈B

FααWααii − (n − m)(k − l)ϕ.(4.18)

Now we compute
∑n

α=1 FααWααii for i ∈ B. Differentiating the equation (4.1), we have

ϕi =
∑
α,β

FαβWαβi, ϕii =
∑

α,β,r,s

Fαβ,rsWαβiWrsi +
∑
α,β

FαβWαβii.

So for any i ∈ B, we get

n∑
α=1

FααWααii = ϕii −
∑
α�=β

[
Sk−2(W |αβ)

Sl
− 2

Sk−1(W |α)Sl−1(W |β)
S2

l

− SkSl−2(W |αβ)
S2

l

+ 2
SkSl−1(W |α)Sl−1(W |β)

S3
l

]
WααiWββi

+ 2
n∑

α=1

[
Sk−1(W |α)Sl−1(W |α)

S2
l

− SkS
2
l−1(W |α)
S3

l

]
W 2

ααi

+
∑
α�=β

[
Sk−2(W |αβ)

Sl
− SkSl−2(W |αβ)

S2
l

]
W 2

αβi.(4.19)
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By (4.6)-(4.10), we regroup it as

n∑
α=1

FααWααii ∼ ϕii +
∑
α�=β

[
Sk−2(W |αβ)

Sl(G)
− SkSl−2(W |αβ)

S2
l (G)

]
W 2

αβi

+
∑
α∈B

[
Sk−2(G)
Sl(G)

− 2
Sk−1(G)Sl−1(G)

S2
l (G)

− Sk(G)Sl−2(G)
S2

l (G)

+ 2
Sk(G)S2

l−1(G)
S3

l (G)

]
W 2

ααi −
∑
α�=β

α,β∈G

[
Sk−2(G|αβ)

Sl(G)
− 2

Sk−1(G|α)Sl−1(G|β)
S2

l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)

]
WααiWββi

+ 2
n∑

α=1

[
Sk−1(W |α)Sl−1(W |α)

S2
l (G)

− Sk(G)S2
l−1(W |α)

S3
l (G)

]
W 2

ααi.(4.20)

It follows that

n∑
α=1

Fααφαα ∼ Sm(G)
∑
i∈B

ϕii − (n − m)(k − l)Sm(G)ϕ

+ Sm(G)
∑
i∈B

[∑
α∈B

{Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)
}W 2

ααi

−
∑
α�=β

α,β∈G

{Sk−2(G|αβ)
Sl(G)

− 2
Sk−1(G|α)Sl−1(G|β)

S2
l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)
}WααiWββi

+ 2
∑
α∈G

{Sk−1(G|α)Sl−1(G|α)
S2

l (G)
− Sk(G)S2

l−1(G|α)
S3

l (G)
}W 2

ααi

+
∑
α�=β

{Sk−2(W |αβ)
Sl(G)

− Sk(G)Sl−2(W |αβ)
S2

l (G)
}W 2

αβi

⎤
⎦

− 2
n∑

α=1

∑
i∈B
j∈G

Sm−1(G|j)FααW 2
ijα − Sm−1(G)

n∑
α=1

∑
i,j∈B

FααW 2
ijα.(4.21)

We first treat the following three terms in the above formula.
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Set

A = Sm(G)
∑
i∈B

∑
α�=β

Sk−2(W |αβ)
Sl(G)

W 2
αβi − Sm(G)

∑
i∈B

∑
α�=β

Sk(G)Sl−2(W |αβ)
S2

l (G)
W 2

αβi

−2
n∑

α=1

∑
i∈B
j∈G

Sm−1(G|j)FααW 2
ijα.(4.22)

We want to show that

A � Sm(G)
∑
i∈B

∑
α�=β

α,β∈B

[
Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)

]
W 2

αβi

−2
∑
i∈B

∑
α∈G

[
Sm−1(G|α)Sk−1(G|α)

Sl(G)
− Sk(G)Sm−1(G|α)Sl−1(G|α)

S2
l (G)

]
W 2

ααi.(4.23)

Indeed, since

Fαα =
Sk−1(W |α)

Sl(G)
− Sk(W )Sl−1(W |α)

S2
l (G)

,(4.24)

by the definition of A, we have

S2
l (G)A = Sm(G)

∑
i∈B

( ∑
α�=β

α,β∈G

+
∑
α�=β

α,β∈B

+2
∑
α∈B
β∈G

)[
Sl(G)Sk−2(W |αβ)

− Sk(G)Sl−2(W |αβ)
]
W 2

αβi

− 2
∑
i∈B

( ∑
α�=β

α,β∈G

+
∑

α=β∈G

+
∑
α∈B
β∈G

)[
Sl(G)Sm−1(G|β)Sk−1(W |α)

− Sk(G)Sm−1(G|β)Sl−1(W |α)
]
W 2

αβi.

Now we should prove that the two terms
∑

i∈B

∑
α∈B
β∈G

and
∑

i∈B

∑
α�=β

α,β∈G
in the right

hand side of previous equality are non-positive. More precisely, we prove that

∑
i∈B

∑
α∈B
β∈G

[
Sm(G)Sl(G)Sk−2(G|β) − Sm(G)Sk(G)Sl−2(G|β)

−Sl(G)Sm−1(G|β)Sk−1(G) + Sk(G)Sm−1(G|β)Sl−1(G)
]
W 2

αβi � 0.(4.25)
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As usual, we only need to prove that for each i ∈ B, the term is non-positive. Since for
β ∈ G, St(G) = St(G|β) + St−1(G|β)Wββ where t ∈ {l, l − 1, k, k − 1}. By the Newton-
MacLaurin inequality, we have

WββSl(G)Sk−2(G|β) − WββSk(G)Sl−2(G|β)

− Sl(G)Sk−1(G) + Sk(G)Sl−1(G)

= Wββ

[
Sl(G|β) + WββSl−1(G|β)

]
Sk−2(G|β)

− Wββ

[
Sk(G|β) + WββSk−1(G|β)

]
Sl−2(G|β)

−
[
Sl(G|β) + WββSl−1(G|β)

][
Sk−1(G|β) + WββSk−2(G|β)

]
+

[
Sk(G|β) + WββSk−1(G|β)

][
Sl−1(G|β) + WββSl−2(G|β)

]
= Sk(G|β)Sl−1(G|β) − Sl(G|β)Sk−1(G|β)

� 0.(4.26)

We now treat the term
∑

i∈B

∑
α�=β

α,β∈G
. We shall prove that it is also non-positive. In

fact, for any i ∈ B, we have

∑
α�=β

α,β∈G

[
Sl(G)Sm(G)Sk−2(G|αβ) − Sm(G)Sk(G)Sl−2(G|αβ)

− 2Sl(G)Sm−1(G|β)Sk−1(G|α) + 2Sk(G)Sm−1(G|β)Sl−1(G|α)
]

=
∑
α�=β

α,β∈G

Sm−1(G|β)
[
2{Sk(G)Sl−1(G|αβ) − Sl(G)Sk−1(G|αβ)}

+ Wββ{Sk(G)Sl−2(G|αβ) − Sl(G)Sk−2(G|αβ)}
]

=
∑
α�=β

α,β∈G

[
2Sm−1(G|β){Sk(G|αβ)Sl−1(G|αβ) − Sl(G|αβ)Sk−1(G|αβ)}

+ Sm(G){Sk(G|αβ)Sl−2(G|αβ) − Sl(G|αβ)Sk−2(G|αβ)}
+ Sm(G)(Wαα − Wββ){[Sk−2(G|αβ)Sl−1(G|αβ) − Sl−2(G|αβ)Sk−1(G|αβ)}

]
= 2

∑
α�=β

α,β∈G

Sm−1(G|β)
[
Sk(G|αβ)Sl−1(G|αβ) − Sl(G|αβ)Sk−1(G|αβ)

]

+ Sm(G)
∑
α�=β

α,β∈G

[
Sk(G|αβ)Sl−2(G|αβ) − Sl(G|αβ)Sk−2(G|αβ)

]

� 0.

Here we have used again the Newton-MacLaurin inequality. So (4.23) follows.
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Combining (4.21) and (4.23), we have
n∑

α=1

Fααφαα � Sm(G)
∑
i∈B

[
ϕii − k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
+ I1 + I2,(4.27)

where

I1 = Sm(G)
∑
i∈B

[ ∑
α∈B

Sk−2(G)
Sl(G)

W 2
ααi −

∑
α∈B

Sk(G)Sl−2(G)
S2

l (G)
W 2

ααi

]

− Sm−1(G)
n∑

α=1

∑
i,j∈B

FααW 2
ijα

+ Sm(G)
∑
i∈B

∑
α�=β

α,β∈B

[
Sk−2(G)
Sl(G)

− Sk(G)Sl−2(G)
S2

l (G)

]
W 2

αβi,

I2 =
∑
i∈B

{
(1 +

1
k − l

)Sm(G)
ϕ2

i

ϕ
− Sm(G)

∑
α�=β

α,β∈G

[Sk−2(G|αβ)
Sl(G)

− 2
Sk−1(G|α)Sl−1(G|β)

S2
l (G)

− Sk(G)Sl−2(G|αβ)
S2

l (G)
+ 2

Sk(G)Sl−1(G|α)Sl−1(G|β)
S3

l (G)

]
WααiWββi

+ 2Sm(G)
∑
α∈G

[Sk−1(G|α)Sl−1(G|α)
S2

l (G)
− Sk(G)S2

l−1(G|α)
S3

l (G)

]
W 2

ααi

− 2
∑
α∈G

[Sm−1(G|α)Sk−1(G|α)
Sl(G)

− Sk(G)Sm−1(G|α)Sl−1(G|α)
S2

l (G)

]
W 2

ααi

}
.

Claim. I1 � 0 and I2 � 0.

If the Claim is true, it follows from (4.27) that
n∑

α,β=1

Fαβφαβ � Sm(G)
∑
i∈B

[
ϕii − k − l + 1

k − l

ϕ2
i

ϕ
− (k − l)ϕ

]
.(4.28)

Thus (4.5) follows from (4.28).

Proof of the Claim. First by induction and Newton-MacLaurin inequality we have the
following inequality

Sm(G)Sl(G)Sk−2(G) − Sm−1(G)Sk−1(G)Sl(G)

− Sm(G)Sk(G)Sl−2(G) + Sk(G)Sl−1(G)Sm−1(G) ≤ 0.(4.29)

On the other hand, it is clear that by (4.24),

n∑
α=1

∑
i,j∈B

FααW 2
ijα ≥

∑
i∈B

∑
α,β∈B

[
Sk−1(G)
Sl(G)

− Sk(G)Sl−1(G)
Sl(G)2

]
W 2

αβi.(4.30)
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If we put (4.30) into I1 and using (4.29), we obtain

S2
l (G)I1 �

[
Sl(G)Sl(G)Sk−2(G) − Sm−1(G)Sk−1(G)Sl(G) − Sm(G)Sk(G)Sl−2(G)

+ Sk(G)Sm−1(G)Sl−1(G)
] ∑

i∈B

∑
α,β∈B

W 2
αβi

≤ 0.

To treat I2, it follows from (4.7) and (4.8),

ϕi ∼
∑
α∈G

FααWααi for i ∈ B.(4.31)

Using (4.24), we need only to verify the following inequality for each i ∈ B,∑
α∈G

{
2

Wαα

[
S2

l (G)Sk(G)Sk−1(G|α) − S2
k(G)Sl(G)Sl−1(G|α)

]
W 2

ααi

+
2

k − l
Sl(G)Sk(G)Sk−1(G|α)Sl−1(G|α)W 2

ααi

+
[
(1 − 1

k − l
)S2

k(G)S2
l−1(G|α) − (1 +

1
k − l

)S2
l (G)S2

k−1(G|α)
]
W 2

ααi

}

+
∑
α�=β

α,β∈G

[
S2

l (G)Sk(G)Sk−2(G|αβ) − Sl(G)S2
k(G)Sl−2(G|αβ)

+ (1 − 1
k − l

)S2
k(G)Sl−1(G|α)Sl−1(G|β)

+
2

k − l
Sl(G)Sk(G)Sk−1(G|α)Sl−1(G|β)

− (1 +
1

k − l
)S2

l (G)Sk−1(G|α)Sk−1(G|β)
]
WααiWββi

≥ 0.(4.32)

If we let f(λ) = −(Sk
Sl

)−
1

k−l (λ) for λ = (λ1, λ2, ..., λm), where each λi (1 ≤ i ≤ m) is
positive number. Then (4.32) is equivalent to the following inequality,

m∑
α,β=1

fαβWααiWββi + 2
m∑

α=1

fα

Wαα
W 2

ααi ≥ 0,(4.33)

where fαβ and fα represent its derivatives. By the results in [10, 25], the matrix (fαβ +
2fα

λα
δαβ) is semi-positive definite. Therefore (4.33) is valid. �
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