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1. Introduction

Curvature measure is one of the basic notion in the theory of convex bodies. Together
with surface area measures, they play fundamental roles in the study of convex bodies.
They are closely related to the differential geometry and integral geometry of convex
hypersurfaces. Let Ω is a bounded convex body in Rn+1 with C2 boundary M , the
corresponding curvature measures and surface area measures of Ω can be defined according
to some geometric quantities of M . Let κ = (κ1, · · · , κn) be the principal curvatures of
M at point x, let Wk(x) = Sk(κ(x)) be the k-th Weingarten curvature of M at x (where
Sk the k-th elementary symmetric function). In particular, W1 is the mean curvature, W2

is the scalar curvature, and Wn is the Gauss-Kronecker curvature. The k-th curvature
measure of Ω is defined as

Ck(Ω, β) :=
∫

β∩M
Wn−kdFn,

for every Borel measurable set β in Rn+1, where dFn is the volume element of the induced
metric of Rn+1 on M . Since M is convex, M is star-shaped about some point. We may
assume that the origin is inside of Ω. Since M and Sn is diffeomrphic through radial
correspondence RM . Then the k-th curvature measure can also be defined as a measure
on each Borel set β in Sn (e.g., see [21]):

Ck(M,β) =
∫

RM (β)
Wn−kdFn.

We note that Ck(M,Sn) is the k-th quermasintegral of Ω. Similarly, if M is strictly convex,
let r1, ..., rn be the principal radii of curvature of M , Pk = Sk(r1, · · · , rn). The k-th surface
area measure of Ω then can be defined as

Sk(Ω, β) :=
∫

β
Pkdσn,

Research of the first author was supported in part by NSERC Discovery Grant. Research of the third
author was supported by FokYingTung Eduction Foundation, the grants from MOC of China and NSFC
No.10371041.
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for every Borel set β in Sn, where dσn is standard volume element on Sn

The Minkowski problem is the problem of prescribing n-th surface area measure on
Sn, the Christoffel problem concerns the prescribing the 1-th surface area measure (e.g.,
see [1, 15, 18, 6, 20, 8, 3]). The general problem of prescribing surface area measures is
called the Christoffel- Minkowski problem, we refer [13] for an updated account. As for the
curvature measures, the problem of prescribing C0 is called the Alexandrov problem, which
can be considered as a counterpart to Minkowski problem. The existence and uniqueness
were obtained by Alexandrov [2]. The regularity of the Alexandrov problem in elliptic
case was proved by Pogorelov [19] for n = 2 and by Oliker [17] for higher dimension
case. The general regularity results (degenerate case) of the problem were obtained in
[10]. Apparently, the existence problem for curvature measures of Cn−k for general case
k < n has not been touched (see also note 8 on P. 396 in [21]). The main purpose of this
paper is to study the problem in a differential geometrical setting. The problem can be
explicitly stated as follow.

Curvature measure problem: Given a C2 positive function f on Sn. For each 0 ≤
k < n, find a convex hypersurface M as a graph over Sn, such that Cn−k(M,β) =

∫
β fdσ

for each Borel set β in Sn, where dσ is the standard volume element on Sn.

The problem is equivalent to solve certain curvature equation on Sn. If M is of class
C2, then

Cn−k(M,β) =
∫

RM (β)
SkdF =

∫
β

Skgdσn.(1.1)

where g is the density of dF respect to standard volume element dσn on Sn. The problem
of prescribing (n − k)-th curvature measure can be reduced to the following curvature
equation

Sk(κ1, κ2, ..., κn) =
f(x)
g(x)

, 1 ≤ k ≤ n on Sn(1.2)

Here we first encounter a similar difficulty as for the Christoffel-Minkowski problem in
[13]: the issue of convexity of solution when k < n. The another difficulty issue around
equation (1.2) is the lack of some appropriate a priori estimates for admissible solutions. At
a first glance, equation (1.2) is similar to the equation of prescribing Weingarten curvature
equation in [5, 12]. But, the appearance of g(x) (which implicitly involves the gradient of
solution) make the matter very delicate. It seems that the estimates in [5] and [12] can
not be obtained through similar way. Equation (1.2) was studied in an unpublished notes
[11] of Yanyan Li and the first author. The uniqueness and C1 estimates were established
for admissible solutions in [11]. But C2 estimates for equation (1.2) were missing (except
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for k = 1 and k = n, the first case follows from the theory of quasilinear equations, and
later case was dealt in [17, 10]).

Since equation (1.2) is originated in geometric problem in the theory of convex bodies,
the purpose of this paper is to find convex hypersurface M (as a graph over Sn) satisfying
equation (1.2). The followings are our main results.

Theorem 1.1. Suppose f(x) ∈ C2(Sn), f > 0, n ≥ 2, 1 ≤ k ≤ n − 1. If f satisfies the
condition

|X|n+1
k f(

X

|X|)
− 1

k is a strictly convex function in R
n+1 \ {0},(1.3)

then there exists a unique strictly convex hypersurface M ∈ C3,α, α ∈ (0, 1) such that it
satisfies (1.2).

When k = 1 or 2, the strict convex condition (1.3) can be weakened.

Theorem 1.2. Suppose k = 1, or 2 and k < n, and suppose f(x) ∈ C2(Sn) is a positive
function. If f satisfies

|X|n+1
k f(

X

|X| )
− 1

k is a convex function in R
n+1 \ {0},(1.4)

then there exists unique strictly convex hypersurface M ∈ C3,α, α ∈ (0, 1) such that it
satisfies equation (1.2).

Since the Alexandrov problem (Gauss curvature measure problem) has already been
solved [2, 19, 17, 10], Theorem 1.2 yields solutions to two other important measures, the
mean curvature measure and scalar curvature measure under convex condition (1.4). For
the existence of convex solutions, some condition on f is necessary, see Remark 2.5.

The plan of the paper is as follows. In section 2, we derive uniqueness and C1 bound
of the solutions of (1.2). Theorem 1.1 will be proved in section 3. The novel feature if the
C2 estimates. Instead of obtaining an upper bound of the principal curvatures, we look
for a lower bound of the principal curvatures by transforming (1.2) to a new equation of
support function on Sn through Gauss map. Section 4 is devoted to the proof of Theorem
1.2. The key part is the C2 estimates for the case k = 2, which we use a special structure
of S2. Then we establish a deformation lemma 4.3 as in [13, 12] to ensure the convexity
of solutions in the process of applying the method of continuity.

Acknowledgment: Part of the work was done while the third author was visiting
NCTS in National Tsinghua University in Taiwan, he would like to thank their warm
hospitality.
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2. Uniqueness and C1
boundness

We first recall some relevant geometric quantities of a smooth closed hypersurface M ⊂
R

n+1, which we suppose the origin is not contained in M .
A,B, ... will be from 1 to n + 1 and Latin from 1 to n, the repeated indices denote

summation over the indices. Covariant differentiation will simply be indicated by indices.
Let Mn be a n-dimension closed hypersurface immersed in R

n+1. We choose an or-
thonormal frame in Rn+1 such that {e1, e2, ..., en} are tangent to M and en+1 is the outer
normal. Let the corresponding coframe be denoted by {ωA} and the connection forms by
{ωA,B}. The pull back of their through the immersion are still denoted by {ωA},{ωA,B}
in the abuse of notation. Therefore on M

ωn+1 = 0.

The second fundamental form is defined by the symmetry matrix {hij} with

ωi,n+1 = hijωj.(2.1)

We recall the following fundamental formulas of a hypersurface in R
n+1 (e.g., see [22]).

Xij = −hijen+1, (Gauss formula)

(en+1)i = hijej , (Weigarten equation)

hijk = hikj, (Codazzi formula)

Rijkl = hikhjl − hilhjk (Gauss equation),(2.2)

where Rijkl is the curvature tensor. And we have the following formulas

hijkl = hijlk + hmjRimlk + himRjmlk,

hijkl = hklij + (hmjhil − hmlhij)hmk + (hmjhkl − hmlhkj)hmi,

(en+1)ii =
n∑

j=1

hiijej −
n∑

j=1

h2
ijen+1.(2.3)

Since M is starshaped with respect to origin, the position vector X of M can be written
as X(x) = ρ(x)x, x ∈ Sn, where ρ is a smooth function on Sn. Let {e1, ..., en} be
smooth local orthonormal frame field on Sn, let ∇ be the gradient on Sn and covariant
differentiation will simply be indicated by indices. Then in term of ρ the metric of M is
given by

gij = ρ2δij + ρiρj.

So the area factor

g = (det gij)
1
2 = ρn−1(ρ2 + |∇ρ|2)

1
2 .
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The second fundamental form of M is

hij = (ρ2 + |∇ρ|2)− 1
2 (ρ2δij + 2ρiρj − ρρij).

and the unit outer normal of the hypersurface M in R
n+1 is

N =
ρx −∇ρ√
ρ2 + |∇ρ|2 .(2.4)

The principal curvature (κ1, κ2, ..., κn) of M are the eigenvalue of the second fundamental
form respect to the metric and therefore are the solutions of

det(hij − kgij) = 0.

Equation (1.2) can be expressed as a differential equations on the radial function ρ and
position vector X respectively.

Sk(κ1, κ2, ..., κn) = fρ1−n(ρ2 + |∇ρ|2)−1/2, on Sn,(2.5)

where f > 0 is the given function. From (2.4) we have

< X,N >= ρ2(ρ2 + |∇ρ|2)−1/2.

Sk(κ1, κ2, ..., κn)(X) = |X|−(n+1)f(
X

|X|) < X,N >, ∀X ∈ M.(2.6)

Definition 2.1. For 1 ≤ k ≤ n, let Γk be a cone in Rn determined by

Γk = {λ ∈ Rn : S1(λ) > 0, ..., Sk(λ) > 0}.
A C2 surface M is called k-admissible if at every point X ∈ M , (κ1, κ2, ..., κn) ∈ Γk.

The following three lemmas had been proved in [11], for the completeness we provide
the proofs here.

Lemma 2.2. If M satisfies (2.6), then

(
minSn f

Ck
n

)1/(n−k) ≤ min
Sn

|X| ≤ max
Sn

|X| ≤ (
maxSn f

Ck
n

)1/(n−k).

In particular, if M is convex and ρ is the radial function of M , then there is a constant
C depending only on max f and min f such that

maxSn |∇ρ| ≤ C.(2.7)

Proof: Let BR(o) be a ball of smallest radius so that M ⊂ BR(o), then at the maximum
point X1 of |X|, R = |X1|. Through some geometrical considerations, we have

f(
X1

|X1|) ≥ Ck
n|X1|n−k.
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This is

max
Sn

|X| ≤ (
maxSn f

Ck
n

)1/(n−k).

The first half inequality can be shown in a similar way.
The gradient estimates follows from C0 estimates and convexity. In fact, the gradient

estimates for general admissible solutions are also true, which was proved in [11]. �
Set F = S

1/k
k , equation (2.5) is written as

F (λ) ≡ F (λ1, ..., λn) = f1/kρ(1−n)/k(ρ2 + |∇ρ|2)−1/(2k) ≡ K(x, ρ,∇ρ).

The following is the uniqueness result of the problem.

Lemma 2.3. Suppose 1 ≤ k < n, λ(ρi) ∈ Γk, i = 1, 2. Suppose ρ1, ρ2 are solutions of
(2.5). Then ρ1 ≡ ρ2.

Proof Suppose the contrary, ρ2 > ρ1 somewhere on S
n. Take t ≥ 1 such that

tρ1 ≥ ρ2 on S
n, tρ1 = ρ2 at some point P ∈ S

n.

Obviously, λ(tρ1) = t−1λ(ρ1), and therefore F (λ(tρ1)) = t−1F (λ(ρ1)). It is clear that

K(x, tρ1,∇(tρ1)) = t−n/kK(x, ρ1,∇ρ1)

= t−n/kF (λ(ρ1)) ≤ t−1F (λ(ρ1)) = F (λ(tρ1)).

It follows that

F (λ(tρ1)) − K(x, tρ1,∇(tρ1)) ≥ 0, F (λ(ρ2)) − K(x, ρ2,∇ρ2) = 0.

Hence

L(tρ1 − ρ2) ≥ 0,

where L is the linearized operator. Applying the strong maximum principle, we have
tρ1 − ρ2 ≡ 0 on S

n. Since n > k, from equation (2.5), we conclude that t = 1. �
The following lemma will also be used in this paper.

Lemma 2.4. Let L denote the linearized operator of F (λ) − K(x, ρ,∇ρ) at a solution ρ

of (2.5), w satisfies Lw = 0 on S
n. Then w ≡ 0 on S

n.

Proof Writing F (x, ρ,∇ρ,∇2ρ) ≡ F (λ), we have

F (x, tρ,∇(tρ),∇2(tρ)) = F (λ(tρ)) = F (λ(ρ)/t).

Applying d
dt

∣∣
t=1

, we have

F∇2ρ∇2(ρ) + F∇ρ∇ρ + Fρρ = −
∑

i

λiFλi
= −F.
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It is easy to see that

K(x, tρ,∇(tρ)) = t−n/kK(x, ρ,∇ρ).

Applying d
dt

∣∣
t=1

, we have

K∇ρ∇ρ + Fρρ = −n/kK(x, ρ,∇ρ).

It follows from and that

Lρ = −F (λ) + n/kK(x, ρ,∇) = (n/k − 1)K(x, ρ,∇ρ) > 0.

Set w = zρ. We know that

0 = Lw = L(zρ) ≡ L′z + zLρ,

where L′z = ρF∇2ρ∇2z+first order term in z. Notice that Lρ > 0, we derive from the
maximum principle that z ≡ 0, namely, w ≡ 0. �

We conclude this section with the following remark.

Remark 2.5. Large part of the study of curvature measures have been carried on for convex
bodies. There are some generalizations of these curvature measures to other class of sets
in Rn+1 (e.g., [7]). From differential geometric point of view, the notion of (n − k) − th

curvature measure can be easily extended to k-convex bodies. Since for k < n, admissible
solution of (1.2) is not convex in general. By Lemma 2.3, for k < n, the prescribing
curvature measure equation (1.2) has no convex solution for most of f . This means some
condition must be imposed on f for the existence of convex solutions. We believe that for
any smooth positive function f , equation (1.2) always has an admissible solution. This is
already prove for k = n in [2, 19, 17, 10]. It is also true k = 1 by the standard quasilinear
elliptic theory and C1 estimates in [11]. For 1 < k < n, one needs to establish C2 a priori
estimates for admissible solution of equation (1.2), which is still an open problem.

3. Proof of Theorem 1.1

In this section we prove C2 estimates for equation (1.2) under the convexity of solution.
For the mean curvature measure case (k = 1), a gradient bound is enough for a C2 a priori
bound by the standard theory of quasilinear elliptic equations. For the rest of this section,
we assume k > 1.

For the C2 estimates for admissible solutions of (1.2), it is equivalent to estimate the
upper bounds of principal curvatures. If the hypersurface is strictly convex, it is simple to
observe that a positive lower bound on the principal curvatures implies an upper bound
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of the principal curvatures. This follows from equation (1.2) and the Newton-Maclaurin
inequality,

Sn
1
n (λ) ≤ [

Sk

Ck
n

]
1
k (λ).

This is the starting point of our approach here. To achieve such a lower bound, we shall
use the inverse Gauss map and consider the equation for the support function of the
hypersurface. The role of the Gauss map here should be compared with the role of the
Legendre transformation on the graph of convex surface in a domain in Rn. Since M is
curved and compact, the Gauss map fits into the picture neatly. This way, we can make
use some special features of the support function. We note that a lower bound on the
principal curvature is an upper bound on the principal radii. And the principal radii are
exactly the eigenvalues of the spherical hessians of the support function. Therefore, we
are led to get a C2 bound on the support function of M .

Let X : M → Rn+1 be a closed strictly convex smooth hypersurface in Rn+1. We may
assume the X is parametrized by the inverse Gauss map

X : Sn → Rn+1.

The support function of X is defined by

u(x) =< x,X(x) >, at x ∈ Sn.

Let e1, e2, ..., en be a smooth local orthonormal frame field on Sn, we know that the inverse
second fundamental form of X is

hij = uij + uδij ,

and the metric of X is

gij =
n∑

l=1

hilhjl.

The principal radii of curvature are the eigenvalues of matrix

Wij = uij + uδij .

Equation (2.5) can be rewritten as an equation on support function u.

F (Wij) = [
detWij

Sn−k(Wij)
]
1
k (x) = G(X)u− 1

k on Sn,(3.1)

where X is position vector of hypersurface, and

G(X) = |X|n+1
k f− 1

k (
X

|X| ).
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Equation (3.1) is similar to the equation in [9], where a problem of prescribing Wein-
garten curvature was considered. The position function and the support function have the
following explicit form.

X(x) =
n∑

i=1

uiei + ux, on x ∈ Sn.

It follows from some straightforward computations,

Xl = uilei + ui(ei)l + ulx + uxl = uilei − xuiδil + ulx + uel = Wilei,(3.2)

n∑
l=1

Xll =
n∑

i,l=1

[Willei + Wil(ei)l]

=
n∑

i=1

[
n∑

l=1

Wll]iei +
n∑

i,l=1

Wil(−xδil) =
n∑

i=1

[
n∑

l=1

Wll]iei − x

n∑
l=1

Wll.(3.3)

The following is a key lemma.

Lemma 3.1. If G(X) is strictly convex function in Rn+1 \ {o}, then

max(∆u + nu) ≤ C,(3.4)

where the constant C depends only on n,maxSn f,minSn f and |∇f |C0 and |∇2f |C0. In
turn,

|∇2ρ| ≤ C.(3.5)

Proof: Since we already obtained C1 bound in Lemma 2.2, to get (3.5), we only need
to prove (3.4). Let

H =
n∑

l=1

= ∆u + nu

and assume the maximum of H attains at some point xo ∈ Sn. We choose an orthonormal
frame e1, e2, ..., en near xo such that uij(xo) is diagonal ( so is Wij = uij +uδij at xo). The
following formula for commuting covariant derivatives are elementary:

(∆u)ii = ∆(uii) + 2∆u − 2nuii.

So we have

Hii = (∆u)ii + nuii = ∆(Wii) − nWii + H.(3.6)

Let F ij = ∂F (W )
∂Wij

. At xo the matrix F ij is positive definite, diagonal. Setting the eigen-
values of Wij at xo as λ(Wij) = (λ1, λ2, ..., λn)),

F ii =
1
k
(

Sn

Sn−k
)

1
k [

Sn−1(λ|i)
Sn−k

− SnSn−k−1(λ|i)
Sn−k

2 ].
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The following facts are true (e.g., see [9]).
n∑

i=1

F iiWii = F,
n∑

i=1

F ii ≥ (Cn−k
n )−

1
k .

Now at xo, we have

Hi = 0, Hij ≤ 0(3.7)

Through this section the repeated upper indices denote summation over the indices, and
our calculation will do at xo. Using the above calculations we have

0 ≥
n∑

i,j=1

F ijHij =
n∑

i=1

F iiHii =
n∑

i=1

F ii∆(Wii) − n
n∑

i=1

F iiWii + H
n∑

i=1

F ii

≥
n∑

i=1

F ii∆(Wii) − nF + (Cn−k
n )−

1
k H.(3.8)

From the equation (3.1)

F ijWijl = [G(X)u− 1
k ]l, F ijWijll + F ij,stWijlWstl = [G(X)u− 1

k ]ll.

From the concavity of F , we get
n∑

i=1

F ii∆(Wii) ≥
n∑

l=1

[G(X)u− 1
k ]ll,

combining this with (3.8) we have the following inequality at xo

n∑
l=1

[G(X)u− 1
k ]ll − nF + (Cn−k

n )−
1
k H ≤ 0.(3.9)

Now we treat the term [G(X)u− 1
k ]ll,in the following the repeated indices on α, β denote

summation over the indices from 1, 2, ...n + 1. Denote Gα = ∂G
∂Xα , Gαβ = ∂2G

∂Xα∂Xβ .

[G(X)u− 1
k ]l = GαXα

l u− 1
k + G(X)(−1

k
)u− 1

k
−1ul,

n∑
l=1

[G(X)u− 1
k ]ll = GαβXα

l Xβ
l u− 1

k + GαXα
ll u

− 1
k

−2
k
GαXα

l u− 1
k
−1ul +

1
k
(
1
k

+ 1)G(X)u− 1
k
−2|Du|2 − 1

k
G(X)u− 1

k
−1ull.

Using (3.2) and (3.3), it follows that at xo

n∑
l=1

[G(X)u− 1
k ]ll = Gαβeα

l eβ
l W 2

llu
− 1

k − [Gαxαu− 1
k +

1
k
G(X)u− 1

k
−1]H

−2
k
(Gαeα

l ulWll)u− 1
k
−1 +

1
k
(
1
k

+ 1)G(X)u− 1
k
−2|Du|2 + +

n

k
G(X)u− 1

k .(3.10)
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Using (3.10), at xo (3.9) becomes

Gαβeα
l eβ

l W 2
llu

− 1
k − [Gαxαu− 1

k +
1
k
G(X)u− 1

k
−1]H − nF + (Cn−k

n )−
1
k H

−2
k
(Gαeα

l ulWll)u− 1
k
−1 +

1
k

(
1
k

+ 1)G(X)u− 1
k
−2|Du|2 + +

n

k
G(X)u− 1

k ≤ 0.(3.11)

If G(X) is strictly convex in Rn+1 \ {o}, then exist a uniform constant co > 0 such that

n∑
αβ=1

Gα,βeα
l eβ

l ≥ co, l = 1, 2, ...n.

Since
∑n

l=1 W 2
ll ≥ H2

n , we obtain H(xo) ≤ C. �

Proof of existence theorem I: For any positive function f ∈ C2(Sn), for 0 ≤ t ≤ 1
and 1 ≤ k ≤ n − 1, set ft(x) = [1 − t + tf− 1

k (x)]−k. We consider the equation

Sk(κ1, κ2, ..., κn)(x) = ft(x)ρ1−n(ρ2 + |∇ρ|2)−1/2, on Sn,(3.12)

where n ≥ 2. We find the hypersurface in the class of strictly convex surface. Let
I = {t ∈ [0, 1] : such that (3.12) is solvable}. Since ρ = [Ck

n]−
1

n−2 is a solution for t = 0, I

is not empty. By Lemma 2.2 and Lemma 3.5, ρ ∈ C1,1(Sn) and is bound below. That is
equation (3.12) is elliptic. By the Evans-Krylov theorem ρ ∈ C2,α(Sn) and

||ρ||C2,α(Sn) ≤ C,(3.13)

Where C depends only on n,maxSn f,minSn f and |∇f |C0 and |∇2f |C0, and α. The a
priori estimates guarantee I is closed. The openness is from Lemma 2.4 and the implicit
function theorem. So we have the existence. The uniqueness of the solution for t ∈ [0, 1]
is from Lemma 2.3. This complete the proof of Theorem 1.1. �

Remark 3.2. We suspect the strict convexity condition (1.3) can be weakened. For the
cases k = 1, 2, this is verified in Theorem 1.2. The proof of Theorem 1.2 is different from
the proof of Theorem 1.1 in this section. Due to the weakened condition, we are not able
to obtained a positive lower bound for the principal curvatures directly. Instead, we will
use special structure of the elementary symmetric function S2 to get an upper bound of
principal curvatures for convex solutions of (1.2). Since the convexity of solutions is not
guaranteed for equation (1.2) when k < n, we will use condition (1.4) and a deformation
lemma to prove the existence of strictly convex solution of (1.2) as in [13] in the next
section.
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4. Proof of Theorem 1.2

In this section, we will first prove the C2 estimate for the scalar curvature case under
the convexity assumption of the solution. We shall make use of some explicit structure of
S2.

We consider the following prescribed scalar curvature measure equation

S2(λ{hij})(X) = |X|−(n+1)f(
X

|X| ) < X,N >, ∀X ∈ M.(4.1)

Now we state the mean curvature estimate for the above equation on the convexity of
solution surface.

Lemma 4.1. Let f be a C2 positive function on Sn and M be a starshaped hypersurface
in R

n+1 respect to the origin, if M is a convex solution surface of equation (4.1) and for
the function ρ = |X| on Sn the following estimates hold

‖ρ‖C2 ≤ C,(4.2)

where the constant C depends only on n, k,minSn f and ‖f‖C2 .

Proof: C1 estimates were already obtained in Lemma 2.2 in the section 2. We only
need to get an upper bound of the mean curvature H.

Let

F (X) = f(
X

|X|), φ(X) = |X|−(n+1)F (X),(4.3)

then the equation (4.1) becomes

S2(κ1, κ2, ..., κn)(X) = φ(X) < X, en+1 >, , on M,(4.4)

Assume the function P = H + a
2 |X|2 attains its maximum at Xo ∈ M , where a is a

constant will be determined later. Then at Xo we have

Pi = Hi + a < X, ei >= 0,(4.5)

Pii = Hii + a[1 − hii < X, en+1 >].(4.6)

Let F ij = ∂S2(λ{hij})
∂hij

, and choose a suitable orthonormal frame {e1, e2, ..., en} in a neigh-
borhood of Xo ∈ M such that at Xo the matrix {hij} is diagonal. Then at Xo, the matrix
{F ij} is also diagonal and positive definitive. At Xo

n∑
ij=1

F ijPij =
n∑

i=1

F iiHii + a

n∑
i=1

F ii − a < X, en+1 >

n∑
i=1

F iihii ≤ 0,(4.7)

from this inequality we shall obtain the mean curvature estimate.
In what follows, all the calculations will be done at xo ∈ M .



EXISTENCE PROBLEM FOR CURVATURE MEASURES 13

First we deal with the term
∑n

i=1 F iiHii. From (4.5) and (2.3), we have

n∑
i=1

F iiHii =
n∑

i=1

F ii(
n∑

j=1

hjjii) =
n∑

i=1

F ii
n∑

j=1

(hiijj + hiih
2
jj − hjjh

2
ii)

=
n∑

ij=1

F iihiijj + |A|2
n∑

i=1

F iihii − H
n∑

i=1

F iih2
ii,

where |A|2 =
∑n

i=1 h2
ii.

Then we treat the term
∑n

ij=1 F iihiijj. Differentiate equation (4.4) twice, by (2.2),

n∑
ij=1

F iihiijj =
n∑

j=1

[φ(X) < X, en+1 >]jj +
∑
j,k �=l

h2
jkl −

∑
j,k �=l

hjkkhjll

= ∆φ < X, en+1 > +2
n∑

j=1

φjhjj < X, ej > +φ

n∑
j=1

< X, en+1 >jj

+
∑
j,k �=l

h2
jkl −

∑
j,k,l

hjkkhjll +
∑
j,k

h2
jkk.

Now use (2.2) and (2.3), we have

n∑
i=1

< X, en+1 >ii=
n∑

i,l=1

[hil < X, el >]i =
n∑

i=1

[
n∑

l=1

hiil < X, el > +hii − h2
ii < X, en+1 >]

=
n∑

l=1

Hl < X, el > +H − |A|2 < X, en+1 >= −a
n∑

i=1

< x, ei >2 +H − |A|2 < X, en+1 > .

In turn, by equation (4.4) and 4.5) we have the following estimate

n∑
ij=1

F iihiijj ≥ −|A|2S2(hij) + φH + ∆φ < X, en+1 >

+2
n∑

j=1

φjhjj < X, ej > −aφ
n∑

i=1

< x, ei >2 −a2
n∑

i=1

< x, ei >2 .(4.8)

It is easy to compute that

n∑
i=1

F ii = (n − 1)H,
n∑

i=1

F iihii = 2S2(hij),

n∑
i=1

F iih2
ii = HS2(hij) − 3S3(hij), |A|2 = H2 − 2S2(hij).(4.9)
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Combining the (4.7)-(4.9), at xo we get the following

a(n − 1)H + φH + 2
n∑

i=1

φihii < X, ei > +∆φ < X, en+1 > +3HS3(hij)

≤ 2S2(hij)2 + 2a < X, en+1 > S2(hij) + [aφ + a2]
n∑

i=1

< X, ei >2 .(4.10)

Let FA, FAB be the ordinary Euclidean differential in Rn+1, use (2.2), we compute

φi = −(n + 1)|X|−(n+3) < X, ei > F (X) + |X|−(n+1)
n+1∑
A=1

FAXA
i

∆φ =
n∑

i=1

φii = H[(n + 1)|X|−(n+3) < X, en+1 > F − |X|−(n+1)
n+1∑
A=1

FAeA
n+1]

−2(n + 1)|X|−(n+3)
n∑

i=1

n+1∑
A=1

< X, ei > FAXA
i − n(n + 1)|X|−(n+3)F

+|X|−(n+1)
n+1∑

A,B=1

n∑
i=1

FABXA
i XB

i + (n + 1)(n + 3)|X|−(n+5)F

n∑
i=1

< X, ei >2 .

Now we use the convexity of the solution, we have

S3(hij) ≥ 0, 0 ≤ hii ≤ H.

If a is suitable large, we get the following mean curvature estimate

maxH ≤ C(n,max
Sn

f,min
Sn

f, |∇f |C0, |∇2f |C0).(4.11)

This finishes the proof of the Lemma. �

Since C2 estimates in Lemma 4.1 only valid for convex solutions, in order to carry on
the method of continuity, we need to show the convexity is preserved during the process.

Theorem 4.2. Suppose M is a convex hypersurface and satisfies equation (2.6) for k < n

with the second fundamental form W = {hij} and |X|n+1
k f( X

|X|) is convex in R
n+1 \ {0},

then W is positive definite.

We now use Theorem 4.2 to prove Theorem 1.2.
Proof of Theorem 1.2. The proof is the same as in the proof of Theorem 1.1 by the

method of continuity, here we make use of Theorem 4.2. The openness and uniqueness
have already treated in the proof of Theorem 1.1. The closeness follows from a priori
estimates in Lemma 2.2 and quasilinear elliptic theory in the case of k = 1 and the a
priori estimates in Lemma 4.1 in the case of k = 2, and the preservation of convexity in
Theorem 4.2. �
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The proof of Theorem 4.2 relies on the following deformation lemma. A similar lemma
was proved for spherical hessian equations in [13] and for curvature equations in [12] (only
with different homogeneity on the right side of the equation). This type of lemma is a
generalization of corresponding results in [4, 14] for semilinear equations on domains in
Rn.

Lemma 4.3. Assume Mo is a piece of C4 hypersurface M , M is the solution of equation
(2.6) and the matrix W = {hij} is semi-positive definite. Suppose there is a positive con-
stant Co > 0, such that for a fixed integer (n− 1) ≥ l ≥ k,∀X ∈ Mo, Sl(W (X)) ≥ Co. Let
φ(X) = Sl+1(W (X)) and let τ(X) be the largest eigenvalue of {−(F− 1

k )XAXB
(X, en+1)},where

the differential is ordinary differential in R
n+1. Then, there are constant C depending only

||X||C3 , ||F ||C2 and Co, the following differential inequality holds at each point X ∈ Mo,

∑
α,β

Fαβφαβ ≤ k(n − l)F
k+1

k Sl(W )τ < X, en+1 > +C(|∇φ| + φ),

where Fαβ = ∂Sk(W )
∂wαβ

.

Proof. A proof was already given in [12] for the following prescribed curvature equation

Sk(κ1, κ2, ..., κn)(X) = F (X), on M.(4.12)

Since we are treating a different homogeneity here, we will make a minor change in the
last step of the proof in [12]. We follow the same notation as in [12] (see also [13]). For
any z ∈ Mo, let λ1 ≥ λ2 ≥ ... ≥ λn be the eigenvalue of W at z. Since Sl(W ) ≥ Co > 0
and M ∈ C3, for any z ∈ M , there is a positive constant C > 0 depending only on
||X||C3 , ||F ||C2 , n and Co, such that λ1 ≥ λ2 ≥ ... ≥ λl ≥ C. Let G = {1, 2, ..., l} and
B = {l + 1, ..., n}. As φ = Sl+1(W ) and φα =

∑
i,j Sijhijα, there is C > 0 such that

Cφ(z) ≥
∑
i∈B

hii(z), C(φ(z) + |φα(z)|) ≥
∑
i∈B

hiiα(z).(4.13)

By (2.21) in [12], there is c > 0 such that

n∑
α=1

Fααφαα ≤ cSl(G)
∑
i∈B

[fii − k + 1
k

f2
i

f
].(4.14)

Since

f(X, en+1) = F (X) < X, en+1 >,
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use (2.2), so for ∀ i ∈ {1, 2, ..., n},

fi =
n+1∑
A=1

FXA
eA
i < X, en+1 > +F (X)hii < X, ei >,

fii =
n+1∑

A,C=1

FXAXC
eA
i eC

i < X, en+1 > +
n+1∑
A=1

FXA
XA

ii < X, en+1 >

+2
n+1∑
A=1

FXA
eA
i hii < X, ei > +F (X)[

n∑
j=1

hiij < X, ej > +hii − h2
ii < X, en+1 >].

From (2.2) and (4.13), for i ∈ B we get

fi =
n+1∑
A=1

FXA
eA
i < X, en+1 >, fii =

n+1∑
A,C=1

FXAXC
eA
i eC

i < X, en+1 > .

It follows that for ∀ i ∈ B,

fii − k + 1
k

f2
i

f
≤ C

n+1∑
A,C=1

[FAC − k + 1
k

FAFC

F
]eA

i eC
i < x, en+1 > .(4.15)

So the lemma follows from (4.14) and (4.15). The proof of the Lemma is complete. �

Proof of Theorem 4.2. By the Evans-Krylov theorem and Schauder theorem, X, en+1 ∈
C4,α. If W = {hij} is not of full rank at some point xo, then there is n − 1 ≥ l ≥ k such
that Sl(W (x)) > 0, ∀x ∈ M and φ(xo) = Sl+1(W (xo)) = 0. By Lemma 4.3 and the
condition on F ,

n∑
α,β

Fαβφαβ(X) ≤ C1|∇φ(X)| + C2φ(X).(4.16)

The strong minimum principle implies φ = Sl+1(W ) ≡ 0. On the other hand, M is
starshape respect to origin, so < X, en+1 >> 0, where <,> is ordinary inner product in
R

n+1. Since M is compact, there is a point x ∈ M such that all the principal curvatures
of M at x is positive. This is a contradiction. �
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