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Abstract

We show that an isometric immersion y from a two-dimensional do-
main S with C1,α boundary to R

3 which belongs to the critical Sobolev
space W 2,2 is C1 up to the boundary. More generally C1 regularity
up to the boundary holds for all scalar functions V ∈ W 2,2(S) which
satisfy det∇2V = 0. If S has only Lipschitz boundary we show such
V can be approximated in W 2,2 by functions Vk ∈ W 1,∞ ∩ W 2,2 with
det∇2Vk = 0.

1 Introduction

In this paper we study isometric immersions y from a two-dimensional set
S to R

3 which are in the Sobolev class W 2,2, i.e. ∇2y is in L2 (this is
equivalent to the condition that the second fundamental form A is in L2).
The motivation to study this class arises on the one hand from geometry
(where the class W 2,2 corresponds to an interesting borderline case) and
on the other hand from nonlinear plate theory, where the W 2,2 isometric
immersions form the natural class of admissible functions.

Regarding geometry it is well known that C2 isometric immersions have
a good classification and enjoy strong rigidity properties while the celebrated
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results of Nash [6] and Kuiper [11] show that C1 isometric immersions can
be much more complicated (e.g. the image of S2 can be contained in an
arbitrarily small ball). The class W 2,2 lies somewhat in between. We have
information on second derivatives, but only in an integral sense (C1 surfaces
with even weaker properties have been studied by Pogorelov [16], [17, Chap-
ter IX]). As we will see in this class the usual geometric properties still hold,
in particular the image is a ruled surface (see Theorem 4 below). This is no
longer true if we make the slightly weaker assumption that ∇2y is in Lp, for
all p < 2. In that case a conical singularity can occur.

Regarding elasticity, the above class arises naturally in the geometrically
nonlinear theory of plates, first formulated by Kirchhoff [10] and recently
rigorously derived from three dimensional nonlinear elasticity by variational
methods [2] (for a derivation under more restrictive hypotheses see [14, 15]).
In this theory the admissible maps are isometric immersions and the energy
is
∫
S Q2(A) where A is the second fundamental form and Q2 is a positive

definite quadratic form. From this one easily sees that finite energy implies
y ∈ W 2,2 (see [2], Remark (vii) after Theorem 6.1).

In general maps in W 2,2 just fail to be in C1 (critical Sobolev embedding).
This first main result asserts that isometric immersions are in C1 up to the
boundary, if S is sufficiently regular (for Lipschitz S the gradient may blow
up at the boundary, see Remark 7 below).

Theorem 1 Suppose that α > 0 and that S ⊂ R
2 is a bounded domain

with C1,α boundary, i.e. ∂S can be covered by finitely many charts in which
∂S is a C1,α graph and within each chart S lies above that graph. Let
y ∈ W 2,2(S, R3) be an isometric immersion, i.e (∇y)T∇y = Id almost ev-
erywhere. Then y is C1 up to the boundary, with a logarithmic modulus
of continuity. More precisely there exists a constant (depending only on S)
such that for r < R/4 < R0(S) and for every x ∈ S

oscB(x,r)∩S ∇y ≤ C ln−1/2(R/r)||∇2y||L2(B(x,R)∩S)

= C ln−1/2(R/r)||A||L2(B(x,R)∩S).

Here oscB(x,r) f denotes the oscillation of f on a ball of radius r around x,
i.e. the diameter of the image f(B(x, r)). To prove this estimate we use the
fact that each component of yk of y satisfies det∇2yk = 0 (this is classical for
smooth isometric immersions, for the W 2,2 case see Proposition 3 below).
We then establish the oscillation estimate for ∇V for all scalar functions
V ∈ W 2,2(S) which satisfy

det∇2V = 0, (1)
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see Theorem 6 below. Equation (1), which is equivalent to the fact that the
Gauss curvature of graph V vanishes, also plays an important role in the
study of isometries which are close to the trivial map x �→ (x, 0). To study
them it is natural to consider the ansatz

y(x) =
(

x + δ2U(x)
δV (x)

)
, where U : S → R

2, V : S → R. (2)

The condition that y is an isometry becomes

δ2(∇U + (∇U)T + ∇V ⊗∇V ) + δ4(∇U)T∇U = 0, (3)

and it is natural to consider the formal linearization

∇U + (∇U)T + ∇V ⊗∇V = 0. (4)

Suppose that V ∈ W 2,2 is given. Then one can easily check that (1) is
a necessary and sufficient condition for the existence of a U satisfying the
linearized relation (4). If in addition δ|∇V | < 1 then the same condition is
necessary and sufficient for the existence of a U satisfying the full isometry
condition (3) (see [4]).

Thus one is interested whether condition (1) already implies that V is
Lipschitz. For C1,α domains one even has C1 regularity up to the bound-
ary (see Theorem 6 below). For Lipschitz domains, however, ∇V may be
unbounded, see Remark 7 below. We show that nonetheless ∇V can ap-
proximated in W 2,2 by Lipschitz functions which still satisfy (1).

Theorem 2 Suppose that S ⊂ R
2 is a bounded Lipschitz domain and V ∈

W 2,2(S) satisfies

det∇2V = 0.

Then there exists an increasing sequence of open subset Sk and maps Vk ∈
W 2,2(S) such that

||∇Vk||L∞(S) ≤ k, Vk = V in Sk,

∇2Vk = 0 a.e. on S \ Sk,

∞⋃
k=1

Sk = S.

In particular we have det∇2Vk = 0, ||∇Vk||L2 ≤ ||∇V ||L2 and Vk → V in
W 2,2(S).
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Applications of these results to the derivation of plate theories from
three dimensional nonlinear elasticity and to the stability analysis of plates
are discussed in [4, 5].

2 Properties of W 2,2 isometric immersions and so-

lutions of det∇2v = 0

Following [4] we first review some general properties of isometric immersions
for the convenience of the reader. These properties are classical for smooth
maps, but we will need them for W 2,2 maps. For a general W 2,2 map
y : S → R

3 we define the induced metric by gij = y,i · y,j and we set
n = y,1 ∧ y,2 and

Aij = −y,ij · n. (5)

If y is an isometric immersion, i.e. if gij = δij , then n is the normal to the
image of y and A is the second fundamental form.

Proposition 3 Suppose that S is a bounded Lipschitz domain and y ∈
W 2,2(S; R3) is an isometric immersion. Then

y,ij = −Aijn, (6)

Ai1,2 = Ai2,1, for i = 1, 2, (7)

in the sense of distributions. Moreover

detA = 0. (8)

Proof This follows from standard approximation arguments. Since gij =
δij we have |n| = 1. Differentiation of gij yields after a short calculation that
y,ij · y,k = 0 a.e. Thus y,ij is parallel to n and this proves (6). To establish
(7) first note that for smooth y we have the identity

Ai1,2 − Ai2,1 = −y,i1 · n,2 + y,i2 · n,1 (9)

By approximation this identity holds in the sense of distributions if y ∈ W 2,2.
By (6) the vector y,ij is parallel to n (a.e.), but n,k is perpendicular to n,
since |n| = 1. This proves (7).

Finally to establish (8) we start from the identity

g11,22 + g22,11 − g12,12 = 2y,12 · y,12 − 2y,11 · y,22. (10)
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This holds pointwise for smooth y and by approximation it holds in the
sense of distribution for y ∈ W 2,2. For an isometric immersion the left hand
side vanishes and together with (6) this proves (8). �

If y is smooth then one can deduce from (8) that locally the image of
∇y is either a constant or a smooth curve. In the latter case one can further
conclude that ∇y is constant on lines defined by the kernel of A. For C2

isometric immersions this assertion is contained in the more general results
of Hartman and Nirenberg [7]. Pogorelov [16, Chapter II], [17, Chapter
IX] has obtained the same result under very weak hypotheses. He only
requires that the immersion is C1 and that the image of the Gauss map has
measure zero in S2. A short proof under the stronger hypothesis that the
isometric immersion is in W 2,2 was recently given by Pakzad [13], using an
idea of Kirchheim [9] For later use we state his result both for functions
(with det∇2V = 0) and for isometric immersions.

Theorem 4 [13] Let S be a bounded Lipschitz domain. Suppose that V ∈
W 2,2(S) with det∇2V = 0. Consider the open set

S1 = {x ∈ S : ∇V is constant in a neighbourhood of x}. (11)

Then through every point x ∈ S \S1 there exists a line segment which inter-
sects ∂S at both ends and on which ∇V is constant. Different line segments
do not intersect in S.

The same characterization holds for an isometric immersion in W 2,2(S; R3).

Even though a general function in W 2,2(S) need not be C1 for isometric
immersions (and more generally for solutions of det∇2V = 0) one can easily
obtain an interior C1 estimate.

Proposition 5 Suppose that V ∈ W 2,2(S) and det∇2V = 0. Then V ∈
C1(S). If Bρ(x) ⊂ BR(x) ⊂ S we have more precisely

oscBρ ∇V ≤ C(ln
R

ρ
)−1/2||∇2V ||L2(BR), (12)

where oscBρ f := diam f(Bρ).

Proof. Following Kirchheim we set f = ∇V and g(x) = f(x)+δ(−x2, x1).
Then det∇g = δ2 > 0. Thus g satisfies the desired continuity estimate by
a result of Vodopyanov and Goldstein [19] (see also [18, 8, 1]), the Sobolev
embedding theorem applied to a.e. circle ∂B(x, r) and Fubini’s theorem.
The proposition follows by letting δ → 0. �
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3 C1 estimates up to the boundary

In this section we establish the following estimate.

Theorem 6 Suppose that α > 0 and S ⊂ R
2 is a bounded domain with C1,α

boundary. Suppose V ∈ W 2,2(S) satisfies

det∇2V = 0.

Then V is C1 up to the boundary and there exists a constant (depending
only on S) such that for r < R/4 < R0(S) and for every x ∈ S

oscB(x,r)∩S ∇V ≤ C ln−1/2(R/r)||∇2V ||L2(B(x,R)∩S)

This implies in particular Theorem 1 since by (6) and (8) each component
yk of an isometric immersion satisfies det∇2yk = 0. Moreover (6) also shows
that |∇2y| = |A|.

Remark 7 The result does not hold for Lipschitz domains. Consider for
example the truncated cone {(x1, x2) : x1 ∈ (−1, 1), |x1| < x2 < 1} and
V (x) = v(x2) with v′(0) = ∞ and

∫ 1
0 t|v′′(t)|2 < ∞. One may take e.g.

v′(t) = | ln t|α, 0 < α < 1/2. A slight modification shows that even C1

domains are not sufficient. One needs a certain logarithmic modulus of
continuity of the normal.

The proof of Theorem 6 uses the condition det∇2V = 0 only to deduce
the existence of the line segments which appear in Theorem 4. To stress
this and in view of possible future applications we will in the following only
use this condition. We say that a function f : S → R

2 satisfies condition
(L) if the following holds:

Let S1 be the open set on which f is locally constant. Then
through every point x ∈ S \S1 there exists a line segment which
intersects ∂S at both ends and on which ∇V is constant. Dif-
ferent line segments do not intersect in S.

To prove Theorem 6 we first use the condition (L) together with the
Poincaré inequality to derive an oscillation bound on half-discs. The main
point is then to establish the oscillation bound on line segments normal to
the boundary. For this it suffices to consider domains whose boundary is
a ‘parabola’ x2 = |x1|1+α and we study these in Lemma 9. The heuristic
idea is simple. Suppose for simplicity that through every point there is a
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line segment on which f := ∇V is constant. If these line segments intersect
the boundary transversally at a point x̄ then their length is bounded from
below and one can apply the Poincaré inequality normal to the line segments
to obtain an oscillation bound. Suppose now that the slope of the line
segments approaches that of the tangent at x̄. In the extreme case that all
line segments are parallel to the tangent we are exactly in the situation of
Remark 7, but now the C1,α regularity of the boundary implies that the
length of the segments scales like x

1/1+α
2 where x2 is the normal variable.

Hence one obtains a less degenerate weight in the one-dimensional estimate
and one easily obtains the oscillation estimate from the Cauchy-Schwarz
inequality. The estimates (25)–(27) capture this fact in the general situation
where the lines may not all be parallel to the tangent.

We begin with the oscillation estimate on half-discs B+(x, r) = {y ∈
R

2 : |y − x| < r, y2 > x2}.
Proposition 8 Suppose that f ∈ W 1,2(S, R2) has property (L) and that the
closure of B+(x,R) is contained in S. Then for all r < R/2

oscB+(x,r) f ≤ C ln−1/2

(
R

r

)
||∇f ||L2(B+(x,R)). (13)

Proof. We may suppose without loss of generality that the half-discs are
centered at zero. Moreover it suffices to compare f(0) to f(y) with |y| < r.
Suppose first that both through 0 and through y there exist a line segment on
which f is constant and denote them by l0 and l. In polar coordinates (ρ, ϕ)
the first segment is given by ϕ = ϕ0 while the part of the second segment
which lies in the annulus r < ρ < R can be decribed by a bounded function
ϕ = h(ρ). An application of the Poincaré inequality in polar coordinates
yields

|f(y) − f(0)|2 ≤ C|ϕ(ρ) − ϕ0|ρ
∫

∂Bρ∩B+
R

|∇f | dH1

Dividing by ρ and integrating over ρ from r to R we obtain (13).
If 0 or y belong to the set S1 where f is locally constant consider the

segment from 0 to y. If all points on this segment belong to S1 then f(0) =
f(y). Otherwise let p and q be the points on the intersection of the segment
and ∂S1 which are closest 0 and y, respectively. Then f(p) = f(0), f(q) =
f(y) Let R′ = R − |p|, r′ = r − |p|. Then q ∈ B+(p, r′) and the closure
of B+(p,R′) is contained in S. Hence by the previous argument we obtain
the desired bound with R/r replaced by R′/r′. Since the latter quantity is
bigger than or equal to the former this finishes the proof. �
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t

−2

Ω(t)

x1

x2

−l−(t) l+(t)

Figure 1: The parabolic domain Ω and the domains Ω(t) generated by line
segments through the points (0, t)

We next estimate the oscillation in normal direction. For this it suffices
to consider a parabola shaped domain, see Figure 1.

Lemma 9 Consider the domain

Ω = {(x1, x2) : x1 ∈ (−2, 2), |x1|1+α < x2 < 21+α}.

Suppose that f ∈ W 1,2(Ω; R2) has the property (L) (with respect to Ω) and
consider

F (t) = f(0, t).

Then

|F (t) − F (t′)| ≤ C ln−1/2

(
1

|t − t′|
)
||∇f ||L2(Ω), ∀t, t′ ∈ (0, 1). (14)

Proof. We first prove the result under the additional assumption that
through every point (0, t) (with t ≤ 1) there is a line segment (touching ∂Ω
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at both ends) on which f is constant. Let s(t) be the slope of this segment
and let −l−(t) and l+(t) denote the x1 coordinates of the left and right
intersection point of the segment with ∂Ω. Let further Ω(t) denote the area
under the line segment (see Figure 1) and set

G(t) =
∫

Ω(t)
|∇f |2 dx.

We will show that F,G and s are absolutely continuous and satisfy, for a.e.
t ∈ (0, 1),

|Ḟ | ≤ |Ġ|1/2(1 + s2(t))−1/2h−1/2(t), (15)

where

h(t) ≥ 1
|ṡ(t)| ln(1 + |ṡ(t)|l̄(t)) (16)

and l̄(t) = max(l−(t), l+(t)). Together with simple geometric estimates on
l+ and l− and a short calculation (see Proposition 10 below) this will imply
(14).

Step 1. Estimates for l± and a W 1,1 estimate for β = arctan s.
Note first that we can assume that the slope s is finite at each point (0, t).

Otherwise f is constant on the segment t �→ (0, t) and there is nothing to
show. Assume for the moment s ≥ 0. If the line segment through (0, t)
does not intersect the upper boundary x2 = 21+α then l±(t) are given by
the equations

t + sl+ = (l+)1+α, t − sl− = (l−)1+α.

Thus

l+ ≥ t1/(1+α),

l− ≥ min
(
t/(2s), (t/4)1/(1+α)

)
. (17)

If the line segment does intersect the upper boundary x2 = 21+α then l+ ≥
1/s (here and in the following we always assume t ≤ 1). Hence we always
have, for s(t) ≥ 0,

l+(t) ≥ min
(
s−1, t1/(1+α)

)
(18)

For s(t) < 0 the roles of l+ and l− are interchanged.
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By property (L) different line segments do not intersect in Ω. From this
we easily conclude that s is locally Lipschitz and

|ṡ| ≤ 1
min(l−, l+)

.

To obtain better integral estimates for ṡ we first show that |s| is almost
increasing in t. Suppose again that at the point t we have s(t) ≥ 0. Then
the upper derivative

ṡ+(t) := lim sup
τ→0

max
(

(s(t + τ) − s(t)
τ

, 0
)

satisfies

|ṡ+| ≤ 1
l+

≤ max(t−
1

1+α , s).

Combining this with analogous estimate for ṡ− if s(t) ≤ 0 we get

d

dt
|s| ≤ max(t−

1
1+α , |s|). (19)

From this we easily deduce that the function t �→ et(|s|(t) + 1+α
α tα/1+α) is

increasing and we obtain a W 1,1 bound for this function (and hence for |s|
and s) in terms of s(1), the slope at t = 1. This slope, however, cannot be
controlled in terms of ∇f alone and it is therefore more convenient to work
with the angle

β = arctan s

instead of the slope. From (19) we get

d

dt
|β| =

1
1 + s2

d

dt
|s| ≤ t−

1
1+α , for t ∈ (0, 1).

Thus σ = |β|+ 1+α
α tα/(1+α) is monotone. Since β takes values in (−π/2, π/2)

we get ∫ 1−ε

ε
|σ̇| = σ(1 − ε) − σ(ε) ≤ π/2 +

1 + α

α
.

Thus we can take ε = 0 and we deduce that∫ 1

0
|β̇| dt =

∫ 1

0
||β|·| dt ≤ π/2 + 2

1 + α

α
≤ C. (20)
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Step 2. The function

G(t) =
∫

Ω(t)
|∇f |2 dx

is absolutely continuous. To see this let

U = {(y1, y2) : −l−(y2) < y1 < l+(y2), 0 < y2 < 1}

and consider the change of variables Φ : U → Ω(1) given by

Φ
(

y1

y2

)
=
(

0
y2

)
+ y1

(
1

s(y2)

)
. (21)

Thus the image of y1 �→ Φ(y1, y2) is exactly the line segment through (0, y2)
on which f is constant. Since these line segments to not intersect Φ is a
bijection. Moreover

∇Φ(y) =
(

1 0
s(y2) 1 + y1ṡ(y2)

)
, det∇Φ = 1 + y1ṡ(y2).

In fact non-intersection of the line segments implies that 1 + y1ṡ(y2) > 0 in
U , so that Φ is locally Bilipschitz. Thus the area formula yields

G(t) =
∫ t

0

∫ l+(t)

−l−(t)
|∇f |2(Φ(y1, y2))(1 + y1ṡ(y2)) dy1 dy2.

Since the integrand is nonnegative and G(t) ≤ G(1) ≤ C Fubini’s theorem
shows that the inner integral defines a function in L1(0, 1). Thus G ∈
W 1,1(0, 1) and

Ġ(t) =
∫ l+(t)

−l−(t)
|∇f |2(Φ(y1, y2))(1 + y1ṡ(y2)) dy1, (22)

∫ 1

0
|Ġ| dt =

∫ 1

0
Ġ dt = G(1) ≤

∫
Ω
|∇f |2 dx. (23)

Step 3. Estimates of Ḟ in terms of Ġ.
By the definition (21) of Φ we have

F (y2) = f(Φ(y1, y2)) for y ∈ U. (24)
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Since Φ is locally Bilipschitz the function f ◦Φ is in W 1,2
loc and thus absolutely

continuous on a.e. interior line segment in y2 direction. Thus F is absolutely
continuous on every interval (ε, 1 − ε), with ε > 0, and by the chain rule

Ḟ (y2) = (∂2f)(Φ(y))(1 + y1ṡ(y2))

for a.e. y2. Differentiating (24) with respect to y1 we see that

0 = (∂1f)(Φ(y)) + s(y2)(∂2f)(Φ(y)).

Thus

|Ḟ |(y2) ≤ (1 + s2(y2))−1/2|∇f |(Φ(y))(1 + y1ṡ(y2)). (25)

Let

h(y2) =
∫ l+(y2)

−l−(y2)

dy1

1 + y1ṡ(y2)
. (26)

Now divide (25) by (1+y1ṡ(y2)), integrate in y1 and use the Cauchy-Schwarz
inequality in connection with (22). This yields

|Ḟ |(y2)h(y2) ≤ (1 + s2(y2))−1/2|Ġ(y2)|1/2h1/2(y2) (27)

and hence (15). To verify (16) it suffices to restrict the integral in (26) to
(0, l+(y2)) or to (−l−(y2), 0). Taking into account the estimate (18) for l+

and the change of variable s = tan β we get

|Ḟ | ≤ ω1/2|Ġ|1/2, (28)

where

ω(t) =
ṡ(t)

1 + s2(t)
1

ln(1 + l̄(t)|ṡ(t)|) =
|β̇(t)|

ln(1 + (1 + s2(t))l̄(t)|β̇(t)|) .

Now

(1 + s2(t))l̄(t) ≥ min
(

1 + s2(t)
s(t)

, t
1

1+α

)
≥ t

1
1+α .

Thus using (28) and (23) we get

|F (t0 + τ) − F (t0)| ≤
(∫ t0+τ

t0

|β̇|
ln(1 + t1/(1+α)|β̇|) dt

)1/2

||∇f ||L2(Ω)
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and the assertion (14) follows from the L1 bound (20) on β̇ and Proposi-
tion 10 below.

Step 4. It remains to remove the additional assumption that through
every point (0, t) there exists a line segment (touching ∂Ω on both ends) on
which f is constant. Let Ω1 be the open set on which f is locally constant.
Then the line segments considered above exist only for (0, t) ∈ E = ({0} ×
(0, 1)) \Ω1. Hence the slope function is only defined on E. On the maximal
intervals (a, b) of Ω1 ∩ ({0} × (0, 1)) we define an interpolation as follows.
If s(a) = s(b) set s̃ = s(a) = s(b) in (a, b). If s(a) �= s(b) let x̄ = (x̄1, x̄2)
denote the intersection point of the lines through (0, a) and (0, b). Note that
this intersection point must lie outside Ω by property (L). Define s̃(t) such
that the line through (0, t) goes through x̄, i.e.

s̃(t) =
x̄2 − t

x̄1
, for t ∈ (a, b).

In particular s̃ is affine on (a, b) and satisfies the same estimates as the
function s considered in Step 1.

Thus if we define Φ using the extension s̃ then Φ is again a bijection and
locally Bilipschitz, and (22) and (24) hold. Thus F is absolutely continuous
(on compact subintervals) and (25) holds with s replaced by s̃. Now we can
conclude as before. �

Proposition 10 Let β ∈ W 1,1(0, 1), 0 < γ < 1. If 0 < t0 < t0 + τ < 1
then, for all η ∈ (γ, 1),∫ t0+τ

t0

|β̇|
ln(1 + tγ |β̇|) dt ≤ 1

(η − γ)
1

ln(1/τ)

∫ 1

0
|β̇| dt +

1
1 − η

1
ln 2

τ1−η. (29)

Proof. After replacing β(t) by β(t0 + t) we may suppose t0 = 0. We
subdivide (0, τ) as follows

E1 = {t ∈ (0, τ) : |β̇| ≤ t−η}, E2 = {t ∈ (0, τ) : |β̇| > t−η}.
Since x �→ ln(1 + x) is concave on R+ we have

ln(1 + x) ≥ ln(1 + y)
y

x, if 0 < x ≤ y.

Applying this with x = tγ |β̇| and y = tγ−η we set that on E1 the integrand
is bounded by

|β̇|
tγ |β̇|

tγ−η

ln(1 + tγ−η)
≤ 1

ln 2
t−η.
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On E2 the integrand is trivially bounded by

|β̇|
ln(1 + tγ−η)

≤ |β̇|
(η − γ) ln(1/τ)

.

Thus (29) follows. �
We are now in a position to combine the local results to obtain the global

estimate.
Proof of Theorem 6. First note that we may assume without loss of

generality that S is such that at each boundary point p the set S contains the
parabolic domain Ω (up to rigid motions) considered in Lemma 9. Indeed,
by assumption there exists a radius r0 and a Hölder constant M such that for
each boundary point p there exists a an orthornomal coordinate system and
a C1,α function g such that p = (0, 0), ∂S ∩B(0, r0) ⊂ graph g, S ∩B(0, r0)
lies above graph g, g′(0) = 0 and |g′(x1) − g′(y1)| ≤ M |x1 − y1|α. Now let
R = 41+α max(r0,M

1/α) and consider the rescaled set RS. Then at each
boundary point of RS the set RS contains the desired standard parabola
Ω (up to a rigid motion). Hence we can work with RS and rescale at the
end (note that this only effects the radius R0(S) in the statement since the
constant C in the oscillation estimate is invariant under dilations). Note also
that using the same rescaling we may in addition assume that the Hölder
seminorm of g′ is bounded by 1.

Now consider points p, q ∈ S. We may assume that dist(p, ∂S) ≥
dist(q, ∂S) and we set

d = dist(p, ∂S) ≥ dist(q, ∂S), r = |p − q|.
We claim that for r ≤ r̄ (where r̄ is a constant only depending on S) we
have

|f(p) − f(q)| ≤ C ln−1/2(1/r). (30)

Case 1. Suppose r ≤ d/4. If d ≥ 1 we can use the interior estimate
(12) since q ∈ B(p, r) and B(p, d) ⊂ S. If d < 1 let p̄ be a boundary
point which has minimal distance to p and consider a coordinate system
centered at p̄. Thus p has coordinates (0, d). Let p′ = (0, d − 2r). Then
|p′ − q| ≤ 2r + |p − q| ≤ 3r. Thus p, q ∈ B+(p′, 3r). On the other hand
the parabola Ω and hence the set S contains the half-disc B+(p′, R) with
R = (d − 2r)1/(1+α) ≥ r1/(1+α). Thus (30) follows from Proposition 8.

Case 2. Suppose that d = 0, i.e. p, q ∈ ∂S.
Let νp and νq denote the inner normals at p and q, respectively, and set

p′ = p + 16rνp, q′ = q + 16rνq.
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Since |νp−νq| ≤ rα we may suppose that |p′−q′| ≤ 2r. Moreover dist(p′, ∂S) ≥
8r and dist(q′, ∂S) ≥ 8r (for sufficiently small r). Hence by Case 1

|f(p′) − f(q′)| ≤ C ln−1/2(1/r).

On the other hand Lemma 9 shows that |f(p′) − f(p)| ≤ C ln−1/2(1/16r)
and the same estimate holds for f(q) − f(q′). Thus (30) follows.

Case 3. Suppose d < 4r.
Let p̄, q̄ points on ∂S which have minimal distance from p and q, re-

spectively. Then |q − q̄| ≤ |p − p̄| ≤ d. Thus |p̄ − q̄| ≤ r + 2d ≤ 9r. Now
f(p̄)−f(q̄) can be estimated as in Case 2, while f(p)−f(p̄) and f(q)−f(q̄)
are estimated by Lemma 9. This finishes the proof of (30) and hence of
Theorem 6. �

4 Approximation by Lipschitz functions

In this section we prove the following approximation result, stated already
in the introduction as Theorem 2.

Theorem 11 Suppose that S ⊂ R
2 is a bounded Lipschitz domain and V ∈

W 2,2(S) satisfies

det∇2V = 0.

Then there exists an increasing sequence of open subset Sk and maps Vk ∈
W 2,2(S) such that

||∇Vk||L∞(S) ≤ k, Vk = V in Sk, (31)

∇2Vk = 0 a.e. on S \ Sk, (32)

∞⋃
k=1

Sk = S. (33)

In particular we have det∇2Vk = 0, ||∇Vk||L2 ≤ ||∇V ||L2 and Vk → V in
W 2,2(S).

Remark 12 If Γ ⊂ ∂S is a finite union of intervals and the trace of ∇V on
∂S satisfies ||∇V ||L∞(Γ) ≤ M then Vk = V and ∇Vk = ∇V in an open subset
of S (with Lipschitz boundary) whose boundary contains Γ for sufficiently
large k. In particular the equality holds in the sense of trace on Γ.

15



Proof. We will use the assumption det∇2V = 0 only to conclude that
V ∈ C1(S) (see Proposition 5) and that at each point x ∈ S either ∇V
is locally constant or ∇V is constant on a line segment through x which
intersects ∂S at both ends (Condition (L)). Note that both this properties
remain true if we subtract an affine function from V .

Let U be an open ball whose closure is contained in S. After subtracting
an affine map from V we may suppose that∫

U
∇V dx = 0.

Together with the interior estimate (12) this shows that

|∇V | ≤ C in U.

Now consider the set Uk = {x ∈ S : |∇V (x)| < k}. This set is open since
V ∈ C1(S) by Proposition 5 and for large enough k it contains U . Let Sk

denote the connected component of Uk which contains U .
Step 1. We claim that

(i) ∂Sk ∩S is a finite union of line segments on which ∇V is constant and
satisfies |∇V | = k. Moreover each segment intersects ∂S at both of its
endpoints.

(ii) ∪∞
k=1Sk = S

To verify this consider x̄ ∈ ∂Sk ∩ S. By the continuity of ∇V we have
|∇V |(x̄) = k. Thus ∇V cannot be locally constant near x̄ (otherwise x̄ /∈
∂Sk). Hence by Theorem 4 there exists a line segment l which intersects ∂S
at both endpoints and along which ∇V is constant. In particular |∇V | = k
on l so that l ∩ Sk = ∅. We claim that l ⊂ ∂Sk. To see this note that there
exists a sequence of points xj ∈ Sk with xj → x̄ such that ∇V is constant
on a line segment lj through xj (which extends up to ∂S). We can take, for
examle, xj as a point in {x ∈ Sk : |∇V (x)| ≤ k − 1/j} which has minimal
distance from x̄. In view of this minimality property ∇V cannot be constant
near xj and hence the desired line segment lj exists. The segments lj cannot
intersect l (in S) and their lengths are bounded from below. Thus they must
converge to l (e.g. in the Hausdorff sense) since xj → x̄. Since lj ⊂ Sk and
l ∩ Sk = ∅ we conclude that l ⊂ ∂Sk.

It remains to show that the Sk exhaust S. Since V ∈ C1(S) we have
|∇V | = k on ∂Sk ∩ S and thus

dk := sup
x∈∂Sk

dist(x, ∂S) → 0. (34)
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Figure 2: a) Construction of the set W for a long line segment l b) Sets
W and W ′ for different boundary segments l and l′.

Thus ∂Sk does not intersect the set {x ∈ S : dist(x, ∂S) > 2dk}. Thus either
Sk contains this set or it does not intersect it. Since Sk contains U the latter
is impossible for sufficiently large k. This shows that ∪∞

k=1Sk = S.
Step 2. Next we show that (for sufficiently large k) the set S \ Sk is

a union of pairwise disjoint open sets Wj and ∂Wj ∩ S is exactly one of
the line segments in ∂Sk ∩ S (see Figure 2). To see this consider one such
segment l. By (34) each point in l has at most distance dk from ∂S. Hence
the endpoints p and q of l lie on the same component of ∂S (here and in
the following we always assume that k is sufficiently large). We claim that
there exists an open and connected set W whose boundary consists of l and
a curve γ ⊂ ∂S from p to q and which satisfies

dist(x, ∂S) ≤ Cdk, ∀x ∈ W, (35)

l ⊂ int(Sk ∪ W̄ ). (36)

To see this note that by definition of a set with Lipschitz boundary a
neighbourhood of ∂S can be covered by open balls Bi such that ∂S ∩ Bi

is contained in a Lipschitz graph {(x1, g(x1)} (in a suitable orthonormal
coordinate system) with Lip g ≤ L and that S ∩Bi lies above that graph. If
l is sufficiently short then both l and the boundary arc connecting p and q
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lie in a single such chart and we can take

W = {x1 ∈ [a, b] : g(x1) < x2 < h(x1)},

where p = (a, g(a)), q = (b, g(b)) and where the affine function h represents
the line segment l.

If l is not contained in a single chart we can subdivide l into a disjoint
union of segments lJ , J = 1, . . . ,m which do lie in a single chart. Let pJ

and qJ = pJ+1 be the endpoints of lJ and let pJ and qJ be points on ∂S
which are closest to them (these may not be unique but any choice will
do), see Figure 2. Let WJ be the closed deformed rectangle bounded by lJ ,
the path γJ (in the chart considered) from pJ to qJ and the line segments
[pJ , pJ ] and [qJ , qJ ] (for the first segments l1 and the last segment lk the
rectangle degenerates into a triangle). Now W = int(∪WJ) has then desired
properties (35) and (36).

Next we claim that

Sk ∩ W = ∅. (37)

Note that Sk ∩ ∂W = ∅. Since Sk is connected failure of (37) would imply
Sk ⊂ W . But this is impossible since Sk contains U while W satisfies (35).
Consider now the line segments l and l′ in ∂Sk and the corresponding sets
W and W ′. We claim that

W ∩ W ′ = ∅, if l �= l′. (38)

Suppose that l �= l′. Then the segment l (without the endpoints) does not
intersect ∂W ′. Thus either l ∩ W ′ = ∅ or l ⊂ W ′. The latter possibility
cannot occur since Sk ∩ W ′ = ∅ by (37). Hence W ′ ∩ ∂W = W ′ ∩ l = ∅.
As W ′ is connected this shows that either W ′ ∩ W = ∅ or W ′ ⊂ W . If the
former possibility does not occur then we can exchange the roles of W and
W ′ and we get W = W ′. Hence l = l′ and this contradiction proves (38).

Since each of the sets W has positive area it follows from (38) that ∂Sk

consists of at most countably many line segments lj . We finally claim that

S ⊂ Sk ∪
⋃
j

Wj. (39)

Denote the set on the right hand side by S′. Then ∂S′∩S ⊂ (∂Sk∪∂Wj)∩S ⊂
∂Sk. It now follows from (36) that ∂S′ ∩ S = ∅. Hence S ⊂ S′ as claimed.
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Step 3. Now we can easily define the approximations Vk. Let f = ∇V .
Since f is constant on the line segment lj there exists a unique affine function
Lj : R

2 → R such that ∇Lj = f and Lj = V on lj . Now set

Vk =
{

V on Sk

Lj on Wj.
(40)

It follows from (36) and (39) that Vk is well-defined and belongs to W 2,2(S).
Note that if two segments l and l′ share a boundary point then the fact that
V ∈ W 2,2 and the Poincaré inequality show that f|l = f|l′ and hence L = L′.
We also see directly from (40) that ∇2Vk = ∇2V in Sk and ∇2Vk = 0
a.e. in S \ Sk (since ∂Sk is a countable union of line segments and thus a
two-dimensional null set). Moreover |∇Vk| ≤ k. This finishes the proof of
Theorem 11. �

Proof of Remark 12. It suffices to consider the case that Γ is a single
interval contained in a single Lipschitz chart of the boundary, i.e. ∂S∩BR ⊂
graph g, Γ = graph g|[a,b], Lip g ≤ L, see Figure 3. Set

Γr = {(x1, x2) : x1 ∈ [a, b], g(x1) < x2 < g(x1) + r}.

We claim that for sufficiently small r > 0 we have

|∇V | < M + 1 in Γr. (41)

Once this is shown we conclude easily as follows. The sets Sk are increasing
to S and therefore Sk ∩ Γr �= ∅ for all sufficiently large k. By (41) we have
Γr ∩ ∂Sk = ∅. Since Γr is connected this implies that Γr ⊂ Sk and thus
Vk = V in Γr. Hence we have Vk = V and ∇Vk = ∇V on Γ in the sense of
trace.

We prove (41) by contradiction. Let x̂ ∈ Γr with |∇V (x̂)| ≥ M + 1. We
claim first that

∃x̄ ∈ Γr such that ∇V is constant on a line segment l

through x̄ which intersects ∂S at both endpoints. (42)

Using the Poincaré inequality in direction x2 we see that the assumption
∇2V ∈ L2 implies that the intersection of l with ∂S occurs outside Γ.

If ∇V is not locally constant near x̂ then (42) follows directly from
Theorem 4 with x̄ = x̂. If ∇V is locally constant near x̂ consider the open
set S1 = {x ∈ S : ∇V is constant near x} and let U denote the connected
component of S1 which contains x̂. If ∂U ∩ Γr �= ∅ we can take x̄ ∈ ∂U ∩Γr
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Figure 3: Approximation near the boundary. The Poincaré inequality is
applied in the shaded region

and apply again Theorem 4. If ∂U ∩ Γr = ∅ then the connectedness of Γr

shows that Γr ⊂ U . Thus |∇V | = |∇V (x̂)| ≥ M + 1 in Γr. This contradicts
the assumption that ∇V satisfies |∇V | ≤ M on Γ (in the sense of trace).
Thus (42) holds.

Now we obtain (41) easily by an application of Poincaré’s inequality. In-
deed if the line l has slope between −2L and 2L the application of Poincaré’s
inequality (in the x2-direction) in the region between Γ and l yields

||∇V ||2L2 ≥
∫ b−a

0

dx1

r + 3Lx1
=

1
3L

ln
(

1 +
3L(b − a)

r

)
.

Thus we obtain a contradiction if r is chosen sufficiently small. If l has
slope larger than 2L (this can only happen if x̄ is close to the left endpoint
(a, g(a)) of Γ) then we can apply the Poincaré inequality along a family of
lines with slope −2L which connect Γ and l (equivalently we could slightly
tilt the picture in Figure 3 so that the slope of l is 2L in the tilted picture
and apply again the Poincaré inequality in x2 direction). If the slope of l
is less than −2L then we apply the Poincaré inequality on a family of lines
with slope 2L. This finishes the proof of (41) and thus yields the assertion.

�
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