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COMPACTNESS OF Ar-SPIN EQUATIONS

HUIJUN FAN, TYLER JARVIS AND YONGBIN RUAN

Abstract. We introduce the W -spin structures on a Riemann surface Σ and
give a precise definition to the corresponding W -spin equations for W being
a quasi-homogeneous polynomial. When W is the Ar-potential, then they
correspond to the r-spin structures and the r-spin equations considered by E.
Witten [W2]. If the number of the Ramond marked points on Σ is at least 1,
then Witten’s lemma does not hold any more and the W -spin equations may
have nontrivial solutions. An nontrivial solution of r-spin equation is given in
this case. We demonstrate the ”inner compactness” of the W -spin equations
when W is one of the superpotentials: Ar, Dr , Er or pure Neveu-Schwarz.
Especially if W is Ar-potential, then the solution space of the r-spin equation
is compact in suitable topology.

1. Introduction

Let Mg,s be the moduli space of complex Riemann surfaces of genus g and s

marked points. Let Mg,s be its Deligne-Mumford compactification. Mg,s consists
of stable curves of genus g and s marked points. It can be shown that Mg,s is an
smooth orbifold with complex dimension 3g−3+s. Mumford [Mum] also introduced
tantological cohomology classes asssociated to the universal curve Cg,s → Mg,s.
For instance, let xi be a marked point on Σ, then xi has a cotangent bundle T ∗

xΣ.
When Σ varies in Mg,s, one gets a complex line bundle Li → Mg,s. Consider the
following intersection numbers:

〈
s∏
i=1

C1(Li)ni ,Mg,s〉, ∀ni ≥ 0.

Witten [W1] conjectured these intersection numbers can be assembled to a potential
function which satisfies the KdV hierarchy (i.e. the semiclassical limit of the KdV
equation). Later this conjecture was proved by Kontsevich [K]. This provides
an unexpected link between the algebraic geometry of these moduli spaces and
integrable systems.

Based on the theory of Mg,s, people can construct many moduli theories and
propose similar problems discussed as above. There are two ways to generalize the
above moduli theory on Mg,s. Let V be a smooth projective variety or a sym-
plectic manifold. The first generalization is to consider the moduli space Mg,s(V ),
which consists of the stable maps from a Rimann surface Σ to V . Using the eval-
uation maps from Mg,s(V ) to V , one can define the Gromov-Witten invariants,
which satisfy Manin and Konstevich’s axiom system [KM]. This motivates another
well-known conjecture by Eguchi-Hori-Xiong-Katz in quantum cohomology that
the generating function of Gromov-Witten invariants satisfies a set of equations
which form a virasoro algebra. This conjecture is commonly known as the Virasoro
Conjecture.

1



2 HUIJUN FAN, TYLER JARVIS AND YONGBIN RUAN

The second less known generalization was proposed by Witten [W2] to study the

moduli space M
1
r

g,s of r-spin curves. Roughly speaking, an element [Σ, L] ∈ M 1
r
g,s

is an automorphism class of tuple (Σ, L), where Σ is a smooth curve of s marked
points, and L is the r-th root of the twisted canonical bundle KΣ(−Σsi=1mi · pi).
If the degree 2g − 2 − Σs1mi is divisible by r, then L exists and there exactly r2g

isomorphism classes of L on Σ.

If we want to discuss the compactification M
1
r ,m

g,s of M 1
r ,m
g,s (m = (m1, · · · ,ms)),

we have to consider the degeneracy of the line bundle L along a circle in Σ. This
forces us to consider the sheaf L on Σ. There are exactly r possibilities for the
degeneracy. According to the degeneracy behavior, all nodal points of Σ can be
divided into two types:

• (1) if near the nodal point Q, L is a locally free sheaf, then Q is called a
Ramond nodal point;

• (2) Otherwise the nodal point Q is called a Neveu-Schwarz point.

If Q is a Ramond nodal point, then the sheaf L can be obtained from the sheaf
L̃ over its normalization π : Σ̃ → Σ. Take a local coordinate Bi = {zi ∈ C||zi| <
1, zi(Qi) = 0}, ∀i = 1, 2, around the lifting points Qi, then L̃i is generated by
(dzi

zi
)

1
r . Now L is obtained by a gluing φ : L1 → L2 such that φ((dz1z1 )

1
r )⊗r = − dz2

z2
.

If Q is NS nodal point, then there exist integers (m1(Q),m2(Q)) satisfying 0 ≤
m1(Q),m2(Q) ≤ r− 2,m1(Q) +m2(Q) = r− 2 such that L = π∗(⊕OBi(z

mi

i dzi)
1
r )

around Q. (m1(Q),m2(Q)) is called the index of Q. If Q is of Ramond type, then
we take (m1,m2) = (−1,−1).

If m ≡ m′( mod r), we can construct a canonical isomorphism from M
1
r ,m

g,s to

M
1
r ,m

′

g,s . So we can restrict mi such that −1 ≤ mi ≤ r − 2.
Similarly we call the marked point P as a Ramond marked point if the twisted

coefficient m of the divisor at P is −1. The other marked points are called the
Neveu-Schwarz marked points.

After introducing an extra assistant notion called ”coherent net”, the second
author [J1, J2] can prove

Theorem 1.1. M
1
r ,m

g,s is a smooth orbifold.

In [JKV], Jarvis-Kimura-Vaitrob considered a stratum M
1
r

Γ of M
1
r ,m

g,s which con-

sists of all the elements in M
1
r ,m

g,s having the stable decorated graph Γ. Motivated
by the construction of Gromov-Witten invariants from the moduli space of stable
maps, they introduce axioms which must be satisfied by a cohomology class C

1
r

Γ

(called the virtual cycle) on the moduli space of r-spin curves M
1
r

Γ . These axioms
will ensure to obtain a cohomological field theory (CohFT) of rank r − 1 in the
sense of Kontsevich and Manin [KM].

To construct the virtual cycle, they introduce the following condition:

JKV Condition: Assume there is at most one Ramond marked point, i.e., all
mi ≥ 0 except possible one mj = −1.
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Under the JKV condition, they [JKV] proved the existence of the virtual cycle

C
1
r

Γ in cases r = 2 or genus g = 0. Further with the JKV condition, Mochizuki
[Mo], Polishchuk and Vaintrob [PV] proved the existence in general case.

Let us describe roughly the construction in [Mo]. This method constructing C
1
r

Γ

was originally proposed by Witten [W2] even before one knew how to construct the

moduli space M
1
r

g,s.
In each complex surface Σ, there is a canonical operator ∂̄Σ. This operator

depends smoothly on the complex structure jΣ on Σ. Now if we let ∂̄Σ move on
the moduli space Mg,s, we then get a family of ∂̄-operator parametrized by Mg,s.
Seeley-Singer [SS] can extend ∂̄Σ continuously to the whole compactification space
Mg,s in the sense of graph norm. Then we can consider the Banach bundles and
bundle maps as shown in the following figure:

Ω0,0(L) Ω0,1(L)∂̄�

Mg,s

�
π

�
�

�
��

E π∗F

Mg,s F

�

�
π

�
�

�
ω

Set D = (r−2)(g−1)
r + Σsi=1mi and T to be an positive integer. Let FD+T

Σ be a
finite-dimensional space containing coker(∂̄Σ), and let ETΣ = ∂̄−1

Σ (FΣ). Now we
have a pull-back bundle π∗F → E. The ”top-Chern class” called by Witten (i.e.
C

1
r
g,s) CD(F,E) = π∗(CD+T (π∗F )). However this can’t be done directly, since E is

not a compact manifold. So Witten introduced a section ω : E → π∗F such that
the zero locus lies only on the zero section of π : E → Mg,s. Such a section permits
us to define a cohomology class CD+T (π∗F ;ω) in H∗

cpt(E). Then we can define

(C
1
r
g,s :=)CD(F,E;ω) = π∗(CD+T (π∗F ;ω)) (1)

one should check the definition of this cohomology class is independent of the
choices of E,F .

The section Witten chosen is

ω = ∂̄s+ s̄r−1 : Ω0(L) → Ω0,1(L). (2)

This section is not chosen arbitrarily, it has physical meaning as mentioned
by Witten [W2]. To make the above definition meaningful, one should have the
following identifications for which Witten only gave a very rough formulation:

L̄⊗r−1 ∼= L̄⊗r ⊗ L ∼= ω̄Σ ⊗ L⊗O(−Σmi · · · pi) ↪→ ω̄Σ ⊗ L. (3)

The following Witten’s lemma is essential to define the ”top Chern class”.

Lemma 1.2. If there is no Ramond marked point in a nodal curve, then ω(s) = 0
iff s = 0.

So a natural problem arises: if the JKV condition does not hold, can one con-
struct the virtual cycle C

1
r

Γ ? On the other hand, Witten [W2] also asked if one
can construct the analogous theories for the superpotentials Er, Dr not only Ar
superpotential.
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In this paper, we attempt to generalize Witten’s theory about r-spin curves to
more generalized settings. In section 2, we will define the W -spin structures on an
orbicurve, where W ∈ C[x1, · · · , xt] is a quasi-homogeneous polynomial. If W = xr

and forget the orbifold structure on the orbicurve, we recover the r-spin structure
on a Riemann surface. We will give a precise definition to the following W -spin
equation:

∂̄uj +
∂̄W (u1, · · · , ut)

∂uj
= 0, ∀j = 1, · · · , t. (4)

Note that if W = xr, then the above W -spin equation is just the r-spin equation.
If we let W be the Dr, Er or pure Neveu-Schwarz potential, then we can get the
corresponding spin equations. We also discuss some local properties of the W -spin
equations.

An important thing is that the Witten’s lemma does not hold when the number
of Ramond marked points is at least 1. In this case, Witten’s formulation of con-
structing the virtual cycle is ineffective, because the corresponding r-spin equation
may really have solutions. This will be shown by an example in section 5. Hence
to obtain the virtual cycle, it is natural to consider the moduli space which should
includes the information of the solutions of r-spin equation. Hence we need to
consider the compactness of the solution space of the r-spin equation.

The working spaces are the weighted sobolev spaces. In Section 3, we shall give
the Lp estimate of the ∂̄ operator in weighted sobolev spaces and prove it is a
Fredholm operator under some mild restraints.

In Section 4, we will demonstrate the ”inner compactness” of the solution spaces
of the Ar, Dr, Er-spin equations and pure Neveu-Schwarz spin equations. Let
R be the sum of the residue of W (u1, · · · , ut) at each Ramond marked points.
If u1, · · · , ut are the nontrivial solutions of the W -spin equation for W being
Ar, Dr, Er or pure Neveu-Schwarz potential, then R is a non-zero real number.
The main conclusion is that the space of solution spaces satisfying R ≤ C < ∞ is
compact in Lp1 topology for some p ≥ 2.

In section 5 we will concentrate on the easiest equation, Ar-spin equation. We
will prove if adding the singular solutions to the solution space of regular solutions,
the whole solution space is compact in suitable topology.

2. Spin structures on orbicurves and spin equations

In this section we will introduce the W -spin structures on orbicurves, where
W ∈ C[x1, · · · , xt] is a non-degenerate quasi-homogeneous polynomial. By means
of W -spin structures one can define the W -spin equations on orbicurves.

Let W ∈ C[x1, · · · , xt] be a quasi-homogeneous polynomial, i,e, there exist de-
grees d, k1, · · · , kt ∈ Z>0 such that for any λ ∈ C∗

W (λk1x1, · · · , λktxt) = λdW (x1, · · · , xt).
Definition 2.1. W is called nondegenerate if

(1) the fractional degrees qi = ki

d are uniquely determined by W ; and
(2) the hypersurface defined by W in weighted projective space is non-singular, or
equivalently, the affine hypersurface defined by W has an isolated singularity at the
origin.
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From now on, we always assume the quasi-homogeneous polynomial W is non-
degenerate and the corresponding degrees d, k1, · · · , kt of W are the least positive
integer degrees.

Definition 2.2. We say W is pure Neveu-Schwarz (or pure NS) if for every i ∈
{1, · · · , t} there is a positive integer ni such that W contains a monomial of the
form xni .

So pure NS implies that qi = 1
ni

. Actually every non-degenerate pure NS, quasi-
homogeneous polynomial W is a deformation of a Brieskorn singularity:

W = xn1
1 + · · · + xnt

t + V,

where V ∈ C[x1, · · · , xt] is itself a suitably quasi-homogeneous polynomial with
deg(xi) = 1

ni
for every i.

Example 2.3. If W (x) = xr ;W (x, y) = xr + xy2, then the two polynomials are
called Ar and Dr potentials respectively.

Lemma 2.4. If W is non-degenerate, then the group

H := {(α1, . . . , αt) ∈ (C∗)t|W (α1x1, . . . , αtxt) = W (x1, . . . , xt)}
of diagonal symmetries of W is finite. In particular, we have

H ⊆ µd/k1 × · · · × µd/kt
∼= k1Z/d× . . . ,×ktZ/d

where µl is the group of lth roots of unity.

Proof. First write W =
∑s

j=1Wj with Wj = cj
∏
x
bl,j

l and with cj �= 0. The
uniqueness of the fractional degrees is equivalent to saying that the matrix B =
(bl,j) has rank t. We may as well assume that B is invertible. Now write h =
(h1, . . . , ht) ∈ H , as hj = exp(uj +vji) for uj ∈ R uniquely determined and vj ∈ R
determined up to integral multiple of 2πi. The equations W (h1x1, . . . , htxt) =
W (x1, . . . , xt) can now be written as B(u + vi) ≡ 0(mod2πiZ). Invertibility of B
shows that ul = 0 for all l–thus H lives in U(1)t, and a straightforward argument
shows that the number of solutions (mod2πiZ) to the equationB(vi) ≡ 0(mod2πiZ)
is also finite. �
W -spin structures on smooth orbicurves. Let (Σ̃, z,m) be a smooth orbicurve
(or orbifold Riemann surface) as defined in [CR2], i.e., (Σ̃, z,m) is a Rimann surface
Σ with marked points z = {zi} having orbifold structure near each marked point zi
given by a faithful action of Z/mi. In another word, a neighborhood of each marked
point is uniformized by the branched covering map z → zmi . Let � : Σ̃ → Σ the
natural projection to the coarse Riemann surface Σ.

A line bundle L on Σ can be uniquely lifted to an orbifold line bundle on Σ̃. We
denote by the same L the lifting.

Definition 2.5. Let K be the canonical bundle of Σ, and let

Klog := K ⊗O(z1) ⊗ · · · ⊗ O(zk)

be the log-canonical bundle. Klog can be thought as canonical bundle of the
punctured Riemann surface Σ − {z1, · · · , zk}. Suppose that L1, . . . , Lt are orb-
ifold line bundles on Σ̃ with isomorphisms ϕj : Wj(L1, . . . , Lt)

∼−→ Klog where by
Wj(L1, . . . , Lt) we mean the jth monomial of W in Li

Wj(L1, . . . , Lt) = L
⊗b1j

1 ⊗ . . . ,⊗L⊗btj

t ,
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and where Klog is identified with its pull-back to Σ̃. The tuple
(L1, . . . , Lt, ϕ1, . . . , ϕs) is called a W -spin structure.

Definition 2.6. Suppose that the chart of Σ̃ at an orbifold point zi is D/(Z/m)
with action e

2πi
m (z) = e

2πi
m z. Suppose that the local trivialization of an orbifold

line bundle L is (D × C)/(Z/m) with the action

e
2πi
m (z, w) = (e

2πi
m z, e

2πiv
m w). (5)

When v = 0, we say that L is Ramond at zi. When v > 0, we say L is Neveu-
Schwarz (NS) at zi.

A W -spin structure (L1, . . . , Lt, ϕ1, . . . , ϕs) is called Ramond at the point zi if
the group element h = (exp(2πiv1/m), . . . , exp(2πivt/m)) defined by the orbifold
action on the line bundles Lj at zi is Ramond.

Remark 2.7. If L is an orbifold line bundle on a smooth orbifold Riemann surface
Σ̃, then the sheaf of local invariant sections of L is locally free of rank one, and hence
dual to a unique orbifold line bundle |L| on Σ. We also denote |L| by �∗L, and it
corresponds to the desingularization of L [CR1](Prop 4.1.2). It can be constructed
as follows.

We keep the local trivialization at other places and change it at the orbifold
point zi by a Z/m-equivariant map Ψ : (D − {0})× C → (D − {0})× C by

(z, w) → (zm, z−vw) (6)

where Z/m acts trivially on the second (D−{0})×C. Then, we extend L|((D−{0})×C)

to a smooth holomorphic line bundle over Σ by the second trivialization. Since Z/m
acts trivially, this gives a line bundle over Σ, which is |L|. Note that if L is Ramond
at zi, then |L| = L locally. When L is Neveu-Schwarz at zi, then |L| will differ
from L.

Example 2.8. A smooth orbifold Riemann surface Σ̃ = (Σ, z,m) has a natural
orbifold canonical bundle KΣ̃, defined as the top wedge product of its (orbifold)
cotangent bundle. The desingularization is related to the canonical bundle of Σ by

|KΣ̃| = KΣ ⊗i O(−(mi − 1)zi).

On the other hand, the desingularization of the log-canonical bundle of Σ̃ is
again the log-canonical bundle of Σ, since Klog is Ramond at every marked point.

Next we study the sections. Suppose that s is a section of |L| having local
representative g(u). Then, (z, zvg(zm)) is a local section of L. Therefore, we
obtain a section �∗(s) ∈ Ω0(L) which equals s away from orbifold points under the
identification given by Equation 6. It is clear that if s is holomorphic, so is �∗(s). If
we start from an analytic section of L, we can reverse the above process to obtain
a section of |L|. In particular, L and |L| have isomorphic spaces of holomorphic
sections. In the same way, there is a map �∗ : Ω0,1(|L|) → Ω0,1(L), where Ω0,1(L)
is the space of orbifold (0, 1)-forms with values in L. Suppose that g(u)dū is a local
representative of a section of t ∈ Ω0,1(|L|). Then �∗(t) has a local representative
zvg(zm)mz̄m−1dz̄. Moreover, � induces an isomorphism from H1(|L|) → H1(L).

Suppose now that Lr ∼= Klog with action of Z/m on L as in Equation 5. Since
Klog is Ramond at every marked point, we must have rv = lm for some l. The
integer l is non-zero precisely when v is, and thus L is Neveu-Schwarz at zi if and
only if l > 0. Moreover, we have v < m, so l < r, and of course v

m = l
r . Suppose
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that s ∈ Ω0(|L|) with local representative g(u). Then, sr has local representative
zrvgr(zm) = zmlgr(zm) = ulgr(u). Hence, sr ∈ Ω0(Klog ⊗ O((−li)zi), and thus
when li > 0, or equivalently, when L is Neveu-Schwarz at every zi, we have sr ∈
Ω0(K).

Remark 2.9. More generally, if Lr ∼= Klog on a smooth orbicurve with action of
the local group on L defined by li (as above) at each marked point, then we have

(�∗L)r = |L|r = Klog ⊗O((−li)zi),
locally, near zi.

Proposition 2.10. Let (L1, . . . , Lt) be a W -spin structure on a smooth orbicurve.
And suppose that the local group Gz of z acts on Lj by exp(2πi/m)(z, wj) =
(exp(2πi/m)z, exp(2πivj/m)wj). There is a unique element h ∈ H such that
exp(2πivj/m) = hj = ext(2πiaj(h)) = exp(2πicj(h)/d) for every j. Moreover,
for every monomial Wi we have

Wi(|L1|, . . . , |Lt|) ∼= Klog ⊗O(−
t∑

j=1

bijaj(h)z)

near the point z. Letting hl define the action of the local group Gzl
near zl we have

the global isomorphism

Wi(|L1|), . . . , |Lt|) ∼= Klog ⊗O(−
k∑
l=1

t∑
j=1

bijaj(hl)zl)

∼= KΣ ⊗O(−
k∑
l=1

t∑
j=1

bij(aj(hl) − qj)zl).

Proof. The existence and uniqueness of h ∈ H is a straightforward generalization of
the argument for W = WAr−1 , given above. The rest is an immediate consequence
of the description of h as h = (exp(2πia1(h), . . . , exp(2πiat(h)) and the description
of |Lj | in terms of the action of the local group Gz given above. �

W -spin equations. Let D = −∑k
l=1

∑t
j=1 bij(aj(hl) − qj)zl be the divisor, then

there is a canonical section s0 ∈ H0(Σ,O[D]) with the divisor D. This section
provides the identification

KΣ ⊗O(D)
s−1
0∼= KΣ(D).

Take a coordinate chart {Uα} of Σ, and let eαj be a holomorphic base of the line
bundle |Lj| in the chart Uα. For simplicity, we will omit the upper index α if the
discussed chart is known. Now near the marked points zl the metric defined on
KΣ(D) induces the singular metric in each line bundle |Lj | such that the singular
metric near zl is

|ej |s = |z|aj(hl)−qj qj =
kj
d
, 0 ≤ aj(hl) ≤ 1 − qj .

As before, we assume that W = ΣWi = Σi(ci
∏
l x
bil

l ). Let uj = ũjej, then it is
easy to see that

∂W

∂uj
∈ K̄Σ ⊗ |Lj|−1

.
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Define an isomorphism I1 : Ω(Σ, |Lj |−1 ⊗Λ0,1) → Ω(Σ, |Lj |⊗Λ0,1) such that for
a section v = ṽe′j there is

I1(ṽē′j ⊗ dz̄) = ṽ|e′j|2ej ⊗ dz̄,

where e′j is the holomorphic base of |Lj |−1 such that e′j · ej = dz.
It is obvious that I1 is the unique metric-preserving isomorphism between the

corresponding two spaces and it is independent of the choice of the local charts.
Since I1(∂W∂uj

) ∈ KΣ ⊗ |Lj|, the W -spin equation is defined below as the first
order system of the sections u1, · · · , ut:

∂̄uj + I1(
∂W

∂uj
) = 0, ∀j = 1, · · · , t.

Remark 2.11. The de-singularization of the orbifold line bundle Lj induces iso-
morphisms �j : Ω0(|Lj |) → Ω0(Lj) and �∗j : Ω0,1(|Lj |) → Ω0,1(Lj). It is easy to see
that �∗ commute with ∂̄ and W̄

∂ūj
, hence the aboveW -spin equation can be regarded

also as equations defined on orbifold. However we study the W -spin equations in
the resolution line bundel |Lj |.

We can define the weighted sobolev spaces Lp1(Σ, |Lj |) and Lp(Σ, |Lj| ⊗ Λ0,1).
Their norms are defined as:

• if u ∈ Lp1(Σ, |Li|), then

||u||p1,p :=
∫

|u|ps + |∂u|ps + |∂̄u|ps;
• if u ∈ Lp(Σ, |Li| ⊗ Λ0,1), then

||u||pp =
∫

|u|ps.

Definition 2.12. The sections (u1, · · · , ut) are said to be the regular solutions of
the W -spin equations

∂̄uj + I1(
∂W

∂ūj
) = 0, (7)

if for each j, uj ∈ L2
1(Σ, |Lj |), I1(∂W∂uj

) ∈ L2(Σ, |Lj | ⊗ Λ0,1) and (u1, · · · , ut) satisfy
the W -spin equations almost everywhere.

The spin equation ∂̄uj + I1(∂W∂ūj
) = 0 has different properties near the Ramond

marked points and Neveu-Schwarz marked points. We discuss them respectively.

(1) Near Ramond marked points

Let uj = ũjej in a local coordinate near a Ramond marked point zl, then this
can be expressed by

∂̄ũ

∂z̄
+
∂W (ũ1, · · · , ũt)

∂ũj

1
z
|e′j|2 = 0 (8)

In polar coordinate, this equation can be rewritten as

1
2
r(
∂

∂r
+
√−1

1
r

∂

∂θ
)ũj +

∂W (ũ1, · · · , ũt)
∂ũj

r2qj = 0. (9)
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Example 2.13. (A local solution of r-spin equation near the Ramond
marked points)

Near a Ramond marked point, the equation (9) becomes

ρ(
∂

∂ρ
+
√−1

1
ρ

∂

∂θ
)ũ + 2r ¯̃ur−1

ρ
2
r = 0.

If we assume further that u is a real function and depends only on the radius ρ,
then we have

dũ

dρ
= −2rũr−1ρ

2
r −1.

Now a special local solution is given by

ũ = (r2(r − 2)ρ
2
r + C)−

1
r−2 ,

where C is a positive constant.
An easy computation shows that ũ ∈ Lp1 if and only if p < 2

1− 1
r

.

If we set φj = ũjz
−qj , then an easy computation shows that the equation (9) of

ũ1, · · · , ũt turns to the simple equation of φ1, · · · , φt below:

∂̄φj +
∂W

∂φj
= 0, ∀j = 1, · · · , t (10)

(2) Near the Neveu-Schwarz points
Let uj = ũjej near a Neveu-Schwarz point zl. Then the W -spin equation be-

comes
∂̄ũi
∂z̄

+ Σj
∂Wj(ũ1, · · · , ũt)

∂ũi
zΣt

s=1bjs(as(hl)−qs)|e′i|2 = 0 (11)

3. ∂̄ operator in Weighted Sobolev Spaces

In this section, we will give the Lp estimate of the ∂̄ operator and show that it
is a Fredholm operator under some mild assumption.

Firstly for the convenience of the reader, we list the standard representations of
the ∂̄ operator in different coordinate systems.

(1) in (x, y)-coordinate

z = x+ iy

∂

∂z
=

1
2
(
∂

∂x
−√−1

∂

∂y
),

∂̄

∂z̄
=

1
2
(
∂

∂x
+
√−1

∂

∂y
)

dz = dx+
√−1dy, dz̄ = dx−√−1dy

(2) in (r, θ)-coordinate

z = reiθ

∂

∂z
=

1
2
e−iθ(

∂

∂r
−

√−1
r

∂

∂θ
),

∂̄

∂z̄
=

1
2
eiθ(

∂

∂r
+

√−1
r

∂

∂θ
)

dz = eiθ(dr +
√−1rdθ), dz̄ = e−iθ(dr −√−1rdθ)
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(3) in cylindrical coordinate (t, θ), where r = e−t:

∂

∂z
= −1

2
et−iθ(

∂

∂t
+
√−1

∂

∂θ
),

∂̄

∂z̄
= −1

2
et+iθ(

∂

∂t
−√−1

∂

∂θ
)

dz = −eiθ−t(dt−√−1dθ), dz̄ = −e−iθ−t(dt+
√−1dθ)

∂ =
1
2
(
∂

∂t
+
√−1

∂

∂θ
)(dt−√−1dθ)

∂̄ =
1
2
(
∂

∂t
−√−1

∂

∂θ
)(dt+

√−1dθ)

Theorem 3.1. If 2
1+2qj

< p < 2
qj
, p �= 2

1+qj
, then ∂̄ : Lp1(Σ, |Lj|) → Lp(Σ, |Lj | ⊗

Λ0,1) is a Fredholm operator

Proof. Step 1 Lp Estimate near a marked point zl

Firstly we assume that aj(hl)− qj �= 0, since the Lp estimate under the aj(hl)−
qj = 0 case corresponds to the classical Lp estimate without weight.

Let ∂̄u = f , where f ∈ C∞(B1(zl), |Lj | ⊗ Λ0,1). Choose cylindrical coordinate
(r = e−t, θ). Let

u = ũe−tej

f = f̃ ej ⊗ dz̄ = −f̃e−iθ−tej ⊗ (dt+
√−1dθ)

The equation becomes

∂̄(ũe−t) =
1
2
(
∂(ũe−t)
∂t

−√−1
∂(ũe−t)
∂θ

)(dt +
√−1dθ) = −f̃ e−iθ−t,

i.e.,

∂ũ

∂t
− ũ−√−1

∂ũ

∂θ
= −2f̃e−iθ (12)

Since
∫ |f |ps <∞ ,this is equivalent to∫ ∞

0

|f̃ |pe−p(aj(hl)−qj)t−2tdtdθ <∞

Let aj,l = aj(hl) − qj + 2
p , then the integral becomes∫

|f̃e−aj,lt|p <∞.

Let û = ũe−aj,lt, f̂ = f̃ e−aj,lt−iθ. Then by (12) the equation of û is
∂û

∂t
=
∂ũ

∂t
e−aj,lt−aj,le−aj,ltũ = (ũ+

√−1
∂ũ

∂θ
−2f̃e−iθ)e−aj,lt−aj,lû = (1−aj,l)û+

√−1
∂û

∂θ
−2f̂ ,

i.e.,
∂û

∂t
+ Lθû = −2f̂ , t ∈ [0,∞) (13)

where Lθ = −√−1 ∂
∂θ − (1 − aj,l).

A special solution us

We seek for a special solution us satisfying the inhomogeneous ∂̄ equation.
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Extend f̂ symmetrically to (−∞,∞) and we get an equation of (13) defined in
the real line.

Since the spectrum of −√−1 ∂
∂θ is the set Z, and the eigenspace is {⊕neinθ, n ∈

Z}, the spectrum of Lθ is {λn = n+ aj,l, n ∈ Z}. Note that

−qj +
2
p
≤ aj,l ≤ 1 − qj +

2
p

and 1 < p <∞, we have the restriction

−qj ≤ aj,l ≤ 3 − qj .

The possible integer that aj,l can achieve is 0, 1, 2. Since aj(hl)− qj = sqj for some
integer s satisfying −1 ≤ s ≤ [ 1

qj
] − 1, further analysis shows if

p �= 2
qj
,

2
1 − sqj

,
2

2 − sqj
(14)

for integer s in the interval [−1, [ 1
qj

] − 1], then 0 is not a spectrum point (since we
exclude aj,l = 0 case at the beginning of the Step 1) and Lθ is an invertible operator
on S1. Therefore under the condition (14), (13) has a unique bounded solution û.
If −2f̂ = Σnρλn(t)ei(n+1)θ , then û has the following formula

û(t, θ) = −Σλn<0e
λnt

∫ ∞

t

e−λnτρλn(τ)dτ ·ei(n+1)θ+Σλn>0e
−λnt

∫ t

−∞
eλnτρλn(τ)dτ ·ei(n+1)θ .

We denote the corresponding solution of the ∂̄ equation as us := Qs ◦ f .
Now we can get the estimate from [D], Lemma 3.22,

||û||p ≤ C||f̂ ||p, (15)

where C is a constant depending on p, qj , Lj , zl.
From the inequality (15), we have∫ ∞

−∞
|ũe−aj,lt|pdtdθ ≤ C

∫ ∞

−∞
|f̃ e−aj,lt−iθ|p.

So ∫ ∞

−∞
|ũe−t|petpe−p(aj(hl)−qj)t−2tdtdθ ≤ C

∫ ∞

0

|f̃ |pe−p(aj(hl)−qj)t−2tdtdθ,

which induces ∫
B1(0)

|us
z
|ps|dzdz̄| ≤ C

∫
B1(0)

|f |ps|dzdz̄|. (16)

Let D = ∂
∂t + Lθ. Let Bn = S1 × [n, n + 1], for n = 0, 1, 2 · · · , and let B+

n is a
band slightly bigger than Bn. Since D is a first order elliptic operator, we have the
classical Lp estimate:

(
∫
Bn

|∂tû|p+|∂θû|p) 1
p ≤ C

(
(
∫
B+

n

|Dû|p) 1
p + (

∫
B+

n

|û|p) 1
p

)
≤ C

(
(
∫
B+

n

|f̂ |p) 1
p + (

∫
B+

n

|û|p) 1
p

)

Summing over n, we get

(
∫
S1×(0,∞)

|∂tû|p+|∂θû|p) 1
p ≤ 2C(||f̂ ||Lp(S1×(−1,∞))+||û||Lp(S1×(−1,∞))) ≤ C||f̂ ||Lp(S1×(−1,∞)).
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This plus (15) gives

(
∫
B1

|∂us|ps)
1
p ≤ C(

∫
B+

1

|f |ps)
1
p , (17)

where B+
1 is a neighborhood of zl slightly bigger than B1.

For the estimate of Lp norm of us, we have∫
|us|ps =

∫
S1×(0,∞)

|ũe−t|pe−paj,lt ≤
∫
S1×(0,∞)

|ũ|pe−paj,lt =
∫

|û|p ≤ C

∫
|f |ps.

(18)
Combining (17) and (18), we obtain

||us||Lp
1(B1) ≤ C||f ||Lp(B+

1 ) (19)

Now we apply the ordinary sobolev embedding theorem to the function usr
a,

where a = (aj(hl) − qj) to get the weighted sobolev embedding inequalities. We
use || · ||o,k,p to represent the ordinary W k,p norm.

If p ≤ 2, then ∀1 < q < 2p
2−p ,

||usra||o,q ≤ C||usra||o,1,p
≤ C(

∫
|∂r(usra)|p +

1
rp

| ∂
∂θ

(usra)|p + |usra|p) 1
p

= C(
∫

(|∂rus|p +
1
rp

|∂θus|p + |us
r
|p + |us|p)rap) 1

p

≤ C(
∫

(|∂rus|p +
1
rp

|∂θus|p)rap + |us|prap) 1
p = C||us||1,p,

where the second inequality comes from the relation (16). Especially, when p = 2,
we have for any 1 < q <∞,

||us||q ≤ C||us||1,2.
If p > 2, by similar argument we have

|||us|s||Cα ≤ C||us||1,p,
where 0 < α < 1 − 2

p .
In summary, we have

Lemma 3.2. If f ∈ Lp(B1(0), |Li|⊗Λ0,1) for p satisfying the choice (14), then the
special solution us = Qs ◦ f satisfies the following estimate:

(1) if 1 < p <∞,

||us
z
||p;B1(0) ≤ C||f ||p;B1(0) (20)

(2) if 1 < p ≤ 2, and 1 < q < 2p
2−p , then

||us||q;B1(0) ≤ C||us||1,p;B1(0) ≤ C||f ||p;B1(0); (21)

(3) if p > 2, and 0 < α < 1 − 2
p , then

||usra||Cα(B1(0)) ≤ C||us||1,p;B1(0) ≤ C||f ||p;B1(0), (22)

where a = aj,l − qj.
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Estimate of the homogeneous solution

Let ∂̄u = 0 in B1(0). We have the inner estimate

||u||o,k,s;B1(0) ≤ C||u||o,s:B+
1 (0),

where B+
1 (0) is a ball containing virtually B1(0).

Let p > 2
1+2qj

. Since the function 2s
2−s(1−2qj) of s is monotone increasing near

s = 1, there exits s > 1 such that

s <
2s

2 − (1 − 2qj)s
< p. (23)

Let a = aj(hl) − qj , then −qj ≤ a ≤ 1 − 2qj . This and the above inequality
induce

2s
2 + qjs

≤ 2s
2 − as

≤ 2s
2 − (1 − 2qj)s

< p, (24)

i.e.,
− pas

p− s
> −2. (25)

Now

||u||s
o,s;B+

1 (0)
=
∫
B+

1 (0)

|u|s|z|sa|z|−sa

≤ (
∫

|u|p|z|ap) s
p (
∫

|z|−sap
p−s )

p−s
p

≤ C(
∫

|u|p|z|ap) s
p ,

Where the inequality (25) ensures the integrability of∫
|z|−sap

p−s .

Therefore for any k ≥ 0, we have

||u||o,k,s;B1(0) ≤ C||u||p;B+
1 (0) (26)

Actually we can have a refined inequality

||u||o,k,s;B1(0) ≤ C||u||p;B+
1 (0)\B 1

2
(0), (27)

Since |u| is a subharmonic function and we can use the maximum principle.
By sobolev embedding theorem, we have

||u||Ck(B1(0)) ≤ C||u||p;B+
1 (0)\B 1

2
(0).

Lemma 3.3. Let ∂̄u = 0 and u ∈ Lp(B+
1 (0)). We have the estimate:

(1) for any k ≥ 0, 1 < q <∞, 2
1+2qj

< p <∞, there exists C such that

||u||o,k,q;B1(0) ≤ C||u||p;B+
1 (0)\B 1

2
(0).

(2) if a ≥ 0, then for any k ≥ 0, 1 < q < ∞, 2
1+2qj

< p < ∞, there exists C
such that

||u||k,q;B1(0) ≤ C||u||p;B+
1 (0)\B 1

2
(0).
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(3) if a = −qj, then for any k ≥ 0, 1 < q < 2
qj

and 2
1+2qj

< p <∞, there exists
C such that the above inequality holds.

Combining the estimate about the inhomogeneous solution and the homogeneous
solutions, one has

Lemma 3.4. Let ∂̄u = f in B+
1 (0), where u, f ∈ Lp. Then u ∈ Lp1 and the

inequality
||u||1,p;B1(0) ≤ C(||u||p,B+

1 (0)\B 1
2
(0) + ||f ||p,B+

1 (0)) (28)

holds if the following two conditions are satisfied:
• if p �= 2

qj
, 2

1−sqj
, 2

2−sqj
for integer s in the interval [−1, [ 1

qj
] − 1]

• either a ≥ 0, 2
1+2qj

< p <∞ or a = −qj, 2
1+2qj

< p < 2
qj

.

Proof. Under the assumptions of the parameter a, p, one has

||u||1,p;B1(0) ≤ ||u− us||1,p + ||us||1,p ≤ C(||u − us||p,B+
1 (0)\B 1

2
(0) + ||f ||p) (29)

≤ C(||u||p,B+
1 (0)\B 1

2
(0) + ||us||p + ||f ||p) ≤ C(||u||p,B+

1 (0)\B 1
2
(0) + ||f ||p,B+

1 (0))

(30)

�

Step 2 Global Lp estimate

Let z1, · · · , zm be the m marked points. Take a C∞ function β such that β ≡ 1
on Σ \ ∪ml=1B1(zl), and β ≡ 0 on ∪ml=1B 1

2
(zl). Then

||u||1,p ≤ ||βu||1,p + ||(1 − β)u||1,p
≤ C(||∂̄(βu)||p + ||βu||p + ||∂̄(1 − β)u||p + ||(1 − β)u||p,Σ\∪m

l=1B 1
2
(zl))

≤ C(||u||Lp(Σ\∪m
l=1B 1

2
(zl)) + ||∂̄u||p).

Lemma 3.5. Let ∂̄u = f on Σ, where u, f ∈ Lp. Then u ∈ Lp1 and the inequality

||u||1,p ≤ C(||u||Lp(Σ\∪m
l=1B 1

2
(zl)) + ||∂̄u||p). (31)

holds if the following two conditions are satisfied:
• if p �= 2

qj
, 2

1−sqj
, 2

2−sqj
for integer s in the interval [−1, [ 1

qj
] − 1]

• either 2
1+2qj

< p < ∞ in the case that there is no Ramond marked points,
or 2

1+2qj
< p < 2

qj
if there exists Ramond marked points.

Corollary 3.6. Let ∂̄u = f on Σ, where u, f ∈ Lp. If there exists Ramond marked
points on Σ, then for 2

1+2qj
< p < 2

qj
, p �= 2

1+qj
there is

||u||1,p ≤ C(||u||Lp(Σ\∪m
l=1B 1

2
(zl)) + ||∂̄u||p). (32)

Because Lp1(Σ) ↪→ Lp(Σ\∪ml=1B 1
2
(zl)) is a compact inclusion, the above inequal-

ity shows that ∂̄ : Lp1 → Lp has a finite dimensional kernel and a closed image.

Step 3 the cokernel of ∂̄ is a finite dimensional space
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Note that the inner product (·, ·) is defined as

(η, φ) =
∫
η ∧ ∗φ, ∀η, φ ∈ Lp(Σ, |Lj | ⊗ Λ0,1).

If u ∈ Lp1(Σ, |Lj |), v ∈ Lq(Σ, |Lj |−1 ⊗ Λ0,1), we have

(∂̄u, v) = (u, ∂̄∗v).

Thus v ∈ coker ∂̄ iff ∂̄ ∗ v = 0. Hence ∗v ∈ Lq(Σ,Λ1,0 ⊗ |Lj |) satisfies the equation
∂̄(∗v) = 0. Because of the restriction of q (which is the dual index of p), the solutions
∗v are global meromorphic sections of Λ1,0 ⊗ |Lj| with the possible singularities at
the marked points. The order of those poles are lower bounded by a constant
depending only on qj . Therefore ker ∂̄∗ = coker ∂̄ is a finite dimensional space.

Therefore we have proved that ∂̄ is a Fredholm operator. �

Sobolev embedding theorem for weighted sobolev spaces

Let || · ||o,k,p denote the ordinary sobolev norm and a ∈ R, 1 < p < ∞. We
introduce two spaces:

Cms (R2) = {u|u|z|a ∈ Cm0 (R2)},
and

C∞
s,0(R

2) = {g ∈ C∞
0 (R2)|, suppg ∩ {0} = ∅}.

We denote by Lpk,s(R
2) the closure of C∞

s,0(R
2) with respect to the weighted sobolev

norm || · ||k,p with weight function |z|a.
Theorem 3.7. Let p > 1, p �= 2

1−a . We have the embedding

Lpk,0(R
2) ∩ Lpk−1,s(R

2) ↪→
{
L

np
n−kp (R2) if n > kp

Cms (R2) if 0 ≤ m < k − n
p

Proof. We only prove k = 1 case. The other case can be treated similarly. For
f ∈ C∞

0 (0,∞), limt→0, we have Hardy inequality [HLP]∫ ∞

0

|f(t)
t

|ptεdt ≤
[

p

|ε− p+ 1|
]p ∫ ∞

0

|f ′(t)|ptεdt,

which holds for ε �= p− 1.
Now by means of the Hardy inequality, we can apply the ordinary sobolev embed-

ding theorem to the function u|z|a to get the weighted sobolev embedding theorem.
For example, consider the p < n case. We have

||ura||o,q ≤ C||ura||o,1,p
≤ C(

∫
|∂r(ura)|p +

1
rp

| ∂
∂θ

(ura)|p + |ura|p) 1
p

= C(
∫

(|∂ru|p +
1
rp

|∂θu|p + |u
r
|p + |u|p)rap) 1

p

≤ C(
∫

(|∂ru|p +
1
rp

|∂θu|p)rap + |u|prap) 1
p = C||u||1,p,

where in the second inequality we used the Hardy inequality.
�
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4. Inner compactness of the solution spaces of Ar, Dr, and Er spin

equations

In this section, we will discuss the compactness problem for the Ar, Dr, Er spin
equations. We will prove if R, the sum of the residue of W (u1, · · · , ut) at each
Ramond marked points is finite, then the corresponding solution space is compact,
hence the so called ”inner compactness” holds. However as shown by an exam-
ple in the next section, if R is infinite, then the space of the regular solutions is
not compact. The singular solutions of the W spin equations should be added to
compactify the solution space.

Above all we shall prove that the regular solutions of the W -spin equations lie
in Lp1 space for some p > 2.

Denote by Pi(u) the nonlinear term of the W -spin equations (7). Then ui =
ui,s + (ui − ui,s), where ui,s = Qs ◦ Pi(u) is the special solution we constructed
before. We have the estimate

||ui,s||q ≤ C||ui,s||1,2 ≤ C||Pi(u)||2, (33)

for any 1 < q < ∞. On the other other hand ui − ui,s is a meromorphic section
with the possible singularity at the marked points. Since ui − ui,s ∈ L2

1, by the
restriction of integrability ui − ui,s should be holomorphic sections. There are two
cases:

(1) if ai(hl) − qi ≥ 0 (i.e, |Li| is Neveu-Schwarz at zl), then ui − ui,s is Lq

integrable for any q, 1 < q <∞.
(2) if ai(hl) = 0 (i,e, |Li| is Ramond at zl), then ui − ui,s is Lq integrable for

1 < q < 2
qi

.

So at least, ui is Lq integrable for 1 < q < 2
qi
, i = 1, · · · , t. Moreover, by Lemma

3.3, we have

||ui − ui,s||q ≤ C||ui − ui,s||2 ≤ C(||ui||2 + ||ui,s||2) (34)

for 1 < q < 2
qi
, i = 1, · · · , t. The inequalities (34) and (33) induce

||ui||q ≤ C(||ui||2 + ||Pi(u)||2) (35)

for 1 < q < 2
qi
, i = 1, · · · , t.

We estimate the norm ||∂W∂ui
||pp for some p > 2. For simplicity, we take a monomial

Wl. Since Σjbljqj = 1, we have bljqj < 1 for each j. Choose p, ε such that
0 < ε < qi, 2 < p and p(1 − ε) < 2. We have Hölder index group

(
1 − ε

bl1q1
, · · · , 1 − ε

(bli − 1)qi
, · · · , 1 − ε

bltqt
,

1 − ε

qi − ε
).

To make each entry greater than 1, we let ε sufficiently small. Then by Hölder
inequality, we have

||∂W
∂ui

||pp =
∫

|u1|pbl1
s · · · |ui|(bi−1)p

s · · · |ut|pblt
s

≤ (
∫

|u1|
p(1−ε)

q1
s )

q1bl1
1−ε · · · (

∫
|ui|

p(1−ε)
qi

s )
qi(bli−1)

1−ε · · · (
∫

|ut|
p(1−ε)

qt
s )

qtblt
1−ε |Σ| qi−ε

1−ε

≤ C(||ui||2, ||Pi(u)||2) ≤ ∞ (36)

Thus if we let δ = min{q1, · · · , qt} and choose 2 ≤ p < 2
1−δ , then ∂W

∂ui
is Lp

integrable for any i.
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Lemma 4.1. Suppose (u1, · · · , ut) are solutions of the W -spin equations (7), then
ui is Lp1 integrable and ∂W

∂ui
is Lp integrable for 2 ≤ p < 2

1−qi
, and there is the

estimate

||ui||1,p ≤ C(||ui||p + ||∂W
∂ui

||p) ≤ C(||ui||2, ||∂W
∂ui

||2),

where C(||ui||2, ||∂W∂ui
||2) is a constant depending on the norms ||ui||2, ||∂W∂ui

||2.
Corollary 4.2. Suppose u is the solution of r-spin equation, then u is smooth away
from the Ramond marked points and is Lp1 integrable for 2 ≤ p < 2

1− 1
r

Further Estimate of the W -spin equations

Consider the following integral

Σi(∂̄ui, I1(
∂W

∂ūi
))L2

over Σ.
We will show the Neveu-Schwarz marked points and the Ramond marked points

have different contribution to the integral. For simplicity, we assume there is only
one marked point on a smooth curve Σ.

1. Assume this marked point zl = 0 is a Ramond marked point, then

Σi(∂̄ui, I1(
∂W

∂ūi
))L2 = Σi

∫
(
∂̄ũi
∂z̄

dz̄ ⊗ ei,
∂W (ũ1, · · · , ũt)

∂ũi

1
z
|e′i|2ei ⊗ dz̄)

= Σi
∫
∂̄ũi
∂z̄

∂W (ũ1, · · · , ũt)
∂ũi

1
z
dz ∧ dz̄

√−1
2

(since ∗ (|e′i|2ei = e′i))

=
√−1

2

∫
∂̄

∂z̄
(W (ũ1, · · · , ũt))1

z
dz ∧ dz̄

= lim
ε→0

√−1
2

∫
∂Bε(0)

W (ũ1, · · · , ũt)
z

dz = −πW (ũ1(0), · · · , ũt(0)).

2. Assume this marked point is Neveu-Schwarz, then

Σi(∂̄ui, I1(
∂W

∂ūi
))L2 = Σi

∫
(
∂̄ũi
∂z̄

dz̄ ⊗ ei,Σj
∂Wj(ũ1, · · · , ũt)

∂ũi
zΣt

s=1bjs(as(h0)−qs)|e′i|2ei ⊗ dz̄)

= lim
z→0

−πΣjWj(ũ1(z), · · · , ũt(z))zΣt
s=1bjs(as(h0)).

Denote by Pi(ũ) the nonlinear term in equation (11). Let ũi,s = −Qs ◦ Pi(ũ).
By Lemma 3.2 and Lemma 4.1, there is∫

B1(0)

| ũi,s
z

|ps ≤
∫
B1(0)

|Pi(ũ)|ps = ||∂W
∂ui

(u1, · · · , ut)||pp,B1(0) ≤ C(||ui||2, ||∂W
∂ui

||2),
(37)

if 2 ≤ p < 2
1−qi

. Since ∂̄(ũi − ũi,s) = 0, by Lemma 3.3 we have

||ũi − ũi,s||o,k,q;B1(0) ≤ C(||ui − ui,s||p,B+
1 (0)) ≤ C(||ui||2, ||∂W

∂ui
||2), (38)
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if 2 ≤ p < 2
1−qi

. Now let ci0 = ai(h0) − qi. Since |Li| is Neveu-Schwarz at zl = 0,
ci0 > 0. So if 2 ≤ p < 2

1−qi
, then∫

| ũi − ũi,s
z

|p|z|pci0 ≤ C(||ui||2, ||∂W
∂ui

||2)
∫

|z|−p+pci0 ≤ C(||ui||2, ||∂W
∂ui

||2). (39)

Combining (37), (39) and Lemma 4.1, we obtain

||ui||1,p;B1(0) + ||ui
z
||p,B1(0) ≤ C(||ui||2, ||∂W

∂ui
||2),

for 2 ≤ p < 2
1−qi

. This is equivalent to

||ũirci0 ||o,1,p;B1(0) ≤ C(||ui||2, ||∂W
∂ui

||2). (40)

By sobolev embedding inequality, we have

|ũi(z)rci0 |C0(B1(0)) ≤ C(||ui||2, ||∂W
∂ui

||2),
Therefore

|ΣjWj(ũ1(z), · · · , ũt(z))zΣt
s=1bjs(as(h0))| ≤ Σj |Wj(ũ1(z), · · · , ũt(z))zΣt

s=1bjs(as(h0))|
≤ Σj |Wj(ũ1(z)rc10 , · · · , ũt(z)rct0)|r

So

Σi(∂̄ui, I1(
∂W

∂ūi
))L2 = 0.

If Σ is a nodal curve, then by the similar argument, we can prove that the nodal
points have no contribution to the integral.

In general, one has

Σi(∂̄ui, I1(
∂W

∂ūi
))L2 = −πΣzl:RamondW (ũ1(zl), · · · , ũt(zl)) (41)

Hence, we have

0 = Σi(∂̄ui, ∂̄ui + I1(
∂W

∂ūi
))L2 = ||∂̄u||22 − πΣml=1W (ũ1(zl), · · · , ũt(zl)).

Here ||∂̄u||22 = Σi||∂̄ui||22.
Let R := Σml=1W (ũ1(zl), · · · , ũt(zl)) = ΣlResW (u1, · · · , ut)|zl

, then the above
equality is

||∂̄u||22 = πR (42)
From (42), we have

||∂W ||22 := Σi||∂W
∂ui

||22 = πR (43)

Control norms of ui by R

Our aim is to control the suitable norms (sobolev norms or Hölder continuous
norms) of the solutions ui by R, the sum of residues ofW at Ramond marked points.
In general, since the W -spin equation is an elliptic system, it is hard (sometimes
even impossible ) to control the maximum norm of each section ui. Here we hope
to use the special structure of W to get the control. Up to now, we only know the
following cases:
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(1) Ar case
(2) Dn case
(3) pure Neveu-Schwarz case.

We will treat them respectively.
Notice that by Lemma 4.1 for any solutions ui, we have

||ui||1,p ≤ C(||ui||2, ||∂W
∂ui

||2), (44)

for 2 ≤ p < 2
qi

.
Therefore we hope to get the L2 integrable information of ui from the estimate

of the nonlinear term ||∂W ||2.

Ar case

The r-spin equation is
∂̄u+ I1(rūr−1) = 0 (45)

The fractional degree q = 1
r .

If u is a solution of the r-spin equation, then (43) gives

πR = ||I1(rūr−1)||2 = ||rur−1||2 = r||u||r−1
2(r−1) ≥ ||u||r−1

2 |Σ|− r−2
2 ,

i.e.,
||u||2 ≤ CR

1
r−1 . (46)

Dn-case

In this case, W = xn + xy2, ∂xW = nxn−1 + y2, ∂yW = 2xy. The W spin
equation becomes

∂̄u+ I1(nun−1 + v2) = 0 (47)

∂̄v + I1(2uv) = 0 (48)

The fractional degree (q1, q2) = ( 1
n ,

n−1
2n ).

By (43), we have
||nun−1 + v2||22 + ||2uv||22 = πR (49)

Let CR be the constant depending on R, |Σ|, but not on u, v.
We have ∫

|u|≤|v|
|u|4 ≤

∫
|u|≤|v|

|u|2|v|2 ≤ CR (50)

∫
|u|≥|v|

|v|4 ≤
∫
|u|≥|v|

|u|2|v|2 ≤ CR. (51)

On the other hand, we have

∫
|u|≥|v|

n2|u|2(n−1) ≤ 2
∫
|u|≥|v|

|nun−1 + v2|2 + 2
∫
|u|≥|v|

|v|4. (52)

≤ CR + 2
∫
|u|≥|v|

|v|2|u|2 ≤ CR (53)
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Since n ≥ 2, from (53) and (50) we get∫
|u|2 ≤ CR (54)

By equations, we get from (35) the following equality:

||u||q ≤ C(||nun−1 + v2||2 + ||u||2) ≤ CR,

for 1 < q < 2
q1

= 2n. Especially, we have

||u||2(n−1) ≤ CR (55)
So ∫

|v|4 ≤ 2
∫

|nun−1 + v2|2 + 2n2

∫
|u|2(n−1) ≤ CR, (56)

hence
||v||2 ≤ CR.

Pure Neveu-Schwarz case

In this case, W (u1, · · · , un) = un1 + · · · + unn + u1 · · ·un, and

Li :=
∂W

∂ui
= nun−1

i + u1 · · · ûi · · ·un.

We have Σi||Li||22 ≤ CR. Now using the fundamental inequalities, we have∫
n(Σ|Li|2) ≥

∫
|ΣiLi|2

=
∫

|n(un−1
1 + · · · + un−1

n ) + Σi(u1 · · · ûi · · ·un)|2

≥
∫

|n(|u1|n−1 + · · · + |un|n−1) − Σi(|u1| · · · |ûi| · · · |un|)|2

≥
∫

|n(|u1|n−1 + · · · + |un|n−1)

− Σi
|u1|n−1 + · · · + |ûi|n−1 + · · · + |un|n−1

n− 1
|2

≥
∫

|Σi(n− 1)|ui|n−1|2.

The above inequality shows that the L2 norms of any sections ui can be controlled
by CR. Hence using the Lp estimate and the weighted sobolev embedding theorem,
we can control any norms of ui.

Compactness of the space of solutions

Assume that {un1 , · · · , unt } are a sequence of solutions of the W -spin equation

∂̄uni + I1(
∂W

∂ui
(un1 , · · · , unt )) = 0.

Let uni = ũni ei. Because of the different types of singularity, we will discuss the
compactness of the solutions in three domains.

(1). Compactness in the inner domain away from the marked points.
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In this case, the W -spin equations have the following form:

∂̄ũni +
∂W

∂ũi
(ũn1 , · · · , ũnt )φ = 0,

where φ is a C∞ function. By Lemma 4.1, we have

||ũni ||o,1,p;inn ≤ CR.

Here ”inn” means the inner domain which has a positive distance to those marked
points. Therefore by the standard argument of compactness, there exist a C∞

function ũi and a subsequence (still denoted by ũni )ũ
n
i such that

ũni → ũi in Ck and ordinary Lpk norms,

for any integer k ≥ 0. ũi are certainly the solutions of the W -spin equations in the
interior part.

(2). Compactness in the neighborhood of Neveu-Schwarz points.

Denote by Pi(ũ) the nonlinear term in equation (11). Let ũni,s = −Qs ◦ Pi(ũ).
By Lemma 3.2, there is∫
B1(0)

| ũ
n
i,s

z
|ps ≤

∫
B1(0)

|Pi(ũ)|ps = ||∂W
∂ui

(un1 , · · · , unt )||pp,B1(0) ≤ C(||uni ||2, ||
∂W

∂ui
||2) ≤ CR,

(57)
if 2 ≤ p < 2

1−qi
. Here the second inequality is due to Lemma 4.1. Since ∂̄(ũni −

ũni,s) = 0, by Lemma 3.3 we have

||ũni − ũni,s||o,k,q;B1(0) ≤ C(||uni − uni,s||p,B+
1 (0)) ≤ C(||uni ||2, ||

∂W

∂ui
||2) ≤ CR, (58)

if 2 ≤ p < 2
1−qi

. Now let cil = ai(hl)−qi. Since |Li| is Neveu-Schwarz at zl, cil > 0.
So if 2 ≤ p < 2

1−qi
, then∫

| ũ
n
i − ũni,s
z

|p|z|pcil ≤ CR

∫
|z|−p+pcil ≤ CR. (59)

Combining (57), (59) and Lemma 4.1, we obtain

||uni ||1,p;B1(0) + ||u
n
i

z
||p,B1(0) ≤ CR,

for 2 ≤ p < 2
1−qi

. This is equivalent to

||ũni rcil ||o,1,p;B1(0) ≤ CR. (60)

Using the ordinary sobolev compact embedding theorem, there exists ũi such that
ũir

cil ∈ Cαi ∩ Lq(ordinary q norm), for 0 < αi < qi, 1 < q <∞, and

ũni r
cil → ũir

cil in Cα
′
i , (61)

where 0 < α′
i < αi. By Lemma 3.4 for any 2 ≤ p < 2

1−qi
, one has

||uni − umi ||1,p;B1(0) ≤ C(||uni − umi ||p;B+
1 (0) + ||∂W

∂ui
(un1 , · · · , unt ) −

∂W

∂ui
(um1 , · · · , umt )||p;B+

1 (0))

= C(||(ũni − ũmi )rcil ||o,p;B+
1 (0) + ||∂W

∂ui
(ũn1 r

c1l , · · · , ũnt rctl) − ∂W

∂ui
(ũm1 r

c1l , · · · , ũmt rctl)||o,p;B+
1 (0)).
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This shows that {uni } is a cauchy sequence in Lp1(B1(0)) and

uni → ui in Lp1
∂W

∂ui
(un1 , · · · , unt ) →

∂W

∂ui
(u1, · · · , ut) in Lp,

for 2 ≤ p < 2
1−qi

. Therefore (u1, · · · , ut) are the solutions of the W -spin equations
in B1(0).

(3). In the neighborhood of Ramond marked points.

In the case, the inequality (58) is not true for 2 ≤ p < 2
1−qi

. We can’t use the
same argument in case (2). But ũni,s(0) = 0, we have the decomposition

ũni = ũni − ũni (0) + (ũni − ũni,s)(0).

By Lemma 3.3,

|ũni (0)| = |(ũni − ũni,s)(0)| ≤ C||ũni − ũni,s||2,B1(0)

≤ C(||uni ||2,B1(0) + ||uni,s||2,B1(0)) ≤ CR. (62)

So there exists a constant Ai such that ũni (0) → Ai (of course,we take the
subsequence as usual).

On the other hand, if 2 ≤ p < 2
1−qi

, we have

||uni − uni (0)||1,p;B1(0) ≤ ||uni ||1,p;B1(0) + ||uni (0)||p,B1(0)

≤ CR + (
∫

|z|−pqi)
1
p |ũni (0)| ≤ CR.

By the weighted sobolev embedding theorem, there exists a subsequence and a
function ṽi such that

(ũni (z) − ũni (0))r−qi → ṽir
−qi in Cα, ∀0 < α < qi.

Especially, ∀ε > 0, there exists N such that ∀n > N ,

|ũni − ũni (0) − ṽi| ≤ εrqi .

Therefore ∀z ∈ B1(0),

|ũni (z) −Ai − ṽi(z)| ≤ ε(1 + rqi) ≤ Cε,

i.e., ũni → Ai + ṽi := ũi in C0(B1(0)). Hence

∂W

∂ui
(ũn1 , · · · , ũnt ) →

∂W

∂ui
(ũ1, · · · , ũt) in C0(B1(0)).
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Similarly if 2 ≤ p < 2
1−qi

, we have

||uni − umi ||1,p;B1(0) ≤ C(||uni − umi ||p;B+
1 (0)

+ ||(∂W
∂ui

(ũn1 , · · · , ũnt ) −
∂W

∂ui
(ũm1 , · · · , ũmt ))r−1+2qi ||p;B+

1 (0))

≤ Cmax
{
|ũni − ũmi |C0 , |∂W

∂ui
(ũn1 , · · · , ũnt ) −

∂W

∂ui
(ũm1 , · · · , ũmt )|C0

}

((
∫

|z|−pqi)
1
p + (

∫
|z|(−1+qi)p)

1
p )

≤ Cmax
{
|ũni − ũmi |C0 , |∂W

∂ui
(ũn1 , · · · , ũnt ) −

∂W

∂ui
(ũm1 , · · · , ũmt )|C0

}
.

The above inequality shows {uni } is a cauchy sequence in Lp1 and

uni → ui in Lp1
∂W

∂ui
(un1 , · · · , unt ) →

∂W

∂ui
(u1, · · · , ut) in Lp,

for 2 ≤ p < 2
1−qi

. Therefore (u1, · · · , ut) is the solutions of the W -spin equations
in B1(0).

Theorem 4.3. Let Ms be the space of the solutions u = (u1, ·, ut) satisfying the
W -spin equations. Let E(u) = Σzl:RamondReszl

(W (u1, · · · , ut)). Then
(1) for any a ∈ C − (0,∞), E−1(a) = {0}.
(2) for any a ∈ (0,∞), E−1((0, a)) is a compact space in Lp1 topology for 2 ≤

p < 2
1−δ , where δ = min{q1, · · · , qt}.

5. Compactifying the solution space of Ar-spin equation

The following example shows that the space of the regular solutions is not com-
pact and a sequence of regular solutions of the Ar-spin equation will converge to
some singular solutions away from the Ramond marked points.

Example 5.1. Let (CP 1, 3, z) be a marked sphere with two Ramond marked points
and one non-orbifold marked point. We shall construct a sequence of global regular
solutions of the Ar-spin equations.

Let CP 1 = U0 ∪ U1, where U0 = {[Z0, Z1]|Z0 �= 0}. Let z = Z1
Z0

be the affine
coordinate in U0. on U0 the Fubini-Study metric is given by

ω =
√−1
2π

dz ∧ dz̄
(1 + |z|2)2 .

So the induced metric on the canonical bundle is given by

|dz| = 1 + |z|2.
In U0 the r-spin equation is given by

∂̄ũ0

∂z̄
+
r

z̄
(1 + |z|2)− 2

r |z| 2r ¯̃ur−1
0 = 0.

If we only consider the real-valued solution, then the above equation becomes
dũ0

dρ
= −2rũr−1

0 ρ
2
r −1(1 + ρ2)−

2
r .
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Therefore

ũ0(ρ) = [2r(r − 2)
∫ ρ

0

τ
2
r −1(1 + τ2)−

2
r dτ + u

−(r−2)
0 (0)]−

1
r−2 .

It is easy to check that u = ũ0(dzz )
1
z is really a global solution of the r-spin

equation. Namely if we represent u by ũ1 in the other local chart U1, then it also
satisfies the r-spin equation.

one can easily obtain the relation:

R = ũr1(0) + ũr0(0) = ur0(0) − (
∫ ∞

0

(
τ

1 + τ2
)

2
r

1
τ
dτ + u0(0)−(r−2))−

r
r−2 > 0.

Thus if R→ ∞(or u0(0) → ∞), then

ũ0(ρ) → [2r(r − 2)
∫ ρ

0

τ
2
r −1(1 + τ2)−

2
r dτ ]−

1
r−2 ,

which is not a regular solution of the r-spin equation.

Definition 5.2. The sections (u1, · · · , ut) are called the singular solutions of the
W -spin equations if they satisfy the W -spin equations pointwise away from the
Ramond marked points and are not the regular solutions of the W -spin equations.

In the following part, we only consider the compactification of the solution space
of the r-spin equation.

To compactifying the solution space in suitable topology, we have to consider
the asymptotic behavior of the singular solutions near the Ramond marked points.

We assume that 0 is the unique Ramond marked point in B2(0) and that u is
the singular solution in B2(0) − {0} of the r-spin equation:

uz̄ + rūr−1 1
z̄
|z| 2r = 0.

Let u = z
1
rϕ, then we can get the equation of ϕ:

ϕz̄ + rϕ̄r−1 = 0, (63)

where ϕ is locally smooth function. Note that ϕr is a well-defined function in
B2(0) − {0}.

By equation (63), we have

∂z∂z̄ϕ = r2(r − 1)|ϕ|2(r−2)ϕ.

We have the computation,

∂z∂z̄(ϕ · ϕ̄) = ∂z∂z̄ϕ · ϕ̄+ ϕ · ∂z∂z̄ϕ̄+ ∂z̄ϕ · ∂zϕ̄+ ∂zϕ · ∂z̄ϕ̄
= 2r2(r − 1)|ϕ|2(r−2)ϕ · ϕ̄+ |∂z̄ϕ|2 + |∂zϕ|2

So we have the equation of |ϕ|2:

∆|ϕ|2 = 8r2(r − 1)|ϕ|2(r−1) + 4|∂z̄ϕ|2 + 4|∂zϕ|2. (64)

This implies the maximum principle (see[CW])
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Lemma 5.3. For any p > 0, 1 < θ < 1 and any R > 0 such that BR(z) ∈
B2(0) − {0}, z ∈ B2(0) − {0}, we have

sup
BθR(z)

|ϕ| ≤ C

(
1

|BR(z)|
∫
BR(z)

|ϕ|p
) 1

p

(65)

Lemma 5.4. Let ϕ be a solution of (63) in B2(0)−{0}, then there exists a constant
Cr only depending on r such that for any z ∈ B2(0) − {0},

|ϕ(z)| ≤ Cr|z|− 1
r−2 . (66)

Proof. Multiplying the two sides of (63) by rϕr−1, we have

(ϕr)z̄ + r2|ϕ|2(r−1) = 0. (67)

Let ψβ , β > 0, be a cut-off function with support away from the origin, we have∫
(ϕr)z̄ψβ + r2|ϕ|2(r−1)ψβ = 0.

Integrating by parts and using Hölder inequality, we have∫
r2|ϕ|2(r−1)ψβ =

∫
ϕrβψβ−1ψz̄

≤
∫

|ϕ|rβψβ−1|ψz̄|

≤ β

(∫
|ϕ|2(r−1)ψβ

) r
2(r−1)

(∫
(ψβ

r−2
2(r−1)−1|ψz̄|)

2(r−1)
(r−2)

) r−2
2(r−1)

Thus we have ∫
|ϕ|2(r−1)ψβ ≤ Cr

∫
ψβ−

2(r−1)
(r−2) |ψz̄|

2(r−1)
r−2 . (68)

Now we take β = 2(r−1)
r−2 , and choose ψ satisfying the requirement that ψ = 1 in

B |z|
4

(z), vanishing outside B |z|
2

(z) and |∇ψ| ≤ 4
|z| . Here z �= 0. Thus we obtain

from (68) the following estimate,∫
B |z|

4 (z)
(z)

|ϕ|2(r−1) ≤ Cr

∫
B |z|

2
(z)

|z|− 2(r−1)
(r−2) = Cr|z|− 2

r−2 (69)

Now the estimate (69) and the lemma of maximum principle induces the required
pointwise estimate. �

By the pointwise estimate, we can get a uniform Lp-estimate:

Corollary 5.5. Let r ≥ 3 and 1 < p < 2(r − 2). If ϕ is the solution of (63) in
B2(0) − {0}, then ϕ is an integrable function in B2(0) and furthermore

||ϕ||p,B2(0) ≤ C,

where C depends only on r, p.

We can also obtain the Harnack inequality for |ϕ|.
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Lemma 5.6. Let 0 ≤ θ < 1 be a fixed number, 0 < ε < 1. Assume that ϕ be a
solution of the equation (63) in B2(0) − {0}, then

sup
z∈T (ε(1−θ),ε)

|ϕ(z)| ≤ C(r, θ) inf
z∈T (ε(1−θ),ε)

|ϕ(z)|,

where T (ε(1 − θ), ε) is the annulus with radius between ε(1 − θ) and ε and C(r, θ)
is a constant only depending on r, θ.

Proof. By equation (63), we have (since ϕ �= 0)

(logϕ)z̄ = −rϕ̄r−1ϕ−1.

Let

g(z) = − 1
π

∫
T (1−θ,1)

−rϕ̄r−1ϕ−1(ζ)dv
ζ − z

,

then gz̄ = −rϕ̄r−1ϕ−1, for z ∈ T (1 − θ, 1). Since |ϕ(z)| ≤ Cr(1 − θ)−
1

r−2 for
z ∈ T (1 − θ, 1), then | − rϕ̄r−1ϕ−1|(z) ≤ Cr(1 − θ)−1. Hence |g(z)| ≤ C(r, θ), and
g is a Hölder continuous function in T (1 − θ, 1). Let Ψ̂ = logϕ− g, then

Ψ̂z̄ = 0.

Since Ψ̂ is continuous, Ψ̂ is an analytic function. We have ϕ = egeψ̂. Let Ψ = eΨ̂,
then ϕ = egΨ, where g is Hölder continuous and Ψ is analytic and also the following
estimate holds

|Ψ(z)| ≤ |e−gϕ(z)| ≤ C(r, θ) =: eL (70)

Since g is bounded, so to prove the Harnack inequality of ϕ, we need only to prove
the Harnack inequality of Ψ. Now L − log |Ψ(z)| is a nonnegative and harmonic
function, so we have the gradient estimate:

|∇(L− log |Ψ(z)|)| ≤ C(r, θ)(L − log |Ψ(z)|) ≤ C(r, θ)L,

i,e, |∇ log |Ψ(z)|| ≤ C(r, θ), which implies the Harnack inequality in T (1 − θ, 1),

sup
T (1−θ,1)

|Ψ(z)| ≤ C inf
T (1−θ,1)

|Ψ(z)|. (71)

To prove the Harnack inequality in annulus T (ε(1 − θ), ε), we use the scaling
invariance of the equation (63). Namely if ϕ is the solution of (63) in T (ε(1− θ), ε),
then ϕε(z) := ε

1
r−2ϕ(εz) is the solution of (63) in the annulus T (1− θ, 1). Thus one

can easily get the same conclusion in the annulus T (ε(1 − θ), ε). �

Now by maximum principle and the Harnack inequality, one can easily get a
convergence corollary:

Corollary 5.7. Let ϕ be a solution of the equation (63) in B2(0)−{0}, then either
ϕ(z) is bounded near the origin or limz→0 |ϕ(z)| = ∞.

Now it is easy to get the following compactness theorem:

Theorem 5.8. Let M(Σ, L) be the solution space of the r-spin equation, which
contains the regular solutions and the singular solutions on the Riemann surface Σ
with the spin structure L, then M(Σ, L) is compact with respect to the topology in
LP ∩ C∞

loc(Σ \ {Ramond marked points}).
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