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Abstract

How the collective motion of cells in a biological tissue originates in the behavior of a collection of
individuals, each of which responds to the chemical and mechanical signals it receives from neighbors,
is still poorly understood. Here we study this question for a particular system, the slug stage of the
cellular slime mold Dictyostelium discoideum. We investigate how cells in the interior of a migrating
slug can effectively transmit stress to the substrate and thereby contribute to the overall motive force.
Theoretical analysis suggests necessary conditions on the behavior of individual cells, and computational
results shed light on experimental results concerning the total force exerted by a migrating slug. The
model predicts that only cells in contact with the substrate contribute to the translational motion of the
slug. Since the model is not based specifically on the mechanical properties of Dictyostelium discoideum
cells, the results suggest that this behavior will be found in many developing systems.

Keywords: Dictyostelium discoideum, cell movement, motive force, cell based model, visco-elastic ele-
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1 Introduction

The individual and collective or tissue-like movement of cells is an important component of many processes,
including morphogenesis and embryonic development, the immune response, wound healing, and angiogenesis
and metastasis in cancer. In these processes individual cells detect chemical and mechanical signals in their
environment and alter their pattern of movement in response. An example occurs in the chemotactic response
of cells to attractants, which involves both a determination of the appropriate direction in which to move,
and organization (or re-organization) of the motile machinery to initiate movement. In some instances
cells modify their environment by secreting signals, or by selectively degrading the matrix immediately
surrounding them to facilitate movement or to amplify signals. In the immune response leukocytes migrate
through the extracellular matrix as individuals, but in early embryonic development of vertebrates large-scale
reorganization of cells occurs via a collective, tissue-like movement in which cells interact strongly.

Movement of the cellular slime mold Dictyostelium discoideum (Dd hereafter) and other amoeboid cells
involves at least four different stages: protrusion, attachment to the substrate, translocation of the cell body,
and detachment of the rear (Mitchison & Cramer1996; Sheetz et al.1999). (1) Cells first extend localized
protrusions at the leading edge, which take the form of lamellipodia, filopodia or pseudopodia. Most current
models explain force generation at the leading edge by localized actin polymerization and crosslinking (or
gelation) of actin filaments. Behind the protrusion there is a region of actin disassembly, where filaments are
disassembled, crosslinks broken and the actin monomers resulting from disassembly freed to diffuse to the site
of active polymerization (Alberts et al.2002). (2) Not all protrusions are persistent, in that they must anchor
to the substrate or to another cell in order for the remainder of the cell to follow (Soll1995). Protrusions are
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stabilized by formation of adhesive complexes, which serve as sites for molecular signaling and also transmit
mechanical force to the substrate. In fibroblasts adhesive complexes are regions of the plasma membrane
where integrin receptors, actin filaments, and associated proteins cluster together. During migration the
small nascent adhesive complexes (focal complexes) at the front of the cell grow and strengthen into larger,
more organized focal adhesions that serve as traction ‘pads’ over which the cell body moves (Small1989).
The molecular nature of the contacts is poorly characterized in Dd, which does not express integrins, but one
candidate molecule has recently been discovered (Fey et al.2002). (3) Next, actomyosin filaments contract
at the front of the cell and pull the cell body toward the protrusion in fibroblasts, whereas in Dd, contraction
is at the rear and the cytoplasm is squeezed forward. (4) Finally cells detach the adhesive contacts at the
rear, allowing the tail of the cell to follow the main cell body.

Of course, to move cells must exert force on their surroundings, and how much force a cell exerts is also a
function of the substrate: on a rigid, adhesive substrate they can generate large contractile forces transmitted
through actin bundles and adhesion complexes, but on a pliable substrate they exhibit less organized actin
and smaller, weaker adhesion complexes (Lo et al.2000). In Dd the adhesive contacts are relatively weak
and free-ranging cells move rapidly (∼ 20µ/min), whereas in fibroblasts they are very strong and cells move
slowly.

1.1 Models of cell and tissue movement

Numerous models for the motion of individual cells on a substrate have been proposed. DiMilla et al.
(1991) analyzed a one-dimensional model in which a cell consisted of discrete subunits, each with an elastic
spring, dash-pot and contractile element connected in parallel. Interaction with the substrate was modeled
by additional Maxwell elements at the front and rear. The movement cycle was divided into three parts: the
time needed for protrusion, the time of cytoskeleton contraction, and the time for cytoskeleton relaxation.
Suitable choices of parameters lead to the ‘bell-shaped’ dependence of speed on adhesive properties of the
substrate observed experimentally. A continuum model that incorporates further detail and leads to similar
results was developed by Gracheva & Othmer (2003). A 1D model for the steady gliding movement of fish
keratocytes was developed in Mogilner et al. (2000), where it was shown that the dynamics of self-alignment
and contraction of the actin-myosin network can explain forward translocation of the cell body. (Mogilner
& Verzi2002) developed a model for the crawling movement of nematode sperm consisting of a system
of coupled differential equations that describe cell protrusion, contraction and adhesion. Under suitable
biochemical regulation it produces steady motion of the cell. A two-phase flow model of cytoplasm designed
to understand cytoplasmic streaming and oscillations was studied in Alt & Dembo (1999).

There are several other approaches to modeling cell deformations using a continuum description. The
most widely-used is the ‘cortical shell-fluid core’ model (Yeung & Evans1989; Skalak et al.1990; Schimd-
Schönbein et al.1995), in which the cortex is treated as a pre-stressed elastic medium and the core is treated
as a fluid. This has been successful in explaining aspiration experiments (Yeung & Evans1989) and large,
axisymmetric deformations of leukocytes (Dong & Skalak1992), but to date there is no 3D model based on
this paradigm that incorporates active forces and arbitrary shape changes.1

However, to understand the collective tissue-like movement exhibited by cellular aggregates, one must
understand how local interactions between moving cells affect the collective motion. In this paper we focus
on the movement of Dd, and therefore we briefly review pertinent aspects of its life cycle.

In early aggregation the cells move autonomously, but in late aggregation they form connected streams
that migrate toward the pacemaker. These streams converge in a loose mound of cells that usually topples
over to form a cigar-shaped mass called the slug. The slug frequently moves in a pulsatile fashion by first
elevating and extending the front and then pulling up the rear. At each stage cells receive signals from the
environment, and must integrate these signals, decide what direction to move, and organize their motile
machinery to achieve this. A key issue is what force the slug exerts on a substrate and how this relates
to the number of cells in the slug. Several early experimental studies by Inouye and co-workers (Inouye &
Takeuchi1979; Inouye & Takeuchi1980; Inouye1984) focused on the forces involved in slug movement, and
their results will be discussed in detail later.

A cell-based model for motile Dd cells that can generate active forces, that interact via adhesive forces, and
that can detect and relay chemotactic signals, was developed in Palsson & Othmer (2000). In the Palsson-
Othmer model (hereafter denoted PO) cells were treated as deformable viscoelastic ellipsoids, and signal
transduction and cell-cell signaling was described using a previously-developed model (Tang & Othmer1994;

1A recent step toward a continuum-based description of individual cells in which cells are treated as deformable spheres in
epithelial layers is reported in Galle et al. (2004).
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Tang & Othmer1995; Dallon & Othmer1997; Dallon & Othmer1998). The shape constraint restricts the
admissible deformations, but makes the simulation of thousands of interacting cells feasible. Since arbitrary
ratios of semi-axes are allowed, subject only to the constraint of conserving the volume, the model admits a
very wide range of shapes, from spherical to very long and slender. While single cells on rigid substrates are
‘fried-egg’-shaped, cells in 3D matrices are more elliptical in shape (Wolf et al.2003; Sahai & Marshall2003),
and thus the shape restriction is not so severe in that context. This model can reproduce the observations on
the chemotactic behavior of single cells, streaming during aggregation, and the collective motion of planar
aggregates of cells driven by a small group of pacemakers. The model predicts that the motion of two-
dimensional slugs (Bonner.1998) results from the same behaviors as are exhibited by individual cells; it is
not necessary to invoke new mechanisms or behaviors.

In another cell-based model of Dd developed by Hogeweg and co-workers (Savill & Hogeweg1997; Maree
& Hogeweg2002), movement is governed by the minimization of a free energy. In that model each cell is
composed of several connected automata which change configuration according to prescribed rules, with
the objective of minimizing the energy associated with bonds between cells. The objective was to model
aggregation from single cells through the movement of a slug, and while the model can formally reproduce
qualitative features of the aggregation and later stages, it is not clear how one can translate biochemical
details about signal detection and force generation into the rules of the model and relate them to energy
minimization. For instance, active forces are invoked separately from the passive forces that are derived from
the energy function used in the minimization, but in reality these forces act concurrently.

Other work has focused on continuum descriptions of either pattern formation in the Dd slug or on the
movement of the slug. In the former category Pate and Othmer (Pate & Othmer1986) developed a model for
scale-invariant patterning based on chemotaxis and cell sorting, and (Umeda1993) expanded on this work. In
both cases the slug was represented as a continuum comprising prespore cells and prestalk cells at a constant
total density. In Pate & Othmer (1986) chemotaxis equations were developed based on the differences of
forces at the ends of a cell, while in Umeda (1993) an equation for the fraction of prestalk cells was formulated
that incorporates adhesive differences that enter into a free energy which governs the evolution. The authors
concluded that differences in chemotaxis was sufficient to cause sorting, and differential adhesion could create
clear boundaries between the different cell types. Other continuum models that deal with the forces involved
in movement of the slug will be discussed later.

Our objective here is to extend the PO model to make it applicable to 3D moving slugs by incorporating
better descriptions of cell-cell and cell-substrate interactions, and to use the modified model to address some
long-standing issues concerning the force exerted by a translocating slug. This involves several modifications
in the way the forces are determined. For instance, in Palsson & Othmer (2000) net translocation of the
center of mass of an aggregate required that all cells make contact with the substrate, but the 3D cell-
sorting experiments done there do not require this. Here we remove this restriction. The resulting model
and software will provide a powerful tool for investigating many of the processes described above. The
main advantage of this model is due to the cell based approach. Experimental data is now available which
describes the behavior of individual cells. With the cell based approach this information can be used in a
careful analysis of the local forces and how they combine resulting in global movement and behavior. The
main disadvantage to such an approach is the difficulty in developing the model and the computational
resources needed. In order to mitigate the disadvantages, major simplifications were made in the PO model
and are used here. The three most important are, first the cells are constrained to be ellipsoids, second
adhesion is simplistically modeled in a uniform manner over the entire cell membrane, and finally cells exert
forces in order to move by “pulling” on whatever they can which is in the direction the cell is trying to move.
All of these are vast simplifications of the real process, but our model is a step toward realistic cell based
modeling of cell aggregates, a goal which will not be realized for many years. For the central question in this
paper we do not believe these simplifications affect the results, but for in other applications they may limit
the usefulness of the model.

Here we focus on how cells in a Dd slug contribute to the overall motive force of the slug. In the following
section we discuss some theoretical considerations that shed light on how cells can transmit stress to a
substrate via other cells. We then describe in detail the properties of each cell, how they interact with
each other, and how the boundary conditions are implemented in the PO model and how they are modified
here. We also describe the algorithm for time-stepping the equations of motion, and discuss the results of
computational experiments aimed at understanding slug movement.

3



2 Theoretical analysis of multicellular movement

One difficulty in understanding the movement of the 3D slug in Dd is described by Odell & Bonner (1986),
who say “... in a close-packed three-dimensional mass of cells, each amoeba trying to crawl can exert traction
only upon its neighbors which, in turn, exert traction on it. In the interior of the grex (slug), with no rigid
agar substratum to crawl upon, equal efforts by a cohort of amoebae to crawl in the same direction, each
upon similarly crawling neighbors, cancel and produce no net mechanical result.” One might expect that
only the cells in contact with the rigid agar can move the slug forward, and that other cells are in effect
carried by those cells in contact with the agar or substrate in a ‘piggy-back’ mechanism. On the other hand,
some experiments suggest that the total motive force produced by the slug is proportional to its volume, and
hence the total number of cells, which would rule out a ‘piggy-back’ mechanism (Inouye & Takeuchi1980;
Inouye1984). As will be discussed in more detail later, many have simply postulated that the active motive
force is a volumetric force in their macroscopic description of slug movement (Inouye & Takeuchi1979; Umeda
& Inouye1999; Vasiev et al.1997; Umeda & Inouye2002). Others have also proposed descriptions in which
interior cells can transfer momentum to the substrate (Umeda & Inouye1999; Bretschneider et al.1997;
Bretschneider et al.1999) without a detailed analysis of how this occurs. Our first objective is to identify
conditions under which a single-phase continuum model with suitable rheological properties derived from
cell-level descriptions of movement will predict that the motive force is proportional to the volume of the
slug. A comparison and critique of the Bonner-Odell model and other continuum models of the slug is given
in the Discussion section.

Before describing a formal analysis of the problem, we can gain some insight into that analysis by the
following heuristic argument. The question is what conditions in the interior of a slug would enable a cell to
transmit force to the boundary and thereby to the substrate. In the absence of either action at a distance,
or allowing cells to extend long filopodia to the substrate, it is clear that the force exerted by a cell has
to be transmitted through other cells. However, if all cells are identical and attempt to transmit force
simultaneously, Newton’s third law shows that forces in the interior will cancel, which is the essence of the
Bonner-Odell statement above. However, suppose that a portion of the cells are rigid and connected to other
rigid cells in a chain that can transmit stress to the boundary. Then a motile cell in the interior can attach
to a rigid cell and pull itself forward. We call this the bedspring model, since the rigid cells form a network
that transmits stress to the boundary and allows other cells to crawl through it. This is similar to what
occurs when a cell migrates through a tissue, but in order for mechanism to work in the Dd slug, the network
must be dynamic and cells must be able to ‘freeze’ when stress is applied, but also to move. The following
analysis formalizes this heuristic argument.

Suppose there are N cells in the slug, and for simplicity let us frame the discussion in terms of axial forces
that are oriented in the direction of motion so as to make the problem one dimensional. How cells select an
orientation will be described in the following section. At present we do not stipulate that the total force on
any cell, or on the slug itself, be zero, so there may be non-vanishing accelerations in the slug. Moreover we
ignore deformations at present and regard all forces as acting at the center of mass. Deformation of cells and
volume exclusion effects will be treated in detail later. The forces on a cell are those due to (i) the active
forces it exerts on neighboring cells or the substrate, (ii) the reaction to forces exerted by other cells on it,
(iii) dynamic drag forces that arise as a moving cell forms and breaks adhesive bonds with neighboring cells,
and (iv) static frictional forces that exist when cells are rigidly attached to each other or to the substrate.
The first three are self-explanatory and the latter will be defined precisely later. The active force cell i exerts
on the substrate or a neighboring cell is denoted Ti,j , wherein j = 0 denotes the substrate, and the reaction
force to this is denoted Mj,i to indicate that this is the motive force. We have Mj,i = −Ti,j .

Let N a
i denote the neighbors, including the substrate, of i upon which it can exert traction. By definition,

the ‘neighbor’ relation is symmetric for all cells; if cell i can exert traction on cell j, then cell j can exert
traction on cell i, but this is not true for the substrate. The substrate is assumed to be passive, in that it
does not generate stress. The total motive force generated by i is

Mi =
∑

j∈Na
i

Mj,i.

Similarly, the total traction force which other cells exert on cell i is

Ti =
∑

j∈Na
i

Tj,i.
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In addition to traction forces, cells may exert drag forces on their neighbors as a result of their relative
motion, and we define the dynamic friction force on cell i due to interaction with j as

Dj,i = µij(vvj − vi), (1)

where µij is the friction coefficient. This force satisfies the relationship Di,j = −Dj,i, which implies that
µij = µji. If Di is the total dynamic friction force on cell i, and N d

i is the set of cells that interact with i
via a frictional force, then

Di =
∑

j∈Nd
i

Dj,i =
∑

j∈Nd
i

µij(vj − vi).

Note that in general N d
i ⊆ N a

i since cells may extend pseudopods to cells at some distance, but not be in
contact with them in the sense of giving rise to a frictional force.

Finally, there is a static friction force on some cells, which is the means for constructing a network that
can transmit stress to the boundary. This can be defined formally as a force that arises from infinitely
tight binding between cells or from binding of a cell to the substrate. As a consequence of this binding,
statically-bound cells function as one rigid object. One might think of this force as a limiting case of the
dynamic friction in which the friction coefficient goes to infinity, but a more precise description is that of
the force between two ‘welded’ materials. Not all cells statically bind to other cells and we will use N s

i to
denote the set of cells that statically bind to cell i. This is a transitive relation in that if i is bound to j and
j is bound to k, then i is bound to k. In particular, if i is statically bound to the substrate either directly
or indirectly then it can transmit forces applied to it to the substrate, thereby forming a component of the
bedspring network. In fact these are the only type of chains that can transmit stress from the interior; a
chain of say four cells statically bound to each other but not bound to the substrate simply functions as a
larger unit. If Sji denotes the static binding force on the ith cell when bound to the jth, then Sji = −Sij

and the cell-cell forces cancel on all but those cells attached to the substrate.
The physical mechanism that mediates the static binding response and the adhesive interaction that

enables a cell to generate active motive force is the same, but the underlying processes that initiate these
are different. The active force arises when a cell initiates actin polymerization locally, extends a pseudopod,
and anchors it on a neighboring cell via an adhesive complex. The target cell may then initiate the static
frictional response in that it becomes rigid and binds very tightly to its neighbors. Of course the temporal
sequence could be reversed, in that a cell extending a pseudopod only anchors to a cell that is statically
attached to other cells. In reality the processes may occur simultaneously; contact of a pseudopod on a cell
may initiate strain hardening in that cell and simultaneously lead to strengthening of the attachment via a
complex feedback loop.

The total force on the ith cell is

Fi = Mi + Ti + Di +
∑

j∈N s
i

Sji (2)

=
∑

j∈Na
i

Mj,i +
∑

j∈Na
i

Tj,i +
∑

j∈Nd
i

µij(vj − vi) +
∑

j∈N s
i

Sji.

Some of these terms may be zero: for instance, Mi is zero for those cells that are not generating active
motive force.

If we sum these over all cells we see that the sum of the tractions and motive forces, as well as sum of
the dynamic friction force, vanish for all cell-cell interactions in the interior of the slug. The only surviving
terms are those due to direct interaction of a cell with the substrate, or the indirect interaction via a chain
of statically-connected cells that is connected to the substrate. The latter takes the form of a force on
an interior cell equal and opposite to the traction force it exerts on a statically-connected chain of cells.
Thus in the absence of static binding there is no mechanism by which an interior cell can transmit stress
to the boundary, and accordingly, there can be no volumetric forces on the slug in a continuum description
in the absence of other mechanisms. Bonner and Odell introduce additional mechanisms in the form of a
gradient of cellular properties transverse to the direction of motion, but these have not be been confirmed
experimentally.

A cell i is said to be ‘frozen’ if it statically binds to the substrate directly or indirectly, that is, if there
exists a sequence j1, j2 · · · jk, such that i statically binds to j1, j1 statically binds to j2, · · · · · · , and jk

statically binds to the substrate. The set of all frozen cells is called the frozen network of the slug. Thus the
foregoing can be summarized as follows: in the absence of a frozen network in the slug, the total force on the
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substrate is the active force exerted by cells in direct contact with the substrate, and for a slug translocating
at a constant velocity, this exactly balances the dynamic frictional interaction with the substrate.

3 The computational model

3.1 An outline of the assumptions

The PO model and the implementation of it that we describe here is based on two major assumptions: the
cells are oriented ellipsoids and the passive response of the cytoplasm is that of an incompressible viscoelastic
solid. In addition, there are assumptions as to how cells interact, how they orient to stimuli, and how active
forces are exerted on neighboring cells. The shape constraint restricts the allowable deformations and in
doing so makes possible the simulation of large populations of interacting cells. As remarked earlier, this
constraint is not so important for cells in a 3D matrix, but it is less clear how important it is when cells are
cheek-by-jowl and interact strongly. Work on a cell-based model that is free of this constraint is currently in
progress. Since cells are assumed to be ellipsoids, non-spherical cells are assumed to reorient their major axis
to coincide with the stimulus direction before translocation begins, which is a mathematical reflection of the
biological observation that cells that have received stimuli tend to be polarized, thus have an orientation (see
Figure 1), and absent restraints from neighboring cells move in the direction of their orientation. The three
major differences between the present implementation and that in Palsson & Othmer (2000) are the way in
which the forces are determined, how the shape of the cell is calculated, and the interaction of cells with a
fixed substrate. In addition to these major changes there are several implementational details, including the
way in which the cells reorient and the numerical algorithms used for solving the equations of motion.

a

b

c

Side a+Side a-

Figure 1: The figure shows a schematic of a cell and the nomenclature used in the simulations. The labeled
vectors a, b, and c indicate the major axes of the ellipsoid. The cell is oriented in the direction of vector
a which corresponds with the direction of motion. Each cross-sectional plane ab, ac or bc separates the
cell into a plus and minus sides with respect to the normal of the plane. For example the bc plane shown
separates the cell into a plus and minus with respect to the a direction denoted a+ and a− respectively.

Directed cell motion in amoeboid cells is a complex process that can be separated into two independent
subprocesses: the determination of a direction in which to move, which we call orientation, and the motion
itself, which involves the conversion of chemical energy into mechanical energy. The former involves a
complex signal transduction pathway, the main steps of which are used in numerous amoeboid cells (Chung
et al.2001). Here we are not concerned with how the cell determines a direction or how it decides when to
move, but only with the motion itself. Thus the model has two different inputs corresponding to the two
processes: an orientation stimulus and a motion stimulus. The orientation stimulus provides a direction of
orientation d̂o, which is the direction the cell will turn towards as it starts to move and then it will continue
moving in that direction. The motion stimulus determines one of two states for the motion, high motility
or low motility. In the case of Dd, both inputs are derived from the cAMP signal. For the simulations in
this paper low motility motion means no motion and therefore we do not distinguish between the terms high
motility motion or active motion.

The process of orienting a cell in the model is called an orientation cycle, and this consists of an ordered
sequence of steps. The direction of motion may either be chosen randomly, if there is no directional signal, or
it may be determined by the signal. Thus when cell motion is initiated, a cell will always start an orientation
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cycle, but a cell can continue to move after an orientation cycle has completed. The orientation cycle lasts
a predetermined length of time, tc (for most simulations 20 seconds). The orientation stimulus is considered
only at the beginning of an orientation cycle and is then ignored until a new cycle is started. If an orientation
cycle has been started and is not complete but the motion stimulus indicates high motility motion should
stop, the orientation cycle will be terminated as will the motion. When high motility motion is terminated a
new orientation cycle is initiated and low motility motion is started. These rules are chosen for two reasons.
First, in previous modeling of Dd it was found that if a cell follows the gradient of the chemoattractant too
closely, it will get lost in local peaks of the chemoattractant and cells cannot aggregate successfully (Dallon &
Othmer1997). However the modeling also indicates that a successful strategy for aggregating is to maintain
the same direction for a period of time and only change directions occasionally. Thus in the model cells
do not constantly alter their course, but only use the direction stimulus at the beginning of an orientation
cycle. Yet once a direction is chosen motion can persist for as long as the motion stimulus indicates. Second,
experimental evidence indicates that Dd cells can alter their direction within 20 seconds after the location
of a source of cAMP is changed (Futrelle et al.1982).

After determining if a cell is in an orientation cycle or not, the forces acting on the cell are used to
determine its motion. Three types of interactions are considered in the model and they give rise to the four
types of forces described in section 2. The three types of interactions are: cell adhesion, which gives rise to
dynamic drag forces denoted D and static frictional forces denoted A active cell motion, which generates
active forces giving the cell traction denoted T; and interactions due to the physical presence of other cells
(or the substrate) including their viscoelastic nature, which are denoted R and R∗ (rheological forces), and
the reactive force to tractional forces M (motive forces). In addition to these forces, the model also takes
into consideration drag due to the surrounding fluid. A detailed discussion of how these forces are calculated
is contained in the appendix.

When determining how the forces affect a cell, the forces are resolved into the coordinate vectors defined
by the three major axes of the cell. In addition, the forces in each of these coordinate axes act either on
the plus side of the cell with respect to an axis or on the minus side of the cell with respect to an axis (see
Figure 1).

3.2 The rheological model of the cytoplasm

The cytoplasm in many amoeboid cells has been characterized as a viscoelastic material whose properties are
dominated by actin filaments and microtubules, collectively termed the cytoskeleton (Janmey1991). Actin
filaments are organized either as a meshwork in the leading edge, or as transient bundles of actin filaments
that extend along the length of cells. The elastic modulus of actin solutions is concentration dependent
(MacKintosh1998), and they exhibit strain hardening(Xu et al.2000), a property that may be important in
slug movement. Some even characterize the cytoplasm in Dd as an ‘active viscoplastic’ material (Feneberg
& Westphal2001), because it exhibits viscoelastic behavior above a yield stress, but little deformation below
this level.

The details of how actin networks are reorganized under the membrane in response to extracellular
signals is a complex process that is only partially understood, and it is not feasible to incorporate the
level of detail required to describe this in a multicellular model at present. In the PO model and here the
opposite extreme in descriptions is adopted; cells are treated as incompressible viscoelastic solids and their
stress-strain response characteristics are lumped into three elements that coincide with the three major axes.
Along each axis the stress-strain behavior is described by a nonlinear version of a standard Kelvin element,
as shown in Figure 2. Since there is an elastic element in each branch the immediate response to a step

f
f

f (u )2 a

k  a aµ

a
a

Figure 2: A schematic of the element of a standard solid, or Kelvin element along each axis of the ellipsoid. It
consists of a nonlinear spring in parallel with a Maxwell element, which comprises a linear spring in series with a
dashpot.
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change in the applied force is a step change in displacement in the elastic elements, followed by slower flow
in the viscous element. Release of the external forces leads to a return to the rest length of the element, and
since we assume that the elements are identical along the three axes, the equilibrium shape is spherical.

However, the three deformations are not arbitrary, because the total volume of the cell must be conserved.2

In Palsson & Othmer (2000) the constant volume constraint was satisfied by first computing the deformation
and then correcting the change in all radii so as to correct the volume. Here we adopt a method more in
line with a continuum description of the material. Suppose that we write the Cauchy stress for a material
in the form

T = −pδ + τ,

where p is the mean isotropic stress and τ is the viscous stress tensor, which we assume is traceless. Suppose,
for illustrative purposes, that the cytoplasm is a linear viscoelastic fluid, and thus assume in analogy with
the Maxwell mechanical element that the rate of deformation tensor

D ≡ 1
2
(∇v + (∇v)T )

comprises an elastic part and a viscous part. That is, assume that the constitutive relation for the traceless
part of the elastic component is

τ̌ = kDo

and for the viscous element
τ = µDo.

where o denotes the traceless part of a tensor andˇdenotes an invariant time derivative, such as the Lie or
the Jaumann derivative. Then

τ̌

k
+

τ

µ
= 2Do.

For the isotropic part we assume a similar decomposition and thus write

κṗ +
p

λ
= −tr(D),

where κ ≡ ∂ ln V/∂p is the compressibility, λ is the bulk viscosity, and tr(·) denotes the trace of a tensor. If
the fluid is nearly incompressible κ is small, and the pressure in a viscoelastic fluid equilibrates rapidly with
the trace of the deformation rate. In the limit this is a singularly-perturbed equation and sets a constraint
on the deformation.

In the same way, we can decompose the total stress on an ellipsoid into the shear along the axes of the
ellipsoid and an additional ‘isotropic’ part reflected in a pressure that constrains the overall deformation
so as to satisfy the constraint that the volume remain constant. The rheological model we adopt is more
complex than the Maxwell model used for illustration, but the same principle applies. In what follows the
pressure is the deviation from a rest state and therefore may have either sign: a negative pressure causes the
cell to compress and a positive pressure causes the cell to expand. In reality the cell must also be involved
in setting the pressure, but the present formulation allows us to deform the cell as a viscoelastic substance
and maintain a constant volume without modeling the complicated cell membrane.

The equation governing the length of an axis of a cell is

u′
a =

(
ka

µa
[fa(t) + p̄ − f2(ua)] + f ′

a(t)
) (

df2(ua)
dua

+ ka

)−1

, (3)

where ua is the change in the length of the a axis, f2 is the force from the spring in parallel, µa is the
viscous coefficient of the dashpot, ka is the spring constant for the spring in the Maxwell element, fa is the
magnitude of the force applied at each end in opposite directions, and p̄ is the force due to pressure. There
are three such equations one for each axis and one equation due to the volume constraint given by

0 = ua
′(ub + b0)(uc + c0) + (ua + a0)ub

′(uc + c0) + (ua + a0)(ub + b0)uc
′. (4)

where a0, b0, and c0 are the initial lengths of the cell axes. This system of ordinary differential equa-
tions determines the shape of a cell and is solved using the software package dlsode.f (Radhakrishnan &
Hindmarsh1994) at each time step.

2In reality this is probably not strictly correct, since osmotic fluxes may well change the total volume during deformations.
However this has not been characterized experimentally, and incorporating it would add a great deal of complexity for an as
yet unquantifiable increase in accuracy.
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Depending on the external forces acting on a cell, it will move, change shape or both. Consider the
external forces acting on a cell parallel to the â axis. Let fa+ be the sum of the magnitude of the forces
acting on the side a+ and fa− be the sum of the magnitude of the forces acting on the side a−. The net
force translates the cell and the change in shape in the direction â is determined by fa(t) in equation 3 which
is given by

fa(t) =
(

fa+

|fa+|
) ( |fa+| + |fa−| − |fa+ + fa−|

2

)
. (5)

3.3 The equations of motion

The equation of motion for the ith cell can be written as

Aifµf

Aµcell

vi +
Aisµs

Aµcell

vi +
∑
j �=i

Aij

A
(vi − vj) +

1
6πribµcell

(
M0,i + R∗

0,i (6)

+
∑
j �=i

Tj,i +
∑
j �=i

Aj,i +
∑
j �=i

Rj,i+
∑
j �=i

(Mj,i + R∗
j,i)

)
= 0.

As before the first subscript indicates the source and the second indicates the target of a force. Recall the
subscript 0 denotes the substrate, A denotes the total area of an undeformed cell, and Aij , Aif , and Ais

denote the contact area between cell i and cell j, cell i and the fluid, and cell i and the substrate respectively.
The parameters µcell, µs, and µf are determined by the degree of adhesiveness between cells, between the
substrate and cells, and the fluid viscosity. Finally, rib = ub + b0 for cell i, and vi denotes the velocity of
cell i. The terms depending on velocity are drag forces, and because the Reynolds number for this system is
very small we ignore the acceleration (see the appendix for further details).

The system is solved using two different methods. The first is a quasi-implicit method based on the
trapezoidal rule and the second is an Adams fourth-order predictor-corrector method. The final results of
simulations using both methods compare well, but the quasi-implicit method requires more computational
time. Thus for all the simulations shown in this paper, the predictor-corrector method was used. For more
details on the quasi-implicit numerical method see the appendix.

3.4 Parameters

There are several important parameters necessary for our model. It is possible to obtain estimates for several
of these and in this section we discuss how the values used in the simulations were determined. Values of
forces for several types of cells are given in Table 1. For typical simulations we use a high motility motion
force of 4 × 10−3 dynes. The viscoelastic properties of leukocytes have been measured and we use those

Table 1: Measured Active Forces and Cell Speeds

Cell type Active Force Source Average Speed
Fibroblasts 1 × 10−2 dynes (Harris et al.1980) 1 µm/min

Fibroblasts 1.4 − 2.1 × 10−1 dynes (Dembo & Wang1999) 1 µm/min

Keratocytes 2 × 10−3 dynes (Oliver et al.1999) 10 µm/min

Leukocytes 3 × 10−3 dynes (Usami et al.1992) 20 µm/min

values as a guide to determine the spring constants and the dasphot constant for the viscoelastic elements
in our model. The observations from experiments on leukocyte deformations were fitted to a standard linear
solid model of a cell (Sung et al.1988). The parameters found are given in the Table 2. The values given are
for a passive cell and slight displacements; they do not account for active deformation of a moving cell, which
is important here. By examining the creep function and the relaxation function of a standard linear solid
(see the appendix) and considering the values of the above table, we determined the following parameter
set which is used for a typical simulation: ka = kb = kc = 163.8 dynes per cm, k2 = 147.5 dynes per cm,
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Table 2: Viscoelastic parameters

Cell type k2 ka µa Source
Leukocytes 121.2 dyn/cm2 293 dyn/cm2 223.8 dyn s/cm2 ([Schmid-Schönbein] et al.1981)

Leukocytes 7.5 dyn/cm2 238 dyn/cm2 330 dyn s/cm2 (Sung et al.1988)

Fibroblast 500–1217 dyn/cm2 1200–4000 dyn/cm2 700–3000 dyn s/cm2 (Ward & Li1991)

and µa = µb = µc = 123. dynes min per cm. With these parameter a force of 400 nN will deform the cell
about 2.5 microns in four minutes and it will return to its original shape seven minutes after all forces are
removed (see the appendix). The results of the paper are not sensitive to these parameter values, for example
simulations have been run with k2 ranging from 1.475 (making the cell much less stiff) to 1475.0 (making
the cell even stiffer) and the same force relationship holds. If the parameters are chosen so that the cell is
too stiff, numerical difficulties do arise. (Note the viscoelastic elements in the model are one dimensional,
whereas the parameters in the table come from a constitutive equation for the standard solid model in two
dimension.)

When the cell is compressed sufficiently it becomes much stiffer due to the different response of the
nucleus (Caille et al.2002), and to capture this we assume that f2 is given as follows,

f2(x) =
{

k2x x > −0.6
−0.3k2

(
x

0.3

)2
x ≤ −0.6

(7)

where x is the dimensionless displacement from 1 of the diameter of the cell. The value -0.6 corresponds to
a cell nucleus with a diameter of 4 microns.

The glycoprotein csA is an adhesion molecule in Dd whose force in a cell–cell contact was measured
by single-molecule force spectroscopy (Beniot et al.2000), and we use the result to estimate the necessary
adhesion parameters. The unbinding force was determined to be approximately 23 picoNewtons, and csA
covers roughly 2 percent of the total cell-surface area at the aggregation stage (Beniot et al.2000). It forms
clusters of diameters from 30 - 70 nm (Harris et al.2001), and assuming the cells are initially spherical and
the diameter of the clusters is 40 nm, we estimate 1.6 ×107 clusters/mm2. Because our simulations are of
the slug stage where the adhesion is higher, typical simulations use 1.6 ×107 clusters/mm2 as the density of
adhesion clusters, with 15 picoNewtons of force per cluster. The contact area between two cells is determined
in the simulations allowing the forces due to adhesion to be calculated.

The turning time, which in the model is the time it takes a cell to reorient to a new direction, is set at 20
seconds. This is taken from experiments which show cells can reorient to stimuli within 20 seconds (Futrelle
et al.1982). The coefficients µs, µcell, and µf are 27.0, 27.0, and 2.7 dyn sec per cm respectively.

4 Simulations examining translational forces

In this section we describe the results of several simulations designed to gain a better understanding of the
translational force exerted by a moving slug. In the first set of experiments the starting configuration of the
cells is that of a square slug. We simulate cases where all the cells move and where only a subset of the cells
move. In the second set of simulations, the slug size varies in all dimensions resulting in some nonslug-like
configurations. We will interpret these results in the context of the biological experiments which have been
performed in section 5.

In the first set of simulations, the ‘slug’ initially has a square cross-section in the direction transverse to
the motion. Only a band of cells transverse to the direction of motion are stimulated to move, in order to
simulate the signal and response in a wave of cAMP. In these simulations about twenty percent of the cells
are moving at any given time, but we also ran simulations in which all cells are moving. One can expect
that these two simulations bracket the naturally-occurring behavior in a slug, which ranges from a peristaltic
motion to a smooth flow. The starting configuration of the cells for fifteen simulations is a slug 10 cells long
with different-sized cross-sectional squares ranging from 1 cell by 1 cell to 15 cell by 15 cell. Figure 3 shows
results from a typical simulation at three different times.
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Figure 3: The results of a typical simulation are shown at three different times. At time t = 0 the slug starts out
10 cells long with a square cross-section 4 cells on a side. A unit on the scale indicated corresponds to 10 microns.
The only cells that move are those being simulated by a traveling wave, which is indicated in the foreground by
the squares. The wave has a velocity of 30 microns per minute, a spatial period of 100 microns and a width of 20
microns in which the cAMP is nonzero. The spatial scale of the stimulus wave is smaller than in a natural wave to
accommodate the small size of the slug.

The net motive force in the direction of motion can be determined by projecting the total force onto
the direction of travel, subtracting the drag terms, and ignoring the scaling factor. This is calculated at
each time step and is averaged over the last eight minutes of each simulation. Figure 4 shows the results
plotted against the number of cells in contact with the surface and the total number of cells. In the model
the volume is proportional to the total number of cells and the number of cells in contact with the surface
is also proportional to the surface area in contact with the substrate.

The results in Figure 4 clearly show that the force does not scale linearly with volume (or number; cf.
(b)), as was concluded from experimental measurements (Inouye1984), but rather that it scales linearly
with the contact surface area. Of course both plots show this, since they are based on the same data. In
Figure 4(b) the length is fixed at 10 cells, the number in a cross-section is essentially N2

0 for variable N0,
the total number of cells is NT = 10N2

0 , and the number in contact with the substrate is approximately
10 ·N0 =

√
10NT . The approximations stem from the fact that the slug does not remain a precise rectangular

solid during migration (cf. Figure 3).
As might be expected, the same results hold when all cells are in motion, although in both sets of

simulations the dimension of the cross section of the slug must be larger than the length before the trend is
clearly visible (see Figure 5). To check that our results scale with the size of the slug, we ran a simulation
for a slug 15 by 15 by 100 cells, which is comparable to those used in experiments. The motion stimulus was
also scaled to correspond with a cAMP wave with a wave speed of 300 microns per minute, a wave width of
200 microns and 1000 microns from wave front to wave front. The average motive force per actively moving
cell in contact with the substrate was 38.5 nanoNewtons. This simulation suggests that the results are not
dependent on the size of the slug.

The simulations results show that the motive force scales with the surface area and not with the volume,
which is consistent with the theoretical analysis in section 2 since the cells never ‘freeze’ during a movement
cycle. Moreover, the overall motive force divided by the number of cells incontact with the substrate (the
slope of the line plotted in Figure 5) is approximately the same as the force any individual cell can generate
when actively moving. We also calculated the time averaged motive force for individual cells. For the
simulation in which all cells are moving and the initial slug configuration is a 3 by 3 by 10 cell slug, the
motive force for a cell which is located half way down the length of the slug and is in contact with the
substrate the entire simulation is 36.3 nN, whereas the motive force of the cell initially located just above it
(in the center of the slug) is 0.58 nN. Thus cells not in contact with the substrate are not contributing to
the translation of the center of mass of the slug.

To explore the possibility that a rigid framework may enable other cells to transmit force to the substrate,
we first examined how the stiffness of the cells affects the results. If the cells are rigid enough, it might be
possible for some force to be transferred to the surface by a cell not in contact with the surface through
the rigid cells. Our simulations indicate that changing k2 by a factor of 1000 does not alter the curves or
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Figure 4: The average motive force as a function of the number of the cells in contact with the substrate (a), and as
function of the total number of cells in the slug (b). The boxes indicate data from the simulations, the straight lines
are linear least-square fits to the data, and the curve in (b) is the least squares fit to a square root function. In all
the simulations the slug starts out 10 cells long with square cross-sections that vary from a 1 to 15 cells on a side.
The cells are stimulated to move by a cAMP wave as described in the text. The motive force is the average motive
force for the last 8 minutes of a 10 minute simulation, done with a time-step of 0.002 minutes.
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Figure 5: The average motive force as a function of the number of cells in contact with the substrate (a), and as a
function of the number of cells in the slug (b), when all cells are moving simultaneously. The figure is plotted in the
same manner as Figure 4 and the simulations use the same parameters. A table of the data is given in the appendix.
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Figure 6: The average motive force is plotted vs the number of cells in contact with the substrate in (a) and vs the
total number of cells in the slug in (b) for simulations in which a portion of the cells are frozen. The data does not
follow the square root curve because the length of the slugs during the course of a simulation changes dramatically
in some cases. The data is plotted as in Figure 5 and the simulation parameters are the same. The only difference
is that at any time twenty five percent of the cells are frozen for a duration of 6 seconds and the time step varied
between 0.002 and 0.0005 min, depending on the simulation.

their slopes. Presumably this is due to the relatively gradually buildup of forces, which allows time for the
viscoelastic elements to adjust. Next we allowed a randomly chosen subset of cells to be stationary at any
given time. In simulations in which every six seconds twenty five percent of the cells froze, we again found
that the forces scales with surface area (see Figure 6). It is likely that with the small percentage of frozen
cells there was not much of a network which actually connected to the substrate. As the percentage of
cells which are frozen increases the slug tends to loose cohesiveness. In addition if the frozen cells remain
stationary for too long, the slug again breaks apart. We believe that this type of mechanism is unlikely in Dd
due to the difficulties it creates in maintaining a cohesive slug, although we cannot rule out the possibility
that a cAMP may synchronize freezing in such a way as to facilitate transmission of force from the interior.

Finally, we ran a set of simulations in which the number of cells in a slug varied independently in all
three dimensions. This produces some configurations which are not at all like a slug, but it clearly illustrates
the dependency of the force upon the contact surface area. The initial configurations ranged through 250
cases having from 1 to 5 cells in the width and height, and from 1 to 10 cells in the length of the slug. In
all cases the cells were stimulated to move in a fixed direction by a traveling wave. The results are shown in
Figure 7.

5 Discussion

5.1 The continuum approach

Odell and Bonner (1986) derived a continuum fluid mechanical model for slug movement that incorporated
assumptions about the behaviour of individual amoebae. In their model active stresses were derived from
an active relative velocity field set up at the cell surface. Each amoeba was thought of as a ‘cortical tractor’
pulling the surrounding viscous fluid past itself by rotating its membrane (at different rates on different
parts of the surface). Although there are clearly two phases involved, some form of local averaging, which
was not specified, lead to a model in which only a single phase appeared. The continuum was effectively an
incompressible viscous fluid subject to the action of ‘stirrers’ embedded within it. The fluid (both within
and outside the cells) was modeled as incompressible and the stress resulting from bulk flow of the single
phase was hypothesized to be entirely due to viscous drag in response to gradients in the membrane velocity.
This was the only way in which cells interacted in the model.

The authors show that there can be no net movement unless there is a chemokinesis chemical that controls
the intensity of cell movement, and that the gradient of this chemical must be transverse to the axial gradient
of cyclic AMP. While this is an important attempt at modeling the motion of the slug , there are several
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Figure 7: Data from 250 different simulations are plotted with the vertical axis as the translational force of the slug
in nanoNewtons and the horizontal axis as the number of cells in contact with the surface (a), or the total number of
cells in the slug (b). Five lines are clear in (b): these correspond to subsets of the data in which the initial height of
the slug is held constant, which implies that the volume of the slug and the surface area in contact with the substrate
are proportional. All simulations started with a three dimensional array of cells whose dimensions ranged from 1
to 5 in both dimensions transverse to the length of the slug and 1 to 10 in length. The vertical axis is the average
translational force for the last 8 minutes of a 10 minute simulation, done with a time step of 0.002 minutes. In all
the simulations, cells are stimulated to move one direction by a traveling wave. Because the cells are not constantly
moving the time averaged force for one cell should be about 8 nN which is consistent with the data shown.

difficulties with the model. Firstly, it known (Pauline Schaap; personal communication) that there is very
little slime in the interior of the slug. Only anterior cells secrete it and it remains highly localized in the
surrounding sheath. There may in fact be essentially no fluid in the interior, in which case the stirrer model
cannot work. Moreover, traction forces on the sheath play no role in the model; in essence the cells swim
in the extracellular matrix. However, the sheath must play an essential role in confining the cells in the
pulsatile motion, for the slug lifts off the substrate, and it is difficult to understand how this can occur
without interactions between the sheath and the cells within the slug.

More recently Umeda & Inouye (1999) have developed a continuum model that has certain features in
common with the PO model and the extension we develop here. In this model migrating cells synthesize
new membrane at the front and degrade it at the rear, and the stationary network allows transmission of
stress to the substrate. The authors postulate a motive force that is proportional to the volume and solve
the resulting continuum equations for the motion in two space dimensions. The model does produce the
correct two-dimensional geometry of the slug, the cell sorting, and a correlation between the speed of the
slug and the length of the slug, but there is as yet little evidence that the postulated recycling of membrane
occurs, and in fact, the scenario presented is at variance with the current understanding of how single cells
move on a fixed substrate. Other continuum models developed by Vasiev et al. (1997),Bretschneider et al.
(1999), and Vasiev & Weijer (2003) also model the slug as a viscous fluid which exerts force. Chemotactic
movement of cells is controlled by cAMP waves, and it is postulated that the motive force is proportional
to the volume. The active force is proportional to the local gradient of attractant, but how the macroscopic
forces arise from the behavior of individual cells is not addressed.

The recent continuum models can replicate slug motion by suitable choices of the model parameters, but
only the model due to Umeda & Inouye (1999) attempts to relate the force to a microscopic description
of cell motion. Our computational results using a cell-based model suggest that any continuum description
should have the property that the force exerted by the slug on the substrate should be solely due to the
active force exerted by cells in contact with the substrate; interior cells contribute essentially nothing to the
motion of the center of mass. However, the continuum models are based on experimental observations that
suggest that force may be proportional to the volume, in contrast to the results of the simulations, and we
address the discrepancy in the following section.
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Figure 8: The width of slugs is plotted against the length of the slug. The line is the least squares fit to the data,
not including the two longest slug data points. The correlation coefficient is 0.93 when these two data points are
excluded, and thus a linear relation is very likely. (Data is taken from Inouye & Takeuchi (1979)).

5.2 The cell-based approach

Our theoretical predictions show that there must be some mechanism that causes a subset of cells to “freeze”
transiently in order for the cells not in contact with the substrate to contribute to the overall motive force of
a slug. The computational experiments show that this did not work with two types of simulation, but there
are other possibilities. In the first experiment the cells were stiffened uniformly, but still only the cells in
contract with the substrate contributed to the overall motive force of the slug. The second type of simulation
was to freeze a random subset of cells, but in this case it was difficult to maintain the integrity of the slug.

How can our results be reconciled with the experimental results which indicate that the motive force of
the slug does scale with the volume (Inouye1984)? In order to answer this question, we first consider the
possibility that there is some relationship between a slug’s radius and its length, and second we examine
some assumptions made in interpreting the experimental data.

One factor that may confound the interpretation of data is that in naturally-developing slugs the radius
and the length seem to be correlated. Data taken from (Inouye & Takeuchi1979) is plotted in Figure 8,
and one sees there that a linear relationship is very likely. The correlation coefficient between the length
and the width of the slugs is 0.78 when the two longest slugs are included in the fit, and 0.93 when they
are excluded. Also, in some experiments the slugs move in capillary holes made in the agar (Inouye &
Takeuchi1980; Inouye1984), and these tunnels may impose some relationship on the length and the radius
of the slugs, constricting the radius of large slugs and allowing smaller slugs to expand.

As is evident in Figures 5 and 4, the plots of the motive force with respect to volume appear to be
linear whenever the radius is less than the length. It is only when the radius exceeds the length that the
true dependency is revealed. Since the length is fixed initially in our simulations, if we assume that the
dependency of force is on contact surface area, a plot against volume should be, and indeed is, a square root
function. In fact, one can easily conclude that the force scales with volume if only a subset of the data in
Figure 7 corresponding to aspect ratios ranging from 1:10 to 1:1 is plotted (cf. Figure 9). The relationship of
force to the the surface area is only revealed when the complete data set is analyzed. Of course, if naturally
occurring slugs always have a small radius when compared to the length of the slug, using a linear relationship
could be a reasonable approximation to the true force relation. It may be possible to design experiments
which eliminate this problem by measuring the motive force of slugs with much larger radii. Alternatively,
by carefully controlling the size of the slugs one might be able to extract more information. For example,
one could consider data for slugs of the same length but with different diameters, or consider slugs of the
same volume with different diameters, by placing them in capillary tubes which restrict their diameter. In
the second case, reducing the radius of the capillary by a factor of ν will only increase the surface area by
a factor of approximately ν, and unless the radii of the capillaries are varied over a large range, the surface
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Figure 9: This figure plots a subset of the data from Figure 7 to illustrate that for some slug dimensions, the data
can appear to have a linear relationship, only when a larger data set is considered can the true relationship be clearly
seen (Figure 7). Twenty five of the data points in Figure 7 are replotted where the transverse cross section of the
slug is a square and the length of the slug ranges from 5 to 10 cells. The plotted line is the least squares fit to a line
of the data and has a correlation coefficient of 0.97.

areas may not change enough to give conclusive data.
Another problem may be in the assumptions used to interpret some of the data. In Inouye & Takeuchi

(1979) the authors assume that the motive force for a slug migrating on agar is proportional to the volume
and derive the relation

f

v∗ =
s

L
+ a ≡ δ(L) (8)

where f is the motive force per unit volume, v∗ is the speed, L is the length of a slug, s is a coefficient that
reflects resistance at the ends of the slug, a is a drag coefficient, and δ(L) is defined for later convenience.
They then fit the velocity-length data for various slugs to the equation

v∗ =
L

α + βL
(9)

where α ∼ 0.27, β ∼ 0.26. They thereby in effect obtain s/f and a/f and show that s ∼ a.
In Inouye & Takeuchi (1980) the authors observe that the velocity of a slug migrating in an agar tube

is always smaller than on an agar substrate, and from the regression line drawn in their Figure 3 one can
derive the relationship

v = (0.25)(0.87)(4− L)v∗. (10)

Assuming that the force in the agar tube behaves according to (8), as was done in Inouye & Takeuchi (1980),
it follows that the motive force is approximately given by

f = δ(L)v = δ(L)
v

v∗
v∗ = c1δ(L)

L(4 − L)
1 + L

= c2(4 − L) (11)

where c1 and c2 are constants of order 1 and we have set s = a and α = β. Thus the original assumption
that the motive force is proportional to the volume turns out to be contradictory for the slugs moving in a
tube.

There is another interpretation of the experimental data which also appears to conflicts with our theo-
retical prediction. In Bonner (1995), Inouye’s data is plotted with other data to show that the velocity of
a slug is related to its length as v ∝ L0.66. If we assume that the slug is a half-cylinder and sum (2) over
all cells, and further assume that the motive force is proportional to the surface area in contact with the
substrate, we predict that the relationship should be

v =
k1L

k2r + k3L
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where r is the radius of the slug and k1, k2, and k3 are constants. If there is a linear relationship between
L and r (see Figure 8) or if r << L, the velocity is approximately constant which is consistant with our
computational results. Although one could argue that the dependency v ∝ L0.66 is weak, it may be that
other factors account for the discrepancy. In all of our calculations we assume that the same proportion of
cells in the slug are actively moving, regardless of the slug size. However it is likely that different-sized slugs
will have different signaling properties and thus different proportions of actively moving cells. In fact, in
early experiments by Francis (quoted in Shaffer (1964)) the tip of a slug was replaced by a smaller one and
the resulting slug moved more slowly, and larger tips grafted onto a slug resulted in faster migration. This
might be due to the cAMP produced by the tip, which would cause a smaller or larger proportion of cells to
move actively.

In conclusion, prior interpretations of experimental evidence appear to contradict the theoretical predic-
tion that only cells in contact with the substrate contribute to the migration of the slug, but as we indicated
above, there are several plausible reasons for this. The theoretical prediction is clear: without some special
mechanism such as a transiently-frozen subpopulation of cells, only those in contact with the substrate can
gain traction to produce force which will translate the entire mass. We have not considered the slime sheath
in this paper, but even if the entire surface area of the slug is effective for transmitting force, not just those
cells in contact with the substrate as in our experiments, the motive force will still scale with the surface
area of the slug and not its volume. Clearly more experiments are needed to definitively establish whether
the total motive force scales with surface area or volume.

Acknowledgments HGO was supported in part by NIH grant GM 29123, NSF grant DMS 9805494 and
NSF grant DMS 0317372, the Max Planck Institute, Leipzig, and the Alexander von Humboldt Foundation.
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In the appendix we first approximate the Reynolds number for the system in order to justify neglecting
the acceleration term in the equations of motion (6) and the approximation used for the drag terms. Next
the forces in the model are precisely defined and the details of how cells rotate is given. Finally we describe
the numerical algorithm and give some tables of data.

A Low Reynolds number

The Reynolds number is a dimensionless quantity which is a measure of the ratio of inertial forces over
viscous forces and is defined to be

Re =
ρ�||v||

µ
(12)

where ρ is the fluid density, � is the characteristic length, v is a velocity vector, µ is viscosity and ||v||
is the standard norm in 	3. Typical velocities for cells range from 5 microns per hour to 30 microns per
minute (Bray1992). The characteristic length for the system is the diameter of a cell, about 10 microns.
To approximate the largest Reynolds number in our system we use the density and viscosity of water at 30
degrees Celsius which are 995.7 kg per meter cubed and 7.975 × 10−4 Newtons seconds per meter squared
respectively. This gives a range for the Reynolds number of 1.7 × 10−8 to 6.24 × 10−6. Other Reynolds
numbers in our system will be even smaller.

B Forces

B.1 Drag due to Fluid

In the PO model several simplifying assumptions about the drag are made and thus the drag, as is commonly
done, is proportional to velocity. The drag due to the fluid acting on the ith cell is simply given by

Df,i = −6πribµfvi, (13)

where vi is the velocity of the ith cell and rib is the radius of the b axis of the ith cell or ub + b0. Since
each cell can have a varying degree of contact with the fluid depending upon how many cells surround it,
the drag is multiplied by the ratio of the surface area in contact with the fluid and the total surface area of
the cell (see equations (6)). To simplify the computations the total surface area is assumed to be constant
throughout the simulations even though it is not.

B.2 Cell Adhesion

Cell adhesion sites are binding and unbinding all the time. To model this accurately for several interacting
cells would be extremely complicated. Thus as a simplification the PO model splits the adhesional force into
two components, one tangential to the cell membrane and one normal to the membrane. This is motivated
by the idea that cell adhesion may be less resistant to tangential forces and more resistant to normal forces
(Keller et al.2000).
Tangential adhesive forces
The component of the adhesive force tangential to the cell membrane acts like a drag force opposing the
motion of the cell. For the substrate adhesive force, equation 13 is used and again multiply by the ratio of
surface area in contact with the substrate and the total surface area. To be more accurate the velocity used
should be the projection of the cell velocity onto the plane of the substrate. For computational ease it is
not. Thus the tangential adhesive force on the ith cell due to adhesion with the substrate is

D0,i = −6πribµsv̂i. (14)

For the tangential adhesive force due to other cells, again an equation similar to equation 13 is used except
the velocity v is the relative velocity between the two cells in contact. Again a more realistic formulation
would consider only the relative velocity in the tangential direction to the cell boundary in contact. For
simplicity this is not done and thus there is some additional adhesive force in the system. So the equation
for the tangential adhesive force between cell i and cell j becomes

Dj,i = −6πribµc(vi − vj), (15)
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Figure 10: The three sketches above show the vectors hj,i, dj,i, di,j and sj,i.

where vj is the velocity of the jth cell.
Normal adhesive forces
In the PO model the combined effects of the normal forces due to adhesion and the rheological forces,
explained in section B.4, are treated as a potential energy well with the minimum energy occurring when
the cell membranes slightly overlap (see section B.4). The overlap of membranes is interpreted as regions of
the cell where there is local deformation of the cell shape away from the model’s imposed ellipsoidal shape.
In our version of the PO model we define the potential energy well differently. The attractive side of the
potential well is similar in that the adhesion will draw the cells closer together. It is the repulsive side of the
potential energy which is quite different. We calculate the repulsive force using the viscoelastic elements.
We also assume cells to be slightly larger (1.2 times) than the viscoelastic elements. This means that there
is a region around the cell where it does not resist compression and can form adhesive contacts with other
cells. Thus if cell membranes are separated beyond this distance there is no adhesive force, if cell membranes
overlap in this region the adhesive force is positive causing them to draw closer, and if the cells overlap
beyond this region the viscoelastic properties of the cells usually cause the cells to push apart.

In order to be precise we define the following vectors. Let dj,i be the vector from center of cell i to its
edge in the direction of the vector from the center of cell i to the center of cell j, hj,i (see Figure 10). The
vector sj,i is from the edge of cell i to the edge of cell j in the direction of hj,i. Notice that ||si,j || = ||sj,i||.
The membranes of cell i and cell j overlap when ŝj,i · ĥj,i = −1.

For adhesion between cells the normal force is given by

Aj,i =

⎧⎪⎨
⎪⎩ αAij ŝj,i if

cells within range︷ ︸︸ ︷
||sj,i|| ≤ .2||dj,i|| + .2||di,j || and

no overlap︷ ︸︸ ︷
ŝj,i · ĥj,i = 1

0 otherwise

(16)

The coefficient α is the density of adhesion receptors per unit area multiplied by the force per receptor. The
area of contact between the i cell and the j cell is denoted Aij . We approximate this area by assuming the
cells are spheres with radii ri = 1.2||dj,i|| and rj = 1.2||di,j||. We take the radii of the two cells to be slightly
larger than the actual cells. This accounts for the fact that the cells can reach out to nearby cells and have
a tendency to make contact. So cells have a buffer zone where they do not resist compression and are more
likely to increase contact. The contact area is the area of the region bounded by the circle of intersection of
the two spheres. Thus

Aij =
π

4||hj,i||2
(
2||hj,i||2(r2

i + r2
j ) + 2r2

i r2
j − r4

i − r4
j − ||hj,i||4

)
(17)

and Aij = Aji. So
Ai,j = −Aj,i. (18)

For computational convenience we multiply Aj,i by the following function evaluated at ||sj,i||, to smooth the
discontinuity in the forces

f(x) =
{ | sin π

2
x

.2||dj,i|| | for − .2||dj,i|| < x < .2||dj,i||
1 otherwise

We treat the normal adhesive force due to cell-substrate adhesion in a more realistic manner than a
simple potential energy. In reality the adhesion force will counter any force up to a threshold which would
separate the cells from the substrate and it will bring the cells to an optimal contact with the substrate.
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Thus for adhesion with the substrate, we have a potential energy function which brings the cell to an optimal
distance from the substrate (the rheological forces form the other side of the potential energy well, pushing
away from the substrate when the cell is too close) but we also counter any forces pulling the cell away from
the substrate which are below a threshold. Specifically the normal force due to adhesion to the substrate is
given by

A0,i =

{ (−Fi · k + Ap
0,i

)
k if 0 ≤ Fi · k ≤ Sad and−.2||d0,i|| ≤ (s0,i · −k) ≤ .2||d0,i||

0 otherwise
(19)

where Sad is a positive constant representing the adhesion strength and Fi is the net force on the ith cell
given by,

Fi =

⎛
⎝M0,i + R∗

0,i + A0,i +
∑
j �=i

Tj,i +
∑
j �=i

Aj,i +
∑
j �=i

Rj,i +
∑
j �=i

(Mj,i + R∗
j,i)

⎞
⎠ (20)

and

AP
0,i = − sin

π

2
s0,i · (−k)
.2||d0,i|| (21)

where d0,i is the vector from the center of the cell to its membrane in the k = (0, 0, 1) direction.

B.3 Active Forces

The active force is the force which a cell generates through traction, tension or some other means, in order
to move. There are many ways to cause a force to be applied to the cell in the direction of motion. In
the PO model, cells “pull” in order to move. If a cell stimulated to move (for either low motility motion
or high motility motion) is in contact with the substrate (a two dimensional plane), the component of the
force in the plane of the substrate is obtained by “pulling” on the substrate. For the other component of the
force, the z component, or in the case where the cell is not in contact with the substrate, the entire force
is generated by pulling on the neighboring cell whose center is closest to the line in the direction of desired
motion. If there is no cell 90 degrees in any direction of the direction of motion, the cell cannot “grab” a
cell and only exerts force on the substrate if it is close enough.

Before precisely defining the force on the substrate, we define the vector of the active force generated by
cell i to be Ti which is in the opposite direction of the desired motion. The force applied by the ith cell on
the substrate due to pulling is given by

Ti,0 =
{

0 if ||s0,i|| ≥ (||dj,i|| + ||di,j ||)
Ti · i + Ti · j otherwise (22)

where ss,i is the vector from the edge of cell i’s membrane to the substrate in the −k direction, i = (1, 0, 0),
and j = (0, 1, 0). This force does not move the substrate since it is assumed to be fixed, but associate with
this force is an equal and oppose force, M0,i, which can affect the cell shape and position.

In order to define the force one cell applies to another, first the cell to which the force will be applied
must be identified. A set of indices N a

i identifies the neighboring cells of the ith cell or the cells within a
distance dn, a positive constant, and j is index for the cell whose center is in the closest direction to the
direction of Ti. Let j be given by

j =
{

k : max
k∈Na

i

xk − xi

||xk − xi|| · T̂i

}
(23)

where xn is the location of the center of the nth cell and

N a
i = {k : 0 < ||xk − xi|| ≤ dn}. (24)

The force applied to the jth cell by the ith cell due to pulling is given by

Ti,j =

⎧⎨
⎩

0 if j = ø
(Ti · k)k if ||s0,i|| ≤ .2(||dj,i|| + ||di,j ||) and j �= ø
Ti otherwise

. (25)
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Figure 11: The figure shows two cells whose membranes are overlapping. The dashed lines represent the ellipsoidal
shape of the cells as represented in the model. The solid lines more accurately represent how the cells would locally
deform. The cell with the pressure which is smallest in magnitude will deform the most.

When an unstimulated cell is stimulated by the motion stimulus, it orients itself and generates active
force in order to move in high motility motion for as long as it is being stimulated by the motion stimulus.
In our simulations the active force is ramped up and down. In addition there is some random variation
given to the force due to the random differences in cells. Not only is this biologically realistic but it is
computationally simpler.

The forces and ramping for the active force are applied in the following manner:

||Tj,i|| = r(t)ragf (26)

where gf is a parameter defining the magnitude of the active force, ra is a randomly generated number in
the interval [0.8, 1.2] and

r(t) =

⎧⎨
⎩

t − ta for 0 < t − ta < tr
1 for tr ≤ t − ta ≤ td
1 − (t − td) for 0 < t − td ≤ tr

(27)

where tr is the time duration of the ramp, ta is the first time the cell is stimulated to move since not being
stimulated and td is the time the cell stops receiving the motion stimulus. If the cell is not being stimulated
by the motion stimulus, it will either generate force for low motility motion which includes no force depending
on the parameters used. For all simulations td = 20h where h is the time step. Forces are ramped down in
a similar fashion when cells are no longer stimulated to move.

B.4 Rheological Forces

In the PO model when two cells are close enough there will be some local deformation of the membranes
to accommodate the volume of each cell which would otherwise occupy the same space. This is called local
compression and in the model it is characterized by overlapping cell membranes (see Figure 11). When a cell
is locally compressed in our model, it will push or pull on neighboring cells depending on what is happening
with the cytoskeleton, the viscoelastic element which models the cytoskeleton. If a cell shape is stretched
and relaxing and other cell is locally compressing it, the relaxing cell will pull the locally compressing cell
towards it provided the adhesion is strong enough.

When cells overlap, we assume that one or both cells are being locally compressed. In our implementation,
the cell with the smallest absolute value internal pressure, |pk| is the cell which deforms and is locally
compressed the most. The value p represents the change in internal pressure. If it is a large, positive value,
the cell is turgid due to the internal fluid. If the value is large and negative, the cell is stiff due to the internal
cytoskeleton. When the values are not large the true situation is more complicated and how easily deformable
the cell is depends on the combined influences of the internal fluid and the state of the cytoskeleton i.e., if
the viscoelastic element is expanding or contracting.

The force due to locally compressed cells is given by:

Rj,i =

⎧⎪⎪⎨
⎪⎪⎩ −G(diŝi,j , i) + G(dj ŝj,i, j)

cells overlap︷ ︸︸ ︷
ŝj,i · ĥj,i = −1 and

body forces do not pull more
than adhesive forces︷ ︸︸ ︷

−G(diŝi,j , i) + G(dj ŝj,i, j) ≤ ||Aj,i||
0 otherwise

(28)

where
G(dŝ, i) = qa(dŝ, i)âi + qb(dŝ, i)b̂i + qc(dŝ, i)ĉi (29)
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and

di = .5 max
�∈No

i

||s�,i||
(

1 −
∣∣∣∣ |p̄i| − ||p̄�|
max(||p̄i|, ||p̄�|)

∣∣∣∣
)

. (30)

The values di and dj represent the amount cell i and cell j are deformed and their sum gives the total
deformation di + dj = ||sj,i||. The values qa, qb, and qc are determined by the viscoelastic elements in the
cells and N o

i is the set of cell indices whose cell membranes overlap with the membrane of cell i.
To determine the force with which the cell resists compression we solve equation 3 for each cell assuming

the cell shape changes from its current shape to a new shape where it has been compressed by diŝ in time
dt. We resolve the vector diŝ into the direction of the axis of the cell, thus diŝ = αiâi + βib̂i + γiĉi where
αi = (diŝ · âi), βi = (diŝ · b̂i) and γi = (diŝ · ĉi). Solving equation 3 using an integrating factor we get

qa(diŝ, i) = −fa(tc + dt) (31)
fa(tc + dt) = e−ζdtfa(tc) + f2(a − |αi|) − e−ζ(dt)f2(a) (32)

−(1 − e−ζdt)p̄ + k1e
−ζ(tc+dt)

∫ tc+dt

tc

eζt da

dt
dt (33)

where ζ = ka

µa
, tc is the current time and a = a(tc) and is the length of one of the axes.

Compression against the substrate works in the same manner with

Rs,i =
{

0 if di > 0
−G(dizi, i) otherwise (34)

where di is the distance from cell i to the substrate in the direction of zi = (0, 0,−zi).

B.5 Reactive forces

Another type of force considered in the PO model is described by Newton’s third law: “To every action there
is always opposed an equal reaction; or, the mutual actions of two bodies on each other are always equal,
and directed to contrary parts.” Thus when the jth cell applies a force to the ith cell, the ith cell responds
with an equal and opposite force, given by

Mj,i = −Ti,j . (35)

Paired with all the traction forces and the rheological forces are forces associated with Newton’s third
law. (Depending on ones perspective, one can consider equal and opposite forces with the normal adhesive
forces.) The forces due to the substrate are all of this type and are equal and opposite to the force a cell
applies to the substrate. Thus the forces applied by the substrate on the ith cell are given by

M0,i + R∗
0,i = −Ti,0 − Ri,0. (36)

Likewise when any cell i applies a force on another cell j, cell j applies this type of force back on cell i.
These forces are given as

Mj,i + R∗
j,i = −Ti,j − Ri,j . (37)

C Cell Rotation

In the PO model, cells are oriented ellipsoids but the details of how and when a cell changes its orientation
are different. Here we explain our implementation. When a cell is engaged in directed motion it is assumed
that two stimuli are provided, an orientation stimulus and a motion stimulus. The orientation stimulus
provides a direction of orientation d̂o, and the motion stimulus indicates if the cell should be engaged in
directed motion.

Consider cell i orientated in the direction of âi, one of its major axes (see Figure ??), where the caret
notation indicates a unit vector. When cell i moves in high motility motion it does so in the direction of
âi. When an orientation cycle starts there are three possibilities. First, the cell is already oriented in the
direction of the direction stimulus, âi = d̂o, in which there is no need to change orientation. Second, the
cell is oriented in the opposite direction of the stimulus, âi = −d̂o. Experimentally it is observed that a
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cell either changes its leading edge to the opposite side and reverse its direction or the cell makes a “U”
turn maintaining the same leading edge. In our model we only allow the cell to change its leading edge by
switching its orientation. Finally, if the orientation of the cell and the direction stimulus are not parallel,
the cell changes its direction. Again it is experimentally observed that when a cell has established a leading
edge, depending on the circumstances it can change directions by extending more pseudopods in one half of
the leading edge causing the cell to veer in that direction. Now consider a cell surrounded by other cells, in
order to extend a pseudopod it may have to push a neighboring cell out of the way, if it can. In our model
we approximate this by gradually rotating the the cell about the vector v̂ = (v1, v2, v3) = âi×d̂o

||âi×d̂o|| until,

upon completion of the orientation cycle, the cell orientation is the same as d̂o. Before explaining why this
is a good representation of the experimental observations, we first observe that as a simplification, in our
model we do not take into account torque. When a cell pulls on another cell it will have multiple contacts
with the other cell spreading the force over a segment of the membrane. Where the center of mass of the cell
is with respect to the segment of the membrane will determine the strength of the torque. Because of this
simplification, the rotation of the cell is equivalent to the cell retracting in the old direction and extending
in the new direction. The neighboring cells are pushed as if the cell was extending a pseudopod. Of course,
depending on the other forces, the cell may not be able to extend the pseudopod and may even retract in
that direction.

When a cell changes direction via an orientation cycle, it may rotate until it is oriented in the new
direction. Specifically in our model, the cell is rotated by a rotation matrix.

D Numerical Methods

Our system is
ẋ = M−1(x)b(x, t). (38)

where M is a 3N × 3N real matrix, v = ẋ and b are vectors with 3N real components and N is the total
number of cells.

The entries of M and b are defined in terms of an intermediate function, the radii of the cells. Let
r = (r1, r2, · · · , rN ) where ri = (rai , rbi , rci) is the vector of the radii for the i cell and let x = (x1,x2, · · ·xN )
where xi is the location of the center of the cell i. Therefore, the matrix M depends on x and r, whereas b
depends on x, r and t. The difficulty arises since r also depends on b. Thus we have a recursive definition
for r with r(b[r,x, t]).

The quasi-implicit method is described in the following manner. Initially we discretize using the trape-
zoidal rule:

xn+1 − xn =
h

2
[
M−1(r,xn+1)b(r,xn+1, tn+1) + M−1(r,xn)b(r,xn, tn)

]
(39)

where xn = x(tn), tn = hn and h is the time step. We formulate a new problem so at each time step we can
use the iterative nonlinear solver NKSOL (Brown & Saad1987) (a software package). Let g be defined by,

g(y) = y − xn − h

2
[
M−1(r,y)b(r,y, tn+1) + M−1(r,xn)b(r,xn, tn)

]
. (40)

Note that g(xn+1) = 0. The cell radii represented in r are difficult to express as a function of y and t. Yet it
is possible to determine r if b is given. Thus it would be simple to lag r in time and have a “quasi-implicit”
scheme, but numerical tests indicate that this in not very efficient due to stability problems. Thus we use
the most current information possible to calculate r. For a fixed time step n we approximate g(yi) for each
iteration by first finding r, evaluating g, and updating r in the following manner :

rn+1,i,− = r[b(rn+1,i−1,+,yi, tn+1)] (41)

g(yi) ≈ yi − xn − h

2
[
M−1(rn+1,i,−,yi)b(rn+1,i,−,yi, tn+1) (42)

+M−1(rn,xn)b(rn,xn, tn)
]

(43)

rn+1,i,+ = r[b(rn+1,i,−,yi, tn+1)]. (44)

To start the process y0 = xn, rn+1,0,− = r(b(rn,xn, tn+1) and i = 0, 1, · · · .
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Figure 12: The creep function for a standard linear solid and the applied force are plotted in a) and the relaxation
function is plotted in b) with parameters k1 = 163.8 dynes per cm, k2 = 147.5 dynes per cm, and µa = 123 dynes
min per cm. The thin black line in a) is a scaled plot of the applied force which starts at time 1 with a magnitude
of 400 nanoNewtons and ends at time 12. The thicker gray line in plot a) is the change in the length of the element
(the diameter of the cell). In plot b) the length of the element (diameter of the cell) at time 1 is fixed at 20 microns
(twice its resting length). The graph shows the force with which the element resists the deformation.

E Parameters and Data

To determine the parameters for the viscoelastic elements we examined the creep function and the relaxation
function of a standard linear solid. The creep function is the time evolution of the length of the element
and the relaxation function is the time evolution of the force the element exerts. Figure 12 shows these
functions with the standard parameters used for the viscoelastic elements. If the cell is acted on by 10 other
cells (a spherical, interior cell in our simulation can have 26 neighboring cells in contact), it will deform 2.5
microns in 4 minutes and will return to it original shape about seven minutes after the force is removed.
The relaxation function shows that if a cell is stretched to double its length then it will intially exert 3000
nanoNewtons of force. These parameter values which may seem on the low end compared to measured values
(see Table 2) still make the cells quite stiff.

Unless otherwise specified the parameters used in the simulations are ga = 4 × 10−3 dynes, Sad = 0.1
dynes, tc = 0.33 minutes and α = 2.414 × 106 nN per mm squared. The initial cell size is a sphere of 5
microns radius thus a0 = b0 = c0 = 5 microns.
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