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DIRAC-WAVE MAPS

Abstract. We introduce a functional that couples the nonlinear sigma model
with a spinor field: L =

∫
R1+1 [|dφ|2+〈ψ,D/ψ〉]. In two dimensions, it is conformally

invariant. The critical points of this functional are called Dirac-wave maps. We
prove that there exists global solution for the Cauchy data.

1. Introduction

Let {R1+1, {hαβ}{t, x}} be two dimensional Minkowski and {Mn, {gij}, {yi}} be
a compact Riemannian manifold. PSO(1,1) → R1+1 its oriented orthonormal frame
bundle. A Spin-structure is a lift of the structure group SO(1, 1) to Spin(1, 1), i.e.
there exists a principal Spin-bundle PSpin(1,1) → R1+1 such that there is a bundle
map

PSpin(1,1) −→ PSO(1,1)

↓ ↓

R1+1 −→ R1+1

Let Σ+R1+1 := PSpin(1,1) ×ρ C be a complex line bundle over R1+1 associated
to PSpin(1,1). This is the bundle of positive half-spinors. Its complex conjugate

Σ−R1+1 := Σ+R1+1 is called the bundle of negative half-spinors. The spinor bundle
is ΣR1+1 := Σ+R1+1 ⊕ Σ−R1+1.

There exists a Clifford multiplication

TR1+1 ×C Σ+R1+1 → Σ−R1+1

TR1+1 ×C Σ−R1+1 → Σ+R1+1

denoted by v ⊗ ψ → v · ψ, which satisfies the Clifford relations

v · w · ψ + w · v · ψ = −2h(v, w)ψ,

for all v, w ∈ TR1+1 and ψ ∈ ΣR1+1.
On the spinor bundle ΣR1+1 there is a hermitian metric 〈·, ·〉 and a connection ∇

compatible with the hermitian metric. Since ΣR1+1 is trivial, so ∇ is trivial. Let φ
be a map from R1+1 to M . Denote φ−1TM the pull-back bundle of TM by φ and
consider the twisted bundle ΣR1+1 ⊗ φ−1TM . Let D be the Levi-Civita connection

on φ−1TM . On twisted bundle Σ ⊗ φ−1TM there is a metric and connection ∇̃
induced from the metrics and the connections on ΣR1+1 and φ−1TM .

In local coordinates, the section ψ of ΣR1+1 ⊗ φ−1TM can be expressed by

ψ(t, x) =
n∑
j=1

ψj(t, x)
∂

∂yj
(φ(t, x)),
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where ψi is a spinor and { ∂
∂yj } is the natural local basis. ∇̃ can be expressed by

∇̃ψ =

n∑
i=1

∇ψi(t, x) ∂

∂yj
(φ(t, x)) +

n∑
i,j,k=1

Γijk∂φ
j(t, x)ψk(t, x)

∂

∂yi
(φ(t, x)).

If we write ψj as column vector with two components ψj = (ψj1, ψ
j
2)
T and ψ

j
=

(ψ
j

1, ψ
j

2)
T , then

ψ(t, x) = (
n∑
j=1

ψj1(t, x)
∂

∂yj
(φ(t, x)),

n∑
j=1

ψj2(t, x)
∂

∂yj
(φ(t, x)))T

=: (ψ1, ψ2)
T

Therefore we can consider ψ1, ψ2 as vectors on φ−1TM , so ∇̃ can be written as

∇̃ψ = (Dψ1, Dψ2)
T

Now we define the norm of ψ and ∇̃ψ by

‖ψ‖2 =: gij(ψ
i, ψj) = gijRe((ψ

i
)Tψj)

= gijRe(ψ
i

1ψ
j
1) + gijRe(ψ

i

2ψ
j
2)

= ‖ψ1‖2 + ‖ψ2‖2

‖∇̃ψ‖2 =: ‖Dψ1‖2 + ‖Dψ2‖2

Define the Dirac operator along the map φ by
(1.1)

D/ψ =
∑
i

∂/ψi(t, x)
∂

∂yi
(φ(t, x)) +

n∑
i,j,k=1

Γijk∂eαφ
j(t, x)eα · ψk(φ(t, x))

∂

∂yi
(φ(t, x)),

where e1, e2 is the local orthonormal basis of R1+1 and ∂/ :=
∑2

α=1 eα · ∇eα is the
usual Dirac operator. The Dirac operator D/ is formally self-adjoint, i.e.,

(1.2)

∫
R2

〈ψ,D/ξ〉 =

∫
R2

〈D/ψ, ξ〉,

for all ψ, ξ ∈ Γ(ΣR1+1 ⊗ φ−1TM) , the space of smooth section of ΣR1+1 ⊗ φ−1TM
and ψ or ξ has compact support. Set

X := {(φ, ψ) |φ ∈ C∞(R1+1,M) and ψ ∈ Γ(ΣR1+1 ⊗ φ−1TM)}.
On X , we consider the following functional

(1.3) L(φ, ψ) =

∫
R2

[gij(φ)(
∂φi

∂t

∂φj

∂t
− ∂φi

∂x

∂φj

∂x
) + gij(φ)〈ψi, D/ψj〉]dtdx,

The Euler-Lagrange equations of L are:

(1.4) �(φ) = R(φ, ψ),

(1.5) D/ψ = 0,

where �(φ) is the tension field of the map φ and R(φ, ψ) ∈ Γ(φ−1TM) defined by

(1.6) R(φ, ψ)(x) =
1

2

∑
Rm
lij(φ(x))〈ψi, dφl · ψj〉 ∂

∂ym
(φ(x)).
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Here Rm
lij are components of the Riemannian curvature tensor of g. Solutions (φ, ψ)

to (1.4) and (1.5) are called Dirac-harmonic maps.
It is obvious that there are two types of trivial solutions. One is (φ, 0), where φ

is a wave map, and another is (y, ψ), where y is a point in M viewed as a constant
map from R1+1 → M and ψ is a wave spinor, i.e, D/ψ = 0. The main purpose of
this paper is to prove that there exists nontrival global solution of equation (1.4)
and (1.5). We stated it as following:

Theorem 1. Suppose (M, g) is compact Riemmannian manifold, then the equa-
tion (1.4) and (1.5) have unique global smooth solutions with given initial smooth
conditions,

φ(0, x) = φ0, φt(0, x) = φ1, ψ(0, x) = ψ0.

2. Dirac-Wave Maps

In this section, we establish some basic facts for the functional L and equations
(1.4)–(1.5).

Proposition 2.1. The Euler-Lagrange equations for L are

�(φ) = R(φ, ψ)(2.1)

D/ψ = 0,(2.2)

where �(φ) is the tension field of the map φ and R is defined by (1.6).

Proof. Equation (2.2) is easy to derive. Consider a family of ψs with dψs/ds = η at
s = 0 and η has compact support, fix φ. Since D/ is formally self-adjoint for such η,
we have

dL

ds
|s=0 =

∫
R2

〈η,D/ψ〉+ 〈ψ,D/η〉

= 2

∫
R2

〈η,D/ψ〉.
Hence, we get (2.2).

Next, we consider a variation {φs} of φ such that dφs/ds = ξ at s = 0 and ξ has
compact support, fix ψ. We choose {eα} as a local orthonormal basis on R1+1 such
that [eα, ∂s] = 0, ∇eαeβ = 0 at a considered point.
(2.3)
dL(φs)

ds
|s=0 =

∫
R2

∂

∂s
[gij(φs)(

∂φis
∂t

∂φjs
∂t

− ∂φis
∂x

∂φjs
∂x

)]|s=0 +

∫
R2

∂

∂s
〈ψ,D/ψ〉|s=0 := I+ II.

It is easy to check that

(2.4) I = −2

∫
R2

�i(φ)gimξ
m.

Now we compute II. First we compute the variation of D/ψ. We have

d

ds
D/ψ = eα · ∇∂s∇eαψ

= eα · ∇eαψ
i ⊗∇∂s∂yi

+ eα · ψi ⊗∇∂s∇eα∂yi

= eα · ∇eαψ
i ⊗∇∂s∂yi

+ eα · ψi ⊗ [∇eα∇∂s∂yi
+R(∂s, eα)∂yi

]

= eα · ∇eα(ψi ⊗∇∂s∂yi
) + eα · ψi ⊗ RN(dφ(∂s), dφ(eα))∂yi

.
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Hence, we have

II =

∫
R2

〈ψ, d
ds
D/ψ〉|s=0

=

∫
R2

〈ψ,D/(ψi ⊗∇∂s∂yi
)〉|s=0 + 〈ψ, eα · ψi ⊗RN (dφ(∂s), dφ(eα))∂yi

〉|s=0

=

∫
R2

〈D/ψ, ψi ⊗∇∂s∂yi
〉|s=0 + 〈ψ, eα · ψi ⊗RN (dφ(∂s), dφ(eα))∂yi

〉|s=0

=

∫
R2

〈ψ, eα · ψi ⊗ RN(dφ(∂s), dφ(eα))∂yi
〉|s=0

=

∫
R2

〈ψ, eα · ψi ⊗ RN(ξm∂ym , φ
l
α∂yl

)∂yi
〉

=

∫
R2

〈ψ, eα · ψi ⊗ ξmφlαR
j
iml∂yj

〉

=

∫
M

〈ψi, dφl · ψj〉Rmlijξ
m,

where we have used (2.2).Consequently, we have

dL(φs)

ds
|s=0 =

∫
R2

[−2gmi�
i(φ) +Rmlij〈ψi, dφl · ψj〉]ξm,

and hence (2.1). �

3. Global Existence

In this section we will prove the main theorem. Before we prove the theorem, let
us note the following facts. Consider R1+1 with the Euclidean metric dt2 − dx2. Let
e1 = ∂

∂t
and e2 = ∂

∂x
be the standard orthonormal frame. A spinor field is simply a

map Ψ : R1+1 → ∆2 = C2, and e1 and e2 acting on spinor fields can be identified by
multiplication with matrices

e1 =

(
0 −1
1 0

)
, e2 =

(
0 −1
−1 0

)
.

If Ψ :=

(
ψ1

ψ2

)
: R1+1 → C2 is a spinor field, then the Dirac operator is

∂/Ψ =

(
0 −1
1 0

)⎛⎜⎝∂ψ1

∂t
∂ψ2

∂t

⎞⎟⎠ +

(
0 −1
−1 0

)⎛⎜⎝∂ψ1

∂x
∂ψ2

∂x

⎞⎟⎠ = 2

⎛⎜⎝−∂ψ2

∂ξ
∂ψ1

∂η

⎞⎟⎠ ,

where ξ = t+x
2
, η = t−x

2
is characteristic coordinates.

Using this fact we can write

D/ψi = 2

(
−∂ψi

2

∂ξ
− Γijk(φ)∂φ

j

∂ξ
ψk2

∂ψi
1

∂η
+ Γijk(φ)∂φ

j

∂η
ψk1

)
= 2

(−Dξψ
i
2

Dηψ
i
1

)
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Therefore the equation (2.2) is equivalent the following systems of equations of
first order

Dξψ
i
2 = 0(3.1)

Dηψ
i
1 = 0(3.2)

We also write the equation (2.1) in the simple form

(3.3) Dηφξ = 0

or, equivalently,

(3.4) Dξφη = 0

where φξ = ∂φ
∂ξ

are the tangent vectors of the ξ-curve which are the image of the

characteristics η =const. in the R1+1, and Dη is the symbol for covariant derivatives
of the η−curves. φη and D/ξ are defined similarly.

So we transform the original problem to the following systems:

(3.5)
∂ui

∂η
+ Γijk(z)u

jvk =
1

2
Ri
lkj(z)〈ψk, uleξ · ψj〉 +

1

2
Ri
lkj(z)〈ψk, vleη · ψj〉

(3.6)
∂vi

∂ξ
+ Γijk(y)v

juk =
1

2
Ri
lkj(y)〈ψk, uleξ · ψj〉 +

1

2
Ri
lkj(y)〈ψk, vleη · ψj〉

(3.7)
∂yi

∂ξ
= ui,

∂zi

∂η
= vi

(3.8)
∂ψi2
∂ξ

+ Γijk(y)u
jψk2 = 0

(3.9)
∂ψi1
∂η

+ Γijk(z)v
jψk1 = 0

together with the initial conditions

yi(0, x) = zi(0, x) = φi0(x), ψi(0, x) = ψi0

ui(0, x) =
∂φi0(x)

∂x
+ φi1(x), vi(0, x) = −∂φ

i
0(x)

∂x
+ φi1(x)(3.10)

In order to prove the theorem it is sufficient to prove that the equations (3.5)-(3.9)
have global solutions, provided that the initial data satisfy (3.10). Now we turn to
the proof of the theorem.

Proof. Define

M = sup
|x|≤L

{‖u‖0, ‖v‖0}, M0 = sup
|x|≤L

{‖ψ1‖0, ‖ψ2‖0}

M1 = sup
|x|≤L

{‖Dξu‖0, ‖Dξv‖0, ‖Dηu‖0, ‖Dηv‖0}

M2 = sup
|x|≤L

{‖Dξψ1‖0, ‖Dξψ2‖0, ‖Dηψ1‖0, ‖Dηψ2‖0}

where ‖‖0 denote the value of a vector at t = 0. We shall use C below for uniform
bound of Rijkl,Γ

i
jk and all their derivatives.
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First we will prove the existence of the solutions on Λk using the method of
iteration, where Λk = {−k ≤ −η ≤ ξ ≤ k}, k = min{L, 1

4CM2
0
}, L is a big number.

It is easily seen that yi(t, x) = zi(t, x) and (2.1) are satisfied by them. Let ui0, v
i
0

be any smooth functions satisfying the initial conditions (3.10) and subjected to the
following restriction: the function yi0, z

i
0 defined by

∂yi0
∂ξ

= ui0,
∂zi0
∂η

= vi0

yi0(0, x) = zi0(0, x) = φi0(x)(3.11)

Suppose that we have constructed yim−1, z
i
m−1, u

i
m−1, v

i
m−1 which satisfy the initial

conditions (3.10). Define yim, zim, uim, vim , ψ1m, ψ2m by the equations
(3.12)
∂uim
∂η

+Γijk(zm−1)u
j
mv

k
m−1 =

1

2
Ri
lkj(zm−1)〈ψkm, ulmeξ ·ψjm〉+

1

2
Ri
lkj(zm−1)〈ψkm, vlmeη ·ψjm〉

(3.13)
∂vim
∂η

+Γijk(ym−1)v
j
mu

k
m−1 =

1

2
Ri
lkj(ym−1)〈ψkm, ulmeξ ·ψjm〉+

1

2
Ri
lkj(ym−1)〈ψkm, vlmeη ·ψjm〉

(3.14)
∂yim
∂ξ

= uim,
∂zim
∂η

= vim

(3.15)
∂ψi2m
∂ξ

+ Γijk(ym−1)u
j
m−1ψ

k
2m = 0

(3.16)
∂ψi1m
∂η

+ Γijk(zm−1)v
j
m−1ψ

k
1m = 0

and the initial conditions (3.10). The equations are linear; thus their solutions are
well defined on Λk. The geometric meaning of (3.15) and (3.16) is that the vector
field ψi2m, ψ

i
1m are parallel along the curves yim−1(ξ, η0), y

i
m−1(ξ0, η) respectively. Since

parallel translation keeps the length of the vector unchanged , we have ‖ψ1m‖ =
‖ψ1m‖0, ‖ψ2m‖ = ‖ψ2m‖0. Now we estimate ‖um‖, ‖vm‖.

‖um(ξ, η)‖2 − ‖um(ξ, η0)‖2 =

∫ η

η0

d

dη
‖um‖2dη

= 2

∫ η

η0

〈Dηum, um〉

So we have

‖um(ξ, η)‖2 ≤ 2

∫ η

η0

|〈Dηum, um〉| + ‖um‖0

≤ (η − η0)
∑

(|Ri
lkj〈ψkm, ulmeξ · ψj〉uim| + |Ri

lkj〈ψkm, vlmeη · ψj〉uim|) + ‖um‖0

≤ C(η − η0)(‖ψm‖2‖um‖2 + ‖ψm‖2‖um‖‖vm‖) +M2

≤ Ck(‖ψm‖2‖um‖2 + ‖ψm‖2‖um‖‖vm‖) +M2

≤ CkM2
0 (‖um‖2 + ‖um‖‖vm‖) +M2

≤ 1

4
(‖um‖2 + ‖um‖‖vm‖) +M2



DIRAC-WAVE MAPS 7

where we have used k ≤ 1
4CM2

0
. Similarly we can get

‖vm(ξ, η)‖2 ≤ 1

4
(‖vm‖2 + ‖um‖‖vm‖) +M2

Combining these two equations we can

‖um‖2 + ‖vm‖2 ≤ 1

4
(‖um‖2 + ‖vm‖2 + 2‖um‖‖vm‖) + 2M2

≤ 1

2
(‖um‖2 + ‖vm‖2) + 2M2

So we have

(3.17) ‖um‖2 + ‖vm‖2 ≤ 4M2.

We claim that the equation (3.17) implies more regularity of um, vm, ψm. In fact
we differentiate the equation (3.15) covariantly, then we can get

(3.18) Dφm−1(η)Dφm−1(η)ψ2m = 0

(3.19) 0 = Dφm−1(ξ)Dφm−1(η)ψ2m = Dφm−1(η)Dφm−1(ξ)ψ2m +R(∂ξφm−1, ∂ηφm−1)ψ2m.

From the equation (3.18) we can know

‖Dφm−1(η)ψ2m‖ = ‖Dφm−1(η)ψ2m‖0 ≤M2

From the equation (3.19) we can get

‖Dφm−1(ξ)ψ2m‖2 =

∫ η

η0

d

dη
‖Dφm−1(ξ)ψ2m‖2 + ‖Dφm−1(ξ)ψ2m‖2

0

≤ 2

∫ η

η0

〈Dφm−1(η)Dφm−1(ξ)ψ2m, Dφm−1(ξ)ψ2m〉 +M2
2

≤ 2kC‖um−1‖‖vm−1‖‖ψ2m‖‖Dφm−1(ξ)ψ2m‖ +M2
2

≤ kC(‖um−1‖2 + ‖vm−1‖2)‖ψ2m‖‖Dφm−1(ξ)ψ2m‖ +M2
2

≤ 4kCM2M0‖Dφm−1(ξ)ψ2m‖ +M2
2

So,

‖Dφm−1(ξ)ψ2m‖ ≤ M2

M0
+M2.

By the same argument we can obtain

‖Dφm−1(ξ)ψ1m‖0 ≤M2

and

‖Dφm−1(η)ψ1m‖ ≤ M2

M0
+M2.

We differentiate the equation (3.13), then

DηDηum =
1

2
Ri
lkj,m(zm−1)v

m
m−1〈ψkm, ulmeξ · ψjm〉

∂

∂yi
+

1

2
Ri
lkj(zm−1)〈∇̃ηψ

k
m, u

l
meξ · ψjm〉

∂

∂yi

+
1

2
Ri
lkj(zm−1)〈ψkm, Dηu

l
meξ · ψjm〉

∂

∂yi
+

1

2
Ri
lkj(zm−1)〈ψkm, ulmeξ · ∇̃ηψ

j
m〉

∂

∂yi

+
1

2
Ri
lkj(zm−1)〈ψkm, ulmeξ · ψjm〉vmm−1Γ

n
mi(zm−1)

∂

∂yn
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plus a similar term with ulm replaced by vlm, eξ replaced by eη in the 〈·, ·〉. Using the
method as above we can estimate

‖Dηum‖2 ≤ 2kC(4M2M2
0 + 4MM1M0(

M2

M0

+M2
1 ) + 4M2

0M
2C)‖Dηum‖

+kCM2
0‖Dηum‖2 + kCM2

0‖Dηum‖‖Dηvm‖ +M2
1

≤ C1‖Dηum‖ +
1

4
(‖Dηum‖2 + ‖Dηum‖‖Dηvm‖) +M2

1

Similarly,

‖Dηvm‖2 ≤ C1‖Dηvm‖ +
1

4
(‖Dηum‖2 + ‖Dηum‖‖Dηvm‖) +M2

1

where C1 = 2(M2 + 4MM1

M0
(M

2

M0
+M2

1 ) +M2C) Therefore we have

‖Dηum‖ + ‖Dηvm‖ ≤ 4C1 + 4M1.

By the same argument we can get more regularity. So we can proof the sequences
{ym}, {zm} and um, vm, ψ1m, ψ2m and the sequences of their partial derivatives con-
verge uniformly on Λk and the limit of um(t, x), vm(t, x), ψ1m(t, x), ψ2m(t, x) is a
smooth solution of the equation (3.5)-(3.9) and the limit of ym(t, x) is a smooth
solution of the equation (2.1). From the proof we can see that the constant k only
depends onM0 and C. Because at any time ‖ψ1‖, ‖ψ2‖ ≤ M0, provided that |x| ≤ L,
then using this procedure successively we can conclude that there exists global so-
lutions of the equation (3.5)-(3.9) This completes the proof of the existence part of
the theorem. The uniqueness is easy.

Let (φ1, ψ1) and (φ2, ψ2) are two solutions with the same data, then φ1 − φ2 and
ψ1 − ψ2 have zero Cauchy data at t = 0. Let φ = φ1 − φ2 and ψ = ψ1 − ψ2, then
they satisfy the following equations,

∂u

∂η
+ Γ(φ1)uv

1 = (Γ(φ2) − Γ(φ1))u2v1 + Γ(φ2)u2(v2 − v1)

+
1

2
(R(φ1) − R(φ2))〈ψ1, u1eξ · ψ1〉 +

1

2
R(φ2)〈(ψ1 − ψ2), u1eξ · ψ1〉

+
1

2
R(φ2)〈ψ2, u1eξ · (ψ1 − ψ2)〉 +

1

2
R(φ2)〈ψ2, (u1 − u2)eξ · ψ2〉

+
1

2
(R(φ1) − R(φ2))〈ψ1, v1eη · ψ1〉 +

1

2
R(φ2)〈(ψ1 − ψ2), v1eη · ψ1〉

+
1

2
R(φ2)〈ψ2, v1eη · (ψ1 − ψ2)〉 +

1

2
R(φ2)〈ψ2, (v1 − v2)eη · ψ1〉

∂v

∂ξ
+ Γ(φ1)vu

1 = (Γ(φ2) − Γ(φ1))v2u1 + Γ(φ2)v2(u2 − u1) + f

f denote the right terms of the last equation excluding the first two terms.

∂ψ2

∂η
+ Γ(φ1)u

1ψ2 = (Γ(φ2) − Γ(φ1))u
1φ2

2 + Γ(φ2)(u
2 − u1)ψ2

2

∂ψ1

∂ξ
+ Γ(φ1)v

1ψ1 = (Γ(φ2) − Γ(φ1))v
1φ2

1 + Γ(φ2)(v
2 − v1)ψ2

1

Frow these equations we can estimate ‖u‖, ‖v‖ and ‖ψ1‖, ‖ψ2‖ as above, then we
can get

(3.20) ‖ψ2‖ ≤ 2kC(‖φ‖‖u1‖‖ψ2
2‖ + ‖u‖‖ψ2

2‖)
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(3.21) ‖ψ1‖ ≤ 2kC(‖φ‖‖uv1‖‖ψ2
1‖ + ‖v‖‖ψ2

1‖)
and
(3.22)
‖u‖+‖v‖ ≤ 2kC(‖u‖+‖v‖)(‖u2‖+‖v2‖)+4kC‖ψ2‖2(‖u‖+‖v‖)+2kC(‖φ‖+‖ψ‖)
If k is sufficiently small, we have

(3.23) ‖u‖ + ‖v‖ ≤ C1(‖φ‖ + ‖ψ‖)
Put the equation (3.20) and (3.21) into the above equation, we can get

‖u‖ + ‖v‖ ≤ C2‖φ‖
From Gronwall’s inequality, we know that φ ≡ 0. Then the equation (3.20) and
(3.21) imply ψ ≡ 0 immediately and we finish the proof. �


