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DIRAC-WAVE MAPS

ABSTRACT. We introduce a functional that couples the nonlinear sigma model
with a spinor field: L = [, [|d¢|?+ (1, JA)]. In two dimensions, it is conformally
invariant. The critical points of this functional are called Dirac-wave maps. We
prove that there exists global solution for the Cauchy data.

1. INTRODUCTION
Let {R", {has}{t,x}} be two dimensional Minkowski and {M™, {g;;},{y'}} be

a compact Riemannian manifold. Pso(,1) — R'! its oriented orthonormal frame
bundle. A Spin-structure is a lift of the structure group SO(1,1) to Spin(1,1), i.e.
there exists a principal Spin-bundle Psyipq,1) — R™! such that there is a bundle
map

Pspm(l,l) I PSO(1,1)

! !

R1+1 R1+1

Let XtR"™! := Pgyina1) X, C be a complex line bundle over R'! associated
to Pspin(1,1)- This is the bundle of positive half-spinors. Its complex conjugate
YR := ¥+ R s called the bundle of negative half-spinors. The spinor bundle
is YR .= YT R @ Y- R

There exists a Clifford multiplication

TR xcS*R™' — $ R
TRlJrl X ZleJrl N ZJrRlJrl

denoted by v ® ¥» — v - 1, which satisfies the Clifford relations
veow-Ytw-v-p = —=2h(v,w)Y,

for all v,w € TR'! and ¢ € SR'L.

On the spinor bundle Y R'™ there is a hermitian metric (-, -) and a connection V
compatible with the hermitian metric. Since SR is trivial, so V is trivial. Let ¢
be a map from R to M. Denote ¢ 'T'M the pull-back bundle of TM by ¢ and
consider the twisted bundle YR @ ¢~'T M. Let D be the Levi-Civita connection
on ¢ 'TM. On twisted bundle ¥ ® ¢~ 'TM there is a metric and connection V
induced from the metrics and the connections on XR'*! and ¢~'T M.

In local coordinates, the section 1 of R ® ¢~'TM can be expressed by
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where 9" is a spinor and {%} is the natural local basis. V can be expressed by
=1 1,5,k=1 Yy
If we write Y’ as column vector with two components 1/ = ( {,wg)T and Ej =
(1, 95)", then
Z¢th o(t,2)) Z%tw t,2)))"

= (@/)1, Pg)"
Therefore we can consider 11, 15 as vectors on ¢ 'T'M, so V can be written as
Vi = (D, Diy)”
Now we define the norm of ¢ and ﬁw by
[0l =t gus(w, 07) = gy Re((8))"0)
= gyRe($y) + gy Re(¥303)

o1 + [l l®
IVYI* =t [IDYa]* + [ Dee®
Define the Dirac operator along the map ¢ by
(1.1)
% 0 j k 0
Do =2 9t ) 556 £ 3 T e (8(t,2)) 55(9(t,2)),
7 1,5,k=1
where e, €5 is the local orthonormal basis of R'™! and @ := Zi:l €q * Ve, is the
usual Dirac operator. The Dirac operator D is formally self-adjoint, i.e.,
(1.2 | wpo= [ mug
R? R?

for all 1, ¢ € T(SR™! @ ¢~'T'M) , the space of smooth section of SR @ ¢~ 1T M
and ¢ or £ has compact support. Set

X = {(6,0) | € C(R", M) and ¢ € N(SR™ @ ¢ 'TM)}.
On X, we consider the following functional

13 260 = [ o0 G~ S 010" Dt

The Euler-Lagrange equations of L are:

(1.4) D(¢) = R(9,v),

(1.5) D=0,
where 0(¢) is the tension field of the map ¢ and R(¢,v) € T'(¢~ T M) defined by

(1.6) Z% www><w»
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Here Rjj; are components of the Riemannian curvature tensor of g. Solutions (¢, %)
to (1.4) and (1.5) are called Dirac-harmonic maps.

It is obvious that there are two types of trivial solutions. One is (¢,0), where ¢
is a wave map, and another is (y, ), where y is a point in M viewed as a constant
map from R — M and 1 is a wave spinor, i.e, i) = 0. The main purpose of
this paper is to prove that there exists nontrival global solution of equation (1.4)
and (1.5). We stated it as following:

Theorem 1. Suppose (M, g) is compact Riemmannian manifold, then the equa-
tion (1.4) and (1.5) have unique global smooth solutions with given initial smooth
conditions,

¢(07 l’) = ¢07 (bt(oa .I') = (bla w(oa .I') = wO'
2. DIRAC-WAVE MAPS

In this section, we establish some basic facts for the functional L and equations
(1.4)—(1.5).

Proposition 2.1. The Fuler-Lagrange equations for L are

(2.1) D(¢) = R(¢,¥)
(22) -
where O(¢) is the tension field of the map ¢ and R is defined by (1.6).

Proof. Equation (2.2) is easy to derive. Consider a family of ¢, with dis/ds = n at
s = 0 and 7 has compact support, fix ¢. Since [P is formally self-adjoint for such 7,
we have

o = [ o)+

=2 [

Hence, we get (2.2).

Next, we consider a variation {¢,} of ¢ such that d¢s/ds = £ at s = 0 and £ has
compact support, fix 1. We choose {e,} as a local orthonormal basis on R such
that [eq, 0s] =0, V., es = 0 at a considered point.

(2.3)
dL(¢s) 9 0¢;, 09 09}, 04 9
- la.. s 77 ZPS TS| — —o:=1+11I.
2= [ Sl (G R = G ot [ St Pl = T+

It is easy to check that

(2.4) I= —2/ O () gim&™.
R2
Now we compute II. First we compute the variation of /). We have
d
— = eq Vo, Ve ¥
ds

= €q- Veawi ® Vasayi + eq - W & vas veaayi
= Ca- Veawi @ Vo, 0y + €q - wl ® [Veavf)sayi + R(0s, ea)ayi]
= €q- Vea (W & Vasayi) + éq - W & RN(d¢(aS)7 dgb(ea))ayi'
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Hence, we have

d
o= [ 2Py

(¥, lD(W ® vasayi)>|s:0 + (¥, €q - @Z)Z ® RN(d¢( i), do(ea))0, ) s=0

2

2

(P, 0" @ Vi, 0y,)|s=0 + (1, €a - V' @ RN (d)(0), dd(ea))Dy,)

s=0
2

(¥, ea - ¥' @ R (dp(Dy), dd(ea))0y,)|s=o0

2

<w7 €a wl ® RN(gm Ym (bflayl)ayJ

2

(¥, ea- V' @ €O, R],,0,,)

2

Wfi, d(bl : wj>leij§m7

I
— Ty

where we have used (2.2).Consequently, we have

dL(¢s . A .
2o = [ 2036 + By, o 01"

and hence (2.1). O

3. GLOBAL EXISTENCE

In this section we will prove the main theorem. Before we prove the theorem, let
us note the following facts. Consider R with the Euclidean metric dt? — dx?. Let
e = % and ey = a% be the standard orthonormal frame. A spinor field is simply a
map ¥ : R — Ay = C?, and e; and ey acting on spinor fields can be identified by
multiplication with matrices

0 —1 0 —1
=11 o) 27 \=1 o)

If ¥ := (%) : R — C? is a spinor field, then the Dirac operator is

V2
81/11 677[)2
(0 —1 o | ag
m=(1 )a% () | 2| o )
ox 87)
where § = 42 n = =2 is characteristic coordinates.

Using this fact we can write

(B Tk L (—Ded
W_J<%ﬁfﬂwwm -2(oi)
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Therefore the equation (2.2) is equivalent the following systems of equations of
first order
(3.1) Dt = 0
(32) Dyy =0

We also write the equation (2.1) in the simple form

(3.3) Dye =0

or, equivalently,

(3.4) Degy =0

where ¢, = g—? are the tangent vectors of the {-curve which are the image of the

characteristics 7 =const. in the R'™, and D, is the symbol for covariant derivatives
of the n—curves. ¢, and ) are defined similarly.
So we transform the original problem to the following systems:

35) G Tt = LRl ) + R ()0 ey )
B6) T D)ot = SRl e 1) + Ry () (0 ey )
(3.7) aayg " gj; — i
(339 O T =0
(3.9) (rg—‘f} + T ()07 =0

together with the initial conditions
y'(0,2) = 2'(0,2) = gy (x), ¥'(0,2) = ¢y

(3.10) u'(0,2) = Ekbgi )—I—gbl( ), v'(0,z) = — a¢80( )—Hbz( )

In order to prove the theorem it is sufficient to prove that the equations (3.5)-(3.9)
have global solutions, provided that the initial data satisfy (3.10). Now we turn to
the proof of the theorem.

Proof. Define
M = sup {[[ullo, [|v]lo}, Mo = sup {[[¢n]lo, [[¢2llo}
|lz|<L |lz|<L

M, = |ST1<PL{||D§U||0a [ Devllo; 1 Dyullo, [[Dyvllo}

My = sup {|| Detp1l|o, || Detballo, | Dythrllo, [[Dntallo}

lz|<L
where ||||o denote the value of a vector at ¢ = 0. We shall use C below for uniform
bound of R;ji, I’ 3k and all their derivatives.



6 DIRAC-WAVE MAPS

First we will prove the existence of the solutions on A, using the method of
iteration, where A, = {—k < —n <& <k}, k = min{L, ;5-= }, L is a big number.

It is easily seen that y'(t,x) = 2'(¢,z) and (2.1) are satisfied by them. Let wuf, v{
be any smooth functions satisfying the initial conditions (3.10) and subjected to the
following restriction: the function ¥, 2 defined by

ayi i Dz i
8y, G2 =)
(3.11) y6(0,2) = 2(0,2) = ¢p(x)

Suppose that we have constructed ym . 2t ul v!._, which satisfy the initial

m—15 “m—1

conditions (3.10). Define y’,, 2%, u’,, v}, , ¥1m, Yam by the equations
(3.12)
uy, ik 1 k j k j
877 +ij;(zm 1)umvm—1 = ilej(zm—1)< m? mef 77Z) >+ le;j(zm 1)( U mEn’ ¢ >
(3.13)
g ; ; . 1 ;
877 _'_F]k(ym 1)1)3”’&]:”71 = _le](ym 1)<wm7 mei'wgn>+§lej(ym*1><wm7 meﬂ w] >
oy’ : 0zt 4
314 m — 2 m — 2
( ) aé- um’ 877 Um
o, ;
(3.15) 82 +F]k(ym 1) in—lwé;m =0
awlm i ]
(3.16) 8717 + Tl (Zm1 )0y 0 = 0

and the initial conditions (3.10). The equations are linear; thus their solutions are
well defined on Aj. The geometric meaning of (3.15) and (3.16) is that the vector
field ¢, i, are parallel along the curves v, (&, m0), 4% (€0, n) Tespectively. Since
parallel translation keeps the length of the vector unchanged , we have ||ty || =

[1mllo; 1¥2mll = ltb2mllo- Now we estimate [[um]], [lvm]|

" d
(&I = (&) P = [ <Ll
no @71

n
= 2/ (D, W)

70

So we have
n
fun(€mIP <2 [ Dyt )|+
7o
— (77_770>Z(‘le;j< m) m€§ w]> m‘_'_‘lej( mo meﬂ W) m|)+”um”0
< C(n = n0)(1mlP[tmll* + 1100w || [t | |0 ]]) + M
< Ck([YmlPlumll® + 0w [t | |0 ]]) + M
< CEMG ([1uml? + llumllom]]) + M?
1
< Z(HUmHzﬂLIlumllllvmll)+M2
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1

TR Similarly we can get

where we have used k£ <

1
[om (€I < Z(vmll” + luml [[om]) + M2

Combining these two equations we can
1
et * + loml* < umll® + lloml* + 2l [ [[om]l) + 2042

1
< Sl + llom?) + 202

So we have
(3.17) [t [|* + [[om]? < 407,

We claim that the equation (3.17) implies more regularity of w,,, vy, ¥n,. In fact
we differentiate the equation (3.15) covariantly, then we can get

(3.18) D, () Dpys iy ¥2m =0

(3'19) 0= D¢m71(§)D¢mf1(n)w2m - D¢m71(n)D¢mf1(§)w2m + R(a§¢m—17 angbm—l)me'

From the equation (3.18) we can know

1D,y V2mll = 1 Dguy (yV2mllo < My

From the equation (3.19) we can get

Td
1Davsiobnl’ = [ 2o0Pssiotomll + Do st
bl

0

IN

n
2 / (D, (1) Dpps(&)V2m> Doy () V2m) + M3

0

2kC || w1 || |vm—1 112 || D16y Y2l + M3
EC (Jtm—11I” + vm—1 ") [¢2m 1l Do 6)2m| + M3
AkCM? Mo|| Dy, (¢)Vam || + M3

IA NN

So,

2

M
| D1 (&) V2ml| < A 1+ M.

By the same argument we can obtain

[ D1 (e)U1mllo < Mo

and
2

M
HD¢m71(n)w1mH < ﬁo + Ms.

We differentiate the equation (3.13), then

i m 0 1 i V. K

Dy Dy, = 2 lk:j,m(zm—l)vm—1< fnauinef : M")&yi + ilej(Zm—lxvnwfmulmeE : Wn>ayi
1 i k l j 9 1 i ko1 vanri 9
+§lej(zm—l)<¢m7 Dnumef ’ wm> ayz + 5le](zm_1)< mo> Um€¢ Vnd)m) ayl

0

1 7 j m n
+§lej(zm—1)<¢fn7 uinef ) anmqrm(zm—l)a—w
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plus a similar term with v/, replaced by v!,, e¢ replaced by e, in the (-,-). Using the
method as above we can estimate

M2
| Dyum|? < 2kC(AM>MG + 4]\/[]\/[1]\/[0(% + M}) + 4MGM?C) || Dyt |
+kCM02||Dnum||2 + kCMgHDnumH | Dyvp || + ]\412
1
< Gl Dyl + 21 Dytaall® + | Dytaa [[| Do) + M7
Similarly,
1
1Dyom|1? < Cul| Dy || + Z(HDnumHQ + [ Dy [[|| Dyo ) + M

where C; = 2(M? + 4%(% + M?) + M?C') Therefore we have
| D[ + | Dyom || < 4C + 4M,.

By the same argument we can get more regularity. So we can proof the sequences
{Ym}, {zm} and wpm, Vpm, V1m, Yo, and the sequences of their partial derivatives con-
verge uniformly on Ay and the limit of w,,(t, ), v (t, ©), Y1 (t, x), Yo (t, ) is a
smooth solution of the equation (3.5)-(3.9) and the limit of y,,(¢,z) is a smooth
solution of the equation (2.1). From the proof we can see that the constant k£ only
depends on M, and C. Because at any time |[1)1]|, ||12]| < My, provided that |z| < L,
then using this procedure successively we can conclude that there exists global so-
lutions of the equation (3.5)-(3.9) This completes the proof of the existence part of
the theorem. The uniqueness is easy.

Let (¢',91) and (¢?,1?) are two solutions with the same data, then ¢' — ¢* and
' — 9)? have zero Cauchy data at t = 0. Let ¢ = ¢' — ¢? and ¢ = ' — 92, then
they satisfy the following equations,

GoTogu = (D) = T(Hte! + T = o)
R (R(6Y) — RPN wlec ') + SR — o), e - 4)
P RO uleg- (81 = 92) + SR (0! — weg - 07)
(RO = RO vey - 07) + SREHG — %), v'ey - o)
PSR ey (0 = 92) + SR (0 = ey ')
T +T@ut = (D) — Tl + T2 — )+ f
£ denote the right terms of the last equation excluding the first two terms.
B+ Dlonute = (0(6) ~ D@n))uldd + Do) )3
e D000 = ([(6a) = T(G))'63 + T0a) 02 — o)

Frow these equations we can estimate ||ul|, ||v]| and ||11]|, [[¢2]] as above, then we
can get

(3.20) ol < 2kC(ll@ll I 131 + Nlullll3)
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(3.21) [l < 2kC (g IHuva 1551 + ol

and
(3.22)
[l + llvl| < 2kC([[ull+ ([0 ([ + [[0*]) + 4C N2 P ([[ull + [|o]]) +2kC (o]l + [|22)

If k is sufficiently small, we have

(3.23) [ull + [[oll < Cu(lloll + lI41])

Put the equation (3.20) and (3.21) into the above equation, we can get
[ull + o]l < Cafloll

From Gronwall’s inequality, we know that ¢ = 0. Then the equation (3.20) and
(3.21) imply ¥ = 0 immediately and we finish the proof. OJ



