Max-Planck-Institut für Mathematik
 in den Naturwissenschaften Leipzig

Dirac-Wave Maps
by
Xiaoli Han and Jürgen Jost

DIRAC-WAVE MAPS

Abstract

We introduce a functional that couples the nonlinear sigma model with a spinor field: $L=\int_{R^{1+1}}\left[|d \phi|^{2}+\langle\psi, \not p \psi\rangle\right]$. In two dimensions, it is conformally invariant. The critical points of this functional are called Dirac-wave maps. We prove that there exists global solution for the Cauchy data.

1. Introduction

Let $\left\{R^{1+1},\left\{h_{\alpha \beta}\right\}\{t, x\}\right\}$ be two dimensional Minkowski and $\left\{M^{n},\left\{g_{i j}\right\},\left\{y^{i}\right\}\right\}$ be a compact Riemannian manifold. $P_{S O(1,1)} \rightarrow R^{1+1}$ its oriented orthonormal frame bundle. A Spin-structure is a lift of the structure group $\operatorname{SO}(1,1)$ to $\operatorname{Spin}(1,1)$, i.e. there exists a principal Spin-bundle $P_{S p i n(1,1)} \rightarrow R^{1+1}$ such that there is a bundle map

$$
\begin{array}{ccc}
P_{S p i n(1,1)} & \longrightarrow & P_{S O(1,1)} \\
\downarrow & & \downarrow \\
R^{1+1} & \longrightarrow & R^{1+1}
\end{array}
$$

Let $\Sigma^{+} R^{1+1}:=P_{\operatorname{Spin}(1,1)} \times{ }_{\rho} \mathcal{C}$ be a complex line bundle over R^{1+1} associated to $P_{S p i n(1,1)}$. This is the bundle of positive half-spinors. Its complex conjugate $\Sigma^{-} R^{1+1}:=\overline{\Sigma^{+} R^{1+1}}$ is called the bundle of negative half-spinors. The spinor bundle is $\Sigma R^{1+1}:=\Sigma^{+} R^{1+1} \oplus \Sigma^{-} R^{1+1}$.

There exists a Clifford multiplication

$$
\begin{aligned}
& T R^{1+1} \times_{\mathbb{C}} \Sigma^{+} R^{1+1} \rightarrow \Sigma^{-} R^{1+1} \\
& T R^{1+1} \times_{\mathbb{C}} \Sigma^{-} R^{1+1} \rightarrow \Sigma^{+} R^{1+1}
\end{aligned}
$$

denoted by $v \otimes \psi \rightarrow v \cdot \psi$, which satisfies the Clifford relations

$$
v \cdot w \cdot \psi+w \cdot v \cdot \psi=-2 h(v, w) \psi
$$

for all $v, w \in T R^{1+1}$ and $\psi \in \Sigma R^{1+1}$.
On the spinor bundle ΣR^{1+1} there is a hermitian metric $\langle\cdot, \cdot\rangle$ and a connection ∇ compatible with the hermitian metric. Since ΣR^{1+1} is trivial, so ∇ is trivial. Let ϕ be a map from R^{1+1} to M. Denote $\phi^{-1} T M$ the pull-back bundle of $T M$ by ϕ and consider the twisted bundle $\Sigma R^{1+1} \otimes \phi^{-1} T M$. Let D be the Levi-Civita connection on $\phi^{-1} T M$. On twisted bundle $\Sigma \otimes \phi^{-1} T M$ there is a metric and connection $\widetilde{\nabla}$ induced from the metrics and the connections on ΣR^{1+1} and $\phi^{-1} T M$.

In local coordinates, the section ψ of $\Sigma R^{1+1} \otimes \phi^{-1} T M$ can be expressed by

$$
\psi(t, x)=\sum_{j=1}^{n} \psi^{j}(t, x) \frac{\partial}{\partial y^{j}}(\phi(t, x)),
$$

where ψ^{i} is a spinor and $\left\{\frac{\partial}{\partial y^{j}}\right\}$ is the natural local basis. $\widetilde{\nabla}$ can be expressed by

$$
\widetilde{\nabla} \psi=\sum_{i=1}^{n} \nabla \psi^{i}(t, x) \frac{\partial}{\partial y^{j}}(\phi(t, x))+\sum_{i, j, k=1}^{n} \Gamma_{j k}^{i} \partial \phi^{j}(t, x) \psi^{k}(t, x) \frac{\partial}{\partial y^{i}}(\phi(t, x)) .
$$

If we write ψ^{j} as column vector with two components $\psi^{j}=\left(\psi_{1}^{j}, \psi_{2}^{j}\right)^{T}$ and $\bar{\psi}^{j}=$ $\left(\bar{\psi}_{1}^{j}, \bar{\psi}_{2}^{j}\right)^{T}$, then

$$
\begin{aligned}
\psi(t, x) & =\left(\sum_{j=1}^{n} \psi_{1}^{j}(t, x) \frac{\partial}{\partial y^{j}}(\phi(t, x)), \sum_{j=1}^{n} \psi_{2}^{j}(t, x) \frac{\partial}{\partial y^{j}}(\phi(t, x))\right)^{T} \\
& =:\left(\psi_{1}, \psi_{2}\right)^{T}
\end{aligned}
$$

Therefore we can consider ψ_{1}, ψ_{2} as vectors on $\phi^{-1} T M$, so $\widetilde{\nabla}$ can be written as

$$
\widetilde{\nabla} \psi=\left(D \psi_{1}, D \psi_{2}\right)^{T}
$$

Now we define the norm of ψ and $\widetilde{\nabla} \psi$ by

$$
\begin{aligned}
\|\psi\|^{2} & =: g_{i j}\left(\psi^{i}, \psi^{j}\right)=g_{i j} \operatorname{Re}\left(\left(\bar{\psi}^{i}\right)^{T} \psi^{j}\right) \\
& =g_{i j} \operatorname{Re}\left(\bar{\psi}_{1}^{i} \psi_{1}^{j}\right)+g_{i j} \operatorname{Re}\left(\bar{\psi}_{2}^{i} \psi_{2}^{j}\right) \\
& =\left\|\psi_{1}\right\|^{2}+\left\|\psi_{2}\right\|^{2} \\
\|\widetilde{\nabla} \psi\|^{2} & =:\left\|D \psi_{1}\right\|^{2}+\left\|D \psi_{2}\right\|^{2}
\end{aligned}
$$

Define the Dirac operator along the map ϕ by

$$
\begin{equation*}
\not D \psi=\sum_{i} \not \partial \psi^{i}(t, x) \frac{\partial}{\partial y^{i}}(\phi(t, x))+\sum_{i, j, k=1}^{n} \Gamma_{j k}^{i} \partial_{e_{\alpha}} \phi^{j}(t, x) e_{\alpha} \cdot \psi^{k}(\phi(t, x)) \frac{\partial}{\partial y^{i}}(\phi(t, x)), \tag{1.1}
\end{equation*}
$$

where e_{1}, e_{2} is the local orthonormal basis of R^{1+1} and $\not \partial:=\sum_{\alpha=1}^{2} e_{\alpha} \cdot \nabla_{e_{\alpha}}$ is the usual Dirac operator. The Dirac operator $\not D$ is formally self-adjoint, i.e.,

$$
\begin{equation*}
\int_{R^{2}}\langle\psi, \not D \xi\rangle=\int_{R^{2}}\langle D p \psi, \xi\rangle, \tag{1.2}
\end{equation*}
$$

for all $\psi, \xi \in \Gamma\left(\Sigma R^{1+1} \otimes \phi^{-1} T M\right)$, the space of smooth section of $\Sigma R^{1+1} \otimes \phi^{-1} T M$ and ψ or ξ has compact support. Set

$$
\mathcal{X}:=\left\{(\phi, \psi) \mid \phi \in C^{\infty}\left(R^{1+1}, M\right) \text { and } \psi \in \Gamma\left(\Sigma R^{1+1} \otimes \phi^{-1} T M\right)\right\} .
$$

On \mathcal{X}, we consider the following functional

$$
\begin{equation*}
L(\phi, \psi)=\int_{R^{2}}\left[g_{i j}(\phi)\left(\frac{\partial \phi^{i}}{\partial t} \frac{\partial \phi^{j}}{\partial t}-\frac{\partial \phi^{i}}{\partial x} \frac{\partial \phi^{j}}{\partial x}\right)+g_{i j}(\phi)\left\langle\psi^{i}, \not D \psi^{j}\right\rangle\right] d t d x, \tag{1.3}
\end{equation*}
$$

The Euler-Lagrange equations of L are:

$$
\begin{gather*}
\square(\phi)=\mathcal{R}(\phi, \psi), \tag{1.4}\\
\not D \psi=0, \tag{1.5}
\end{gather*}
$$

where $\square(\phi)$ is the tension field of the map ϕ and $\mathcal{R}(\phi, \psi) \in \Gamma\left(\phi^{-1} T M\right)$ defined by

$$
\begin{equation*}
\mathcal{R}(\phi, \psi)(x)=\frac{1}{2} \sum R_{l i j}^{m}(\phi(x))\left\langle\psi^{i}, d \phi^{l} \cdot \psi^{j}\right\rangle \frac{\partial}{\partial y^{m}}(\phi(x)) . \tag{1.6}
\end{equation*}
$$

Here $R_{l i j}^{m}$ are components of the Riemannian curvature tensor of g. Solutions (ϕ, ψ) to (1.4) and (1.5) are called Dirac-harmonic maps.
It is obvious that there are two types of trivial solutions. One is $(\phi, 0)$, where ϕ is a wave map, and another is (y, ψ), where y is a point in M viewed as a constant map from $R^{1+1} \rightarrow M$ and ψ is a wave spinor, i.e, $D \phi \psi=0$. The main purpose of this paper is to prove that there exists nontrival global solution of equation (1.4) and (1.5). We stated it as following:

Theorem 1. Suppose (M, g) is compact Riemmannian manifold, then the equation (1.4) and (1.5) have unique global smooth solutions with given initial smooth conditions,

$$
\phi(0, x)=\phi_{0}, \quad \phi_{t}(0, x)=\phi_{1}, \psi(0, x)=\psi_{0} .
$$

2. Dirac-Wave Maps

In this section, we establish some basic facts for the functional L and equations (1.4)-(1.5).

Proposition 2.1. The Euler-Lagrange equations for L are

$$
\begin{align*}
\square(\phi) & =\mathcal{R}(\phi, \psi) \tag{2.1}\\
D D \psi & =0 \tag{2.2}
\end{align*}
$$

where $\square(\phi)$ is the tension field of the map ϕ and \mathcal{R} is defined by (1.6).
Proof. Equation (2.2) is easy to derive. Consider a family of ψ_{s} with $d \psi_{s} / d s=\eta$ at $s=0$ and η has compact support, fix ϕ. Since $D D$ is formally self-adjoint for such η, we have

$$
\begin{aligned}
\left.\frac{d L}{d s}\right|_{s=0} & =\int_{R^{2}}\langle\eta, D D \psi\rangle+\langle\psi, D D \eta\rangle \\
& =2 \int_{R^{2}}\langle\eta, D D \psi\rangle
\end{aligned}
$$

Hence, we get (2.2).
Next, we consider a variation $\left\{\phi_{s}\right\}$ of ϕ such that $d \phi_{s} / d s=\xi$ at $s=0$ and ξ has compact support, fix ψ. We choose $\left\{e_{\alpha}\right\}$ as a local orthonormal basis on R^{1+1} such that $\left[e_{\alpha}, \partial_{s}\right]=0, \nabla_{e_{\alpha}} e_{\beta}=0$ at a considered point.
$\left.\frac{d L\left(\phi_{s}\right)}{d s}\right|_{s=0}=\left.\int_{R^{2}} \frac{\partial}{\partial s}\left[g_{i j}\left(\phi_{s}\right)\left(\frac{\partial \phi_{s}^{i}}{\partial t} \frac{\partial \phi_{s}^{j}}{\partial t}-\frac{\partial \phi_{s}^{i}}{\partial x} \frac{\partial \phi_{s}^{j}}{\partial x}\right)\right]\right|_{s=0}+\left.\int_{R^{2}} \frac{\partial}{\partial s}\langle\psi, D D \psi\rangle\right|_{s=0}:=I+I I$.
It is easy to check that

$$
\begin{equation*}
I=-2 \int_{R^{2}} \square^{i}(\phi) g_{i m} \xi^{m} . \tag{2.4}
\end{equation*}
$$

Now we compute II. First we compute the variation of $\lfloor p \psi$. We have

$$
\begin{aligned}
\frac{d}{d s} \not D \psi & =e_{\alpha} \cdot \nabla_{\partial_{s}} \nabla_{e_{\alpha}} \psi \\
& =e_{\alpha} \cdot \nabla_{e_{\alpha}} \psi^{i} \otimes \nabla_{\partial_{s}} \partial_{y_{i}}+e_{\alpha} \cdot \psi^{i} \otimes \nabla_{\partial_{s}} \nabla_{e_{\alpha}} \partial_{y_{i}} \\
& =e_{\alpha} \cdot \nabla_{e_{\alpha}} \psi^{i} \otimes \nabla_{\partial_{s}} \partial_{y_{i}}+e_{\alpha} \cdot \psi^{i} \otimes\left[\nabla_{e_{\alpha}} \nabla_{\partial_{s}} \partial_{y_{i}}+R\left(\partial_{s}, e_{\alpha}\right) \partial_{y_{i}}\right] \\
& =e_{\alpha} \cdot \nabla_{e_{\alpha}}\left(\psi^{i} \otimes \nabla_{\partial_{s}} \partial_{y_{i}}\right)+e_{\alpha} \cdot \psi^{i} \otimes R^{N}\left(d \phi\left(\partial_{s}\right), d \phi\left(e_{\alpha}\right)\right) \partial_{y_{i}}
\end{aligned}
$$

Hence, we have

$$
\begin{aligned}
I I & =\left.\int_{R^{2}}\left\langle\psi, \frac{d}{d s} \not D \psi\right\rangle\right|_{s=0} \\
& =\left.\int_{R^{2}}\left\langle\psi, \not D\left(\psi^{i} \otimes \nabla_{\partial_{s}} \partial_{y_{i}}\right)\right\rangle\right|_{s=0}+\left.\left\langle\psi, e_{\alpha} \cdot \psi^{i} \otimes R^{N}\left(d \phi\left(\partial_{s}\right), d \phi\left(e_{\alpha}\right)\right) \partial_{y_{i}}\right\rangle\right|_{s=0} \\
& =\left.\int_{R^{2}}\left\langle D p \psi, \psi^{i} \otimes \nabla_{\partial_{s}} \partial_{y_{i}}\right\rangle\right|_{s=0}+\left.\left\langle\psi, e_{\alpha} \cdot \psi^{i} \otimes R^{N}\left(d \phi\left(\partial_{s}\right), d \phi\left(e_{\alpha}\right)\right) \partial_{y_{i}}\right\rangle\right|_{s=0} \\
& =\left.\int_{R^{2}}\left\langle\psi, e_{\alpha} \cdot \psi^{i} \otimes R^{N}\left(d \phi\left(\partial_{s}\right), d \phi\left(e_{\alpha}\right)\right) \partial_{y_{i}}\right\rangle\right|_{s=0} \\
& =\int_{R^{2}}\left\langle\psi, e_{\alpha} \cdot \psi^{i} \otimes R^{N}\left(\xi^{m} \partial_{y_{m}}, \phi_{\alpha}^{l} \partial_{y_{l}}\right) \partial_{y_{i}}\right\rangle \\
& =\int_{R^{2}}\left\langle\psi, e_{\alpha} \cdot \psi^{i} \otimes \xi^{m} \phi_{\alpha}^{l} R_{i m l}^{j} \partial_{y_{j}}\right\rangle \\
& =\int_{M}\left\langle\psi^{i}, d \phi^{l} \cdot \psi^{j}\right\rangle R_{m l i j} \xi^{m},
\end{aligned}
$$

where we have used (2.2).Consequently, we have

$$
\left.\frac{d L\left(\phi_{s}\right)}{d s}\right|_{s=0}=\int_{R^{2}}\left[-2 g_{m i} \square^{i}(\phi)+R_{m l i j}\left\langle\psi^{i}, d \phi^{l} \cdot \psi^{j}\right\rangle\right] \xi^{m},
$$

and hence (2.1).

3. Global Existence

In this section we will prove the main theorem. Before we prove the theorem, let us note the following facts. Consider \mathbb{R}^{1+1} with the Euclidean metric $d t^{2}-d x^{2}$. Let $e_{1}=\frac{\partial}{\partial t}$ and $e_{2}=\frac{\partial}{\partial x}$ be the standard orthonormal frame. A spinor field is simply a map $\Psi: \mathbb{R}^{1+1} \rightarrow \Delta_{2}=\mathbb{C}^{2}$, and e_{1} and e_{2} acting on spinor fields can be identified by multiplication with matrices

$$
e_{1}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

If $\Psi:=\binom{\psi_{1}}{\psi_{2}}: \mathbb{R}^{1+1} \rightarrow \mathbb{C}^{2}$ is a spinor field, then the Dirac operator is

$$
\not \partial \Psi=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{\frac{\partial \psi_{1}}{\partial t}}{\frac{\partial \psi_{2}}{\partial t}}+\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)\binom{\frac{\partial \psi_{1}}{\partial x}}{\frac{\partial \psi_{2}}{\partial x}}=2\binom{-\frac{\partial \psi_{2}}{\partial \xi}}{\frac{\partial \psi_{1}}{\partial \eta}}
$$

where $\xi=\frac{t+x}{2}, \eta=\frac{t-x}{2}$ is characteristic coordinates.
Using this fact we can write

$$
D D \psi^{i}=2\binom{-\frac{\partial \psi_{2}^{i}}{\partial \xi}-\Gamma_{j k}^{i}(\phi) \frac{\partial \phi^{j}}{\partial \xi} \psi_{2}^{k}}{\frac{\partial \psi_{1}^{i}}{\partial \eta}+\Gamma_{j k}^{i}(\phi) \frac{\partial \phi^{j}}{\partial \eta} \psi_{1}^{k}}=2\binom{-D_{\xi} \psi_{2}^{i}}{D_{\eta} \psi_{1}^{i}}
$$

Therefore the equation (2.2) is equivalent the following systems of equations of first order

$$
\begin{align*}
D_{\xi} \psi_{2}^{i} & =0 \tag{3.1}\\
D_{\eta} \psi_{1}^{i} & =0 \tag{3.2}
\end{align*}
$$

We also write the equation (2.1) in the simple form

$$
\begin{equation*}
D_{\eta} \phi_{\xi}=0 \tag{3.3}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
D_{\xi} \phi_{\eta}=0 \tag{3.4}
\end{equation*}
$$

where $\phi_{\xi}=\frac{\partial \phi}{\partial \xi}$ are the tangent vectors of the ξ-curve which are the image of the characteristics $\eta=$ const. in the R^{1+1}, and D_{η} is the symbol for covariant derivatives of the η-curves. ϕ_{η} and D_{ξ} are defined similarly.

So we transform the original problem to the following systems:

$$
\begin{gather*}
\frac{\partial u^{i}}{\partial \eta}+\Gamma_{j k}^{i}(z) u^{j} v^{k}=\frac{1}{2} R_{l k j}^{i}(z)\left\langle\psi^{k}, u^{l} e_{\xi} \cdot \psi^{j}\right\rangle+\frac{1}{2} R_{l k j}^{i}(z)\left\langle\psi^{k}, v^{l} e_{\eta} \cdot \psi^{j}\right\rangle \tag{3.5}\\
\frac{\partial v^{i}}{\partial \xi}+\Gamma_{j k}^{i}(y) v^{j} u^{k}= \tag{3.6}\\
\frac{1}{2} R_{l k j}^{i}(y)\left\langle\psi^{k}, u^{l} e_{\xi} \cdot \psi^{j}\right\rangle+\frac{1}{2} R_{l k j}^{i}(y)\left\langle\psi^{k}, v^{l} e_{\eta} \cdot \psi^{j}\right\rangle \tag{3.7}\\
\frac{\partial y^{i}}{\partial \xi}=u^{i}, \quad \frac{\partial z^{i}}{\partial \eta}=v^{i}
\end{gather*}
$$

$$
\begin{equation*}
\frac{\partial \psi_{2}^{i}}{\partial \xi}+\Gamma_{j k}^{i}(y) u^{j} \psi_{2}^{k}=0 \tag{3.8}
\end{equation*}
$$

$$
\frac{\partial \psi_{1}^{i}}{\partial \eta}+\Gamma_{j k}^{i}(z) v^{j} \psi_{1}^{k}=0
$$

together with the initial conditions

$$
\begin{array}{r}
y^{i}(0, x)=z^{i}(0, x)=\phi_{0}^{i}(x), \quad \psi^{i}(0, x)=\psi_{0}^{i} \\
u^{i}(0, x)=\frac{\partial \phi_{0}^{i}(x)}{\partial x}+\phi_{1}^{i}(x), \quad v^{i}(0, x)=-\frac{\partial \phi_{0}^{i}(x)}{\partial x}+\phi_{1}^{i}(x) \tag{3.10}
\end{array}
$$

In order to prove the theorem it is sufficient to prove that the equations (3.5)-(3.9) have global solutions, provided that the initial data satisfy (3.10). Now we turn to the proof of the theorem.

Proof. Define

$$
\begin{gathered}
M=\sup _{|x| \leq L}\left\{\|u\|_{0},\|v\|_{0}\right\}, \quad M_{0}=\sup _{|x| \leq L}\left\{\left\|\psi_{1}\right\|_{0},\left\|\psi_{2}\right\|_{0}\right\} \\
M_{1}=\sup _{|x| \leq L}\left\{\left\|D_{\xi} u\right\|_{0},\left\|D_{\xi} v\right\|_{0},\left\|D_{\eta} u\right\|_{0},\left\|D_{\eta} v\right\|_{0}\right\} \\
M_{2}=\sup _{|x| \leq L}\left\{\left\|D_{\xi} \psi_{1}\right\|_{0},\left\|D_{\xi} \psi_{2}\right\|_{0},\left\|D_{\eta} \psi_{1}\right\|_{0},\left\|D_{\eta} \psi_{2}\right\|_{0}\right\}
\end{gathered}
$$

where $\left\|\left\|\|_{0}\right.\right.$ denote the value of a vector at $t=0$. We shall use C below for uniform bound of $R_{i j k l}, \Gamma_{j k}^{i}$ and all their derivatives.

First we will prove the existence of the solutions on Λ_{k} using the method of iteration, where $\Lambda_{k}=\{-k \leq-\eta \leq \xi \leq k\}, k=\min \left\{L, \frac{1}{4 C M_{0}^{2}}\right\}$, L is a big number.

It is easily seen that $y^{i}(t, x)=z^{i}(t, x)$ and (2.1) are satisfied by them. Let u_{0}^{i}, v_{0}^{i} be any smooth functions satisfying the initial conditions (3.10) and subjected to the following restriction: the function y_{0}^{i}, z_{0}^{i} defined by

$$
\begin{array}{r}
\frac{\partial y_{0}^{i}}{\partial \xi}=u_{0}^{i}, \frac{\partial z_{0}^{i}}{\partial \eta}=v_{0}^{i} \\
y_{0}^{i}(0, x)=z_{0}^{i}(0, x)=\phi_{0}^{i}(x) \tag{3.11}
\end{array}
$$

Suppose that we have constructed $y_{m-1}^{i}, z_{m-1}^{i}, u_{m-1}^{i}, v_{m-1}^{i}$ which satisfy the initial conditions (3.10). Define $y_{m}^{i}, z_{m}^{i}, u_{m}^{i}, v_{m}^{i}, \psi_{1 m}, \psi_{2 m}$ by the equations
$\frac{\partial u_{m}^{i}}{\partial \eta}+\Gamma_{j k}^{i}\left(z_{m-1}\right) u_{m}^{j} v_{m-1}^{k}=\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle+\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\psi_{m}^{k}, v_{m}^{l} e_{\eta} \cdot \psi_{m}^{j}\right\rangle$
$\frac{\partial v_{m}^{i}}{\partial \eta}+\Gamma_{j k}^{i}\left(y_{m-1}\right) v_{m}^{j} u_{m-1}^{k}=\frac{1}{2} R_{l k j}^{i}\left(y_{m-1}\right)\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle+\frac{1}{2} R_{l k j}^{i}\left(y_{m-1}\right)\left\langle\psi_{m}^{k}, v_{m}^{l} e_{\eta} \cdot \psi_{m}^{j}\right\rangle$

$$
\begin{align*}
& \frac{\partial \psi_{2 m}^{i}}{\partial \xi}+\Gamma_{j k}^{i}\left(y_{m-1}\right) u_{m-1}^{j} \psi_{2 m}^{k}=0 \tag{3.15}\\
& \frac{\partial \psi_{1 m}^{i}}{\partial \eta}+\Gamma_{j k}^{i}\left(z_{m-1}\right) v_{m-1}^{j} \psi_{1 m}^{k}=0
\end{align*}
$$

and the initial conditions (3.10). The equations are linear; thus their solutions are well defined on Λ_{k}. The geometric meaning of (3.15) and (3.16) is that the vector field $\psi_{2 m}^{i}, \psi_{1 m}^{i}$ are parallel along the curves $y_{m-1}^{i}\left(\xi, \eta_{0}\right), y_{m-1}^{i}\left(\xi_{0}, \eta\right)$ respectively. Since parallel translation keeps the length of the vector unchanged, we have $\left\|\psi_{1 m}\right\|=$ $\left\|\psi_{1 m}\right\|_{0},\left\|\psi_{2 m}\right\|=\left\|\psi_{2 m}\right\|_{0}$. Now we estimate $\left\|u_{m}\right\|,\left\|v_{m}\right\|$.

$$
\begin{aligned}
\left\|u_{m}(\xi, \eta)\right\|^{2}-\left\|u_{m}\left(\xi, \eta_{0}\right)\right\|^{2} & =\int_{\eta_{0}}^{\eta} \frac{d}{d \eta}\left\|u_{m}\right\|^{2} d \eta \\
& =2 \int_{\eta_{0}}^{\eta}\left\langle D_{\eta} u_{m}, u_{m}\right\rangle
\end{aligned}
$$

So we have

$$
\begin{aligned}
\left\|u_{m}(\xi, \eta)\right\|^{2} & \leq 2 \int_{\eta_{0}}^{\eta}\left|\left\langle D_{\eta} u_{m}, u_{m}\right\rangle\right|+\left\|u_{m}\right\|_{0} \\
& \leq\left(\eta-\eta_{0}\right) \sum\left(\left|R_{l k j}^{i}\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi^{j}\right\rangle u_{m}^{i}\right|+\left|R_{l k j}^{i}\left\langle\psi_{m}^{k}, v_{m}^{l} e_{\eta} \cdot \psi^{j}\right\rangle u_{m}^{i}\right|\right)+\left\|u_{m}\right\|_{0} \\
& \leq C\left(\eta-\eta_{0}\right)\left(\left\|\psi_{m}\right\|^{2}\left\|u_{m}\right\|^{2}+\left\|\psi_{m}\right\|^{2}\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+M^{2} \\
& \leq C k\left(\left\|\psi_{m}\right\|^{2}\left\|u_{m}\right\|^{2}+\left\|\psi_{m}\right\|^{2}\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+M^{2} \\
& \leq C k M_{0}^{2}\left(\left\|u_{m}\right\|^{2}+\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+M^{2} \\
& \leq \frac{1}{4}\left(\left\|u_{m}\right\|^{2}+\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+M^{2}
\end{aligned}
$$

where we have used $k \leq \frac{1}{4 C M_{0}^{2}}$. Similarly we can get

$$
\left\|v_{m}(\xi, \eta)\right\|^{2} \leq \frac{1}{4}\left(\left\|v_{m}\right\|^{2}+\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+M^{2}
$$

Combining these two equations we can

$$
\begin{aligned}
\left\|u_{m}\right\|^{2}+\left\|v_{m}\right\|^{2} & \leq \frac{1}{4}\left(\left\|u_{m}\right\|^{2}+\left\|v_{m}\right\|^{2}+2\left\|u_{m}\right\|\left\|v_{m}\right\|\right)+2 M^{2} \\
& \leq \frac{1}{2}\left(\left\|u_{m}\right\|^{2}+\left\|v_{m}\right\|^{2}\right)+2 M^{2}
\end{aligned}
$$

So we have

$$
\begin{equation*}
\left\|u_{m}\right\|^{2}+\left\|v_{m}\right\|^{2} \leq 4 M^{2} \tag{3.17}
\end{equation*}
$$

We claim that the equation (3.17) implies more regularity of u_{m}, v_{m}, ψ_{m}. In fact we differentiate the equation (3.15) covariantly, then we can get

$$
\begin{equation*}
D_{\phi_{m-1}(\eta)} D_{\phi_{m-1}(\eta)} \psi_{2 m}=0 \tag{3.18}
\end{equation*}
$$

(3.19) $0=D_{\phi_{m-1}(\xi)} D_{\phi_{m-1}(\eta)} \psi_{2 m}=D_{\phi_{m-1}(\eta)} D_{\phi_{m-1}(\xi)} \psi_{2 m}+R\left(\partial_{\xi} \phi_{m-1}, \partial_{\eta} \phi_{m-1}\right) \psi_{2 m}$.

From the equation (3.18) we can know

$$
\left\|D_{\phi_{m-1}(\eta)} \psi_{2 m}\right\|=\left\|D_{\phi_{m-1}(\eta)} \psi_{2 m}\right\|_{0} \leq M_{2}
$$

From the equation (3.19) we can get

$$
\begin{aligned}
\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|^{2} & =\int_{\eta_{0}}^{\eta} \frac{d}{d \eta}\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|^{2}+\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|_{0}^{2} \\
& \leq 2 \int_{\eta_{0}}^{\eta}\left\langle D_{\phi_{m-1}(\eta)} D_{\phi_{m-1}(\xi)} \psi_{2 m}, D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\rangle+M_{2}^{2} \\
& \leq 2 k C\left\|u_{m-1}\right\|\left\|v_{m-1}\right\|\left\|\psi_{2 m}\right\|\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|+M_{2}^{2} \\
& \leq k C\left(\left\|u_{m-1}\right\|^{2}+\left\|v_{m-1}\right\|^{2}\right)\left\|\psi_{2 m}\right\|\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|+M_{2}^{2} \\
& \leq 4 k C M^{2} M_{0}\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\|+M_{2}^{2}
\end{aligned}
$$

So,

$$
\left\|D_{\phi_{m-1}(\xi)} \psi_{2 m}\right\| \leq \frac{M^{2}}{M_{0}}+M_{2}
$$

By the same argument we can obtain

$$
\left\|D_{\phi_{m-1}(\xi)} \psi_{1 m}\right\|_{0} \leq M_{2}
$$

and

$$
\left\|D_{\phi_{m-1}(\eta)} \psi_{1 m}\right\| \leq \frac{M^{2}}{M_{0}}+M_{2}
$$

We differentiate the equation (3.13), then

$$
\begin{aligned}
D_{\eta} D_{\eta} u_{m}= & \frac{1}{2} R_{l k j, m}^{i}\left(z_{m-1}\right) v_{m-1}^{m}\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle \frac{\partial}{\partial y^{i}}+\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\widetilde{\nabla}_{\eta} \psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle \frac{\partial}{\partial y^{i}} \\
& +\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\psi_{m}^{k}, D_{\eta} u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle \frac{\partial}{\partial y^{i}}+\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \widetilde{\nabla}_{\eta} \psi_{m}^{j}\right\rangle \frac{\partial}{\partial y^{i}} \\
& +\frac{1}{2} R_{l k j}^{i}\left(z_{m-1}\right)\left\langle\psi_{m}^{k}, u_{m}^{l} e_{\xi} \cdot \psi_{m}^{j}\right\rangle v_{m-1}^{m} \Gamma_{m i}^{n}\left(z_{m-1}\right) \frac{\partial}{\partial y^{n}}
\end{aligned}
$$

plus a similar term with u_{m}^{l} replaced by v_{m}^{l}, e_{ξ} replaced by e_{η} in the $\langle\cdot, \cdot\rangle$. Using the method as above we can estimate

$$
\begin{aligned}
\left\|D_{\eta} u_{m}\right\|^{2} \leq & 2 k C\left(4 M^{2} M_{0}^{2}+4 M M_{1} M_{0}\left(\frac{M^{2}}{M_{0}}+M_{1}^{2}\right)+4 M_{0}^{2} M^{2} C\right)\left\|D_{\eta} u_{m}\right\| \\
& +k C M_{0}^{2}\left\|D_{\eta} u_{m}\right\|^{2}+k C M_{0}^{2}\left\|D_{\eta} u_{m}\right\|\left\|D_{\eta} v_{m}\right\|+M_{1}^{2} \\
\leq & C_{1}\left\|D_{\eta} u_{m}\right\|+\frac{1}{4}\left(\left\|D_{\eta} u_{m}\right\|^{2}+\left\|D_{\eta} u_{m}\right\|\left\|D_{\eta} v_{m}\right\|\right)+M_{1}^{2}
\end{aligned}
$$

Similarly,

$$
\left\|D_{\eta} v_{m}\right\|^{2} \leq C_{1}\left\|D_{\eta} v_{m}\right\|+\frac{1}{4}\left(\left\|D_{\eta} u_{m}\right\|^{2}+\left\|D_{\eta} u_{m}\right\|\left\|D_{\eta} v_{m}\right\|\right)+M_{1}^{2}
$$

where $C_{1}=2\left(M^{2}+4 \frac{M M_{1}}{M_{0}}\left(\frac{M^{2}}{M_{0}}+M_{1}^{2}\right)+M^{2} C\right)$ Therefore we have

$$
\left\|D_{\eta} u_{m}\right\|+\left\|D_{\eta} v_{m}\right\| \leq 4 C_{1}+4 M_{1}
$$

By the same argument we can get more regularity. So we can proof the sequences $\left\{y_{m}\right\},\left\{z_{m}\right\}$ and $u_{m}, v_{m}, \psi_{1 m}, \psi_{2 m}$ and the sequences of their partial derivatives converge uniformly on Λ_{k} and the limit of $u_{m}(t, x), v_{m}(t, x), \psi_{1 m}(t, x), \psi_{2 m}(t, x)$ is a smooth solution of the equation (3.5)-(3.9) and the limit of $y_{m}(t, x)$ is a smooth solution of the equation (2.1). From the proof we can see that the constant k only depends on M_{0} and C. Because at any time $\left\|\psi_{1}\right\|,\left\|\psi_{2}\right\| \leq M_{0}$, provided that $|x| \leq L$, then using this procedure successively we can conclude that there exists global solutions of the equation (3.5)-(3.9) This completes the proof of the existence part of the theorem. The uniqueness is easy.

Let $\left(\phi^{1}, \psi^{1}\right)$ and $\left(\phi^{2}, \psi^{2}\right)$ are two solutions with the same data, then $\phi^{1}-\phi^{2}$ and $\psi^{1}-\psi^{2}$ have zero Cauchy data at $t=0$. Let $\phi=\phi^{1}-\phi^{2}$ and $\psi=\psi^{1}-\psi^{2}$, then they satisfy the following equations,

$$
\begin{aligned}
& \frac{\partial u}{\partial \eta}+\Gamma\left(\phi_{1}\right) u v^{1}=\left(\Gamma\left(\phi^{2}\right)-\Gamma\left(\phi^{1}\right)\right) u^{2} v^{1}+\Gamma\left(\phi^{2}\right) u^{2}\left(v^{2}-v^{1}\right) \\
&+\frac{1}{2}\left(R\left(\phi^{1}\right)-R\left(\phi^{2}\right)\right)\left\langle\psi^{1}, u^{1} e_{\xi} \cdot \psi^{1}\right\rangle+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\left(\psi^{1}-\psi^{2}\right), u^{1} e_{\xi} \cdot \psi^{1}\right\rangle \\
&+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\psi^{2}, u^{1} e_{\xi} \cdot\left(\psi^{1}-\psi^{2}\right)\right\rangle+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\psi^{2},\left(u^{1}-u^{2}\right) e_{\xi} \cdot \psi^{2}\right\rangle \\
&+\frac{1}{2}\left(R\left(\phi^{1}\right)-R\left(\phi^{2}\right)\right)\left\langle\psi^{1}, v^{1} e_{\eta} \cdot \psi^{1}\right\rangle+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\left(\psi^{1}-\psi^{2}\right), v^{1} e_{\eta} \cdot \psi^{1}\right\rangle \\
&+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\psi^{2}, v^{1} e_{\eta} \cdot\left(\psi^{1}-\psi^{2}\right)\right\rangle+\frac{1}{2} R\left(\phi^{2}\right)\left\langle\psi^{2},\left(v^{1}-v^{2}\right) e_{\eta} \cdot \psi^{1}\right\rangle \\
& \frac{\partial v}{\partial \xi}+\Gamma\left(\phi_{1}\right) v u^{1}=\left(\Gamma\left(\phi^{2}\right)-\Gamma\left(\phi^{1}\right)\right) v^{2} u^{1}+\Gamma\left(\phi^{2}\right) v^{2}\left(u^{2}-u^{1}\right)+f
\end{aligned}
$$

f denote the right terms of the last equation excluding the first two terms.

$$
\begin{aligned}
& \frac{\partial \psi_{2}}{\partial \eta}+\Gamma\left(\phi_{1}\right) u^{1} \psi_{2}=\left(\Gamma\left(\phi_{2}\right)-\Gamma\left(\phi_{1}\right)\right) u^{1} \phi_{2}^{2}+\Gamma\left(\phi_{2}\right)\left(u^{2}-u^{1}\right) \psi_{2}^{2} \\
& \frac{\partial \psi_{1}}{\partial \xi}+\Gamma\left(\phi_{1}\right) v^{1} \psi_{1}=\left(\Gamma\left(\phi_{2}\right)-\Gamma\left(\phi_{1}\right)\right) v^{1} \phi_{1}^{2}+\Gamma\left(\phi_{2}\right)\left(v^{2}-v^{1}\right) \psi_{1}^{2}
\end{aligned}
$$

Frow these equations we can estimate $\|u\|,\|v\|$ and $\left\|\psi_{1}\right\|,\left\|\psi_{2}\right\|$ as above, then we can get

$$
\begin{equation*}
\left\|\psi_{2}\right\| \leq 2 k C\left(\|\phi\|\left\|u^{1}\right\|\left\|\psi_{2}^{2}\right\|+\|u\|\left\|\psi_{2}^{2}\right\|\right) \tag{3.20}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\psi_{1}\right\| \leq 2 k C\left(\|\phi\|\left\|u v_{1}\right\|\left\|\psi_{1}^{2}\right\|+\|v\|\left\|\psi_{1}^{2}\right\|\right) \tag{3.21}
\end{equation*}
$$

and
$\|u\|+\|v\| \leq 2 k C(\|u\|+\|v\|)\left(\left\|u^{2}\right\|+\left\|v^{2}\right\|\right)+4 k C\left\|\psi^{2}\right\|^{2}(\|u\|+\|v\|)+2 k C(\|\phi\|+\|\psi\|)$
If k is sufficiently small, we have

$$
\begin{equation*}
\|u\|+\|v\| \leq C_{1}(\|\phi\|+\|\psi\|) \tag{3.23}
\end{equation*}
$$

Put the equation (3.20) and (3.21) into the above equation, we can get

$$
\|u\|+\|v\| \leq C_{2}\|\phi\|
$$

From Gronwall's inequality, we know that $\phi \equiv 0$. Then the equation (3.20) and (3.21) imply $\psi \equiv 0$ immediately and we finish the proof.

