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Recently several of us (lucky mathematical physicists) attended the

Bayrischzell workshop 2004 on noncommutativity and physics. One of the
speakers told us that gauge theory, open string theory, closed string theory
and noncommutative QFT are the same. Perhaps the heady alpine air had
someting to do with this euphoric statement. Nevertheless several bits and
pieces of evidence supporting the existence of links between these theories
has accumulated over the last few years. However, stealing a line from Cliff
Taubes, I would like to say that at least from a mathematical point of view
we would be lucky if in a few years we know what are the right questions to
ask. There is a saying “If you steal from one you are a thief. If you steal
from many you are a business (or a researcher)”. As you will see this is a
research talk.
This year we are celebrating the 25th anniversary of the marriage between
Gauge Theory and the Geometry of Fiber Bundles from the sometime war-
ring tribes of Physics and Mathematics. Marriage brokers were none other
than Chern and Simons. The 1978 paper by Wu and Yang can be regarded
as the announcement of this union. It has led to many wonderful offspring.
The theories of Donaldson, Chern-Simons, Floer-Fukaya, Seiberg-Witten,
and TQFT are just some of the more famous members of their extended
family. Quantum Groups, CF'T, Supersymmetry, String Theory and Gravity
also have close ties with this family. In this talk we will discuss one par-
ticular relationship that has recently come to light. The qualitative aspects
of Chern-Simons theory as string theory were investigated by Witten almost
ten years ago. Before recounting the main idea of this work we review the
Feynman path integral method of quantization which is particulary suited
for studying topologial quantum field theories.

A quantum field theory may be considered as an assignment of
the quantum expectation < ® >, to each gauge invariant function
o : A(M) — C, where A(M) is the space of gauge potentials for a given
gauge group GG. @ is called an observable in quantum field theory. In the
Feynman path integral approach to quantization the quantum expectation
< ® >, of an observable is given by the following expression.
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where DA is a suitably defined measure on A(M). It is customary to express
the quantum expectation < ® >, in terms of the partition function 7,

<P >, =
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defined by

7.(®) = / ~5u) P () D A. 2
(0) = [ e ®)

Thus we can write 7,(®)
<P>,=-— (3)

" Z,0)

In the above equations we have written the quantum expectation as < ® >,
to indicate explicitly that, in fact, we have a one-parameter family of quan-
tum expectations indexed by the coupling constant p in the action. There are
several examples of gauge invariant functions. For example, primary char-
acteristic classes evaluated on suitable homology cycles give an important
family of gauge invariant functions. The instanton number k of P(M,G)
belongs to this family, as it corresponds to the second Chern class evaluated
on the fundamental cycle of M representing the fundamental class [M]. The
pointwise norm |F,|, of the gauge field at x € M, the absolute value |k| of
the instanton number k& and the Yang-Mills action S, are also gauge invari-
ant functions. Another important example is the Wilson loop functional well
known in the physics literature.

Wilson loop functional: Let p denote a representation of G on V. Let
a € Q(M,xy) denote a loop at xy € M. Let m : P(M,G) — M be the
canonical projection and let p € 7 (o). If w is a connection on P, then
the parallel translation along o maps the fiber 7—!(z¢) into itself. Let &, :
7 (zg) — 7 1(xo) denote this map. Since G acts transitively on the fibers,
dg., € G such that a,(p) = pg.. Now define

W, o(w) :=Tr[p(g.)] Yw € A. (4)

We note that g, and hence p(g,), change by conjugation if, instead of p, we
choose another point in the fiber 77!(x(), but the trace remains unchanged.
We call these W, , the Wilson loop functionals associated to the represen-
tation p and the loop «. In the particular case when p = Ad the adjoint
representation of G on g, our constructions reduce to those considered in
physics.

In the 1980s, Jones discovered his polynomial invariant V,(q), called the
Jones polynomial, while studying Von Neumann algebras and gave its



interpretation in terms of statistical mechanics. These new polynomial in-
variants have led to the proofs of most of the Tait conjectures. As with the
earlier invariants, Jones’ definition of his poynomial invariants is algebraic
and combinatorial in nature and was based on representations of the braid
groups and related Hecke algebras. The Jones polynomial V,(t) of  is a
Laurent polynomial in ¢ (polynomial in ¢ and ¢~!) which is uniquely deter-
mined by a simple set of properties similar to the well known axioms for the
Alexander-Conway polynomial. More generally, the Jones polynomial can be
defined for any oriented link L as a Laurent polynomial in ¢'/2.

A geometrical interpretation of the Jones’ polynomial invariant of links
was provided by Witten by applying ideas from QFT to the Chern-Simons
Lagrangian constructed from the Chern-Simons action

2
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where A is the gauge potential of the SU(n) connection w. Chern-Simons
action is not guage invariant. Under a gauge transformation g the action
transforms as follows:

Acs(Ag) == Acs(A) + 27T/{7AW2, (5)

where Ay is the Wess-Zumino action functional. It can be shown that
the Wess-Zumino functional is integer valued and hence, if the Chern-Simons

coupling constant k is taken to be an integer, then the partition function Z
defined by

o —iAcs(w)
Z() : /A o ®(w)DA

is gauge invariant.

We denote the Jones polynomial of L simply by V. Recall that there
are 3 standard ways to change a link diagram at a crossing point. The
Jones polynomials of the corresponding links are denoted by V., V_ and Vj
respectively. To verify the defining relations for the Jones’ polynomial of a
link L in S3, Witten starts by considering the Wilson loop functionals for
the associated links L., L_, Ly. Witten obtains the following skein relation
for the polynomial invariant V' of the link
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where we have put
<®>= V(t), and t = >/ (+n),

We note that the result makes essential use of the Verlinde fusion rules in 2d
conformal field theory.

For SU(2) Chern-Simons theory, equation (6) is the skein relation that
defines a variant of the original Jones’ polynomial. This variant also occurs
in the work of Kirby and Melvin where the invariants are studied by using
representation theory of certain Hopf algebras and the topology of framed
links. It is not equivalent to the Jones polynomial. In an earlier work I had
observed that under the transformation v/t — —1/+/%, it goes over into the
equation which is the skein relation characterizing the Jones polynomial. The
Jones polynomial belongs to a different family that corresponds to the nega-
tive values of the level. Note that the coefficients in the skein relation (6) are
defined for positive valuse of the level k. To extend them to negative values
of the level we must also note that the shift in k£ by the dual Coxeter number
would now change the level —k to —k — n. If in equation (6) we now allow
negative values of n and take ¢ to be a formal variable, then the extended
family includes both positive and negative levels.

Let V(™ denote the Jones-Witten polynomial corresponding to the skein
relation (6), (with n € Z) then the family of polynomials {V(™} can be
shown to be equivalent to the two variable HOMFLY polynomial P(«, z)
which satisfies the following skein relation

aP, —a 'P_ = 2P, (7)

If we put @ = t7' and 2z = (t'/2 — t7'/2) in equation (7) we get the skein
relation for the original Jones polynomial V. If we put « = 1 we get the
skein relation for the Alexander-Conway polynomial.

To compare our results with those of Kirby and Melvin we note that they
use ¢ to denote our ¢ and ¢ to denote its fourth root. They construct a mod-
ular Hopf algebra U; as a quotient of the Hopf algebra U,(sl(2, C)) which
is the well known ¢-deformation of the universal envelopping algebra of the
Lie algebra sl(2,C). Jones polynomial and its extensions are obtained by
studying the representaions of the algebras U, and U,,.



If Z;(1) exists, it provides a numerical invariant of M. For example, for
M = 5% and G = SU(2), using the Chern-Simons action Witten obtains the
following expression for this partition function as a function of the level &

Zk(l):\/k:z—i—QSin (k‘i2) (8)

This partition function provides a new family of invariants of S3. Such a
partition function can be defined for a more general class of 3-manifolds and
gauge groups. More precisely, let G be a compact, simply connected, simple
Lie group and let k € Z. Let M be a 2-framed closed, oriented 3-manifold.
We define the Witten invariant 7 (M) of the triple (M, G, k) by

T n(M) = Z(1 ;:/ ~idosp Y, 9
M) = 2(1) = [ e )
where DA is a suitable measure on A(M).

We note that no precise definition of such a measure is available at this
time and the definition is to be regarded as a formal expression. Indeed,
one of the aims of TQFT is to make sense of such formal expressions. We
define the normalized Witten invariant Wg (M) of a 2-framed, closed,
oriented 3-manifold M by

We (M) = % (10)

Then we have the following theorem.

Theorem (Witten, Reshetikhin, Turaev):

Let G be a compact, simply connected, simple Lie group. Let M, N be two
2-framed, closed, oriented 3-manifolds. Then we have the following results:

Tor(S*x S = 1 (11)
Twes(S) = g i i (k i 2) (12)
Wer(M#N) = Wer(M)Wer(N) (13)



In his work Kohno defined a family of invariants ®(M) of a 3-manifold
M by its Heegaard decomposition along a Riemann surface X, and repre-
sentations of its mapping class group in the space of conformal blocks. The
agreement of his results (up to normalization) with those of Witten may
be regarded as strong evidence for the usefulness of the ideas from TQFT
and CFT in low dimensional geometric topology. We remark that a math-
ematically precise definition of the Witten invariants via solutions of the
Yang-Baxter equations and representations of the corresponding quantum
groups was given by Reshetikhin and Turaeev. For this reason, we now refer
to them as Witten-Reshetikhin-Turaeev or WRT invariants. The invariant is
well defined only at roots of unity and perhaps near roots of unity if a pertur-
bative expansion is possible. This situation occurs in the study of classical
modular functions and Ramanujan’s mock theta functions.

Ramanujan had introduced his mock theta functions in a letter to Hardy
in 1920 (the famous last letter) to describe some power series in variable ¢ =
e?™* » € C. He also wrote down (without proof, as was usual in his work)
a number of identities involving these series which were completely verified
only in 1988 . Recently, Lawrence and Zagier have obtained several different
formulas for the Witten invariant Wesy(2) k(M) of the Poincaré homology
sphere M = ¥(2,3,5). They show how the Witten invariant can be extended
from integral k to rational k and give its relation to the mock theta function.
In particular, they obtain the following fantastic formula, a la Ramanujan,
for the Witten invariant of the Poincaré homology sphere

—1+Zx (14z)(1+2%)...(14+2"

where x = e™/(*¥2) We note that the series on the right hand side of this
formula terminates after k + 2 terms.

As we remarked at the begining of this talk the question “what is the
relationship between gauge theory and string theory?” is not meaningful at
this time. However, interesting special cases where such relationship can
be established are emerging. For example, Witten has argued that Chern-
Simons gauge theory on a 3-manifold M can be viewed as a string theory
constructed by using a topological sigma model with target space T*M. The
perturbation theory of this string will coincide with Chern-Simons perturba-
tion theory, in the form discussed by Axelrod and Singer. The coefficient of
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k=" in the perturbative expansion of SU(n) theory in powers of 1/k comes
from Feynman digrams with r loops. Witten shows how each diagram can
be replaced by a Riemann surface ¥ of genus g with A holes (boundary com-
ponents) with g = (r — h +1)/2. Gauge theory would then give an invariant
Ly n(M) for every topological type of ¥. Witten shows that this invariant
would equal the corresponding string partition function Z, ,(M).

We now give an example of gauge theory to string theory correspondence
relating the non-perturbative WRT invariants in Chern-Simons theory with
gauge group SU(n) and topological string amplitudes which generalize the
GW (Gromov-Witten) invariants of Calabi-Yau 3-folds. The passage from
real 3 dimensional Chern-Simons theory to the 10 dimensional string theory
and further onto the 11 dimensional M-theory can be schematically repre-
sented by the following:

3+3 = 6 (real symplectic 6-manifold)
= 6 (conifold in C* )
6 (Calabi-Yau manifold)
= 10 — 4 (string compactification)
= (11 —-1)—4 (M-theory)

We now discuss the significance of the various terms of the above equation
array.

The first line suggests that we consider open topological strings on the
cotangent bundle 753 with Dirichlet boundary conditions on the zero sec-
tion S®. We can compute the open topological string amplitudes from the
SU(n) Chern-Simons theory. Conifold transition has the effect of closing up
the holes in open strings to give closed strings on the Calabi-Yau manifold
obtained by the usual string compactification from 10 dimensions. Thus we
recover a topological gravity result starting from gauge theory. In fact, as we
discussed earlier, Witten had anticipated such a gauge theory string theory
correspondance almost ten years ago. Significance of the last line is based
on the conjectured equivalence of M-theory compactified on S* to type IIA
strings compactified on a Calabi-Yau threefold.

To understand the relation of the WRT invariant of S® for SU(n) Chern-
Simons theory with open and closed topological string amplitudes on “Calabi-
Yau” manifolds we need to discuss the concept of conifold transition. From
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the geometrical point of view this corresponds to symplectic surgery in six
dimensions. It replaces a vanishing Lagrangian 3-sphere by a symplectic S2.
The starting point of the construction is the observation that 7*S% minus
its zero section is symplectomorphic to the cone 2% + 22 + 22 + 27 = 0 minus
the origin in C*, where each manifold is taken with its standard symplectic
structure. The complex singularity at the origin can be smoothed out by
the manifold M, defined by 27 + 23 + 23 + 2z = 7 producing a Lagrangian
S?3 vanishing cycle. There are also two so called small resolutions M* of the
singularity with exceptional set CP'.

They are defined by

ME - {26C4| 21+ 129 _ —zgiiz4}

z3 + iZ4 Z1 — iZQ

Note that M\ {0} is symplectomorphic to each of M*\ CP'. Blowing up the
exceptional set CP' C M™* gives a resolution of the singularity which can be
expressed as a fiber bundle F over CP'. Going from the fiber bundle 7*S3
over S% to the fiber bundle F' over CP'is referred to in the physics literature
as the conifold transition. We note that holomorphic automorphism of C*
given by z; — —z, switches the two small resolutions M* and changes the
orientation of S3. Conifold transition can also be viewed as an application
of mirror symmetry to Calabi-Yau manifolds with singularities. Such an in-
terpretation requires the notion of symplectic Calabi-Yau manifolds and the
corresponding enumerative geometry.

To find the relation between the large n limit of SU(n) Chern-Simons
theory on S3 to a special topological string amplitude on a Calabi-yau man-
ifold we begin by recalling the formula for the partition function (vacuum
amplitude) of the theory Tsy(m),(S?) or simply 7. Upto a phase, it is given

by
1 n—1 : n—j
T = 11 [QSin( T ﬂ . (14)
n(k + n)—1) k+n

J=1

Let us denote by Fi, ) the amplitude of an open topological string theory
on T*S3 of a Riemann surface of genus g with h holes. Then the generating
function for the free energy can be expressed as

=D D AETEIR (15)

g=0 h=1



This can be compared directly with the result from Chern-Simons theory by
expanding the log7 as a double power series in A and n.

Instead of that we use the conifold transition to get the topological am-
plitude for a closed string on a Calabi-Yau manifold. We want to obtain the
large n expansion of this amplitude in terms of parameters A and 7 which
are defined in terms of the Chern-Simons parameters by

2w 2mn
A= — A= .
r+rn "M T kxn

(16)

The parameter A is the string coupling constant and 7 is the 't Hooft cou-
pling nA of the Chern-Simons theory. The parameter 7 has the geometric
interpretation as the Kahler modulus of a blown up S? in the string ampli-
tude expansion. If F,(7) denotes the amplitude for a closed string at genus
g then we have

= T"Fign (17)
h=1

So summing over the holes amounts to filling them up to give the closed
string amplitude.

The large n expansion of 7 in terms of parameters \ and 7 is given by

T — exp {_ S N2E ()| (18)

g9=0

where F; defined in (17) can be interpreted on the string side as the contribu-
tion of closed genus g Riemann surfaces. For g > 1 the F}, can be expressed
in terms of the Euler characteristic x, and the Chern class ¢,_; of the Hodge
bundle of the moduli space M, of Riemann surfaces of genus g as follows

F = 3 2g—3 —n(T ) 19
g Mg Cg—l 2g 3 Zn ( )

The integral appearing in the formula for F, can be evaluated explicitly to
give
3 (=1)w-b
/Mg 1= a9~ 2 (20)

10



The Euler characteristic is given by the Harer-Zagier formula

(—1)l=1)

X Gy -2 =

where By, is the (2¢g)-th Bernoulli number. We omit the special formulas for
the genus 0 and genus 1 cases. The formulas for Fj, for ¢ > 0 coincide with
those of the g-loop topological string amplitude on a suitable Calabi-Yau
manifold. This result can be extended to show that the expectation value
of the quantum observable defined by the Wilson loop in the Chern-Simons
theory also has a similar interpretation in terms of a topological string ampli-
tude. The change in geometry that leads to this calculation can be thought of
as the result of coupling to gravity. Such a situation occurs in the quantiza-
tion of Chern-Simons theory. Here the classical Lagrangian does not depend
on the metric, however, coupling to the gravitational Chern-Simons term is
necessary to make it TQFT.

It is well known that every closed connected oriented 3-manifold can be ob-
tained by surgery on a framed link in S3. Moreover, such a 3-manifold is
the boundary of a 4-manifold which is a 4-ball with finitely many 2-handles
attached. It would be interesting to relate invariants of 4-manifolds to the
quantum invariants of 3-manifolds. The use of Wilson loops reminds us of
Ashtekar’s formalism for gravity. Chern-Simons theory is also closely related
to the spin network formulation of 3-dimensional quantum gravity. Recently
Kontsevich has proposed an extension of TQFT by using some old ideas of
Grothendieck. Perhaps such a theory may be viewed as a time evolution of
3-dimensional Chern-Simons states. Following a propossal of Ooguri, Crane
and Yetter have found a new invariant of a compact oriented 4-manifold M
by applying ideas from modular tensor category to the 3-skeleton of M.
This invariant has an analytic expression in terms of the level £ WRT in-
variant of the SU(2) Chern-Simons theory and the corresponding string cou-
pling constant and two classical topological invariants of M, namely, the
Hirzebruch signature (M) and the Euler characteristic x(M). We note
that Temperley-Lieb algebras associated to link diagrams and the Kirillov-
Reshetikhin approach to link invariants via representations of the quantum
deformation of the universal enveloping algebra of su(2), play a crucial role
in obtaining the above formula. It can be thought of as a local combinatorial
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description of o (M), in the spirit of Gelfand and Macpherson’s interpretation
of Pontryagin classes.
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We now interrupt this regular lecture to bring you the following
BREAKING NEWS

Over the years, I have been incredibaly lucky to get the breaking news
about exciting developments in mathematics. From small gems like Apery’s
proof of the irrationality of ((3) (from Dieudonne) to Kohinoors like Andrew
Wiles proof of FLT (from George Booth via Bill Messing), I remember them
all vividly. Here is the news about some interesting conjectures which will
soon be renamed as theorems.
Kepler’s conjecture: Kepler was an extraordinary observer of nature. His
observations of snowflackes, honeycombs and the packing of seeds in various
fruit led him to his lesser known study of the sphere packing problem. For di-
mensions 1, 2 and 3 he found the answers to be 2, 6 and 12 respectively. The
lattice structures on these spaces played a crucial role in Kepler’s “proof”.
The three dimensional problem came to be known as Kepler’s conjecture.

The slow progress in the solution of this problem led John Milnor to
remark that here is a problem that nobody can solve but its answer is known
to every schoolboy. It was only solved recently by Tom Hales and the problem
in higher dimensions is still wide open.

It was the study of this problem that led John Conway to the discovery
of his sporadic simple group. Soon thereafter the last holdouts in the com-
plete list of the 26 finite sporadic simple groups were found. All the infinite
families of finite simple groups (such as the groups Z,, for p a prime number
and alternating groups A,,n > 4 that we study in the first course in alge-
bra) were already known. So the classification of finite simple groups was
complete. It ranks as the greatest achievement of twentieth century mathe-
matics. Hundreds of mathematicians contributed to it. The various parts of
the classification together fill more than ten thousand pages.

Conway’s group and other sporadic simple groups are closely related to
the symmetries of lattices. The study of representations of the largest of these
groups (called the Friendly Giant or Fisher-Griess Monster) has led to the
creation of a new field of mathematics called Vertex algebras. They turn out
to be closely related to the chiral algebras in conformal field theory. These
and other ideas inspired by string theory have led to a proof of Conway and
Norton’s Moonshine conjectures (Borcherds, Frenkel, Lepowski, Meurman).
The monster Lie algebra is the simplest example of a Lie algebra of physical
states of a chiral string on a 26-dimensional orbifold. This algebra can be de-
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fined by using the infinite dimensional graded representation of the monster
simple group. Its quantum dimension is related to Jacobi’s SL(2,Z) haupt-
module (elliptic modular function of genus 0) j(g), where ¢ = *™* 2 € H
by

jlq) — 744 = ¢~ + 196884q + 21493760¢> + . . .

Witten’s SW = D conjecture: The classification problem for closed 4-
manifolds has made rapid progress since the introduction of two new sets
of invariants. Donaldson’s polynomial invariants were defined by using in-
stanton solutions of Yang-Mills equations in gauge theory with gauge group
SU(2) in the mid 1980s. In less than 10 years Seiberg-Witten equations
were obtained as a by product of the study of super Yang-Mills equations.
These equations are defined using a U(1) monopole gauge theory and the
Dirac operator obtained by coupling to a Spin® structure. Kronheimer and
Mrowka obtained a structure theorem for the Donaldson invariants in terms
of their basic classes and introduced a technical property called simple type
for a closed, simply connected 4-manifold M. There is also a simple type
condition and basic classes in SW theory. Witten used the idea of taking ul-
traviolate and infrared limits of N = 2 supersymmetric quantum Yang-Mills
theory and metric independence of correlation functions to relate D and SW
invariants.

The precise form of Witten’s conjecture can be expressed as follows:
A closed, simply connected 4-manifold M has KM-simple type if and only if
it has SW-simple type. If M has simple type and if D(«a) (resp. SW(a)) de-
note the generating function series for the Donaldson (resp. Seiberg-Witten)
invariants with a € Hy(M; R), then we have

D(a) = 2¢e™ @25 (), Vo € Hy(M;R).

In the above formula ¢, is the intersection form of M and ¢ is a constant
given by
TxX(M) + 11o(M)

1 .
A mathematical approach to a proof of Witten’s conjecture was proposed by
Pidstrigatch and Tyurin. Feehan and Lenses have used similar ideas but em-
ploy an SO(3) monopole gauge theory which generalizes both the instanton

c=2+
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and U(1) monopole theories. The problem of relating this proof to Witten’s
TQFT argument remains open.

Poincaré conjecture is one of the most celebrated conjectures in geometric
topology. Its generalizations for spheres S™,n > 3 have been proved. The
most recent of these is the case n = 4 which is subsumed under the classifi-
cation of topological 4-manifolds by Freedman. The original case n = 3 has
resisted all attempts till now and forms a part of the Thurston geometrization
conjecture for closed 3-manifolds.

Over the last quarter century Hamilton has studied the topology of a
smooth manifold M by considering the Ricci flow equation for the evolu-
tion of its metric. This evolution implies the evolution equation for the full
Riemann curvature as well as for Ricci and scalar curvatures. Hamilton
obtains topological information on M by studying these flows. The full im-
plemntation of Hamilton’s program by Perelman is expected to prove the
Thurston geometrization conjecture for closed 3-manifolds and in particular,
the Poincaré conjecture.

In Perelman’s work, the Ricci flow is perturbed by a scalar field which
corrosponds in String theory to the dilaton. It is suppossed to determine
the overall strength of all interactions. The value of the dilaton field can be
thought of as the size of an extra dimension of space. This would give the
space 11 dimensions as required in the M-theory. The low energy effective ac-
tion of the dilaton field is given by the functional F(g, f) = [, (R+|V f[*)e~/.
The corresponding variational equations lead to the evolution equations

(gij)e = —2(Ri; + ViV, [), i = —R — Af.

After applying a suitable diffeomorphism these equations lead to the gradient
flow equations. This modified Ricci flow can be pushed through the singular-
ities by surgery and rescaling. A detailed case by case analysis is then used
to prove the geometrization conjecture.

Property P conjecture: In early 1960s Bing tried to find a counterexample
to the Poincaré conjecture by constructing 3-manifolds by surgery on knots.
Bing and Martin later formalized this search by defining property P of a
knot as follows: A knot K has property P if every 3-manifold Y obtained by
non-trivial Dehn surgery on K has non-trivial fundamental group.
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Conjecture: Every non-trivial knot K has property P. In particular, Y
is not a homotopy 3-sphere.

Recently, Kronheimer and Mrowka proved the Property P conjecture by
showing that 7 (Y") admits a non-trivial homomorphism to the group SO(3).
The proof uses several recent results in gauge theory, symplectic and contact
geometry and proof of Witten’s conjecture relating the Seiberg-Witten and
Donaldson invariants.
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Verse of the Day

Die meisten
Mathematiker
glauben.
Aber alle
Physiker

wissen.
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