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1 Introduction

Various tau-functions play the central role in the theory of integrable partial and ordinary differential
equations and numerous areas of their application. In particular, the zeros of Jimbo-Miwa isomon-
odromic tau-function [12] govern the solvability of matrix Riemann-Hilbert problem. For a class of
Riemann-Hilbert problems with special monodromy groups [7, 21] the Jimbo-Miwa tau-function gives
rise to a horizontal section of a line bundle over Hurwitz spaces (spaces of ramified coverings of the
Riemann sphere) [16, 17]; this horizontal section was called in [16] the Bergman tau-function, due to
its close link with Bergman projective connection. The Bergman tau-function on Hurwitz spaces was
computed in [18] in terms of theta-functions and prime-forms on branched coverings; this allowed to
find explicit expressions for the G-function of Hurwitz Frobenius manifolds and get a new formula for
the determinant of Laplace operator in Poincaré metric over Riemann surfaces.

In this paper we define and compute the tau-function on different strata of the spaces Hg and Qg,
where Hg is the space of Abelian differentials over Riemann surfaces i.e. the space of pairs (L, w), where
L is a compact Riemann surface of genus g ≥ 1 and w is an Abelian differential (i. e. a holomorphic
1-differential) on L; Qg is the space of pairs (L,W ), where W is a meromorphic quadratic differential
on L with at most simple poles and which is not the square of an Abelian differential. The space
Hg has dimension 4g − 3; it is stratified according to multiplicities of zeros of Abelian differentials
w. The space Qg is infinite-dimensional, since the quadratic differential W is allowed to have an
arbitrary number of poles; however, this space can be stratified according to the number of poles
and multiplicities of zeros of W ; each stratum then is finite-dimensional. The corresponding strata
generally have several connected components. The classification of these connected components is
given in [19, 22]. In particular, the stratum of the space Hg having the highest dimension (on this
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stratum all the zeros of w are simple) is connected; the maximal number of connected components of
a given stratum of the space Hg equals three ([19]). (See [22] for discussion of existing results for the
space Qg.)

We apply the developed formalism to computation of the determinants of Laplacians in flat metrics
with conical singularities over Riemann surfaces given by the modulus square of an Abelian differential
|w|2 or by the modulus of a meromorphic quadratic differential |W | with at most simple poles (Strebel
metrics of finite volume).

To illustrate our results we consider here the case of holomorphic quadratic differentials with 4g−4
simple zeros. Let Qg(1, . . . , 1) be the stratum of Qg, consisting of pairs (L,W ), where W is such a
quadratic differential. There exists a two-fold covering (which is called canonical) π : L̃ → L such that
π∗W = w2, where w is an Abelian differential on L̃.

The covering L̃ is ramified at the zeros R1, . . . , R4g−4 of the quadratic differential W .
Denote by ∗ the holomorphic involution on L̃ interchanging the sheets of canonical covering. Denote

the basis of cycles on L by (aα, bα). The Abelian differential w is anti-invariant under the involution:
w(P ∗) = −w(P ). The canonical basis of cycles on L̃ will be denoted as follows [8]:

{aα, bα, aα′ , bα′ , am, bm} (1.1)

where α,α′ = 1, . . . g; m = 1, . . . 2g − 3; this basis has the following invariance properties under the
involution ∗:

a∗α + aα′ = b∗α + bα′ = 0 (1.2)

and
a∗m + am = b∗m + bm = 0 (1.3)

The full set of independent coordinates on the space Qg(1, . . . , 1) is obtained by integrating the
differential w(P ) over basic cycles on L̃ as follows [24]:

Aα :=
∮

aα

w Bα :=
∮

bα

w Am :=
∮

am

w Bm :=
∮

bm

w (1.4)

for α = 1, . . . , g, m = 1, . . . , 2g − 3; the total number of these coordinates equals 6g − 6 i.e. coincides
with dimension of the space Qg(1, . . . , 1). According to (1.2), and due to anti-invariance of w under the
involution ∗, the integration of w over cycles (aα′ , bα′) does not give any new independent coordinates.

Let us introduce on the covering L̃ the coordinate z(P ) =
∫ P
R1

w; the coordinate z(P ) can be chosen
as a local parameter everywhere on L̃ outside of the ramification points Rs.

Dependence of the holomorphic differentials and the matrix of b-periods on the moduli of Riemann
surfaces is given by the Rauch variational formulas [28]. Here we prove analogs of the Rauch variational
formulas on the spaces Q(1, . . . , 1). For example, for the matrix of b-periods Bαβ of the surface L as
a function of coordinates (1.4) we have:

∂Bαβ

∂Aγ
= −

∮
bγ

π∗wαπ∗wβ

w
,

∂Bαβ

∂Bγ
=
∮

aγ

π∗wαπ∗wβ

w
(1.5)

∂Bαβ

∂Am
= −1

2

∮
bm

π∗wαπ∗wβ

w
,

∂Bαβ

∂Bm
=

1
2

∮
am

π∗wαπ∗wβ

w
(1.6)

where α, β, γ = 1, . . . , g, m = 1, . . . , 2g − 3, {wα}g
α=1 is the canonical basis of Abelian differentials on

L. (In what follows in similar formulas we shall often omit the operator π∗).
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Consider on the Riemann surface L the canonical meromorphic bidifferential

w(P,Q) = dP dQ log E(P,Q) (1.7)

where E(P,Q) is the prime-form. The bidifferential w(P,Q) has the following local behavior near the
diagonal P → Q:

w(P,Q) =
(

1
(x(P ) − x(Q))2

+
1
6
SB(x(P )) + o(1)

)
dx(P )dx(Q), (1.8)

where x(P ) is a local parameter. The term SB(x(P )) is a projective connection which is called the
Bergman projective connection. We recall that a projective connection S is a quantity transforming
as follows under the coordinate change z = z(t):

S(t) = S(z)
(

dz

dt

)2

+ {z, t},

where

{z, t} =
z′′′(t)z′(t) − 3

2(z′′(t))2

(z′(t))2

is the Schwarzian derivative (see, e. g., ([31])). The difference of two arbitrary projective connections
is a quadratic differential.

The tau-function τ(L,W ) on the stratum Qg(1, . . . , 1) is defined locally by the following system
of compatible equations:

∂ log τ(L,W )
∂Aα

=
1

12πi

∮
bα

SB − Sw

w
, α = 1, . . . , g; (1.9)

∂ log τ(L,W )
∂Bα

= − 1
12πi

∮
aα

SB − Sw

w
, α = 1, . . . , g; (1.10)

∂ log τ(L,W )
∂Am

=
1

24πi

∮
bm

SB − Sw

w
, m = 1, . . . , 2g − 3; (1.11)

∂ log τ(L,W )
∂Bm

= − 1
24πi

∮
am

SB − Sw

w
, m = 1, . . . , 2g − 3, (1.12)

where SB is the Bergman projective connection on L; Sw(ζ) :=
{∫ P

w, ζ
}

, the difference between two
projective connections SB and Sw is a meromorphic quadratic differential on L with poles at the zeros
of W .

In global terms, τ(L,W ) is a horizontal holomorphic section of certain line bundle over a given
connected component of the covering Q̂g(1, . . . , 1) of the space Qg(1, . . . , 1). The space Q̂g(1, . . . , 1)
consists of triples (L,W, {aα, bα, aα′ , bα′ , am, bm}), where (L,W ) ∈ Qg(1, . . . , 1) and {aα, bα, aα′ ,
bα′ , am, bm} is a basis of homologies on surface L̃ subject to conditions (1.2), (1.3).

The name “tau-function” for the function τ(L,W ) defined by (1.9 – 1.12) is inherited from the
Bergman tau-function on Hurwitz space ([16]) (or, equivalently, the tau-function of Hurwitz Frobenius
manifolds [7, 17]). Although at the moment we don’t know whether the function τ(L,W ) itself
can be interpreted as the Jimbo-Miwa tau-function of some isomonodromy problem (perhaps on a
Riemann surface of genus higher than zero), we still call it tau-function because its definition and role
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in computation of determinants of Laplacians are similar to those of the Bergman tau-function on
Hurwitz space.

The system (1.9) – 1.12) can be solved in terms of the multi-valued holomorphic g(1 − g)/2-
differential C(P ) on L given by the formula

C(P ) :=
1

W[w1, . . . , wg](P )

g∑
α1,...,αg=1

∂gθ(KP )
∂zα1

. . . ∂zag

wα1 . . . wαg (P ), (1.13)

where
W(P ) := det1≤α,β≤g||w(α−1)

β (P )||
is the Wronskian of holomorphic differentials at the point P ; KP is the vector of Riemann constants
corresponding to the basepoint P . Assume that the fundamental domain L̂ is chosen in such a way
that A((W )

)
+ 4KP = 0, where A is the Abel map with the basepoint P (this choice of fundamental

domain is always possible). Then, it is easy to verify that the expression

F := W (g−1)/4(P )C(P )
4g−4∏
s=1

E(1−g)/4(Rs, P )

does not depend on P ∈ L (being a holomorphic section of the trivial line bundle over L with respect
to P ); the prime-forms are evaluated at the ramification points Rs in the so-called distinguished [30]
local coordinates

λs(P ) :=
(∫ P

Rs

w

)2/3

. (1.14)

The tau-function on Qg(1, . . . , 1) i.e. the holomorphic solution of the system (1.9– 1.12) is given by
the following expression:

τ(L,W ) = F2/3
4g−4∏

s,r=1 s<r

[E(Rs, Rr)]1/24, (1.15)

where again the prime-forms are evaluated at Pm in the local parameters (1.14).
Introduce the Laplacian ∆ = 4ρ2(z, z̄)∂2

zz̄ corresponding to the flat singular metric ρ−2(z, z̄)d̂z =
ρ−2(z, z̄)dx dy = |w|2 or ρ−2(z, z̄)d̂z = |W | and acting in the trivial line bundle over the surface L.
(Since the metrics have conical singularities, the Laplacian is not essentially self-adjoint and one has
to choose a proper self-adjoint extension: here we deal with the Friedrichs extension.) The main goal
of this paper is to apply the formalism of tau-function on spaces of Abelian and quadratic differentials
to computation of the determinants of such Laplacians. There are several difficulties in the definition
and computation of these determinants implied by the conical singularities of the metrics |w|2 and
|W | at the zeros of w and zeros and poles of W .

First, these singularities cause a potential problem with the standard definition of the determinant
of the corresponding Laplacian through the operator zeta-function,

det∆ = exp{−ζ ′∆(0)} ;

to ensure that ζ∆(z) has no pole at z = 0 one needs to apply some additional information about the
asymptotics of the heat kernel on conical manifolds.
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The next potential difficulty appears in the study of dependence of det∆ on the point (L, w) (or
(L,W )). For smooth metrics dependence of the determinant of Laplacian on the moduli and the
metric is well-known (see [9]). The Polyakov formula ([26], see also [9], p. 62),

det ∆g1

det ∆g0
=

∫
L ρ−2

1 (z, z̄)d̂z∫
L ρ−2

0 (z, z̄)d̂z
exp

{
1
3π

∫
L

log
ρ1

ρ0
∂2

zz̄ log ρ1ρ0d̂z

}
, (1.16)

which shows how the determinant of Laplacian depends on the metric within a given conformal
class can be considered as a very special case of the general variational formulas from ([9]). Here
g1 := ρ−2

1 (z, z̄)d̂z and g0 := ρ−2
0 (z, z̄)d̂z are two smooth (ρ0,1 and ρ−1

0,1 ∈ C∞) metrics on L; ∆g0,1 =
4ρ2

0,1∂∂̄, the determinants of Laplacians are defined via standard ζ-function regularization (we adopt
the notation from [9]).

For metrics with conical singularities, to the best of our knowledge, the variational formulas were
absent. If one of the metrics in (1.16) has conical singularity, the right-hand side of Polyakov formula
does not make sense. In principal, one may choose some kind of regularization of the arising divergent
integral (this idea was widely used in string theory literature). It leads to an alternative definition
of the determinant of Laplacian in conical metrics: one may simply take for g0 some smooth metric
and define the determinant of Laplacian in conical metric g1 through formula (1.16) with properly
regularized right-hand side. Such a way was chosen in the work of Sonoda [29] (see also [5]) for
metrics given by the modulus square of an Abelian differential, which constitutes a partial case of
our considerations, or metrics given by the modulus square of a meromorphic 1-differential, when the
Laplacians have continuous spectrum and their determinants have no rigorous definition. In [29] the
smooth reference metric g0 is chosen to be the Arakelov metric. Since the determinant of Laplacian
in Arakelov metric is known (it was calculated in [6] in functional integral approach; the expression
found in [6] was then rigorously proved in [9]), such an approach leads to a heuristic formula for
det ∆g1. This result heavily depends on the choice of the regularization procedure. The naive choice
of the regularization leads to dependence of det ∆g1 on the reference metric g0 which is obviously
unsatisfactory. More sophisticated (and used in [29] and [5]) procedure of regularization eliminates
the dependence on g0 but provides an expression which behaves as a tensor with respect to local
coordinates at the zeros of the differential w and, therefore, also can not be considered as completely
satisfactory. In any case it is unclear whether this heuristic formula for det∆g1 for singular g1 has
something to do with the determinant of Laplacian det∆g1 defined via the spectrum of the operator
∆g1 .

To derive rigorous formulas for the determinants of Laplacians in the metrics |W | and |w|2 we find
analogs of the variational formulas for det∆ in smooth metrics for the case of flat metrics with conical
singularities. As an essential intermediate step we extend the machinery of analytic surgery due to
Burghelea, Friedlander and Kappeler ([3]), proving an analog of the analytic surgery formula for flat
surfaces with conical singularities. Then it turns out that variations of log det ∆|W | and log |τ(L, w)|2
with respect to local coordinates in Qg(1, . . . , 1) coincide up to a simple additional term; this leads to
the following explicit formula:

det ∆|W |

Vol(L, |W |) det�B
= C|τ(L,W )|2 , (1.17)

where Vol(L, |W |) :=
∫
L |W | is the area of L in the metric |W |; B is the matrix of b-periods of L;

τ(L,W ) is the tau-function on the space Qg(1, . . . , 1); C is a constant (which in general case can be
different for different connected components of a given startum of Qg).
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The formula (1.17) can be considered as a natural higher genus generalization of two previously
known results in genera 1 and 0. The first one is the famous Kronecker formula for the determinant
of Laplacian on elliptic surface in flat nonsingular metric |dz|2:

det∆|dz|2 = C|�σ|2|η(σ)|4 ,

where σ is the period of elliptic surface and η is the Dedekind eta-function (see [27]). The second is the
following expression for the determinant of the Laplacian ∆|W | on the Riemann sphere corresponding
to the flat singular metric |W | =

(∏4
j=1 |z − aj|−1

)
|dz|2:

det∆|W | = C
∏
i<j

|ai − aj|1/3

∫ ∫
C

|dz|2
|z − a1||z − a2||z − a3||z − a4| , (1.18)

which appeared in the recent preprint ([1]).
From the explicit expression (1.17) one can derive a nice analog of Polyakov’s formula (1.16) for

flat metrics. Consider two holomorphic quadratic differentials with simple zeros W and W̃ ; denote
the zeros of W by Rs, and the zeros of W̃ by R̃s. Then

det∆|W |

det∆|W̃ | = C
Vol(L, |W |)
Vol(L, |W̃ |)

4g−4∏
s=1

∣∣∣W (R̃s)
W̃ (Rs)

∣∣∣1/24
(1.19)

where C is a constant which might be not equal to 1 if the points (L,W ) and (L, W̃ ) belong to
different connected components of the space Q(1, . . . , 1). Here W̃ (Rs) = W̃

(dλs)2

∣∣∣
λs=0

, where λs(P ) =(∫ P
Rs

√
W
)2/3

is the distinguished local parameter near the zero Rs of the quadratic differential W .

Analogously, W (R̃s) = W
(dλ̃s)2

∣∣∣
λ̃s=0

, where λ̃s(P ) =
(∫ P

R̃s

√
W̃
)2/3

is the distinguished local parameter

near the zero R̃s of W̃ .
The paper is organized as follows. In Section 2 we introduce and compute tau-functions on the

space of Abelian differentials over Riemann surfaces. In particular, here we derive variational formulas
of Rauch type on the spaces of Abelian differentials. In section 3 similar results are presented for spaces
of quadratic differentials with at most simple poles. In Section 4 we derive variational formulas for
determinants of Laplace operators in flat metrics with conical singularities using the technique of
analytical surgery. Comparison of variational formulas for the tau-functions with variational formulas
for the determinant of Laplacian, together with explicit computation of the tau-functions, leads to
the explicit formulas for the determinants. (The formulas (1.17) and (1.15) are their specifications for
the case of the stratum Qg(1, . . . , 1)) ). This is done in Section 5. Finally, in the same Section 5 we
prove an analog of the Polyakov formula for the determinants of Laplacians in Strebel metrics of finite
volume (choosing the generic situation of the differentials with simple zeros).

2 Tau-function on spaces of Abelian differentials over Riemann sur-
faces

2.1 Spaces of Abelian differentials

Following ([19]), define the space Hg as the moduli space of pairs (L, w), where L is a compact surface
of genus g, and w is a holomorphic 1-differential on L. This space is stratified via the multiplicities
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of zeros of w. Denote by Hg(k1, . . . , kM ) the stratum of Hg, consisting of differentials w which have
M zeros on L of multiplicities (k1, . . . , kM ). Denote the zeros of w by P1, . . . , PM , so the divisor of
differential w is given by (w) =

∑M
m=1 kmPm. Let us choose a canonical basic of cycles (aα, bα) on

the Riemann surface L (the basis of “absolute” homologies) and the homology classes (on L \ (w)) of
paths lm connecting the zero P1 with other zeros Pm of w (the ”relative” homologies), m = 2, . . . ,M .
Then the local coordinates on Hg(k1, . . . , kM ) can be chosen as follows ([20]):

Aα :=
∮

aα

w , Bα :=
∮

bα

w , zm :=
∫

lm

w , α = 1, . . . , g; m = 2, . . . ,M . (2.1)

2.2 Variational formulas on Hg(k1, . . . , kM)

Here we shall prove variational formulas, which describe dependence of the normalized holomorphic
differentials, the matrix of b-periods, the canonical meromorphic bidifferential and the Bergman pro-
jective connection on L on coordinates (2.1) on the spaces Hg(k1, . . . , kM ).

Denote by wa(P ) the basis of holomorphic 1-forms on L normalized by
∫
aα

wβ = δαβ.

Theorem 1 The holomorphic normalized differentials wα depend as follows on Aα, Bα and zk:

∂wα(P )
∂Aβ

∣∣∣
z(P )

= − 1
2πi

∮
bβ

wα(Q)w(P,Q)
w(Q)

(2.2)

∂wα(P )
∂Bβ

∣∣∣
z(P )

=
1

2πi

∮
aβ

wα(Q)w(P,Q)
w(Q)

(2.3)

∂wα(P )
∂zm

∣∣∣
z(P )

= res|Q=Pm

wα(Q)w(P,Q)
w(Q)

(2.4)

where we assume that z(P ) =
∫ P
P1

is kept constant under differentiation with respect to Aα, Bα and
zm.

Proof. Let us write down the differential wα (outside of the points Pm) with respect to the local
parameter z(P ): wα(P ) = fα(z)dz. Then the variational formula (2.4) is a complete analog of the
formula for the derivatives of the normalized holomorphic differentials on a branched covering with
respect to a branch point of order km (see formula (2.19) of [16]). Indeed, in a neighborhood of Pm,
z(P ) is just a function on L with critical value zm (zm is the analog of branch point λm in [16]).

For example, let us prove (2.3). Consider some point P0 ∈ L such that z0 := z(P0) is independent
of the moduli {Aβ , Bβ , zm}. Let us dissect the surface L along the basic cycles started at P0 to get
the fundamental polygon L̂. Denote the images of the different shores of the basic cycles in z-plane
by a−β , a+

β , b−β and b+
β . The endpoints of these contours coincide with the points z0, z0 + Aβ , z0 + Bβ

and z0 + Aβ + Bβ. Let us write down the differential wα in terms of the local parameter z as follows:
wα(P ) = fα(z)dz, where z = z(P ).

The function fα(z) is the same on the different shores of the cuts a−β and a+
β i.e. fα(z+Bβ) = fα(z)

for z ∈ a−β . Differentiating this relation with respect to Bβ, we get

∂fα

∂Bβ
(z + Bβ) =

∂fα

∂Bβ
(z) − ∂fα

∂z
(z) ;
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obviously, this is the only discontinuity of the differential ∂wα(P )
∂Bβ

|z(P ) on L. Therefore, the differential
∂wα(P )

∂Bβ
|z(P ) has all vanishing a-periods and the jump −∂fα

∂z (z(P ))dz(P ) on the contour a−β ; outside
of the cycle aβ this differential is holomorphic (in other words, it solves the scalar Riemann-Hilbert
problem on the contour aβ). Such a differential can be easily written (see, e.g., [35]) in terms of the
canonical bidifferential w(P,Q) as a contour integral over aβ in the form (2.3) (in terms of coordinate
z(P ) we have w(Q) = dz(Q)).

The formula (2.2) can be proved in the same way; the only difference is the change of sign which
appears due to the asymmetry between the cycles aβ and bβ imposed by their intersection index
aβ ◦ bβ = −bβ ◦ aβ = 1.

�
Denote by B the matrix of b-periods of the surface L: Bαβ :=

∮
bα

wβ. Integrating the variational
formulas (2.2), (2.3),(2.4) along the basic b-cycles we get the following

Corollary 1 The matrix of b-periods depends as follows on the coordinates on a given stratum of the
space of holomorphic 1-differentials:

∂Bαβ

∂Aγ
= −

∮
bγ

wawb

w

∂Bαβ

∂Bγ
=
∮

aγ

wawb

w
(2.5)

∂Bαβ

∂zm
= 2πi res|Pm

wαwβ

w
(2.6)

for α, β, γ = 1, . . . , g, m = 2, . . . ,M .

We shall also use the variational formula for the canonical bidifferential w(P,Q) given by the
following

Theorem 2 The bidifferential w(P,Q) depends on Aα, Bα and zm as follows:

∂w(P,Q)
∂Aβ

= − 1
2πi

∮
bβ

w(P,R)w(Q,R)
w(R)

(2.7)

∂w(P,Q)
∂Bβ

=
1

2πi

∮
aβ

w(P,R)w(Q,R)
w(R)

(2.8)

∂w(P,Q)
∂zm

= −res|R=Pm

w(P,R)w(Q,R)
w(R)

(2.9)

for α, β = 1, . . . , g, m = 2, . . . ,M , where we assume that z(P ) and z(Q) are kept constant under
differentiation.

The proof of this theorem is completely parallel to the proof of Theorem 1.
Denote by Sw(ζ(P )) the Schwarzian derivative

{∫ P
w, ζ(P )

}
. Then the difference of two projective

connections SB − Sw is a (meromorphic) quadratic differential on L; its dependence on the moduli is
given by the following

Corollary 2 The variational formulas take place:

∂

∂Aα
(SB(P ) − Sw(P ))

∣∣∣
z(P )

=
3
πi

∮
bβ

w2(P,R)
w(R)

(2.10)
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∂

∂Bα
(SB(P ) − Sw(P ))

∣∣∣
z(P )

= − 3
πi

∮
aβ

w2(P,R)
w(R)

(2.11)

∂

∂zm
(SB(P ) − Sw(P ))

∣∣∣
z(P )

= −1
6
res|R=Pm

w2(P,R)
w(R)

(2.12)

Proof. The formulas (2.10), (2.11), (2.12) follow from the variational formulas for the bidifferential
w(P,Q) (2.7), (2.8) and (2.9) in the limit P → Q if we write down these formulas with respect to the
local coordinate z(P ) (in this local coordinate the projective connection Sw vanishes) and take into
account the definition (1.8) of the Bergman projective connection.

2.3 Basic Beltrami differentials for Hg(k1, . . . , kM)

Here we construct the Beltrami differentials which correspond to the variations of the conformal
structure of the surface L under variations of the coordinates on the spaces of Abelian differentials.

Let a pair (L, w) belong to the space Hg(k1, . . . , kM ). Consider a thin strip Πα on the surface
L around basic cycle aα (one considers smooth smooth curve representing the homology class); one
part of the oriented boundary of Πα is homologically equivalent to aα; another part is homologically
equivalent to −aα. Assume that this strip is thin enough not to contain the zeros of w. Let χ be
a function from C∞(L) which is equal to 1 in a neighborhood of the cycle aα and vanishes in a
neighborhood of −aα. Consider a (0, 1)-form σ which coincides with ∂̄χ in the strip Πα and vanishes
outside Πα.

Introduce the Beltrami differential µBα from C∞ by

µBα =
σ

w
. (2.13)

Using the Stokes theorem, it is easy to see that∫
L

µBαq =
∮

aα

q

w
(2.14)

for any meromorphic quadratic differential q which is holomorphic outside of the zeroes of w.
Therefore, due to Corollary 1, one has the relation

∂F

∂Bα
= δµBα

F

for any differentiable function F on the Teichmüller space Tg. In the same manner we construct
Beltrami differentials µAα and µzm from C∞ responsible for the deformation of the complex structure
on the surface L under infinitesimal shifts of coordinates Aα and zm. Note that the Beltrami differential
µzm can be chosen to be supported in an annulus centered at the point Pm:

Am = {r1 ≤ |xm| ≤ r2} (2.15)

with some r1, r2 > 0. One has ∫
L

µzmW = 2πires|Pm

W

w
(2.16)

for any meromorphic quadratic differential W with (W ) ≥ −2P1 − · · · − 2PM . We call the Beltrami
differentials µAα , µBα and µzm basic.
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2.4 Definition of the Bergman tau-function

Definition 1 The Bergman tau-function τ(L, w) on the stratum Hg(k1, . . . , kM ) of the space of Abelian
differentials is locally defined by the following system of equations:

∂ log τ(L, w)
∂Aα

=
1

12πi

∮
bα

SB − Sw

w
, α = 1, . . . , g; (2.17)

∂ log τ(L, w)
∂Bα

= − 1
12πi

∮
aα

SB − Sw

w
, α = 1, . . . , g; (2.18)

∂ log τ(L, w)
∂zm

= −1
6
res

∣∣∣
Pm

SB − Sw

w
, m = 2, . . . M . (2.19)

where SB is the Bergman projective connection; Sw(ζ) :=
{∫ P

w, ζ
}
; the difference between two

projective connections SB and Sw is a meromorphic quadratic differential with poles at the zeros of w.

To justify this definition one needs to prove the following proposition.

Proposition 1 The system of equations (2.17), (2.18), (2.19) is compatible.

Proof. Denote the right-hand sides of equations (2.17-2.19) by HAα , HBα and Hzm respectively
(these are analogs of isomonodromic Hamiltonians from [7], [17]).

We have to show that ∂HAα

∂Bβ
= ∂H

Bβ

∂Aα
, ∂Hzm

∂Aα
= ∂HAα

∂zm
, etc. Most of these equations immediately

follow from the variational formulas (2.7), (2.8), (2.9) and the symmetry of the bidifferential w(P,Q).
For example, to prove that

∂HAα

∂Aβ
=

∂HAβ

∂Aα
(2.20)

for α 	= β we write down the left-hand side as

∂HAα

∂Aβ
= − 1

4π2

∮
aα

∮
aβ

w2(P,Q)
w(P )w(Q)

(2.21)

which is obviously symmetric with respect to interchange of Aα and Aβ since the cycles aα and aβ

always can be chosen non-intersecting. Similarly, one can prove all other symmetry relations where
the integration contours don’t intersect (interpreting the residue at Pm in terms of the integral over a
small contour encircling Pm).

The only equations which require interchange of the order of integration over intersecting cycles
are

∂HAα

∂Bα
=

∂HBα

∂Aα
. (2.22)

To prove (2.22) we denote the intersection point of aα and bα by Qα; then we have:

∂HAα

∂Bα
≡ 1

12πi

∂

∂Bα

{∮
bα

SB − Sw

w

}
=

1
12πi

SB − Sw

w
(Qa) − 1

4π2

∮
bα

∮
aα

w2(P,Q)
w(P )w(Q)

(2.23)

where the value of 1-form 1
w (SB − Sw) at the point Qα is computed in coordinate the z(P ). The

additional term in (2.23) arises from dependence of the cycle bα in the z-plane on Bα (the difference
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between the initial and endpoints of the cycle bα in z-plane is exactly Bα), which has to be taken into
account in the process of differentiation.

In the same way we find that

∂HBα

∂Aα
≡ − 1

12πi

∂

∂Aα

{∮
aα

SB − Sw

w

}
= − 1

12πi

SB − Sw

w
(Qa) − 1

4π2

∮
aα

∮
bα

w2(P,Q)
w(P )w(Q)

(2.24)

(note the change of the sign in front of the term 1
w (SB − Sw)(Qα) in (2.24) comparing with (2.23)).

Interchanging the order of integration in, say, (2.23) we come to (2.24) after elementary analysis of
the behavior of the integrals in a neighborhood of the singular point Qα (one should carefully account
the interplay between different branches of logarithm).

�

Remark 1 The right-hand side of formulas (2.17), (2.18) and (2.19) depends not only on the choice
of the canonical basis of absolute homologies on the surface L, but also on mutual positions of the
basic cycles and the points of the divisor (w), i.e. it depends on the choice of both absolute and
relative homology basis on the punctured Riemann surface L \ (w). This means that the proper
global definition of the tau-function should be as a horizontal section of some (flat) line bundle over
the covering Ĥg(k1, . . . , kM ) of the space Hg(k1, . . . , kM ). Here Ĥg(k1, . . . , kM ) is the space of triples
(L, w, {aα, bα, lm}g

α=1), where (L, w) ∈ Hg(k1, . . . , kM ); {aα, bα}g
α=1 is a canonical basis of cycles on L;

{lm}M
m=2 form a basis of relative homologies on L \ (w).

2.5 Differential C and its variation

Dissecting the surface L along the basic cycles, we get the fundamental polygon L̂. Define the following
g(1 − g)/2-differential on L̂ which has multipliers 1 and exp[−πi(g − 1)2Bαα − 2πi(g − 1)KP

α ] along
the cycles aα and bα respectively:

C(P ) :=
1

W[w1, . . . , wg](P )

g∑
α1,...,αg=1

∂gθ(KP )
∂zα1

. . . ∂zag

wα1 . . . wαg (P ), (2.25)

where
W(P ) = det1≤α,β≤g||w(α−1)

β (P )||
is the Wronskian of holomorphic differentials at the point P ; KP is the vector of Riemann constants
corresponding to the basepoint P .

We shall also make use of the following multi-valued differential of two variables s(P,Q) (P,Q ∈ L̂)
built from C(P ):

s(P,Q) :=
(C(P )
C(Q)

)1/(1−g)

. (2.26)

which can be also written as follows:

s(P,Q) = exp

{
−

g∑
α=1

∮
aα

wα(R) log
E(R,P )
E(R,Q)

}
, (2.27)

where E(R,P ) is the prime-form (see [9]). The right-hand side of (2.27) is a non-vanishing holomorphic
g/2-differential on L̂ with respect to P and a non-vanishing holomorphic (−g/2)-differential with
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respect to Q. Being lifted on the universal covering of L it has the automorphic factors exp[(g −
1)πiBαα + 2πiKP

α ] with respect to P and the multiplier exp[(1 − g)πiBαα − 2πiKQ
α ] with respect to

Q along the cycle bα.
For arbitrary two points P0, Q0 ∈ L we introduce the following multi-valued 1-differential

ΩP0(P ) = s2(P,Q0)E(P,P0)2g−2(w(Q0))g(w(P0))g−1 (2.28)

(the Q0-dependence of the right-hand side of (2.28) plays no important role and is not indicated).
The differential ΩP0(P ) has automorphy factors 1 and exp(4πiKP0

α ) along the basic cycles aα and
bα respectively. The only zero of the 1-form ΩP0 on L̂ is P0; its multiplicity equals 2g − 2.

Definition 2 The projective connection SP
Fay on L given by the Schwarzian derivative

SP
Fay(x(Q)) =

{∫ Q

ΩP , x(Q)
}

, (2.29)

where x(Q) is a local coordinate on L, is called the Fay projective connection (more precisely, we have
here a family of projective connections parametrized by point P ∈ L).

The following variational formula for C was proved (in a slightly different form) in ([9], p.58,
formula (3.25)).

Theorem 3 The variation of the differential C under the variation of the conformal structure of the
Riemann surface L defined by a smooth Beltrami differential µ is given by the following expression:

δµ log{Cw
g(g−1)

2 (P )}
∣∣∣
z(P )

= − 1
8πi

v.p.

∫
L

µ{SB − SP
Fay}, (2.30)

where SB is the Bergman projective connection; SP
Fay is the projective connection (2.29); SB − SP

Fay

is a meromorphic quadratic differential on L. The coordinate z(P ) =
∫ P
P1

w is kept fixed under differ-
entiation in (2.30).

The product of C by a power of w in the left-hand side of (2.30) is a scalar function (i.e. it has
zero tensor weight) on L̂, as well as the right-hand side.

Substituting into (2.30) the basic Beltrami differentials µAα , µAα and µCm introduced in section
2.3, we get the following expressions for the derivatives of C(P ) with respect to the coordinates on the
space of holomorphic differentials:

Corollary 3 The following variational formulas for differential C(P ) on the space H(k1, . . . , kM ) take
place:

∂

∂Aα
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

=
1

8πi

∮
bα

1
w

(
SB − SP

Fay

)
(2.31)

∂

∂Bα
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= − 1
8πi

∮
aα

1
w

(
SB − SP

Fay

)
(2.32)

∂

∂Cm
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= −1
4
res|Pm

{
1
w

(
SB − SP

Fay

)}
, (2.33)

where the local parameter z(P ) is kept fixed under differentiation.
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2.6 Dirichlet integral: variational formulas and holomorphic factorization

Let a pair (L, w) belong to the space Hg(k1, . . . , kM ). Recall that the surface L can be provided
with the system of local parameters defined by the holomorphic differential w. Outside the zeroes
P1, . . . , PM of w we use the local parameter z, defined by the relation z(P ) =

∫ P
P1

w. We set zm = z(Pm)
as before. In a small neighborhood of the zero Pm of multiplicity km we use the local parameter xm

such that w = (km + 1)xkm
m dxm or, equivalently, xm(P ) = (z(P ) − zm)1/(km+1), which can be also

written as z(P ) = zm + xkm+1
m .

Introduce the real-valued function φ by the equation

φ(z, z̄) = log
∣∣∣∣ΩP0

w

∣∣∣∣2 . (2.34)

for a fixed P0 ∈ L. The function φ is defined outside the zeros Pm of the differential w. Analogously,
in neighborhoods of the zeros Pm define M functions φint(xm, x̄m) by

eφint(xm,x̄m)|dxm|2 = |ΩP0|2.
Near the zeroes Pm we have the following asymptotics

|φz(z, z̄)|2 =
(

km

km + 1

)2

|z − zm|−2 + O
(
|z − zm|−2+1/(km+1)

)
, as P → Pm . (2.35)

Near the point P0 there is the asymptotics

|φz(z, z̄)|2 = 4(g − 1)2|z(P ) − z(P0)|−2 + O
(|z(P ) − z(P0)|−1

)
, as P → P0. (2.36)

Let ρ > 0, set

Lρ = L \ [∪M
m=1{P ∈ L : |z(P ) − zm| ≤ ρ} ∪ {z ∈ L : |z(P ) − z(P0)| ≤ ρ}] .

Define the regularized Dirichlet integral D by the equality

D =
1
π

lim
ρ→0

{∫
Lρ

|φz|2|dz|2 + 2π

(
M∑

m=1

k2
m

km + 1
+ 4(g − 1)2

)
log ρ

}
. (2.37)

Due to asymptotics (2.35) and (2.36) the limit in the right-hand side of (2.37) is finite.

2.6.1 Holomorphic factorization of the Dirichlet integral

First we recall that in order to make the z-coordinate z(P ) =
∫ P
P1

w single-valued one should fix a
fundamental cell of the surface L, cutting L along some cuts homotopic to the basic cycles {aα, bα};
we shall denote these cuts by the same letters {aα, bα}.

An alternative system of cuts on L (we call them {ãα, b̃α}) can be introduced to make the mul-
tiplicative differential ΩP0 and Fay’s projective connection single-valued. We shall assume that in
homologies aα = ãα and bα = b̃α.

For technical reasons it is convenient to keep these two systems of cuts different (although defining
the same basis of the homology group). In further calculations some auxiliar functions will have
jumps which arise either due to the jumps of the z-coordinate or due to the nonsinglevaluedness of
the differential ΩP0. To trace these jumps it is easier to analyse them separately.
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Introduce also the following notation:

ΩP0(Pm) =
ΩP0(xm)

dxm

∣∣∣
xm=0

, m = 1, . . . ,M,

where xm is the local parameter near the zero Pm. Analogously, let

σ(P,Q) = s(P,Q)w(P )−g/2w(Q)g/2. (2.38)

Theorem 4 The regularized Dirichlet integral D admits the following representation:

D = ln

∣∣∣∣∣σ4−4g(P0, Q0)
M∏

m=1

{
ΩPo(Pm)

}km exp{4πi〈r,KP0〉}
∣∣∣∣∣
2

+
M∑

m=1

km log(km + 1), (2.39)

where vector r has integer components given by

2πrα = Var
∣∣∣
ãα

{
Arg

ΩP0(P )
w(P )

}
.

Proof. By the Stokes theorem∫
Lρ

|φz |2d̂z =
1
2i

{
M∑

m=1

∮
Pm

+
∮

P0

+
g∑

α=1

∫
ã+

α∪ã−
α

}
φzφdz,

where
∮
Pm

and
∮
P0

are integrals over circles of radius ρ centred at Pm and P0, ã+
α and ã−α are different

shores of the cut ãα having opposite orientation. We have

1
2i

∫
ã+

α∪ã−
α

φzφdz = πrα log
∣∣exp 4πiKP0

α

∣∣2 . (2.40)

One gets also

1
2i

∮
Pm

φzφdz =
1
2i

∮
|xm|=ρ1/(km+1)

(
1

km + 1
φint

xm
x−km

m +
(

1
km + 1

− 1
)

x−km−1
m

)
(φint − 2km log |xm| − 2 log(km + 1))(km + 1)xkm

m dxm =

= πkmφint(xm)|xm=0 − k2
m

km + 1
2π log ρ + 2πkm log(km + 1) + o(1)

and
1
2i

∮
P0

φzφdz =
1
2i

∮
|z−z(P0)|=ρ

log
∣∣σ2(P0, Q0)(z − z(P0))2g−2 {1 + O(z − z(P0))}

∣∣2
- (

2g − 2
z − z(P0)

+ O(1)
)

dz = −π log
∣∣σ4g−4(P0, Q0)

∣∣2 − 8π(g − 1)2 log ρ + o(1)

as ρ → 0, which implies (2.39). �
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2.6.2 Variation of the Dirichlet integral

The following proposition together with Theorem 4 provide an explicit expression for the Bergman
tau-function on the space of Abelian differentials.

Proposition 2 Let the z-coordinate, z(P0) =
∫ P0

P1
w, of the point P0 entering in the definition of the

multiplicative differential Ω (and, hence, in the definition of Dirichlet integral (2.37)) be kept constant
when the moduli A1, . . . , Ag, B1, . . . , Bg, z2, . . . , zM vary. Then Dirichlet integral (2.37) satisfies the
following system of equations:

∂D
∂Aα

= − 1
πi

∮
bα

SP0
Fay − Sw

w
, α = 1, . . . , g; (2.41)

∂D
∂Bα

=
1
πi

∮
aα

SP0
Fay − Sw

w
, α = 1, . . . , g; (2.42)

∂D
∂zm

= 2res
∣∣∣
Pm

SP0
Fay − Sw

w
, m = 2, . . . M . (2.43)

Proof. Similar statements (about the derivatives of some Dirichlet integral on a branched covering
with respect to branch points of this covering) were proved in ([16]) and ([18]). As in ([16], [18])
we start with the following standard lemma. A similar lemma was exploited in [33] in order to
evaluate the derivatives of the Liouville integral with respect to the moduli of (noncompact) Riemann
surfaces of genus zero. The lemma from ([33]) is equivalent to the Ahlfors lemma from Teichmüller
theory, whereas our lemma is of more elementary nature, being essentially a simple consequence of
”thermodynamic” identity (2.58).

Lemma 1 Let L̂ be a fundamental polygon defined by the system of cuts {ãα, b̃α}. Define the map
U : L̂ � P �→ ξ ∈ C by

ξ = U(P ) =
∫ P

P1

Ω .

Then

• The following relations hold true:

∂φ

∂zm
+ FZ

m

∂φ

∂z
+

∂FZ
m

∂z
= 0 , m = 2, . . . ,M ; (2.44)

∂φ

∂Aα
+ FA

α

∂φ

∂z
+

∂FA
α

∂z
= 0 , α = 1, . . . , g ; (2.45)

∂φ

∂Bα
+ FB

α

∂φ

∂z
+

∂FB
α

∂z
= 0 , α = 1, . . . , g , (2.46)

where
FZ

m = −Uzm

Uz
, FA

α = −UAα

Uz
, FB

α = −UBα

Uz
. (2.47)
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• Fix some number m, 2 ≤ m ≤ M . Near the point Pn denote ΦZ
n (xn) := FZ

m(zn + xdn
n ); then

ΦZ
n (0) = δn

m ;
(

d

dxn

)k

ΦZ
n (0) = 0, k = 1, . . . , kn − 1 , (2.48)

where δn
m is the Kronecker symbol. Denote ΦA

α (xn) := FA
α (zn+xkn+1

n ), ΦB
α (xn) := FB

α (zn+xkn+1
n )

near Pn for α = 1, . . . , g.. Then(
d

dxn

)k

ΦA
α (0) =

(
d

dxn

)k

ΦB
α (0) = 0, k = 0, . . . , kn − 1 . (2.49)

• Let P+, P− be points on the different shores of the cut aα which are glued to a single point of
the surface L. Then

FB
α (P+) − FB

α (P−) = −1, (2.50)

FB
β (P+) − FB

β (P−) = 0, for β 	= α, β = 1, . . . , g , (2.51)

and
FA

β (P+) − FA
β (P−) = 0, β = 1, . . . , g , (2.52)

FZ
n (P+) − FZ

n (P−) = 0, n = 2, . . . ,M . (2.53)

• Let Q+, Q− be points on different shores of the cut bα which are glued together to a single point
of the surface L. Then

FA
α (Q+) − FA

α (Q−) = 1, (2.54)

FA
β (Q+) − FA

β (Q−) = 0, for β 	= α, β = 1, . . . , g , (2.55)

and
FB

β (Q+) − FB
β (Q−) = 0, β = 1, . . . , g , (2.56)

FZ
n (Q+) − FZ

n (Q−) = 0, n = 2, . . . ,M . (2.57)

Proof. To get equations (2.44–2.47) one has to differentiate the relation φ(z, z̄) = log |U ′(z)|2 with
respect to moduli {zm, Aα, Bα}. Due to holomorphic dependence of the map U on the moduli, the
result follows immediately. To get other statements of the lemma set R = z ◦ U−1; z = R(ξ). Writing
the moduli dependence explicitly, we have

U ({zm, Aα, Bα};R({zm, Aα, Bα}; ξ)) = ξ. (2.58)

Differentiating this identity with respect to moduli and using (2.47), we get the relations

FZ
m =

∂R
∂zm

, FA
α =

∂R
∂Aα

, FB
α =

∂R
∂Bα

. (2.59)

To prove (2.48) note that R(ξ) = zm + (ξ − ξ(Pm))km+1f(ξ; {zm, Aα, Bα}), where function f is holo-
morphic with respect to ξ. Now (2.48) follows from the first relation (2.59). The remaining statements
of the lemma also follow from (2.59).
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Corollary 4 The following six 1-forms are exact:

(φzφ)zmdz − {FZ
m|φz|2dz̄ + (FZ

m)zφz̄dz̄},

(φzφ)Aαdz − {FA
α |φz|2dz̄ + (FA

α )zφz̄dz̄},
(φzφ)Bαdz − {FB

α |φz|2dz̄ + (FB
α )zφz̄dz̄},

and
{FZ

m|φz|2dz̄ − (FZ
m)zφzdz + (FZ

m)zφz̄dz̄} − {FZ
m(2φzz − φ2

z)dz + φφzzmdz} ,

{FA
α |φz|2dz̄ − (FA

α )zφzdz + (FA
α )zφz̄dz̄} − {FA

α (2φzz − φ2
z)dz + φφzAαdz} ,

{FB
α |φz|2dz̄ − (FB

α )zφzdz + (FB
α )zφz̄dz̄} − {FB

α (2φzz − φ2
z)dz + φφzBαdz} .

The proof can be obtained by a straightforward calculation.
Now we are able to proceed with the proof of proposition 2. Consider equation (2.41). Recall that

we assume that the coordinate z(P0) :=
∫ P0

P1
w of the point P0 does not change under the variation of

the moduli A1, . . . , Ag, B1, . . . , Bg, z2, . . . , zM . Setting Iρ :=
∫
Lρ

|φz|2|dz|2, we get

∂Iρ

∂Aα
=

1
2i

{∮
P0

+
M∑

m=1

∮
Pm

}
(φzφ)Aαdz +

1
2i

g∑
β=1

∫
ã+

β ∪ã−
β

(φzφ)Aαdz. (2.60)

Using Lemma 1 and its corollary, the holomorphy of (FA
α )zφz and the relation (φzφ)zdz = d(φzφ) −

φzφz̄dz̄, we rewrite the right-hand side of (2.60) as

1
2i

({∮
P0

+
M∑

m=1

∮
Pm

}
{FA

α |φz|2dz̄ − (FA
α )zφzdz + (FA

α )zφz̄dz̄}−

−
g∑

β=1

[∫
ã+

β ∪ã−
β

+
∫

b̃+β ∪b̃−β

]
(FA

α )zφzdz +
g∑

β=1

∫
ã+

β ∪ã−
β

(φzφ)Aαdz

⎞⎠ , (2.61)

where we have used the fact that (FA
α )z has no jumps on the cuts aβ and bβ , β = 1, . . . , g. By means

of asymptotical expansions of the integrands at the zeroes Pm of w (Lemma 1 plays here a central
role; cf. the proof of Theorem 4 in [16]) one gets the relation

1
2i

{
M∑

m=1

∮
Pm

}
{FA

α |φz|2dz̄ − (FA
α )zφzdz + (FA

α )zφz̄dz̄} (2.62)

= −π
M∑

m=1

1
km!

(
1 − 1

(km + 1)2

)(
d

dxm

)km+1

ΦA
α (xm)

∣∣∣
xm=0

+ o(1)

as ρ → 0. By Corollary 4 we have

1
2i

∮
P0

FA
α |φz |2dz̄ − (FA

α )zφzdz + (FA
α )zφz̄dz̄ =

1
2i

∮
P0

FA
α (2φzz − (φz)2)dz + o(1) . (2.63)
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The Cauchy theorem and asymptotical expansions at Pm imply that

0 =
1
2i

⎧⎨⎩
M∑

m=1

∮
Pm

+
∮

P0

+
g∑

β=1

[∫
ã+

β ∪ã−
β

+
∫

b̃+β ∪b̃−β

]
+

g∑
β=1

[∫
a+

β ∪a−
β

+
∫

b+β ∪b−β

]⎫⎬⎭FA
α (2φzz − (φz)2)dz

(2.64)

= −π

M∑
m=1

1
km!

(
1 − 1

(km + 1)2

)(
d

dxm

)km+1

ΦA
α (xm)

∣∣∣
xm=0

+
1
2i

⎧⎨⎩
∮

P0

+
g∑

β=1

[∫
ã+

β ∪ã−
β

+
∫

b̃+β ∪b̃−β

]
+

g∑
β=1

[∫
a+

β ∪a−
β

+
∫

b+β ∪b−β

]⎫⎬⎭FA
α (2φzz − (φz)2)dz + o(1)

(cf. [16], Lemma 6; we emphasize that generically FA
α has jumps on the a and b cuts as well on ã and

b̃-cuts). Using (2.62) and the information about the jumps of FA
α on a- and b-cuts given in Lemma 1,

we get the equality
1
2i

M∑
m=1

∮
Pm

{FA
α |φz|2dz̄ − (FA

α )zφzdz + (FA
α )zφz̄dz̄} =

= − 1
2i

∮
P0

FA
α (2φzz − (φz)2)dz − 1

i

∮
bα

{φzz − 1
2
(φz)2}dz− (2.65)

− 1
2i

g∑
β=1

[∫
ã+

β ∪ã−
β

+
∫

b̃+β ∪b̃−β

]
FA

α (2φzz − (φz)2)dz + o(1).

It remains to note that due to Corollary (4),∫
ã+

β ∪ã−
β

(φzφ)Aαdz =
∫

ã+
β ∪ã−

β

(φzφ)Aαdz =

=
∫

ã+
β ∪ã−

β

[(2φzz − (φz)2)FA
α + (FA

α )zφz]dz (2.66)

and the corresponding integrals over pairs of different shores of b̃-cuts vanish. Now substituting
(2.65),(2.63) and (2.66) into (2.61), we get the relation

∂Iρ

∂Aα
= −1

i

∮
bα

{φzz − 1
2
(φz)2}dz + o(1). (2.67)

To get (2.41) from (2.67) one needs to use the classical relation

φzz − 1
2
(φz)2 =

{∫ P

ΩP0, z

}
= SP0

Fay(z)

and take into account that all o(1) above are uniform with respect to the moduli belonging to a
compact neighbourhood of the initial point in moduli space.

Relations (2.42) and (2.43) can be proved in the same way. The only slight modification will be
in the proof of (2.43):
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• After differentiation of Iρ with respect to the coordinate zm the analog of equation (2.64) will
contain the additional term

− 2π
(km − 1)!(km + 1)

(
d

dxm

)km−1

SP0
Fay(xm)

∣∣∣
xm=0

= −2π res|Pm

{
SP0

Fay − Sw

w

}
at the right-hand side;

• The right-hand side of the analogs of equations (2.60) and (2.62) will contain extra terms
− 1

2i

∮
Pm

|φz |2dz̄ and 1
2i

∮
Pm

|φz|2dz̄ respectively. After summation they will cancel out.

(cf. [18], Theorem 3).

2.7 Explicit formula for the Bergman tau-function

Theorem 5 The Bergman tau-function on the space H(k1, . . . , kM ) is given by the following formula:

τ(L, w) = e−
πi
3
〈r,KP0〉C(P0)2/3

{
σ4−4g(P0, Q0)

M∏
m=1

{
ΩP0(Pm)

}km

}−1/12

, (2.68)

where the integer vector r is defined by the equality

A((w)
)

+ 2KP0 + Br + s = 0 ; (2.69)

s is another integer vector, (w) is the divisor of the differential w, the initial point of the Abel map A
coincides with P0 and all the paths are chosen inside the same fundamental polygon L̂.

Proof. Due to (2.30), one has the relation

∂µ log |τ(L, w)|2 = ∂µ log C(P0)2/3 − 1
12πi

v.p.

∫
L

µ(SP0
Fay − Sw)

for any basic Beltrami differential µ. Therefore, taking into account the variational formulas (2.41),
(2.42), (2.43) for Dirichlet integral (2.39), we get the formula

|τ |2 = |C(P0)|4/3 exp{−D/12}. (2.70)

Using the theorem 4 which gives the holomorphic factorization of the Dirichlet integral D, we get the
formula (2.68) for the solution of system (2.17), (2.18), (2.19).

Expression (2.68) is independent of the choice of point Q0, this immediately follows from (2.26),
(2.28) and the relation

∑
km = 2g − 2. In addition, it must be independent of the choice of the point

P0. Analysing the monodromy of (2.68) with respect to P0 along a-cycles we get (2.69).
�
To simplify the expression for the tau-function we need the following lemma.

Lemma 2 The expression

F := [w(P )]
g−1

2 e−
πi
2
〈r,KP 〉

{
M∏

m=1

[E(P,Pm)]
(1−g)km

2

}
C(P ) (2.71)

is independent of P .
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To prove the lemma it is enough to observe that expression (2.71) has tensor weight 0 with respect
to P , is nonsingular and has trivial monodromies when P encircles a- and b-cycles.

Now taking in (2.68) Q0 = P0 and using the equality C(P )/C(Q) = (s(P,Q))1−g and Lemma 2, we
get the following expression for the Bergman tau-function.

Theorem 6 The solution of equations (2.17), (2.18), (2.19) defining the Bergman tau-function is
given by

τ(L, w) = F1/3

{
M∏

m=1

Ckm(Pm)

} 1
6(g−1)

, (2.72)

where F is given by the formula (2.71).

The expression (2.72), (2.71) for the Bergman tau-function can be slightly simplified for the case
of the highest stratum H(1, . . . , 1).

Lemma 3 Let all the zeros of the Abelian differential w be simple. Then the fundamental cell L̂ can
always be chosen such that A((w)) + 2KP = 0.

Proof. For an arbitrary choice of the fundamental cell we can claim that the vector A((w)) + 2KP

coincides with 0 on the Jacobian of the surface L, i.e. there exist two integer vectors r and r such that

A((w)) + 2KP + Br + s = 0 . (2.73)

Fix some zero P1 of w; according to our assumption this zero is simple. By a smooth deformation of a
cycle aα within a given homological class we can stretch this cycle such that the point P1 crosses this
cycle; two possible directions of the crossing correspond to the jump of component rα of the vector r
to +1 or −1. Similarly, if we deform a cycle bα such that it crosses the point R1, the component sα

of the vector s also jumps by ±1. Repeating such procedure, we come to fundamental domain where
r = s = 0.

�
We notice that the choice of the fundamental domain such that A((w)) + 2KP = 0 is obviously

possible if differential w has at least one simple zero.

Corollary 5 Consider the highest stratum H(1, . . . , 1) of the space Hg containing Abelian differentials
w with simple zeros. Let us choose the fundamental cell L̂ such that A((w)) + 2KP = 0. Then the
Bergman tau-function on H(1, . . . , 1) can be written as follows:

τ(L, w) = F2/3
2g−2∏

m,l=1 m<l

[E(Pm, Pl)]1/6 (2.74)

where expression

F := [w(P )]
g−1
2 C(P )

2g−2∏
m=1

[E(P,Pm)]
(1−g)

2 (2.75)

does not depend on P ; all prime-forms are evaluated at the points Pm in the distinguished local pa-

rameters xm(P ) =
(∫ P

Pm
w
)1/2

.

21



3 Tau-function on the spaces of quadratic differentials

3.1 Spaces of quadratic differentials with simple poles

The space Qg of quadratic differentials on the Riemann surfaces of genus g is the moduli space of pairs
(L,W ), where L is the Riemann surface of genus g and W is a meromorphic quadratic differential on L
having at most simple poles. The space Qg is infinite-dimensional, since the number of poles can be ar-
bitrary. This space is stratified in a family of finite-dimensional strata accordiang to the multiplicities of
zeros and the number of poles of quadratic differentials. Denote by Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L)
the stratum of the space Qg which consists of quadratic differentials which have M1 zeros of odd
multiplicities k1, . . . , kM1 , M2 zeros of even multiplicities l1, . . . , lM2 and L simple poles, and which
are not the squares of Abelian differentials (the last condition makes sense if M−1 = L = 0). Since
the degree of divisor (W ) equals 4g − 4, the multiplicities of the zeros and the number of poles are
connected by the equality k1 + · · · + kM1 + l1 + · · · + lM2 − L = 4g − 4. In particular, the number
L+ M1 is always even. For any pair (L,W ) from Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) one can construct
the so-called canonical two-fold covering

π : L̃ → L (3.1)

such that π∗W = w2, where w is a holomorphic 1-differential on L̃. This covering is ramified over the
poles and the zeros of odd multiplicity of W .

Counting the zeros of the holomorphic Abelian differential w on L̃, we can compute the genus g̃ of
the surface L̃. Each zero of even multiplicity ls of W gives rise to two distinct zeros of w of multiplicity
ls/2, whereas each zero of W of odd multiplicity ks corresponds to a single zero of w of multiplicity
ks + 1. Thus, one has the relation

2g̃ − 2 = l1 + · · · + lM2 + k1 + · · · + kM1 + M1 = 4g − 4 + L + M1 , (3.2)

therefore, g̃ = 2g + (L + M1)/2 − 1.

3.2 Coordinates on stratum Qg(k1, . . . , kM1, l1, . . . , lM2, [−1]L)

The coordinates on the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) can be constructed as follows ([23],
[20], [24]). Let R1, . . . , RM1 and P1, . . . , PM2 be the zeros of a quadratic differential W of (respectively)
odd and even multiplicities and let S1, . . . , SL be its poles.

Denote by ∗ the holomorphic involution on L̃ interchanging the sheets of covering (3.1).
The differential w(P ) is anti-invariant with respect to involution ∗:

w(P ∗) = −w(P ) (3.3)

Denote the canonical basis of cycles on L by (aα, bα). The canonical basis of cycles on L̃ will be
denoted as follows [8]:

{aα, bα, aα′ , bα′ , am, bm} (3.4)

where α,α′ = 1, . . . g; m = 1, . . . (L + M1)/2− 1; this basis can always be chosen to have the following
invariance properties under the involution ∗:

a∗α + aα′ = b∗α + bα′ = 0 (3.5)

and
a∗m + am = b∗m + bm = 0 . (3.6)
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For corresponding canonical basis of normalized holomorphic differentials uα, uα′ , um on L̃ we have
as a corollary of (3.5, 3.6):

uα(P ∗) = −uα′(P ) , um(P ∗) = −um(P ) . (3.7)

The canonical basis of normalized holomorphic differentials on L is then given by

wα(P ) = uα(P ) − uα′(P ) , α = 1, . . . , g (3.8)

The canonical meromorphic differential w̃(P,Q) on L̃ satisfies the following relation:

w̃(P ∗, Q∗) = w̃(P,Q) (3.9)

for any P,Q ∈ L̃; it is related to the meromorphic canonical differential w(P,Q) on L as follows:

w(P,Q) = w̃(P,Q) + w̃(P,Q∗) , P,Q ∈ L . (3.10)

Now we are to introduce the local coordinates on the stratum Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L).
First consider the case when L + M1 > 0 (quadratic differentials have a zero of odd multiplicity or
a pole). The complex dimension of the stratum Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) is 2g + (L + M1 −
2) + M2. The first 2g + (L + M1 − 2) coordinates on the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) can
be chosen by integrating the differential w(P ) over the basic cycles on L̃ as follows ([20], [24]):

Aα :=
∮

aα

w Bα :=
∮

bα

w Am :=
∮

am

w Bm :=
∮

bm

w (3.11)

for α = 1, . . . , g, m = 1, . . . , (L + M1)/2 − 1.
To introduce remaining M2 coordinates we denote by P+

k and P−
k the zeros of differential w

such that π(P+
k ) = π(P−

k ) = Pk; k = 1, . . . ,M2. The points R1, . . . , RM1 , S1, . . . , SL have unique
pre-images under the covering map π (which are the ramification points of the covering). In the
sequel we shall denote these points and their pre-images by the same letters. Dissect the surface L̃
along the basic cycles obtaining a fundamental polygon. Choose as a basic point one of the points
R1, . . . , RM1, S1, . . . , SL, say, R1. Then the last M2 coordinates are given by integrals of w over the
paths connecting the basic point R1 and the points P+

1 , . . . , P+
M2

:

zk =
∫ P+

k

R1

w; k = 1, . . . ,M2; (3.12)

all the paths of integration lie inside the fundamental polygon.
Now consider the case L + M1 = 0. In other words we deal here with holomorphic quadratic

differentials which have only zeros of even multiplicity and are not the squares of Abelian differentials.
(An example of such a differential can be found in [23]). In this case the canonical covering is
unramified. The dimension of the stratum Qg(l1, . . . , lM2) is 2g + M2 − 1. The local coordinates are
given by integrals

Aα :=
∮

aα

w Bα :=
∮

bα

w zk :=
∫ P+

k

P+
1

w, (3.13)

where α = 1, . . . g; k = 2, . . . ,M2.
In the sequel we shall restrict ourselves to the case M1 +L > 0. Treatment of the case M1 = L = 0

is completely parallel to the treatment of the ramified covering case M1 + L > 0.
If a quadratic differential W is the square of a holomorphic 1-differential w (in particular, all

zeros of W have even multiplicity), then the canonical covering becomes a disjoint union of two copies
L+ and L− of the surface L and

√
π∗W = ±w on L±. Thus, the moduli space of such quadratic

differentials coincides with the moduli space of Abelian differentials.
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3.3 Variational formulas on Qg(k1, . . . , kM1, l1, . . . , lM2, [−1]L)

Let a pair (L,W ) belong to the stratum Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L); recall that π : L̃ → L is
the canonical covering and π∗W = w2, where w is an Abelian differential on L̃. Let us introduce on L̃
the coordinate z(P ) =

∫ P
R1

w; z(P ) can be chosen as local parameter everywhere on L̃ outside of the
divisor (w).

Theorem 7 The basic differentials wα(P ) on L depend as follows on coordinates (3.11) if z(P ) is
kept fixed under differentiation:

∂wα(P )
∂Aβ

∣∣∣
z(P )

= − 1
2πi

∮
bβ

wα(Q)w(P,Q)
w(Q)

,
∂wα(P )

∂Bβ

∣∣∣
z(P )

=
1

2πi

∮
aβ

wα(Q)w(P,Q)
w(Q)

(3.14)

∂wα(P )
∂Am

∣∣∣
z(P )

= − 1
4πi

∮
bm

wα(Q)w(P,Q)
w(Q)

,
∂wα(P )

∂Bm

∣∣∣
z(P )

=
1

4πi

∮
am

wα(Q)w(P,Q)
w(Q)

(3.15)

∂wα(P )
∂zk

∣∣∣
z(P )

= res|Q=P+
k

wα(Q)w(P,Q)
w(Q)

, (3.16)

where the integrals in the right hand side are computed on L̃ (since the 1-form w(P ) is well-defined
on L̃ only). In the formulas (3.15) we understand wα(Q) and w(P,Q) as the natural lift of these
differentials from L to L̃.

Proof. Since w(P ) is holomorphic 1-differential on L̃, we can write down the analogs of formulas
(2.2), (2.3), (2.4) for this differential. However, due to existence of involution ∗ on the surface L̃ the
differential ∂wa(P )

∂Aβ

∣∣∣
z(P )

is a differential with vanishing a-periods and jumps on contours bβ and bβ′ ; this

allows to write it down in terms of the canonical meromorphic bidifferential w̃(P,Q) on L̃ as follows:

∂wa(P )
∂Aβ

∣∣∣
z(P )

= − 1
2πi

∮
bβ

wα(Q)w̃(P,Q)
w(Q)

+
1

2πi

∮
bβ′

wα(Q)w̃(P,Q)
w(Q)

(3.17)

Since bβ′ = −b∗β, w(Q∗) = −w(Q) and wα(Q∗) = wα(Q), the second term at the right hand side is
equal to

− 1
2πi

∮
bβ

wα(Q)w̃(P,Q∗)
w(Q)

which leads to the first of equations (3.14). Up to the sign, the proof of the second formula in (3.14)
is completely parallel.

Let us prove the first formula of (3.15). The differential ∂wα(P )
∂Am

∣∣∣
z(P )

has jump on L̃ only on the cycle

bm; all the a-periods of this differential vanish. Therefore, we can write it in terms of the meromorphic
differential w̃(P,Q) as follows:

∂wα(P )
∂Am

∣∣∣
z(P )

= − 1
2πi

∮
bm

wα(Q)w̃(P,Q)
w(Q)

(3.18)

Taking into account that bm = −b∗m, w(Q∗) = −w(Q) and wα(Q∗) = wα(Q), we get∮
bm

wα(Q)w̃(P,Q)
w(Q)

=
1
2

{∮
bm

wα(Q)w̃(P,Q)
w(Q)

+
∮

bm

wα(Q)w̃(P,Q∗)
w(Q)

}
=

1
2

∮
bm

wα(Q)w(P,Q)
w(P )

(3.19)
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which gives the first formula in (3.15); the remaining formulas can be proved in the same way.
�
Integration of the formulas (3.14), (3.15) over the b-cycles of L leads to the following

Corollary 6 The matrix of b-periods of the Riemann surface L depends as follows on coordinates
Aα, Bα, Am, Bm, zk:

∂Bαβ

∂Aγ
= −

∮
bγ

wαwβ

w
,

∂Bαβ

∂Bγ
=
∮

aγ

wαwβ

w
(3.20)

∂Bαβ

∂Am
= −1

2

∮
bm

wαwβ

w
,

∂Bαβ

∂Bm
=

1
2

∮
am

wαwβ

w
(3.21)

∂Bαβ

∂zk
= 2πires|P+

k

wαwβ

w
(3.22)

where α, β, γ = 1, . . . , g, m = 1, . . . (L + M1)/2 − 1, k = 1, . . . ,M2

Dependence of the meromorphic bidifferential w(P,Q) on the moduli is described by the following
theorem whose proof is parallel to the proofs of theorems 1 and 7:

Theorem 8 The following variational formulas take place:

∂w(P,Q)
∂Aβ

= − 1
2πi

∮
bβ

w(Q,R)w(P,R)
w(R)

,
∂w(P,Q)

∂Bβ
= − 1

2πi

∮
aβ

w(Q,R)w(P,R)
w(R)

(3.23)

∂w(P,Q)
∂Am

= − 1
4πi

∮
bm

w(Q,R)w(P,R)
w(R)

,
∂w(P,Q)

∂Bm
=

1
4πi

∮
am

w(Q,R)w(P,R)
w(R)

(3.24)

∂w(P,Q)
∂zk

= −res|P=P+
k

w(Q,R)w(P,R)
w(R)

, (3.25)

where z(P ) and z(Q) are kept fixed under differentiation; α, β, γ = 1, . . . , g, m = 1, . . . (L+M1)/2−1,
k = 1, . . . ,M2.

Finally, we shall need the analogs of formulas (2.10), (2.11), (2.12) for the Bergman projective con-
nection:

Corollary 7 The following variational formulas take place:

∂

∂Aβ
(SB(P ) − Sw(P )) = − 3

πi

∮
bβ

w2(P,R)
w(R)

,
∂

∂Bβ
(SB(P ) − Sw(P )) =

3
πi

∮
aβ

w2(P,R)
w(R)

, (3.26)

∂

∂Am
(SB(P )−Sw(P )) = − 3

2πi

∮
bm

w2(P,R)
w(R)

,
∂

∂Bm
(SB(P )−Sw(P )) =

3
2πi

∮
am

w2(P,R)
w(R)

(3.27)

∂

∂zk
(SB(P ) − Sw(P )) = −1

6
res|P=P+

k

w2(P,R)
w(R)

, (3.28)

where the local parameter z(P ) is kept fixed under differentiation; α, β, γ = 1, . . . , g, m = 1, . . . (L +
M1)/2 − 1, k = 1, . . . ,M2.
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3.4 Basic Beltrami differentials for Qg(k1, . . . , kM1, l1, . . . , lM2, [−1]L)

Basic Beltrami differentials corresponding to variation of the point of the space Qg(k1, . . . , kM1 , l1,
. . . , lM2 , [−1]L) can be constructed similarly to the basic Beltrami differentials from section 2.3. As
in the section 2.3, we denote the smooth Beltrami differentials responsible for the change of com-
plex structure on the surface L under infinitesimal shifts of the coordinates Aα, Bβ , Am, Bm, zk by
µAα , µBβ

, µAm , µBm , µzk
respectively. The Beltrami differentials µAα and µBβ

have supports in thin
strips along the cycles aα and bα of the surface L, the differentials µAm and µBm have supports along
the projections on the surface L of the thin strips along the cycles am and bm on the covering L̃. The
supports of the differentials µzk

belong to small annuli centered at the points Pk. The construction
of these Beltrami differentials, which we again call basic, is completely parallel to the case of spaces
Hg(k1, . . . , kM ). The only modification is that instead of Corollary 1 one should make use of its analog
for the spaces of quadratic differentials, Corollary 6.

3.5 Definition of Bergman tau-function

The definition of the Bergman tau-function on the spaces of quadratic differentials is similar to the
spaces of Abelian differentials.

Definition 3 The Bergman tau-function τ(L,W ) on the stratum Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L)
of the space of quadratic differentials over Riemann surface L is locally defined by the following system
of equations:

∂ log τ(L,W )
∂Aα

=
1

12πi

∮
bα

SB − Sw

w
, α = 1, . . . , g; (3.29)

∂ log τ(L,W )
∂Bα

= − 1
12πi

∮
aα

SB − Sw

w
, α = 1, . . . , g; (3.30)

∂ log τ(L,W )
∂Am

=
1

24πi

∮
bm

SB − Sw

w
, m = 1, . . . , (L + M1)/2 − 1; (3.31)

∂ log τ(L,W )
∂Bm

= − 1
24πi

∮
am

SB − Sw

w
, m = 1, . . . , (L + M1)/2 − 1, (3.32)

∂ log τ(L,W )
∂zk

= −1
6
res|P=P+

k

SB − Sw

w
, k = 1, . . . ,M2, (3.33)

where SB is the Bergman projective connection on L, Sw(ζ) :=
{∫ P

w, ζ
}
; the difference between two

projective connections SB and Sw is a meromorphic quadratic differential on L with poles at the zeros
of W .

The compatibility of this system follows from Corollary 7 and the symmetry of the canonical mero-
morphic bidifferential in complete analogy to Proposition 1.

3.6 Variation of differential C
Here is the analog of the Corollary (3) for the spaces of quadratic differentials.
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Corollary 8 The following variational formulas for differential C(P ) on the space
Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) take place:

∂

∂Aα
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

=
1

8πi

∮
bα

1
w

(
SB − SP

Fay

)
, (3.34)

∂

∂Bα
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= − 1
8πi

∮
aα

1
w

(
SB − SP

Fay

)
, (3.35)

∂

∂Am
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

=
1

16πi

∮
bm

1
w

(
SB − SP

Fay

)
, (3.36)

∂

∂Bm
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= − 1
16πi

∮
am

1
w

(
SB − SP

Fay

)
, (3.37)

∂

∂zk
log{Cw

g(g−1)
2 (P )}

∣∣∣
z(P )

= −1
4
res|P=P+

k

1
w

(
SB − SP

Fay

)
, (3.38)

where the coordinate z(P ) =
∫ P
R1

w is kept constant under differentiation.

3.7 Dirichlet integral: variational formulas and holomorphic factorization

Let a pair (L,W ) belong to the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L). Let π : L̃ → L be the
canonical covering and let ΩP0 be the multi-valued 1-differential defined by (2.28). We denote by
Ω̃P0 = π∗(ΩP0) the lift of the differential ΩP0 to L̃. The multi-valued 1-differential Ω̃P0 has on L̃
simple zeros at the ramification points R1, . . . , RM1 , S1, . . . , SL of the canonical covering and zeros of
multiplicity 2g − 2 at the preimages P+

0 and P−
0 of the point P0. It is single-valued along the cycles

aα, aα′ , am, bm and gains the multipliers exp(4πiKP0
α ) and exp(−4πiKP0

α ) along the cycles bα and bα′ .
The divisor of the differential w on the covering L̃ can be written as follows

(w) =
M2∑

m=1

(
lm
2

P+
k +

lm
2

P−
k ) +

M1∑
s=1

(ks + 1)Rs . (3.39)

(Abelian differential w is non-singular and non-vanishing at the poles Sl of W ). Assume for convenience
that M1 	= 0. Then the system of local parameters on the covering L̃ is given by

z(P ) =
∫ P

R1

w (3.40)

outside the divisor (w);

xm(P ) =
(∫ P

P±
m

w

) 2
lm+2

(3.41)

near the points P±
m and

ζs(P ) =
(∫ P

Rs

w

) 1
ks+2

(3.42)

near the points Rs.
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Setting φ(z, z̄) = log | Ω̃P0

w |2 we define the regularized Dirichlet integral

D =
1
2π

lim
ρ→0

{∫
L̃\Uρ

|φz |2|dz|2 +

(
2

M2∑
m=1

l2m
lm + 2

+
M1∑
s=1

k2
s

ks + 2
+ 2L + 16(g − 1)2

)
π log ρ

}
, (3.43)

where Uρ is the union of the disks of radius ρ centered at P0, P
∗
0 , P±

1 , . . . , P±
M2

, R1, . . . , RM1 and
S1, . . . , SL. In order to follow the proof of theorem 4 and factorize this integral we have to find
the asymptotics of the line integrals

∮
Q φzφdz, where Q is one of the just listed points, as ρ → 0.

Obviously, we have the following asymptotics

φz = − lm
lm + 2

x
− lm

2
−1

m + O(x
− lm

2
m ), (3.44)

near the points P±
m . To get the asymptotics near the point Rs we note that

φz = −ks + 1
ks + 2

ζ−ks−2
s +

1
ks + 2

ζ−ks−1
Ω̃P0

ζs
(ζs)

Ω̃P0(ζs)

and the function Ω̃P0(ζs) has the first order zero at ζs = 0. Thus,

φz = − ks

ks + 2
ζ−ks−2
s + O(ζ−ks−1

s ) (3.45)

near the point Rs. Near the point Sr one has the asymptotics

φz =
1
ξr

+ O(1), (3.46)

where we put ξr(P ) = z(P ) − z(Sr). The asymptotics of φz near the points P±
0 is the same as in

(2.36). Thus, we have

1
2i

∫
P±

m

φzφdz =
πlm
2

log
∣∣∣Ω̃P0(xm)|xm=0

∣∣∣2 − π
l2m

lm + 2
log ρ − πlm log(

lm
2

+ 1) + o(1), (3.47)

as ρ → 0. The asymptotics of integrals around the points Rs looks as follows:

1
2i

∫
Rs

φzφdz =
1
2i

∫
|ζs|=ρ

1
ks+2

[
− ks

ks + 2
ζ−ks−2
s + O(ζ−ks−1

s )
]

[
log

∣∣∣Ω̃P0(ζs

ζs

∣∣∣2 − 2ks log |ζs| − 2 log(ks + 2)

]
(ks + 2)ζks+1

s dζs =

= πks log
∣∣∣Ω̃P0(ζs)

ζs
|ζs=0

∣∣∣2 − π
ks

ks + 2
log ρ − 2πks log(ks + 2) + o(1). (3.48)

In the same manner we get

1
2i

∫
Sr

= −π log
∣∣∣Ω̃P0(ξr)

ξr
|ξr=0

∣∣∣2 − 2π log ρ + o(1). (3.49)
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The integrals around P±
0 have exactly the same asymptotics as in Section 2.6.1. Altogether, these

asymptotics yield the following factorization formula for the Dirichlet integral:

D = log
∣∣∣σ4−4g(P0, Q0)

M2∏
m=1

(
ΩP0(xm)|xm=0

) lm
2

M1∏
s=1

(
Ω̃P0(ζs)

ζs
|ζs=0

) ks
2

× (3.50)

×
L∏

r=1

(
Ω̃P0(ξr)

ξr

)− 1
2

exp{4πi〈r,KP0〉}
∣∣∣2 + const

where

2πrα = Var|aα

{
Arg

Ω̃P0(P )
w(P )

}
= Var|aα′

{
Arg

Ω̃P0(P )
w(P )

}
and σ is defined in (2.38). (One should make use of the obvious relation

|σ(P0, Q0)|2 = |σ̃(P+
0 , Q+

0 )σ̃(P−
0 , Q−

0 )|,

where σ̃ = π∗σ.) To rewrite (3.50) using only objects defined on the surface L and not on the covering
L̃ introduce the local parameters according to the following definition [30]:

Definition 4 The local parameters on L

λs := ζ2
s =

(∫ P

Rs

w

) 2
ks+2

, θr := ξ2
r =

(∫ P

Sr

w

)2

, xm(P ) :=
(∫ P

Pm

w

) 2
lm+2

(3.51)

near the points Rs, Sr and Pm respectively, are called distinguished.

Setting ΩP0(Rs) = ΩP0(λs)|λs=0 and ΩP0(Sr) = ΩP0(θr)|θr=0 we eventually get the final form of
the factorization formula.

Theorem 9 The following representation of the Dirichlet integral (3.43) holds:

D = log
∣∣∣σ4−4g(P0, Q0)

M2∏
m=1

(
ΩP0(Pm)

) lm
2

M1∏
s=1

(
ΩP0(Rs)

) ks
2 × (3.52)

×
L∏

r=1

(
ΩP0(Sr)

)− 1
2 exp{4πi〈r,KP0〉}

∣∣∣2 + const.

The proof of the following proposition is completely parallel to the proof of proposition 2. The only
difference is due to the fact that one should work with the covering L̃ instead of L.

Proposition 3 Dirichlet integral (3.43) satisfies the following system of equations:

∂D

∂Aα
= − 1

πi

∮
bα

SP0
Fay − Sw

w
, α = 1, . . . , g; (3.53)

∂D

∂Bα
=

1
πi

∮
aα

SP0
Fay − Sw

w
, α = 1, . . . , g; (3.54)
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∂D

∂Am
= − 1

2πi

∮
bm

SP0
Fay − Sw

w
, m = 1, . . . , (L + M1)/2 − 1; (3.55)

∂D

∂Bm
=

1
2πi

∮
am

SP0
Fay − Sw

w
, m = 1, . . . , (L + M1)/2 − 1; (3.56)

∂D

∂zk
= −1

6
res|P=P+

k

SP0
Fay − Sw

w
, m = 1, . . . , (L + M1)/2 − 1. (3.57)

where w2 = W ; the projective connection Sw is given by Sw(ζ(P ) := {∫ P
w, ζ(P )} in a local parameter

ζ(P ).

3.8 Explicit formula for the tau-function

The explicit formula for the tau-function on the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) follows from
formula (2.30), Theorem 9 and Proposition 3. To write down this formula in a compact form we
introduce the following notation for the divisor (W ):

(W ) = −
L∑

r=1

Sr +
M1∑
s=1

ksRs +
M2∑

m=1

lmPm :=
L+M1+M2∑

k=1

nkQk ; (3.58)

the distinguished local parameters near the points Qk are given in Definition 4.

Proposition 4 The tau-function on the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) is given by the fol-
lowing formula:

τ(L,W ) = e−
πi
3
〈r,KP0〉C(P0)2/3σ(1−g)/3(P0, Q0)

L+M1+M2∏
k=1

{
ΩP0(Qk)

}−nk
24 . (3.59)

The integer vector r in (3.59) is subject to the condition

A((W )
)

+ 4KP0 + Br + s = 0, (3.60)

where s is another integer vector, the initial point of the Abel map A coincides with P0 and all the
paths are chosen inside the same fundamental polygon L̂.

An alternative expression for the same tau-function is given by the following theorem:

Theorem 10 The Bergman tau-function on the space Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) is given by
the following expression:

τ(L,W ) = F 1
3

L+M1+M2∏
k=1

C
nk

12(g−1) (Qk) , (3.61)

where the expression

F = W (g−1)/4(P )C(P )e−πi〈r,KP 〉
L+M1+M2∏

k=1

E(1−g)nk/4(Qk, P )

does not depend on P ∈ L; the prime-forms and differential C at the points of divisor (W ) are evaluated
in the distinguished local parameters given in Definition 4.
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The proof is parallel to the proof of the theorem 6 for the spaces of Abelian differentials.
Next we show how to simplify this expression if the quadratic differential W is holomorphic and

all the zeros of W are simple (then L = M2 = 0).
In analogy to Lemma 3, one can show that for an arbitrary quadratic differential W with simple

zeros the fundamental cell can always be chosen such that

A((W )) + 4KP = 0 (3.62)

(for an arbitrary choice of the fundamental cell this vector vanishes only up to an integer combination
of lattice vectors defining the Jacobian of the Riemann surface L).

Corollary 9 The tau-function on the stratum Qg(1, . . . , 1) of the space Qg, which consists of holo-
morphic quadratic differentials with simple zeros, is given by the following formula:

τ(L,W ) = F2/3
4g−4∏

r,s=1 r<s

[E(Rr, Rs)]1/24, (3.63)

where expression

F = W (g−1)/4(P )C(P )
4g−4∏
s=1

E(1−g)/4(Rs, P )

does not depend on P . The prime-forms and differential C(P ) are evaluated at the points Rs with
respect to distinguished local parameters

λs(P ) =
(∫ P

Rs

w

)2/3

; (3.64)

the fundamental cell L̂ is chosen such that A((W )) + 4KP = 0.

4 Variational formulas for determinants of Laplacians in Strebel
metrics of finite volume

4.1 Preliminaries: determinants of Laplacians in smooth metrics

Introduce the smooth metric
g := ρ−2(z, z̄)dxdy = ρ−2(z, z̄)d̂z (4.1)

on the Riemann surface L. Here z = x+iy is a local parameter on L, ρ is a smooth positive function of
local parameter (we adopt the notation from [9]). The Laplacian ∆g = 4ρ2(z, z̄)∂2

zz̄ with domain given
by C∞-functions on L is an essentially self-adjoint operator with discrete spectrum. The determinant
det∆g is defined via standard ζ-regularization

det∆g = exp{−ζ ′(0)},
where ζ(s) is the ζ-function of the operator ∆g (see, e.g., [9]). The formula describing dependence of
det ∆g on the smooth metric g within a given conformal class was first derived by Polyakov [26]. We
shall need original Polyakov’s version of this formula which is related to the formula (1.16) (a proof
of which can be found in [9]) via integration by parts.
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Recall that the Gaussian curvature of the metric (4.1) is given by

K = 4ρ2∂2
zz̄ log ρ . (4.2)

Now, for two arbitrary smooth metrics g0 := ρ−2
0 (z, z̄)dxdy and g1 := ρ−2

1 (z, z̄)dxdy the Polyakov’s
formula tells that

log
det∆g1

Vol(L,g1)
− log

det∆g0

Vol(L,g0)
= − 1

3π

{∫
L

∣∣∣∂z log
ρ0

ρ1

∣∣∣2d̂z +
1
2

∫
L

(
log

ρ0

ρ1

)
K0ρ

−2
0 d̂z

}
, (4.3)

where K0 is the Gaussian curvature of the metric g0. To derive (4.3) from (1.16) we rewrite the
right-hand side of (1.16) as

1
3π

(∫
L

log
ρ1

ρ0
∂2

zz̄ log
ρ1

ρ0
d̂z +

∫
L

(
log

ρ1

ρ0

)
ρ2

0{∂2
zz̄ log ρ2

0}ρ−2
0 d̂z

)
. (4.4)

To get (4.3) one needs to integrate the first term by parts.

Remark 2 The notation from ([9]) which we adopt here is very convenient though seemingly nonin-
variant. A routine reasoning shows that all the objects in (4.3, 4.4) actually have the invariant sense:
for instance, log ρ1

ρ0
is a scalar as well as ρ2

0{∂2
zz̄ log ρ2

0}, ∂̄∂ log ρ1

ρ0
is a (1, 1)-form and can be integrated

over L, etc.

In each conformal class there exists the unique metric of constant curvature: the Poincaré metric.
Variational formula describing dependence of det∆ in the Poincaré metric on the moduli of a Riemann
surface was given in ([34]). To describe this result we recall that the surface L is biholomorphically
equivalent to the quotient space H/Γ, where H = {u ∈ C : �u > 0}; Γ is a strictly hyperbolic Fuchsian
group. Denote by πF : H → L the natural projection. The Fuchsian projective connection SF is given
by the Schwarzian derivative SF (x) = {u, x}, where x is a local coordinate of a point P ∈ L, w ∈ H,
πF (u) = P . The Poincaré metric gP on L is given by the projection onto L of the metric |�u|−2|du|2
on H. The Poincaré metrics has constant curvature −1 and, due to the Gauss-Bonnet theorem, the
volume Vol(L,gP ) of the surface L in this metric is independent of moduli and equals 2π(2g − 2),
where g is the genus of L. Denote by ∆gP

the Laplacian in the Poincaré metrics. Then there is the
following variational formula for its ζ-regularized determinant:

δµ log

(
det∆gP

det�BVol(L,gP )

)
= − 1

12πi

∫
L
(SB − SF )µ , (4.5)

where µ is a Beltrami differential defining the deformation of the complex structure on L, SB − SF

(the difference of the Bergman and the Fuchsian projective connections) is a quadratic differential on
L.

The constant factor Vol(L,gP ) in the left-hand side of (4.5) is of no importance and may be
omitted. It should be noted that formula (4.5) can be considered as a partial case of the general Fay
variational formula for analytic torsion (see [9], in particular, p. 97 for derivation of (4.5)).

4.2 Definition of det ∆ for Strebel metrics of finite volume

Any meromorphic quadratic differential W with only simple poles defines a natural flat metric on
the Riemann surface L given by |W |. This metric has conical singularities at the zeroes and poles of
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W . The cone angles of the metric |W | equal π at the simple poles of W and (k + 2)π at the zeros
of W of multiplicity k. The unbounded symmetric operator 4|W |−1∂∂̄ in L2(L, |w|2) with domain
C∞

0 (L \ (W )) admits the closure and has the self-adjoint Friedrichs extension which we denote by
∆|W |. It is known ([4, 25]) that the spectrum σ(∆|W |) of ∆|W | is discrete and

N(λ) = O(λ), (4.6)

as λ → +∞, where N(λ) is the number of eigenvalues of the positive operator −∆|W | not exceeding
λ (counting multiplicity). The ζ-function of the operator ∆|W | defined by the sum over positive
eigenvalues:

ζ(s) =
∑
λj>0

λ−s
j

for �s > 1 (in this domain the series converges due to asymptotics (4.6)) admits analytic continuation
to a meromorphic function in C which is regular at s = 0 ([14]). The regularized determinant of the
operator ∆|W | is defined by the equality

det∆|W | = exp{−ζ ′(0)} .

Remark 3 For smooth metrics the analogs of the above statements (the spectral properties of the
Laplacian, the regularity of the ζ-function at s = 0, etc) are more or less standard and are nicely
summarized in [9] in the general context of holomorphic bundles of arbitrary rank. (Here we deal only
with trivial line bundles.) In our present case (when the metric has conical singularities) the proofs
are less known. All the appropriate references could be found in [14].

4.3 Variational formulas for det ∆ in Strebel metrics

The well-known Fay’s variational formula (see [9], pp. 59-60) describes the variation of analytic torsion
under (generally nonconformal) variations of smooth metric on the surface. Here we state an analog of
this result for metrics with conical singularities defined by quadratic (or Abelian) differentials. Namely
we describe the behavior of the determinants of the Laplacians in these metrics under the variations
of coordinates on the spaces Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) and H(k1, . . . , kM ).

Let pairs (L,W ) and (L, w) belong to the spaces Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) and
H(k1, . . . , kM ) respectively. For the pair (L,W ) we define

T (L, |W |) = log
{ det∆|W |

Vol(L, |W |) det�B

}
,

where for an arbitrary metric g on L we denote by Vol(L,g) the area of the Riemann surface L in
metric g.

Analogously, we denote

T (L, |w|2) = log
{ det ∆|w|2

Vol(L, |w|2) det�B

}
for the pair (L, w).

The following key theorem describes the variation of T (L, |W |) and T (L, |w|2) on the spaces
Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) and H(k1, . . . , kM ).
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Theorem 11 The following formulas for the derivatives of T (L,W ) with respect to standard coordi-
nates in Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L) hold true

∂T (L, |W |)
∂Aα

=
1

12πi

∫
bα

SB − Sw

w
, α = 1, . . . , g; (4.7)

∂T (L, |W |)
∂Bα

= − 1
12πi

∮
aα

SB − Sw

w
, α = 1, . . . , g; (4.8)

∂T (L, |W |)
∂Am

=
1

24πi

∮
bα

SB − Sw

w
, m = 1, . . . , (L + M1)/2 − 1; (4.9)

∂T (L, |W |)
∂Bm

= − 1
24πi

∮
aα

SB − Sw

w
, m = 1, . . . , (L + M1)/2 − 1; (4.10)

∂T (L, |W |)
∂zk

= −1
6
res

∣∣∣
P+

k

SB − Sw

w
, k = 1, . . . M2 , (4.11)

where SB is the Bergman projective connection, Sw is the projective connection given by the Schwarzian
derivative {∫ P √

W, ζ
}

,

SB −Sw is a meromorphic quadratic differential with poles of the second order at the poles and zeroes
of W .

The following formulas for the derivatives of T (L, |w|2) with respect to standard coordinates in
H(k1, . . . , kM ) hold true

∂T (L, |w|2)
∂Aα

=
1

12πi

∮
bα

SB − Sw

w
, α = 1, . . . , g; (4.12)

∂T (L, |w|2)
∂Bα

= − 1
12πi

∮
aα

SB − Sw

w
, α = 1, . . . , g; (4.13)

∂T (L, |w|2)
∂zm

= −1
6
res

∣∣∣
Pm

SB − Sw

w
, m = 2, . . . M , (4.14)

where SB is the Bergman projective connection, Sw is the projective connection given by the Schwarzian
derivative {∫ P

w, ζ
}

,

SB − Sw is a meromorphic quadratic differential with poles of the second order at the zeroes Pm of w.

The proof is given in the next section.

4.4 Proof of Theorem 11

The proof of Theorem 11 uses the following tools:

• The Polyakov formula and the formula for the variation of the determinant of the Laplacian in
the Poincaré metric (see section 4.1).
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• The machinery of the Dirichlet integrals, providing generating functions for the values of Fuch-
sian projective connection in distinguished local parameters at the zeros of quadratic (Abelian)
differentials (see sections 4.4.1 and 4.4.2).

• A version of Burghelea-Friedlander-Kappeler analytic surgery for metrics with conical singular-
ities (see section 4.4.4).

4.4.1 Fuchsian Dirichlet integral for metrics |w|2

Introduce the functions φext(z, z̄) of local parameter z(P ) =
∫ P
P1

w on the surface L outside the zeros
Pm of the differential w:

eφext(z,z̄)|dz|2 =
|du|2
|�u|2 , (4.15)

where u is the Fuchsian coordinate on the universal covering H of L. Analogously, define the functions
φint(xm) of the distinguished local parameter xm near Pm by

exp φint(xm, x̄m)|dxm|2 = |du|2/|�u|2. (4.16)

Define the regularized Dirichlet integral reg DF as

D
reg
F = lim

ε→0

(∫
Λε

|φext
z |2d̂z + 2π

M∑
m=1

k2
m

km + 1
log ε

)
, (4.17)

where Λε = L \ ∪M
m=1{|xm| ≤ ε}.

Let

D =

{
D

reg
F − 2π

M∑
m=1

kmφint(xm, x̄m)
∣∣∣
xm=0

}
. (4.18)

Lemma 4 The equations hold true

∂D
∂Aα

=
1
i

∮
bα

(
SF − Sw

w

)
, (4.19)

∂D
∂Bα

= −1
i

∮
aα

(
SF − Sw

w

)
, (4.20)

∂D
∂zm

= −2πRes|Pm

(
SF − Sw

w

)
, (4.21)

where α = 1, . . . , g, m = 2, . . . ,M .

The proof of this Lemma (as well as the proof of Lemma 5 below) is a routine, though somewhat
cumbersome, reasoning similar to the proof Proposition 2. Moreover, in the part concerning the
coordinates zm it coincides with the proof of Theorem 8 from [16]. Recall that in [16] we considered
the Hurwitz spaces of meromorphic functions on Riemann surfaces. The coordinates on the Hurwitz
spaces (the critical values λm of meromorphic function λ or, what is the same, the integrals

∫ λm dλ)
are complete analogs of our coordinates zm on the spaces of Abelian differentials. So, the proof of
(4.21) coincides with the proof of Theorem 8 from [16] verbatim. To prove relations (4.19) and (4.20)
one has to play with jumps of the derivatives of the potential φext on the a- and b-cycles similarly to
the proof of Proposition 2.
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4.4.2 Fuchsian Dirichlet integral for metrics |W |
Let us formulate an analog of Lemma 4 for the spaces of quadratic differentials.

Let z = z(P ) be a local parameter on the canonical covering L̃, z(P ) =
∫ P
R1

w. Define the function
φext(z, z̄) by (4.15) where u is the Fuchsian coordinate corresponding to the point P of the surface
L. Let λs, θr, xm be the distinguished parameters (see Definition 4) near the points Rs, Sr, Pm of the
surface L. Define the functions φint(λs, λ̄s), φint(θr, θ̄r) and φint(xm, x̄m) analogously to (4.16). Set
φint(Rs) = φint(λs, λ̄s)

∣∣∣
λs=0

and define φint(Sr) and φint(Pm) in the same way.

Lemma 5 Let

DQ =
1
2

{
reg

∫
L̃
|φext

z |2d̂z − 2π

(
M1∑
s=1

ksφ
int(Rs) +

M2∑
s=1

lsφ
int(Ps) −

L∑
s=1

φint(Ls)

)}
(4.22)

Then the following equations hold true.

∂DQ

∂Aα
=

1
i

∮
bα

(
SF − Sw

w

)
, (4.23)

∂DQ

∂Bα
= −1

i

∮
aα

(
SF − Sw

w

)
, (4.24)

∂DQ

∂Am
=

1
2i

∮
bm

(
SF − Sw

w

)
, (4.25)

∂DQ

∂Bm
= − 1

2i

∮
am

(
SF − Sw

w

)
, (4.26)

∂DQ

∂zk
= −2πRes|Pk

(
SF − Sw

w

)
, (4.27)

where α = 1, . . . , g, m = 1, . . . , (L + M1)/2 − 1, k = 1, . . . ,M2.

4.4.3 Smoothing of conical metric

The proof of theorem 11 is based on the following fact. In the distinguished local parameters near
the conical points the metrics |W | and |w|2 all have the standard form |ζ|n|dz|2, where ζ is the
corresponding distinguished local parameter, n is an integer. Smoothing these metrics in standard
neighborhoods |ζ| < ε of the conical points one gets a new metrics without singularities. These smooth
metrics can be chosen to have the same volume as the old (conical) ones. It turns out that variations
w. r. t. moduli of the logarithms of determinants of Laplacians in old (singular) metrics and new
(smooth) metrics coincide. (Here moduli mean the coordinates on the space of corresponding Abelian
or quadratic differentials.) To prove this coincidence we apply the machinery of analytic surgery. For
smooth metrics the surgery formula (BFK formula in what follows) belongs to Burghelea, Friedlander
and Kappeler ([3]). Using their ideas together with some known facts about the heat kernel on
manifolds with conical singularities, we establish here a version of the BFK formula for conical metrics.
These two versions of BFK formula imply the required coincidence of the variations.

We restrict ourselves to the case of the space of Abelian differentials, the proofs in the case of
quadratic differentials differ only in notation. Let xm be a distinguished local parameter xm(P ) =
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(∫ P
Pm

w
)1/(km+1)

near the zero Pm of the differential w. Take some ε > 0. In the disks {|xm| ≤ ε} all

the metrics w has the form |xm|2km |dxm|2. Let f(xm) be a strictly positive C∞-function such that
f−2(xm) = |xm|2km for ε/2 ≤ |xm| ≤ ε,

∫
Dε

f−2(xm)|dxm|2 =
∫
Dε

|xm|2km |dxm|2. Introduce the metric
g := ρ−2

ε |dz|2 which coincides with |w|2 outside the discs Dε = {|xm| ≤ ε} and equals f−2(xm)|dxm|2
inside these disks. This metric is everywhere nonsingular, belongs to the conformal class of the metric
|w|2 and has the same volume as |w|2.
Proposition 5 Let ∂t be the differentiation w. r. t. one of the coordinates on the space Hg(k1, . . . , kM )
and let det∆g be the standard ζ-regularized determinant of the Laplacian in the metric g. Then one
has the relation

∂t log det∆|w|2 = ∂t log det∆g. (4.28)

Proof. For simplicity suppose first that M = 1. Let D = Dε = {|x1| ≤ ε}, Σ = L \ D. Let ∆g be
the Laplacian related to the metric g. Let (∆|w|2|D) and (∆|w|2|Σ) be the operators of the Dirichlet
boundary problem for ∆|w|2 in domains D and Σ respectively. Define the Neumann jump operator (a
pseudodifferential operator on ∂D of order 1) R : C∞(∂D) → C∞(∂D) by

R(f) = ∂ν(V − − V +),

where ν is the outward normal to ∂D, the functions V − and V + are the solutions of the boundary
value problems ∆ρV − = 0 in D, V −|∂D = f and ∆ρV + = 0 in Σ, V +|∂D = f . (For brevity we are
omitting the index t in ρt.) In what follows it is crucial that the Neumann jump operator does not
change if we vary the metric within the same conformal class (operators 4|w|−2∂∂̄ and 4ρ2∂∂̄ give rise
to the same Neumann jump operator). Due to Theorem B∗ from [3], we have

log det∆g = log det(∆g|D) + log det(∆g|Σ) + log detR + log Vol(L,g) − log l(∂D), (4.29)

where l(∂D) is the length of the contour ∂D in the metric g. Analogous statement holds if the metric
defining the Laplacian has a conical singularity inside D. The only change which should be made is
one in the definition of the solution of the boundary value problem for the Laplacian in D. Namely,
the asymptotical condition U(P ) = O(1) near the conical point should be imposed on such a solution
(this corresponds to the choice of the Friedrichs extension of the Laplacian). Under this condition we
have the surgery formula for the operator ∆|w|2:

log det∆|w|2 = log det(∆|w|2|D) + log det (∆|w|2|Σ) + log detR + log Vol(L, |w|2) − log l(∂D). (4.30)

The proof of formula (4.30) will be given in the next section. Note that the variations of the first terms
in right hand sides of (4.29) and (4.30) vanish (these terms are independent of t) whereas the variations
of all the remaining terms coincide. This leads to (4.28). To consider the general case (M > 1) one
should apply an obvious generalization of the surgery formula to the case when the domain D consists
of union of several non-overlapping discs; similar result can be found in ([32], Remark on page 326).
�

4.4.4 Analytic surgery for flat metrics with conical singularities.

Let gc = ρ−2|dz|2 be a flat metric with conical singularity on the surface L. Let D be a disk around
the conical point (for simplicity we assume that there is only one such) and let Σ = L \ D. Let the
Neumann jump operator R and the operators of boundary value problems (∆gc |D) and (∆gc |Σ) for
the Laplacian ∆gc

= 4ρ2∂̄∂ be as in the previous section.
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Theorem 12 We have the surgery formula for the operator ∆gc
:

log det∆gc
= log det(∆gc |D) + log det (∆gc |Σ) + log detR + log Vol(L,gc) − log l(∂D) . (4.31)

Proof. Formula (4.31) can be proved in the same manner as the formula (4.29) for smooth metrics.
We shall follow the strategy of the original work [3] and the recent paper [11] devoted to determinants
of Laplacians in exterior domains. 1

As in [3] and [11] the proof consists of the establishing the following three statements.

1. Let s > 0. Denote by R(s) the Neumann jump operator R(s)f = ∂ν(V −
s − V +

s ), where V +
s

(respectively V −
s ) is the solution of the Dirichlet problem for the operator ∆gc

+s in the domain
D (respectively Σ = L \ D) with data f on the boundary. Then

d

ds
log det (∆gc

+ s) =

=
d

ds

{
log det (∆gc

+ s|D) + log det (∆gc
+ s|Σ) + log det R(s)

}
,

and, hence,
log det (∆gc

+ s|D) + log det (∆gc
+ s|Σ) + log detR(s) =

= log det (∆gc
+ s) + C (4.32)

with some constant C.

2. In equation (4.32) the constant C should be zero.

3. Taking the limit s → 0+ in (4.32) with C = 0, one gets (4.30).

The proofs of statements 1 and 3 coincide almost verbatim with the proof of formula (3.1) in [11])
and the reasoning from section 4.9 in [3]. The effects connected with conical point appear only in the
proof of statement 2.

To prove statement 2 we are to consider the asymptotic expansions of

log det (∆gc
+ s|D) + log det (∆gc

+ s|Σ) + log det R(s) (4.33)

and
log det (∆gc

+ s) (4.34)

as s → ∞, and show that the constant terms in these expansions are zero. To this end, as in the proof
of proposition 3.3 from ([11]), we rewrite the zeta function for the operator ∆gc

+ s as

ζs(p) =
1

Γ(p)

∫ ∞

0
tpTr e−t∆gc

e−ts dt

p
. (4.35)

Due to theorem 2 from ([13]), there is the following asymptotic expansion for the heat kernel on a
compact two dimensional manifold with conical point:

Tr e−t∆gc

=
∞∑

j=−2

ajt
j/2 +

∞∑
j=0

bjt
j
2 log t (4.36)

1We are grateful to Steve Zelditch for a very useful conversation and to Paul Loya and Andrew Hassell for sharing a
valuable information on this subject.

38



as t → 0+. Moreover, for our case (when the metric is flat) in this expansion there is no pure
logarithmic term, i. e.

b0 = 0.

(The proof of this fact can be found in [14].) To get the asymptotical expansion of (4.34) as s → ∞ one
needs only to substitute (4.36) into (4.35) and make the change of variable τ = ts in all the integrals.
This results in the expansion

ζs(p) ∼
∞∑

j=−2

aj
Γ(p + j

2)
Γ(p)

s−p−j/2 +
∞∑

j=1

bjs
−p−j/2 1

Γ(p)

∫ ∞

0
τp+j/2−1e−τ log τdτ−

− log s

∞∑
j=1

bj
Γ(p + j/2)

Γ(p)
s−p−j/2.

Differentiating this expansion with respect to p and substituting p = 0, we get the expansion

log det (∆gc
+ s) =

∑
j

(pjs
−j/2 + qjs

−j/2 log s + rjs
−j/2 log2 s)

with p0 = 0. Due to ([3]), the analogous expansion with zero constant term (but without squares
of logarithm) holds for the second and the third term in (4.33). The analysis of the asymptotical
expansion of the first term in (4.33) essentially coincides with that of (4.34): the constant term in this
expansion is also absent. �

4.4.5 The relation between Laplacians in conical and Poincaré metrics

Here we establish the relation between variations of the Laplacians in Poincaré and conical metrics.
This together with (4.5) will lead to a result which turns out to be equivalent to Theorem 11. For
definiteness we consider here the case of Abelian differentials, using the remarks to comment on the
changes which are needed in the case of quadratic differentials. Proposition 5 implies that

∂t

(
log

det∆−1

det�BVol−1(L)
− log

det∆|w|2

det�BVol(L, |w|2)

)
(4.37)

= ∂t

(
log

det∆−1

det�BVol−1(L)
− − log

det∆g

det�BVol(L,g)

)
,

where as usually ∂t denotes the variation with respect to one of the coordinates on the space of Abelian
differentials, g is the nonsingular metric defined in section 4.4.3.

We are going to apply Polyakov’s formula (4.3) to the right-hand side of (4.37). For this purpose
we introduce, as in section 4.4.1, the function φext(z, z̄) of local parameter z(P ) =

∫ P
P1

w outside the
zeros of the differential w:

eφext(z,z̄)|dz|2 =
|du|2
|�u|2 , (4.38)

where u is the Fuchsian coordinate on the universal covering H of L. Define the functions φint(xm) of
the distinguished local parameter xm near Pm by

eφint(xm,x̄m)|dxm|2 =
|du|2
|�u|2 . (4.39)

39



Let us choose in formula (4.3) g1 to be the Poincaré metric and g0 to be the metric g. Inside the disk
Dm = {|xm| ≤ ε} one has the relation

ρ0

ρ1
= f exp (φint/2),

where the function f is defined before proposition 5. Outside the disks Dm one has the relation
ρ0

ρ1
= exp (φext/2).

Notice also that the Gaussian curvature K0 vanishes outside the disks Dm. Moreover, the function
K0ρ

−2
0 = K0f

−2 tends (in a weak sense) as ε → 0 to a linear combination of δ-functions supported at
the zeros of w. In particular,

lim
ε→0

∫
Dm

φintK0f
−2d̂xm = −2πkmφint(xm, x̄m)

∣∣∣
xm=0

. (4.40)

Let, as in Section 4.4.1 Λε := L \ ∪M
m=1Dm. Now the right hand side of (4.37) can be rewritten as

− 1
12π

∂t

{∫
Λε

|φext
z |2d̂z +

M∑
m=1

∫
Dm

(
4|∂xm log f |2 + 2(log f)xmφint

x̄m
+ 2(log f)x̄mφint

xm
+ |φint

xm
|2) d̂xm+

+2
M∑

m=1

∫
Dm

K0f
−2 log f d̂xm +

M∑
m=1

∫
Dm

φintK0f
−2d̂xm

}
.

Notice that

∂t

{
4

M∑
m=1

∫
Dm

|∂xm log f |2d̂xm + 2
M∑

m=1

∫
Dm

K0f
−2 log f d̂xm

}
= 0,

since the expression in the braces is independent of moduli. We have also the asymptotics

M∑
m=1

∫
Dm

(
2(log f)xmφint

x̄m
+ 2(log f)x̄mφint

xm
+ |φint

xm
|2) d̂xm = o(1)

and
M∑

m=1

∫
Dm

φintK0f
−2d̂xm = −2π

M∑
m=1

kmφint(xm, x̄m)
∣∣∣
xm=0

+ o(1)

as ε → 0. As in section 4.4.1, let the regularized Dirichlet integral D
reg
F be defined as (4.17).

Since the left hand side of (4.37) is independent of ε we may take the limit ε → 0 in (4.37) and get
the following lemma.

Lemma 6 The following variational formula holds

∂t

(
log

det∆gP

det�BVol(L,gP )
− log

det∆|w|2

det�BVol(L, |w|2)

)
= − 1

12π
∂t

{
D

reg
F − 2π

M∑
m=1

kmφint(xm, x̄m)
∣∣∣
xm=0

}
,

(4.41)
where reg D is defined by (4.17).

Remark 4 In the case of metric |W | the analog of (4.41) will contain expression (4.22) in the braces
at the r. h. s.
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4.4.6 Reduction of Theorem 11 to variational formula for Dirichlet integral

Substituting in (4.5) instead of µ the basic Beltrami differentials, we derive from Lemma 6 the following
proposition.

Proposition 6 As in section 4.4.1, introduce the quantity D by

D =

{
reg D − 2π

M∑
m=1

kmφint(xm, x̄m)
∣∣∣
xm=0

}
.

Then the variational formulas hold true

∂T (L, |w|2)
∂Aα

=
1

12πi

∮
bα

SB − SF

w
+

1
12π

∂D
∂Aα

, α = 1, . . . , g; (4.42)

∂T (L, |w|2)
∂Bα

= − 1
12πi

∮
aα

SB − SF

w
+

1
12π

∂D
∂Bα

, α = 1, . . . , g; (4.43)

∂T (L, |w|2)
∂zm

= −1
6
res

∣∣∣
Pm

SB − SF

w
+

1
12π

∂D
∂zm

, m = 2, . . . M . (4.44)

Theorem 11 in its part concerning Abelian differentials follows from this proposition and Lemma
4.

Remark 5 To formulate the analog of proposition 6 for the case of quadratic differentials one has to
change D for DQ from (4.22) and add formulas for the derivatives with respect to coordinates Am and
Bm. Theorem 11 in its part concerning quadratic differentials then follows from Lemma 5.

5 Explicit formulas for det ∆ in Strebel metrics of finite volume

5.1 Determinant of ∆|w|2 in terms of tau-function

Theorem 13 Let a pair (L, w) be a point of the space H(k1, . . . , kM ). Then the determinant of the
Laplacian ∆|w|2 acting in the trivial line bundle over the Riemann surface L admits the following
explicit expression

det∆|w|2 = C Vol(L, |w|2) det�B |τ(L, w)|2, (5.1)

where Vol(L) :=
∫
L |w|2 is the area of L; B is the matrix of b-periods; constant C is independent of a

point of connected component of H(k1, . . . , kM ).

Proof. The proof immediately follows from the definition of the Bergman τ -function and Theorem
11. �

5.1.1 Genus 1: Kronecker’s formula

When the genus of L equals 1, holomorphic differentials have no zeroes and, due to the rescaling
formula for analytic torsion ([9], formula (2.39)), it is sufficient to find det∆|dz|2, where dz is the
normalized holomorphic differential with periods 1 and σ. We have (see [9], p. 20)

SB(ζ) − Sdz(ζ) = SB(ζ) − {z, ζ} = −24πi
d log η(σ)

dσ

(
dz

dζ

)2

,
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where η(σ) is the Dedekind eta-function,

η(σ) = exp
(

πiσ

12

) ∏
n∈N

(
1 − exp(2πinσ)

)
.

Obviously, Vol(L, |dz|2) = �σ and Rauch’s formula (see [9], p.57) together with Theorem 11 imply
that for any Beltrami differential µ

δµ log
det∆|dz|2

(�σ)2
= 2

d log η(σ)
dσ

∫
L

µ(dz)2 = δµ log η2(σ) = δµ log |η(σ)|4.

This gives the well-known equality

det∆|dz|2 = C|�σ|2|η(σ)|4 (5.2)

with some constant C independent of σ; we recall that expression (5.2) was found in [27], later it was
discovered that an equivalent statement was known already to Kronecker.

The formula (5.1) is a natural generalization of (5.2) to higher genus.

5.2 Explicit formulas for det∆|W |

The following theorem follows from the definition of the Bergman τ -function on the space
Qg(k1, . . . , kM1 , l1, . . . , lM2 [−1]L) and Theorem 11.

Theorem 14 Let a pair (L,W ) belong to the space Qg(k1, . . . , kM1 , l1, . . . , lM2 [−1]L). Then the de-
terminant of the Laplacian ∆|W | acting in the trivial line bundle over the Riemann surface L admits
the following explicit expression

det ∆|W | = C Vol(L, |W |)det�B |τ(L,W )|2, (5.3)

where Vol(L) :=
∫
L |W | is the area of L; constant C which is independent of a point of a connected

component of Qg(k1, . . . , kM1 , l1, . . . , lM2 , [−1]L). Here the Bergman tau-function τ(L,W ) is given by
(3.61).

5.2.1 Sphere with four conical singularities

Here we illustrate the general framework in the case of the space Q0([−1]4).
This space can be considered as a space of equivalence classes of quadratic differentials on the

Riemann sphere with four simple poles. Two such differentials W1 and W2 are called equivalent if
there exists a Möbius transformation Θ such that Θ∗W1 = W2. Take the quadratic differential

W =
b (dz)2

(z − a1)(z − a2)(z − a3)(z − a4)

with b, a1, . . . , a4 ∈ C as a representative of a class [W ]. Then there is the following expression for the
tau-function on Q0([−1]4):

τ(W ) = b−1/2
∏
i<j

(ai − aj)1/6. (5.4)
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The determinant of the Laplacian on the Riemann sphere corresponding to the metric |W | is given by
the expression

det∆|W | = CVol(CP 1, |W |)|τ |2

or, equivalently,

det∆|W | = C
∏
i<j

|ai − aj|1/3

∫ ∫
C

|dz|2
|z − a1||z − a2||z − a3||z − a4| , (5.5)

which coincides with expression previously obtained in ([1]). Thus, formula (5.3) can be considered
as a generalization of (5.5) to higher genus.

5.3 Formulas of Polyakov type for Strebel metrics of finite volume

5.3.1 Dependence of τ(L, w) and τ(L,W ) on the choice of differential: the case of simple
poles

The following theorem shows how the Bergman tau-functions computed at the points (L, w) and (L, w̃)
are related to each other on the stratum of highest dimension, when both differentials w and w̃ have
only simple zeros. We denote these zeros by Pm and P̃m, respectively.

Theorem 15 Let w and w̃ be two holomorphic 1-forms with simple poles on the same Riemann
surface L. Intruduce their divisors (w) :=

∑2g−2
m=1 Pm and (w̃) :=

∑2g−2
m=1 P̃m. Then

τ(L, w)
τ(L, w̃)

=
2g−2∏
m=1

{
res|P̃m

{w2/w̃}
res|Pm{w̃2/w}

}1/24

. (5.6)

Proof. The local parameter in a neighbourhood of Pm we choose to be

xm(P ) :=
[∫ P

Pm

w

]1/2

;

in a neighbourhood of P̃m we shall use the local parameter

x̃m(P ) :=
[∫ P

P̃m

w

]1/2

.

Then the formula (5.6) can be alternatively rewritten as follows:

τ(L, w)
2g−2∏
m=1

w̃1/12(Pm) = τ(L, w̃)
2g−2∏
m=1

w1/12(P̃m)

where we use the following standard convention for “evaluation” of the differentials w and w̃:

w̃(Pm) :=
w̃(P )

dxm(P )

∣∣∣
P=Pm

, w(P̃m) :=
w(P )

dx̃m(P )

∣∣∣
P=P̃m

. (5.7)

Let us assume that the fundamental cell L̂ is chosen in such a way that the Abel maps of divisors (w)
and (w̃) equal 2KP ; this choice is always possible (see Lemma 3) in our present case, when all points of
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these divisors have multiplicity 1. Then vectors r and r̃ (2.69), corresponding to tau-functions τ(L, w)
and τ(L, w̃), vanish, and we get, according to the formulas (2.71), (2.74) (all products below are taken
from 1 to 2g − 2):

τ12(L, w)
∏

m w̃(Pm)
τ12(L, w̃)

∏
m w(P̃m)

=
∏
m

w̃(Pm)
w(P̃m)

∏
m<n

E2(Pm, Pn)
E2(P̃m, P̃n)

{
w(P )

∏
m E(P, P̃m)

w̃(P )
∏

m E(P,Pm)

}4g−4

(5.8)

Since this expression is independent of P , we can split the power 4g − 4 of the expression in the
braces into product over arbitrary 4g − 4 points, in particular, into product over P1, . . . , P2g−2 and
P̃1, . . . , P̃2g−2. Then most of the terms in (5.8) cancel each other. The only terms left are due to the
fact that the prime-forms vanish at coinciding arguments; this compensates vanishing of w and w̃ at
their zeros. As a result we can rewrite (5.8) as follows:∏

m

{
lim

P→Pm

w(P )
E(P,Pm)(dxm(P )3/2

lim
P→P̃m

E(P, P̃m)(dx̃m(P ))3/2

w̃(P )

}
(5.9)

which equals 1, since, say, in a neighbourhood of Pm we have w(P ) = 2xm(P )dxm(P ) and E(P,Pm) =
xm(P )/

√
dxm(P ).

Remark 6 If differentials w and w̃ have zeros of arbitrary multiplicities, i.e. (w) =
∑M

m=1 kmPm and
(w̃) =

∑M
m=1 k̃mP̃m, the formula (5.6) turns into

τ(L, w)
τ(L, w̃)

= C

{∏M
m=1[res|P̃m

{w2/w̃}]k̃m∏M̃
m=1[res|Pm{w̃2/w}]km

}1/24

, (5.10)

where C is a constant depending on {km, k̃m}, and, possibly, on the choice of connected components
in the strata Hg(k1, . . . , kM ) and Hg(k̃1, . . . , k̃M ). The proof of (5.10) is parallel to the proof of (5.6).

5.3.2 Analog of Polyakov formula for metrics |w|2 and |W |
The natural version of Polyakov formula (1.16) for the metrics |w|2 should say how the determinant
∆|w|2 depends on the choice of holomorphic differential w on a given Riemann surface L. From
the formula (5.3) for ∆|w|2 and the formula (5.6) which relates tau-functions corresponding to two
holomorphic differentials with simple zeros, we get the following “singular” version of Polyakov formula:

det∆|w|2

det∆|w̃|2 = C

∫
L |w|2∫
L |w̃|2

2g−2∏
k=1

∣∣∣resP̃k
{w2/w̃}

resPk
{w̃2/w}

∣∣∣1/12
(5.11)

where {Pk} are zeros of w; P̃k are zeros of w̃. If differentials w and w̃ have arbitrary multiplicities
of their zeros, the corresponding version of Polyakov formula follows from the link (5.10) between
Bergman tau-functions on two arbitrary strata of the space Hg.

The version of Polyakov formula for the spaces of quadratic differentials which is stated in intro-
duction can be proved similarly.
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