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Abstract. We consider the Sylvester equation AX −XB +C = 0, where the matrix C ∈ R
n×m

is of low rank and the spectra of A ∈ R
n×n and B ∈ R

m×m are separated by a line. The solution X
can be approximated in a data-sparse format and we develop a multigrid algorithm that computes
the solution in this format. For the multigrid method to work we need a hierarchy of discretisations.
Here, the matrices A and B each stem from the discretisation of a partial differential operator of
elliptic type. The algorithm is of complexity O(n + m), or, more precisely, if the solution can be
represented with (n+m)k data (k ∼ log(n+m)) then the complexity of the algorithm is O((n+m)k2).
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1. Introduction. In this article we consider the matrix Sylvester equation

AX − XB + C = 0,

where A ∈ Rn×n, B ∈ Rm×m, C ∈ Rn×m are given input matrices and the sought
solution is X ∈ R

n×m. We make two assumptions concerning the matrices A, B, C.
First, A and −B are stiffness matrices from the discretisation of a linear elliptic

partial differential operator. This allows for the use of a multigrid method to solve
the Sylvester equation in O(nm) for a general matrix C. In the outlook we comment
on the case when A and B are general sparse matrices.

Second, the matrix C is of low rank kC , i.e., given in factorised form C = UV T

with matrices U ∈ Rn×k, V ∈ Rm×k. Under these assumptions the solution X can
be approximated by a matrix X̃ of rank k = O(| log ε|kC) such that ‖X − X̃‖2 ≤ ε.
The multigrid method can be adapted so that it is of linear complexity O((n+m)k2)
instead of quadratic complexity.

In the following Section we will consider a simple model problem where the multi-
grid techniques are applicable without further complications. The model is an opti-
mal control problem that leads to an algebraic matrix Riccati equation which can
be solved iteratively by Newton’s method so that in each step a Lyapunov equation
AT X + XA = C has to be solved. Such a Lyapunov equation is a special case of
the more general Sylvester equation. We also give an example from model reduction
where the Sylvester equation appears directly for the computation of cross-Gramians.
In Section 2 we give a short introduction to low rank arithmetics. Section 3 examines
the tensor structure of a Sylvester equation and as a special case we consider diagonal
Sylvester equations in Section 4. This special case is the basis for the Jacobi iteration
introduced in Section 5. In Section 6 we derive the multigrid method and proof it’s
convergence. At last we present numerical results for large scale matrix equations.

1.1. Model Problem. The model problem to be introduced in this Section
is the (distributed) control of the two-dimensional heat equation (cf. [13] and the
references therein) which is used, e.g., in optimal control problems for the selective
cooling of steel [14]. The domain where the PDE is posed is the unit square. Using
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a uniform tensor mesh, it allows for a simple discretisation. Of course, the method
that we propose is in no way limited to regular grids or simple PDEs, but it simplifies
both the implementation and presentation.

1.1.1. Continuous Model. We fix the domain Ω := (0, 1) × (0, 1) and the
boundary Γ := ∂Ω. The goal is to minimise the quadratic performance index

J(u) :=
∫ ∞

0

(
y(t)2 + u(t)2

)
dt

for u ∈ L2(0,∞) and the output y ∈ L2(0,∞) of the corresponding control system

∂tx(t, ξ) = ∂2
ξ1

x(t, ξ) + ∂2
ξ2

x(t, ξ) + κ(ξ)u(t), ξ ∈ Ω, t ∈ (0,∞),

x(t, ξ) = 0, ξ ∈ Γ, t ∈ (0,∞),

x(0, ξ) = x0, ξ ∈ Ω,

y(t) :=
∫
Ω ω(ξ)x(t, ξ)dξ, t ∈ (0,∞).

(1.1)

The values of κ and ω are

κ(ξ) :=
{

1 ξ ∈ (1
2 , 1) × (0, 1),

0 otherwise. , ω(ξ) :=
{

1 ξ ∈ (0, 1) × (1
2 , 1),

0 otherwise. .

Here we focus on a single-input-single-output system, but a generalisation to multiple
inputs and multiple outputs is straight-forward.

We seek the optimal control u∗ in linear state feedback form

u∗(t, ·) = Πx(t, ·),

but since an analytic solution is only for special cases available, we construct a se-
quence of (semi-) discretisations. For each discretisation level � = 0, 1, . . . an approx-
imation Π� to the operator Π is computed so that Π� → Π [4, 13].

1.1.2. Semidiscretisation by Finite Differences. The differential equation
(1.1) is discretised by finite differences on a uniform mesh of [0, 1]2 with n interior grid-
points (xi)n

i=1 and mesh width h = (
√

n + 1)−1. By φi we denote the piecewise linear
interpolant on the mesh with φi(xi) = 1 and φi(xj) = 0 for j �= i. The corresponding
space-discrete system is

∂tx(t) = Ax(t) + Ku(t), t ∈ (0,∞),

x(0) = x0,

y(t) := Wx(t), t ∈ (0,∞),

(1.2)

where A := AFD ∈ Rn×n is the standard finite difference discretisation of the 2d
Laplacian, x(t) ∈ Rn, u(t), y(t) ∈ R and the vectors K := KFD ∈ Rn and W ∈ Rn

are

KFD
i := κ(xi), Wi :=

∫
Ω

ω(ξ)φi(ξ)dξ. (1.3)

The stiffness matrix A is symmetric negative definite, sparse and ill-conditioned.
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1.1.3. Semidiscretisation by Finite Elements. Instead of the finite differ-
ence discretisation from the previous section we can as well discretise (1.1) in the
weak or variational form by finite elements on a uniform mesh of [0, 1]2 with n interior
grid-points (xi)n

i=1, mesh width h = (
√

n + 1)−1 and piecewise linear basis functions
(φi)n

i=1. The corresponding space-discrete system is (1.2), where W is defined as in
(1.3), K := KFEM := E−1KFD for the matrix KFD from (1.3) and A := E−1AFEM

for the matrices

AFEM
i,j :=

∫
Ω

〈∇φi(ξ),∇φj(ξ)〉dξ, Ei,j :=
∫

Ω

φi(ξ)φj(ξ)dξ. (1.4)

The mass matrix E is symmetric positive definite, well conditioned and sparse. The
system matrix A = E−1AFEM has a negative spectrum, is non-symmetric, dense and
ill-conditioned. Therefore, one avoids to work with A and instead uses a generalised
formulation, see (1.7).

1.1.4. Linear State Feedback Control. The discrete optimal control u can
be realised in linear state feedback form [12]

u(t) = −KT Xx(t), t ∈ [0,∞),

where X is the unique solution — in the set of symmetric positive semidefinite matrices
— to the algebraic matrix Riccati equation

AT X + XA − XKKT X + WWT = 0. (1.5)

The matrix A is of size n × n. The matrices KKT and WWT are of size n × n and
data-sparse in the sense that only K and W have to be stored, i.e., 2n entries.

1.1.5. Solution of the Algebraic Matrix Riccati Equation. The non-linear
equation (1.5) can be solved by Newton’s method [11]. The initial guess X0 := 0 is
sufficient to guarantee global convergence, but in the context of multilevel methods
a good initial guess can also be obtained by a coarser level solution in the nested
iteration. In each step i of Newton’s method we have to solve a Lyapunov equation

AT
i Xi + XiAi + Ci = 0 (1.6)

where the matrices Ai and Ci are of the form

Ai := A − KKT Xi−1, Ci := WWT − Xi−1KKT Xi−1.

For the finite difference discretisation A = AFD the negative definite matrix Ai in the
i-th step of Newton’s method is data-sparse in the sense that only the sparse n × n
matrix A, the vector K and the vector KT Xi−1 have to be stored. For Ci we have to
store W and Xi−1K in addition.

For the finite element discretisation it is advantageous to consider the generalised
Lyapunov equation:

Lemma 1.1. Let A, K, W denote the matrices of the space-discrete system (1.2)
for the finite element discretisation (1.4). Let X̂i be the unique solution to the gener-
alised Lyapunov equation

ÂT
i X̂iE + EX̂iÂi + Ĉi = 0, (1.7)
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where the matrices Âi, Ĉi are

Âi := AFEM − KFD(KFD)T X̂i−1E, Ĉi := WWT − EX̂i−1K
FD(KFD)T X̂i−1E.

Then the solution Xi to (1.6) is Xi = EX̂iE.
Proof. By inserting X̂i = E−1XiE

−1 we get

ÂT
i X̂iE = (AFEM − KFD(KFD)T X̂i−1E)T E−1XiE

−1E

= (E−1AFEM − E−1KFD(KFD)T E−1EX̂i−1E)T Xi

= (E−1AFEM − KKT Xi−1)T Xi

= AT
i Xi

and analogously for EX̂iÂi = XiAi. The right-hand side fulfils

Ĉi = WWT − EX̂i−1K
FD(KFD)T X̂i−1E = WWT − Xi−1KKT Xi−1 = Ci.

The matrices Âi in the generalised Lyapunov equation (1.7) are data-sparse in
the sense that AFEM is sparse and the matrix KFD(KFD)T X̂i−1M of rank 1.

The Lyapunov equation (1.6) is a special Sylvester equation which is of the form

AX − XB + C = 0 (1.8)

for the matrices A := AT
i , B := −Ai and C := Ci. A Sylvester equation is uniquely

solvable for all matrices C if and only if the spectra of A and B are disjoint. In our
setting the matrix Ai is negative definite and therefore A < 0 and B > 0 such that
the existence of a unique solution is guaranteed.

In the following subsection 1.3 we determine a suitable format for an approxima-
tion to the solution X of the Sylvester equation (1.8) where the matrix C is of low
rank.

1.2. Second Model Problem. The model problem of this section is identical
to the linear time invariant control problem (1.1) except that the governing PDE is
now

ẋ(t, ξ) = ∂2
ξ1

x(t, ξ) + ∂2
ξ2

x(t, ξ) + β∂ξ1x(t, ξ) + κ(ξ)u(t),

leading to a discrete system

ẋ(t) = Ax(t) + Ku(t), y(t) = WT x(t)

with a non-symmetric matrix A. We aim at finding a lower order system

˙̂x(t) = Âx̂(t) + K̂u(t), y(t) = ŴT x̂(t).

so that Â is considerably smaller than A while the input-output error is bounded and
the reduced system stable [2]. The reduced system can be constructed based on a low
rank approximation X̃ of the so-called cross Gramian X which is the solution of the
Sylvester equation [2]

AX + XA + KWT = 0.
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1.3. Structure of the Solution. In the ith step of Newton’s method to solve
the algebraic matrix Riccati equation (1.5), we have to solve a Sylvester equation
(1.8) where the matrix C is of rank at most

rank(C) ≤ rank(WWT ) + rank(Xi−1KKT Xi−1) ≤ 2.

Since the discrete system (1.2) involves a discretisation error, it is reasonable to solve
the Sylvester equation only up to an accuracy ε of the size of the discretisation error,
i.e., we seek an approximation X̃ to the solution X of (1.8) such that

‖X − X̃‖2 ≤ ε‖X‖2.

The idea now is to choose a matrix X̃ that allows for a data-sparse representation.
Definition 1.2. (R(k)-matrix representation) Let k, n, m ∈ N. A matrix R ∈

Rn×m is called an R(k)-matrix (given in R(k)-representation) if R is represented in
factorised form

R = UV T , U ∈ R
n×k, V ∈ R

m×k, (1.9)

with U, V in full matrix representation.
The two factors in the representation (1.9) of an R(k)-matrix involve k(n + m)

values to be stored. The matrix-vector multiplication y := Rx can be done in two
steps involving the two matrix-vector products z := V T x and y := Uz that consist of
O(k(n + m)) basic arithmetic operations.

The R(k)-matrix format is a suitable representation for matrices of rank at most
k: each matrix of rank at most k can be written in the factorised form (1.9) by use of
a (reduced) singular value decomposition and each matrix of the form (1.9) is of rank
at most k. The next Theorem proves the existence of a low rank approximant X̃ to
the solution X of equation (1.8).

Theorem 1.3. (Existence of a low rank approximant) Let A ∈ Rn×n and B ∈
Rm×m be matrices with spectrum σ(A) and σ(B) separated by a line (e.g., negative
and positive). Then for each matrix C ∈ Rn×m of rank at most kC and each 0 < ε < 1
there exists a matrix X̃ ∈ Rn×m that approximates the solution X to (1.8) by

‖X − X̃‖2 ≤ ε‖X‖2, (1.10)

where the rank of X̃ is bounded by rank(X̃) ≤ kCkε, kε = O(log(1/ε)).
The proof of Theorem 1.3 is given in [6] (see also [16, 1]). One should note that

the rank kε depends on the location of the spectra of A and B. In our model problem
this is k = O(log(1/ε) log(n)).

1.4. Large Scale Sylvester Equations. A fixed Sylvester equation (1.8) can,
e.g., be solved by the Bartels-Stewart algorithm [3], which is of complexity O(n3).
In the context of large scale Sylvester equations (i.e., n > 105) one is interested in
reducing the complexity for a certain class of matrices A, B, C.

Hu and Reichel [20] propose to use Krylov subspace methods for the solution of
the Sylvester equation. In each iterative step the equation is projected to a small
dimension where one can use, e.g., the Bartels-Stewart algorithm as a solver. The
authors do not exploit some kind of low rank structure but the fact that A and
B allow for a fast matrix-vector multiplication. One step of their algorithm is of
complexity O(nm) and the necessary number of iterations increases as the condition
of the Sylvester equation increases.
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Li and White [15] propose an iterative method for the solution of the Lyapunov
equation based on the factorisation of the matrix C and the solution X . Their method
is a special implementation of the classical ADI algorithm (previously proposed by
Penzl [18]) and requires the solution of a shifted linear system A − λI in each step.
The number J of steps necessary to gain a good approximation X̃ to X depends on
the choice of the shifts λ. For the non-symmetric case there is no nontrivial upper
bound for J . The main problem is that the approximation of rank J (after J steps
of ADI) is not necessarily close to a best approximation of rank J .

Penzl [17] presents a multigrid method to compute the solution X to the Lyapunov
equation but he does not exploit the fact that X can — at least if C is of low rank —
be approximated by a low rank matrix X̃, therefore the complexity of one multigrid
step is O(n2). He also gives a convergence analysis for a simple model problem and
proves that the convergence rate is bounded independently of the problem size n.

In this paper, we explain how one can compute a low rank approximation X̃ to
the solution X of (1.8) by use of the multigrid method. We use the usual Jacobi
smoother and standard prolongation and restriction operators but extend the basic
multigrid cycle by a projection step Xi �→ Tk(Xi) that ensures that the rank of the
ith iterate Xi is bounded. For a sufficiently large rank k the error ‖Xi −Tk(Xi)‖ due
to the projection of the iterate Xi (cf. Section 2) can be regarded as the standard
truncation error due to limited machine precision.

Each multigrid step is of complexity O(n + m) and a nested iteration combined
with a level independent good convergence rate guarantees that we need only O(1)
steps to solve the equation up to the discretisation error.

The convergence analysis for simple model problems turns out to be fairly trivial.
The structure of the Sylvester equation allows us to carry results for linear systems
Ax = b over to the Sylvester equation such that the convergence rate can be bounded
also for general domains and operators. The effect of the projection to low rank in
the multigrid cycle can be regarded as a reduction of the machine precision. In our
numerical tests the convergence rate is not deteriorated by the projection.

2. R(k)-Matrix Arithmetics. The set of n × m R(k)-matrices is not a linear
space because the addition of two matrices of rank at most k might result in a matrix
of rank larger than k. In this sense the R(k)-matrix format is not suitable for iterative
solution schemes for the Sylvester equation.

However, R(k)-matrices allow for an efficient singular value decomposition such
that the projection (a best approximation) to lower rank is of complexity O(k2(n+m)).
This projection can be used to keep the iterates in the set R(k).

Lemma 2.1 (reduced SVD, truncation). (a) Let R = UV T ∈ Rn×m be an R(k)-
matrix. A reduced singular value decomposition of R can be computed with complexity
NR,SVD(n, m, k) � 6k2(n + m) + 23k3 as follows:

1. Calculate a (reduced) QR-decomposition U = QURU of U , QU ∈ Rn×k, RU ∈
Rk×k.

2. Calculate a (reduced) QR-decomposition V = QV RV of V , QV ∈ Rm×k, RV ∈
R

k×k.
3. Calculate a singular value decomposition RURT

V = ŨΣṼ T .
4. Define Û := QU Ũ and V̂ := QV Ṽ .

Then R = ÛΣV̂ T is a (reduced) SVD. Due to [5, Sections 5.2.9 and 5.4.5], the
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Rank k = 4 k = 8 k = 16 k = 32 k = 64 k = 128
Time 6.19 15.32 49.37 172.73 653.40 2637.5

Table 2.1
Time in seconds for the reduced SVD of an n × n R(k)-matrix, n = 10242.

complexity of the previous steps is

QR-decomposition of U : 4nk2

QR-decomposition of V : 4mk2

multiplication of RURT
V : 2k3

SVD of RUR�
V : ≈ 21k3

Multiplication of QU Ũ and QV Ṽ : 2nk2 + 2mk2

Altogether: NR,SVD(n, m, k) = 6k2(n + m)+ 23k3

(b) A truncation of an R(k)-matrix R to rank k′ ≤ k is defined as the best ap-
proximation with respect to the Frobenius and spectral norm of R in the set of R(k′)-
matrices. This can be computed by using the first k′ columns of the matrices ÛΣ and
V̂ from the reduced singular value decomposition of R with the same complexity as
above. We denote the truncation to k′ by the symbol

Tk′ . (2.1)

If k′ ≥ k, then Tk′ is the identity. In the R(k)-matrix representation (1.9), the
matrices U, V are extended by k′ − k zero columns.

We remark that the truncation in part (b) becomes non-unique when the k′-th
and (k′ + 1)-st singular values are equal.

Lemma 2.2 (spectral and Frobenius norm). The spectral and Frobenius norm
of an n × m R(k)-matrix R can be computed as in Lemma 2.1a with complexity
NR,‖·‖(n, m, k) � 4k2(n + m) + 23k3.

Proof. The norms can be obtained from the singular values, i.e., steps 1-3 from
Lemma 2.1a are to be performed.

Example 2.3 (complexity of the truncation in practice). We implement the
truncation procedure of Lemma 2.1 on a SUN UltraSPARC III with 900 MHz
CPU clock rate and 150 MHz memory clock rate by use of the LAPACK subroutines
dgeqrf and dgesvd for the QR-factorisation and singular value decomposition of full
matrices. The 10242×10242 matrix R of rank k is given in R(k)-matrix representation
and has random entries in the factors U, V . We truncate R down to rank k/2. The
time in seconds to compute the result is given in Table 2.1.

3. Tensor structure of the Sylvester equation. In order to formulate and
analyse the iterative solvers for the Sylvester equation, we need to reformulate the
matrix equation in terms of a standard linear system of equations. For notational
purposes we also introduce the Kronecker product formulation.

3.1. Algebraic Structure. The Sylvester equation (1.8) can be written (for
each entry (i, j)) in the form

n∑
ν=1

AiνXνj −
m∑

ν=1

XiνBνj = −Cij ,
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which means that the entries of the Sylvester operator SA,B : Rn×m → Rn×m, X �→
AX − XB are

SA,B
ij,pq = δjqAip − δipBqj , δjq =

{
1 if j = q
0 otherwise. (3.1)

If we order the indices columnwise (rowwise) the matrix representation is

SA,B
col =

⎡⎢⎣ A
. . .

A

⎤⎥⎦ −

⎡⎢⎣ B11I · · · Bm1I
...

. . .
...

B1mI · · · BmmI

⎤⎥⎦ ,

SA,B
row =

⎡⎢⎣ A11I · · · A1nI
...

. . .
...

An1I · · · AnnI

⎤⎥⎦ −

⎡⎢⎣ B
. . .

B

⎤⎥⎦ .

The Kronecker product

X ⊗ Y :=

⎡⎢⎣ X11Y · · · X1nY
...

. . .
...

Xn1Y · · · XnnY

⎤⎥⎦
allows us to use the short notation

SA,B := SA,B
col = I ⊗ A − BT ⊗ I.

For the finite element discretisation it was advantageous to consider the generalised
Sylvester operator

SA,B,E : R
n×m → R

n×m, X �→ AXE − EXB

which can be written in terms of the Kronecker product by

SA,B,E = E ⊗ A − BT ⊗ E,

i.e., the entries of the matrix SA,B,E are

SA,B,E
ij,pq = EjqAip − EipBqj .

3.2. Analytic Structure. In this section we want to identify the matrices SA,B

and SA,B,E of the (generalised) Sylvester operator as the discretisation of a tensor
product operator on the tensor domain Ω × Ω. This will enable us to use proofs of
multigrid convergence for the product operator.

3.2.1. Finite Element Discretisation. We consider the finite element Galer-
kin discretisation of the operator A : H1

0 (Ω × Ω) × H1
0 (Ω × Ω) → H−1(Ω × Ω),

A[u](x, y) = −
2∑

ν=1

∂2
xν

u(x, y) −
2∑

ν=1

∂2
yν

u(x, y) (3.2)

using the set Vn2 := {ϕij | i, j = 1, . . . , n} of tensor product basis functions based on
the basis functions φi from Section 1.1.3:

ϕij(x, y) := φi(x)φj(y), x, y ∈ Ω.
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The Galerkin stiffness matrix is the matrix A with entries

Aij,pq =
∫

Ω

∫
Ω

〈∇xϕij(x, y),∇xϕpq(x, y)〉 + 〈∇yϕij(x, y),∇yϕpq(x, y)〉 dxdy

=
∫

Ω

∫
Ω

〈∇φi(x),∇φp(x)〉φj(y)φq(y) + 〈∇φj(y),∇φq(y)〉φi(x)φp(x) dxdy

=
∫

Ω

〈∇φi(x),∇φp(x)〉 dx

∫
Ω

φj(y)φq(y) dy +

+
∫

Ω

〈∇φj(y),∇φq(y)〉 dy

∫
Ω

φi(x)φp(x) dx

= AipEjq + EipAjq = SA,A,E
ij,pq ,

where A, E are the stiffness and mass matrices from Section 1.1.3 and SA,A,E is the
Sylvester operator from Section 3.1. Therefore, A is just another notation for SA,A,E ,
but it allows us to regard it as a standard finite element discretisation of an elliptic
operator, hence standard multigrid theory can be applied.

3.2.2. Finite Difference Discretisation. For a finite difference discretisation
of the operator (3.2) one can derive as in the previous section

A
FD
ij,pq = SA,A

ij,pq, i.e., A
FD = SA,A,

where A is the finite difference matrix from Section 1.1.2.
Before we introduce the multigrid method, we first consider one important in-

gredient, namely the smoother. The standard smoother used in a multigrid method
is Jacobi (or Gauss-Seidel), which requires in our setting the solution of diagonal
Sylvester equations, resp. diagonal generalised Sylvester equations.

4. Diagonal Sylvester Equation. A diagonal Sylvester equation⎡⎢⎣ a1

. . .
an

⎤⎥⎦X − X

⎡⎢⎣ b1

. . .
bm

⎤⎥⎦ + C = 0 (4.1)

with ai < bj for all 1 ≤ i ≤ n and 1 ≤ j ≤ m allows for a direct solution by

Xij = Cij/(bj − ai). (4.2)

If the matrix C is of rank 1 with R(1)-matrix representation C = cdT , then

X =

⎡⎢⎣ c1

. . .
cn

⎤⎥⎦
⎡⎢⎣ (b1 − a1)−1 · · · (bm − a1)−1

...
. . .

...
(b1 − an)−1 · · · (bm − an)−1

⎤⎥⎦
⎡⎢⎣ d1

. . .
dm

⎤⎥⎦ .

The following Lemma 4.2 proves that the Cauchy matrix Cij = (bj − ai)−1 allows for
a low rank approximation (a special case of Theorem 1.3). The idea is to construct a
separable representation for the function

f(x, y) :=
1

x − y
≈

k∑
ν=1

gν(x)hν (y)
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so that

Cij ≈
k∑

ν=1

gν(bj)hν(ai).

However, if the distance between the sets

Ia := {a1, . . . , an} and Ib := {b1, . . . , bm}

is small compared to their diameters then the separable approximation requires a
large rank k. Therefore we subdivide the sets Ia and Ib into subsets t ⊂ Ia and s ⊂ Ib

so that they fulfil the admissibility condition

min{diam(t), diam(s)} ≤ dist(t, s). (4.3)

An explicit construction is given in the following.
Construction 4.1. (Local R(k)-matrix approximation of the Cauchy matrix)

Let t ⊂ Ia and s ⊂ Ib fulfil (4.3) and let

t0 :=
1
2
(min
ai∈t

ai + max
ai∈t

ai), s0 :=
1
2
(min
bj∈s

bj + max
bj∈s

bj).

Then we define for i ∈ t and j ∈ s the approximation

C̃ij :=

{ ∑k
ν=0(t0 − bj)−ν−1(t0 − ai)ν if diam(t) ≤ diam(s),∑k
ν=0(ai − s0)−ν−1(bj − s0)ν otherwise.

The matrix C̃i∈t,j∈s is an R(k)-matrix where the factors U, V are

Uiν :=
{

(t0 − ai)ν if diam(t) ≤ diam(s),
(ai − s0)−ν−1 otherwise,

Vjν :=
{

(t0 − bj)−ν−1 if diam(t) ≤ diam(s),
(bj − s0)ν otherwise.

Lemma 4.2. (Local approximation error) Let t, s and C̃ be as in Construction
4.1 and let 0 < ε < 1. Then

|C̃ij − Cij | ≤ ε|Cij | (4.4)

holds for all i ∈ t,j ∈ s and a rank

k := �log3(1/ε)� + 1.

Proof. Without loss of generality we assume diam(t) ≤ diam(s). The exact Taylor
expansion of f with respect to x is

f(x, y) =
∞∑

ν=0

1
ν!

∂ν
xf(t0, bj)(ai − t0)ν =

∞∑
ν=0

(t0 − bj)−ν−1(t0 − ai)ν .
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st st

Fig. 4.1. Recursive subdivision of one (left) or two (right) subintervals and the corresponding
partitions of the Cauchy matrix C.

Using this representation and the assumption (4.3) we get

|C̃ij − Cij | =
∣∣∣ ∞∑

ν=k

(t0 − bj)−ν−1(t0 − ai)ν
∣∣∣ ≤

∞∑
ν=k

|t0 − bj |−ν−1|t0 − ai|ν

≤
∞∑

ν=k

(
dist(t, s) +

1
2
diam(t)

)−ν (
1
2
diam(t)

)ν

|t0 − bj|−1

(4.3)

≤
∞∑

ν=k

3−ν|t0 − bj |−1 = 3−k+1 1
2
|t0 − bj |−1 ≤ ε|Cij |.

In order to satisfy the admissibility condition (4.3) there are two strategies:
First, we can subdivide the set t recursively into two parts t1 and t2 of half the

diameter so that one of the two is admissible to s (cf. Figure 4.1). The other one
is then further subdivided until the diameter is less than the distance to s. This
strategy produces blocks t′ × s, t′ ⊂ t, for which we can apply Construction 4.1. The
number of blocks is p := �log2(

diam(t)
dist(t,s) )� + 1. In total we have to store and compute

O(pk(n + m)) entries of the R(k)-matrix representation.
Second, we can subdivide always both sets s and t each into two parts of half

the diameter so that three of the four pairs are admissible and the fourth one has
to be subdivided further (cf. Figure 4.1). This strategy will then produce p :=
3�log2(

diam(t)
dist(t,s) )� + 1 blocks (more than the first strategy), but they are of different

size which is decaying geometrically. Therefore we have to store and compute only
O(k(n + m)) entries of the R(k)-matrix representations.

In both cases, the rank of the approximation C̃ is pk. In the second case we can
exploit the hierarchical structure for the efficient computation of an approximation
for X . We will give the details later in Construction 4.5.

Corollary 4.3 (Approximation error). Let C̃ be an approximation to the Cauchy
matrix with relative error ε, i.e., |C̃ij − Cij | ≤ ε|Cij | for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Let C be an R(kC)-matrix with entries Cij =

∑kC

ν=1 c
(ν)
i d

(ν)
j . Then the matrix X̃ij :=∑kC

ν=1 c
(ν)
i C̃ijd

(ν)
j approximates the solution X to (4.1) by

|Xij − X̃ij | ≤ ε|Xij |, ‖X − X̃‖F ≤ ε‖X‖F .

Proof.

|Xij − X̃ij | = |
kC∑
ν=1

c
(ν)
i d

(ν)
j | |C̃ij − Cij | ≤ ε|

kC∑
ν=1

c
(ν)
i d

(ν)
j | |Cij | = ε|Xij |.
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Remark 4.4 (adaptive choice of the rank). In practice, one is interested in a good
approximation C̃ to the Cauchy matrix C, preferably an approximation with minimal
rank for a prescribed accuracy ε. Our construction only yields a suboptimal candidate
where the rank is higher than necessary. In the multigrid method the approximation
C̃ will be used several times, such that it pays to spend more effort in the computation
of C̃. One way to do this is to compute a candidate C̃1 as above up to accuracy ε/10
and compute an approximant C̃ to C̃1 up to accuracy ε with minimal rank by use of
the reduced singular value decomposition of Lemma 2.1.

The construction of a good low rank approximant C̃ to the Cauchy matrix bears
two bottlenecks:

First, one has to store a matrix of rank pk. For a large scale problem with
n = m = 106, |b1 − an| = 10−3, |an − a1| = 1 and ε = 10−6 there are more than
300 million entries to be stored which requires more than two Gigabyte of memory in
double precision arithmetic.

Second, the estimated rank pk (in the above example pk = 154) is typically too
large. The truncation to lower rank is of quadratic complexity in the rank which
means prohibitively expensive (cf. Example 2.3).

Construction 4.5 (hierarchical construction). Assume that C is subdivided as
indicated in Figure 4.1. The construction consists of three parts. In part one we define
the blockwise local approximation of C. In part two we construct a blockwise local
approximation of X and in part three we combine the blocks to a global approximation
X̃ of X.

Part 1. For each of the blocks t × s ⊂ Ia × Ib we define the approximation
C̃|t×s as in Construction 4.1 but with a different target accuracy by taking the rank
k′ := �log3(ε−1/3)� + 1.

Part 2. Let C =
∑kC

ν=1 c(ν)(d(ν))T . The matrix X is blockwise of the form

X |t×s =
kC∑
ν=1

diag(c(ν)|t) C|t×s diag(d(ν)|s)

and we approximate it by

X̃ ′|t×s :=
kC∑
ν=1

diag(c(ν)|t) C̃|t×s diag(d(ν)|s).

At last we recompress the matrix blockwise by use of the reduced SVD to find a minimal
rank approximation X̃ ′′|t×s so that

‖X̃ ′|t×s − X̃ ′′|t×s‖F ≤ ε

3
‖X̃ ′|t×s‖F .

Part 3. We define X̃ recursively, starting with the largest block Ia× Ib and going
down recursively. On each level (level number � = 1 for the largest block, level number
� = 2 for the blocks of half the size and so forth) with corresponding block t × s we
prescribe an accuracy of

ε� := 2−� ε

3
‖X̃ ′′‖F .

Let t × s be a block that is subdivided into t1 × s1, t2 × s1, t1 × s2, t2 × s2. Then we
define

X̃t,s := Tk

([
X̃ ′′|t1×s1 X̃ ′′|t1×s2

X̃t2,s1 X̃ ′′|t2×s2

])
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by use of the truncation operator from (2.1) and a target accuracy ε� in the absolute
Frobenius norm.

The relative Frobenius norm accuracy ‖X − X̃‖F /‖X‖F for the approximation
X̃ := X̃Ia,Ib will be estimated in the following Lemma.

Lemma 4.6. For the approximation X̃ from Construction 4.5 holds

‖X − X̃‖F ≤ ε‖X‖F + O(ε2).

The complexity of the hierarchical construction is O((n+m)(k2
C(k′)2 +k2

final)), where
k′ is the rank used for the local approximation of the Cauchy matrix, kC is the rank
of the matrix C and kfinal is the rank used for the approximation of the solution X.

Proof. 1) Approximation error.
The Cauchy matrix approximation in part 1 of Construction 4.5 was chosen such that
|Cij − C̃ij | ≤ ε|Cij |/3. From Corollary 4.3 we conclude ‖X̃ ′ − X‖F ≤ ε‖X‖F /3. In
part 2 of Construction 4.5 the matrix X̃ ′ is recompressed so that

‖X − X̃ ′′‖F ≤ ‖X − X̃ ′‖F + ‖X̃ ′ − X̃ ′′‖F ≤ ε‖X‖F /3 + ε‖X‖F/3 + O(ε2).

Next we will show that ‖X̃ ′′ − X̃‖F ≤ ε‖X‖F/3 + O(ε2) which gives the desired
estimate.

The truncation accuracy in part 3 of Construction 4.5 yields on each level � of a
block t × s

‖X̃t,s − X̃ ′′|t×s‖F ≤ ε� = 2−�ε‖X̃ ′′‖F /3.

Over all levels � = 1, . . . this sums up to

∞∑
�=1

ε� =
1
3
ε‖X̃ ′′‖F =

1
3
ε‖X‖F + O(ε2).

2) Complexity.
Part 1 of Construction 4.5 is of complexity 21−�k′n for a block on level �. On each
level there are at most three blocks so that this sums up to

∞∑
�=1

21−�3k′n ≤ 6k′n.

In part 2 we truncate each of the blocks (we neglect the diagonal scaling). Due to
Lemma 2.1 the complexity is bounded by

∞∑
�=1

21−�3n(kCk′)2 ≤ 6k2
C(k′)2n.

At last we combine the blocks levelwise. On each level we add four matrices, each of
rank at most kfinal, so that the complexity is bounded by

∞∑
�=1

21−�nk2
final ≤ 2k2

finaln.
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In order to illustrate the benefits and the complexity of Construction 4.1 and the
alternatives from Remark 4.4 and Construction 4.5 we test the method for a simple
artificial model problem.

Example 4.7. The entries of the diagonal matrices A and B are

ai = −i, bj = j, 1 ≤ i, j ≤ 10242.

We want to approximate the solution X and the Cauchy matrix C for a matrix C of
rank kC = 5 up to an accuracy of ε := 10−6 by approximations C̃ and X̃ of minimal
rank.

According to Construction 4.5 we compute the approximant in three steps:
1. (Part 1) Hierarchical Approximation of C by C̃. Since the entries of C̃ are

derived analytically, this is very fast. The blockwise rank k is 15 (as defined
in Construction 4.5).

2. (Part 2) Blockwise approximation in the R(k)-matrix format.
3. (Part 3) Hierarchical conversion to the R(k)-matrix format.

The following table displays the times the three steps take and the amount of storage
needed (in the first step for C̃ and in the second and third step for X̃ ′′ and X̃ respec-
tively). The numerical tests were performed on a SUN UltraSPARC III with 900 MHz
CPU clock rate and 150 MHz memory clock rate.

time (seconds) storage (Megabyte)
Part 1 10.3 720
Part 2 943 180
Part 3 422 360

The amount of storage needed in Step 1 can be omitted by immediate truncation
of each block to lower rank. The final approximation X̃ has a rank of kX̃ = 22.

The previous example illustrates that the hierarchical truncation is an efficient
way to generate either a best approximation to the Cauchy matrix or to the solution
of a diagonal Sylvester equation. In practice, we will use the construction to solve di-
agonal Sylvester equations as they appear in the Jacobi iteration. There, the diagonal
entries are of similar size, i.e., the matrix is well conditioned such that the number of
levels is small (typically one). The situation simplifies if all diagonal entries are equal:

Example 4.8. The entries of the diagonal matrices A and B are

ai ≡ a, bj ≡ b, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Then the Cauchy matrix is C = (b − a)−1I (I is the identity) and the solution is
X = (b − a)−1C.

In the following example we want to compare our construction with an iterative
scheme that approximates the solution X to (4.1). For this example we fix a matrix
C of rank kC := 5.

Example 4.9. The entries of the diagonal matrices A and B are

ai = −i, bj = j, 1 ≤ i, j ≤ 10242.

The ADI iteration from [18] to solve AX − XB + C = 0 starts with X0 := 0 and
generates the matrices

Xi+1 := (A − piI)(A + piI)−1 Xi (A − piI)(A + piI)−1

−2pi(A + piI)−1 C (A + piI)−1,
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where the parameters pi for J steps of the iteration are given by κ := (a1/an)1/J , t0 :=
a1, tj := κ tj−1, pj := −√

tj−1tj for j = 1, . . . , J . This parameter choice allows for an
explicit bound on the relative error, such that the number J of steps can be determined
a priori. The rank of the resulting approximant X̃ADI to X is equal to JkC . In this
example the number of iterations J = 81 ensures that the a priori error bound is less
than 10−6.

The computation of an approximation X̃ADI takes ca. 580 seconds (this time
can be reduced by using the ADI variant from [15]). However, the rank used in the
representation of X̃ADI is k = 405 so that a truncation to smaller (minimal) rank
would require approximately 25000 seconds (cf. Table 2.1). Alternatively, one could
truncate in intermediate steps (no control of the accuracy) so that the time reduces
to approximately 5000 seconds. The complexity is higher than for the hierarchical
Construction 4.5 because the local blockwise ranks are much smaller than the global
rank JkC from the ADI iteration.

4.1. Diagonal generalised Sylvester equation. At last we want to comment
on diagonal generalised Sylvester equations. There, the system

2
64

a1

. . .

an

3
75 X

2
64

e1

. . .

em

3
75 −

2
64

ê1

. . .

ên

3
75 X

2
64

b1

. . .

bm

3
75 + C = 0

has to be solved. We assume that ej > 0, êi > 0, ai < 0 and bj > 0 for all entries
of the diagonal matrices. This system can by multiplication with diag(ê−1

1 , . . . , ê−1
n )

from the left and diag(e−1
1 , . . . , e−1

m ) from the right be transformed into a standard
Sylvester equation for which the techniques from above are applicable, in particular

Xij = ê−1
i Cije

−1
j /(bj/ej − ai/êi). (4.5)

5. Smoothing Iterations. In this section we will consider possible smoothing
iterations that are useful in the context of the multigrid method. The two simplest
ones are Richardson and Jacobi, and these will be given in detail in the following.

5.1. Richardson Iteration. For linear systems of equations Mx = b the (sta-
tionary) Richardson iteration is defined by

x0 := 0, xi := xi−1 − θ(Mxi−1 − b) for i ≥ 1.

Convergence is guaranteed for positive definite matrices M if the parameter θ ∈ R

fulfils 0 < θ < 2‖M‖−1
2 (see, e.g., [8] and also for a generalisation to non-symmetric

systems). For the linear system AX − XB + C = 0 the iteration reads

X0 := 0, Xi := Xi−1 − θ(AXi−1 − Xi−1B + C) for i ≥ 1. (5.1)

The optimal damping factor is θ = 2/(‖M‖2 + ‖M−1‖−1
2 ) which can be estimated

by θ ≈ 3
2‖M‖−1

2 , where ‖M‖2 = ‖A‖2 + ‖B‖2 is easily computable via the power
iteration (here we assumed A < 0 and B > 0).

If the iterate Xi−1 is an R(k)-matrix and the right-hand side C is an R(kC)-
matrix, then the next iterate Xi is an R(2k + kC)-matrix whose representation can
be computed by k matrix-vector multiplications for the matrices A and B. In order
to stay in the set of R(k)-matrices one can truncate the resulting matrix Xi to lower
rank k. This will be called the R(k)-Richardson iteration:

X0 := 0, Xi := Tk(Xi−1 − θ(AXi−1 − Xi−1B + C)) for i ≥ 1. (5.2)
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Lemma 5.1. Let A ∈ Rn×n and B ∈ Rm×m be data-sparse matrices in the sense
that the matrix-vector multiplication for A and B can be performed with complexity
O(n) and O(m).
(a) One step of the Richardson iteration (5.1) is of complexity O(nm).
(b) One step of the R(k)-Richardson iteration (5.2) is of complexity O(k2(n + m)).

Although the Richardson iteration is convergent for sufficiently small θ, the rate
of convergence can be poor. In the context of multigrid methods one is not necessarily
interested in convergence properties but in the smoothing property (cf. [8]). The next
Lemma provides the necessary assumptions.

Lemma 5.2. Let A ∈ R
n×n and B ∈ R

m×m be symmetric with spectra on two
disjoint halfplanes: σ(A) > σ(B). Let (the mass matrix) E be symmetric positive
definite. Then the Sylvester operators SA,B and SA,B,E are both symmetric positive
definite.

Proof. If σ(A) = {λ1, . . . , λn} and σ(B) = {µ1, . . . , µm}, then the nm eigen-
values of the (linear) Sylvester operator S : X �→ AX − XB are λi − µj . By
assumption all eigenvalues are positive. The symmetry follows from SA,B

ij,pq =
δjqAip − δipBqj = δqjApi − δpiBjq = SA,B

pq,ij . Analogously symmetry holds for the
generalised Sylvester operator SA,B,E . From σ(A) > σ(B) and the symmetry of
A, B we conclude σ(E− 1

2 AE− 1
2 ) > σ(E− 1

2 BE− 1
2 ). From the first part we know

S = I ⊗E− 1
2 AE− 1

2 −E− 1
2 BE− 1

2 ⊗ I > 0 and thus by multiplying E
1
2 ⊗E

1
2 from the

left and right: SA,B,E = E ⊗ A − B ⊗ E > 0.

5.2. Jacobi Iteration. The Jacobi iteration is defined by

X0 := 0, Xi := Xi−1 − θdiag(S)−1(AXi−1 − Xi−1B + C) for i ≥ 1, (5.3)

where S is the Sylvester operator. The diagonal entries of the Sylvester operator are

SA,B
ij,ij = Aii − Bjj , SA,B,E

ij,ij = EjjAii − EiiBjj ,

so that the corresponding Sylvester equations are

diag(A)X − Xdiag(B) = Ci, diag(A)Xdiag(E) − diag(E)Xdiag(B) = C̃i.

We have to solve the diagonal (generalised) Sylvester equations for the right-hand side
Ci = AXi−1−Xi−1B+C and C̃i = AXi−1E−EXi−1B+C respectively. The solution
is given by (4.2) and (4.5). The optimal damping factor for the Jacobi iteration is
θ := 2/(Λ + λ) [8], where Λ and λ are the best bounds for

λdiag(M) ≤ M ≤ Λdiag(M), M = SA,B or SA,B,E.

Later we will use the parameter θ := 1/2 which is sufficient to guarantee the smoothing
property [8] needed for the multigrid method.

If the iterate Xi−1 is an R(k)-matrix and the right-hand side C is an R(kC)-
matrix, then the right-hand side is an R(2k + kC)-matrix. A low rank approximation
Xi+1 to the solution of the diagonal Sylvester equation can be computed by means
of the hierarchical Construction 4.5. The effect is the same if we solve the diagonal
equation exactly and truncate the result to a fixed rank k or a fixed accuracy ε.
Therefore, the R(k)-Jacobi iteration can be written in the form

X0 := 0, Xi := Tk(Xi−1 − θdiag(S)−1(AXi−1 − Xi−1B + C)). (5.4)
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Lemma 5.3. Let A ∈ Rn×n and B ∈ Rm×m be data-sparse matrices in the sense
that the matrix-vector multiplication for A and B can be performed with complexity
O(n) and O(m).
(a) One step of the Jacobi iteration (5.3) is of complexity O(nm).
(b) One step of the R(k)-Jacobi iteration (5.4) is of complexity O(k2(n + m)).

5.3. ADI Iteration as a Smoother. Apart from Richardson and Jacobi there
are many other popular smoothers like Gauss-Seidel, SOR, ILU etc.. Since these are
not compatible with the low rank format, they are not of interest here. The only
notable exception that we are aware of is the ADI iteration from Example 4.9. There,
we have to solve systems of the form

Ax = b

which can be accomplished, e.g. by a multigrid method. However, one has to be
careful with the choice of the shift parameters pi, since the optimal parameters for
the smoothing property differ from the usual ones that yield the optimal convergence
rate [7].

For sure, the Richardson iteration is the most simple of the smoothers under
consideration. The Jacobi iteration is necessary for non-uniform grids (e.g., locally
refined) in order to get mesh-independent good convergence rates. The same goal is
reached by the ADI iteration.

6. Multigrid Method. The Richardson and Jacobi iteration introduced in the
previous section smooth the defect in the multigrid method on one level (=grid). In
the multigrid method we transfer the smoothed defect to a coarser grid and compute
a defect correction on the coarser grid. The coarse grid correction is then transferred
to the fine grid in order to reduce the smooth parts of the defect. On the coarsest
level we use a standard solver for the Sylvester equation. For the transfer between
different grids ranging from coarse (n0 = 9 degrees of freedom) to fine (n8 = 1046529
degrees of freedom) we need the prolongation and restriction operator defined in the
following. Whereas the Richardson and Jacobi iteration had to be adopted to the low
rank setting, this is not necessary for the grid transfer operators.

Let X ∈ Rn×n be a matrix, and let p̂ : Rn → Rm be a linear mapping, the
so-called prolongation. Then the corresponding matrix mapping p is defined by

p(X) := p̂Xp̂T . (6.1)

The adjoint operator r, the so-called restriction, is given by

r(Y ) := p̂T Y p̂ (6.2)

for Y ∈ Rm×m. Since the linear mapping p does not increase the rank of a matrix, we
stay in the set of R(k) matrices (only of different size n, m). Moreover, if X = ABT

is an R(k)-matrix, then

p(X) = (p̂A)(p̂B)T ,

so that the prolonged (or restricted in case r(Y )) matrix is naturally given in the
desired R(k)-format. In the notation of Section 3.1 the prolongation is of the tensor
structure p = p̂ ⊗ p̂.
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6.1. Multigrid Algorithm and Convergence Results. Let � = 0, . . . , L be
the level numbers and assume that on each level we have a discrete linear equation1

A�x� = b� (0 ≤ � ≤ L)

with symmetric and positive definite n� ×n� matrices A�, while b� is some right-hand
side and x� the corresponding solution. For some domains (e.g., the unit square from
our model problem) the hierarchy (A�)L

�=0 of discrete problems is naturally given by
successive refinement of the coarsest grid. For more complicate domains one needs
suitable coarsening algorithms, e.g., composite finite elements [10] or algebraic multi-
grid [19, 21].

We recall the general multigrid algorithm (for details of the algorithm or the
following statements we refer to Hackbusch [7], [8]):

function MGM(�, x, b); (returns the new iterate)
if � = 0 then x := A−1

0 f else
begin

for i := 1 to ν do x := S�(x, b); (presmoothing)

d := r(A�x − b); (restriction of the defect)

y := 0; (starting value for the corrections)

for i := 1 to γ do v := MGM(� − 1, y, d);
x = x − py; (coarse-grid correction)

for i := 1 to ν do x := S�(x, b); (postsmoothing)

end;
MGM := x (new iterate returned)

The V-cycle (W-cycle) corresponds to γ = 1 (γ = 2). ν is the number of pre- and
postsmoothing steps using the smoothing procedure S� (e.g., Richardson, Jacobi or
the R(k)-counterparts). p is the prolongation from (6.1), e.g., the piecewise linear
interpolation in the case of difference schemes, or the canonical finite element transfer
in the case of finite element subspaces V�−1 ⊂ V�).

The essential conditions for the convergence of the W-cycle are the smoothing
and approximation properties. A simplified version of the smoothing property is

‖A�S
ν
� ‖ ≤ Csm ‖A�‖ σ�η(ν) for ν ≥ 1 with lim

ν→∞ η(ν) = 0, (6.3)

where S� is the iteration matrix of the iteration S� (i.e., S�(x, b) = S�x + T�b) and
Csm is a constant independent of �, while σ� is any scaling quantity (except of Section
6.6, only σ� = 1 will occur). For convenience, ‖·‖ may be considered as spectral norm,
but other norms are possible. Often η(ν) equals

η0(ν) := νν/ (ν + 1)ν+1 (6.4)

The approximation property reads

‖A−1
� − pA−1

�−1r‖ ≤ Capp/ (‖A�‖ σ�) (6.5)

with an �-independent constant Ca and the same scaling quantity σ� as in (6.3).
Under these assumptions (and simple technical conditions on p, r and S�), the W-
cycle converges with the rate const · η(ν) (under standard symmetry conditions on p,
r and S�, even ν = 1 leads to convergence).

1The fracture style letters indicate matrices and vectors which will be later identified with corre-
sponding quantities of the Sylvester equation. For instance, the vector x� will become the unknown
solution matrix X�.
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6.2. Approximation Property. Assuming a finite element discretisation with
subspaces V�−1 ⊂ V� with quasi-uniform grid sizes h�−1, h� (h�−1/h� ≤ const), one
obtains the estimate ‖A−1

� − pA−1
�−1r‖ ≤ const · ‖A−1

� ‖h2
� for the spectral norm, pro-

vided that full regularity holds, i.e., the underlying boundary value problem satisfies
‖u‖H2(ω) ≤ const ‖f‖L2(ω) for the solution of Lu = f. If the coefficients are sufficiently
smooth and ω is convex (or image of a convex domain under a smooth mapping), full
regularity holds (cf. Hackbusch [9, Thm 9.1.22]). In our application, the domain ω is
the product Ω × Ω. Convexity of Ω implies convexity of ω.

Since the scaling of the stiffness matrix is such that ‖A�‖‖A−1
� ‖ is proportional

to h−2
� , the inequality ‖A−1

� − pA−1
�−1r‖ ≤ const · ‖A−1

� ‖h2
� is equivalent to (6.5) with

σ� := 1.
Weaker regularity can also be treated (see Section 6.6).

6.3. Smoothing Property without Truncation. First we consider the
Richardson iteration

S�(x�, b�) = S�x� + T�b� with S� = I − ϑ�A�, T�b� =ϑ�b�

with the damping factor ϑ� = 1/ ‖A�‖2 (also ϑ� = 1/ρ(A�) because of the symmetry
of A�).

Lemma 6.1 ([8, Thm 10.6.5]). Let A� be symmetric and positive definite. Then
the Richardson iteration with ϑ� = 1/ ‖A�‖2 satisfies the smoothing property with
η(ν) = η0(ν) from (6.4) and Csmσ� = 1.

For the application to the Sylvester equation, we have to make use of ϑ� =
1/ρ(A�) = 1/(maxλ∈σ(A) λ − minµ∈σ(B) µ). Since the matrices A� = SA,B and A� =
SA,B,M are symmetric and positive definite (Lemma 5.2), the previous Lemma applies.

Next, we consider the damped Jacobi iteration

S�(x�, b�) = S�x� + T�b� with S� = I − ϑ�D
−1
� A�, T�b� =ϑ�D

−1
� b�, (6.6)

where D� is the diagonal part of A� with ϑ� such that ϑ�ρ(D−1
� A�) ≤ 1. Then we

obtain
Lemma 6.2 ([7, §6.2]). Let A� be symmetric and positive definite. Then the

Jacobi iteration (6.6) with

ϑ� ≤ 1/ρ(D−1
� A�) and ‖D�‖2 ≤ Csmϑ� ‖A�‖2 (6.7)

satisfies the smoothing property with η(ν) = η0(ν) and Csmσ� = 1. Moreover, this re-
sult holds for all symmetric and positive definite matrices D� satisfying the inequalities
(6.7).

The Jacobi iteration (5.3) for the Sylvester equation with suitable θ satisfies the
assumptions of the previous lemma (due to Lemma 5.2), therefore the smoothing
property holds. In the case that the matrix D� is replaced by an approximation D′

�

due to the fact that we solve the diagonal Sylvester equation with a perturbed Cauchy
matrix, we chose a symmetric R(k)-approximation of the Cauchy matrix. Since D�

is well-conditioned, the approximation remains positive definite and satisfies the in-
equalities (6.7) with a possibly modified constant Csm. Hence, also the Jacobi iteration
with R(k)-Cauchy matrix approximation possesses the smoothing property. In com-
bination with the approximation property from above, we obtain level-independent
convergence of the W-cycle. Similarly, the V-cycle proof from [7] can be applied. The
iterates Xi are all treated as full matrices and the multigrid method therefore has a
complexity of O(n�), where Xi ∈ R

√
n�×√

n� .
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6.4. Truncation of the Iterates. The effect of the truncation in each step of
the multigrid method (during the smoothing iteration and defect correction) can be
regarded as an artificially limited machine precision. After one full multigrid cycle,
the ith iterate xi

� on level � is perturbed by si
� so that the equation

A�x
i
� = b� − A�s

i
�

holds. The vector si
� accumulates all the perturbations of size ε during the ith cycle

(due to the truncation to a fixed rank), ‖si
�‖ ≤ Cn�

ε. Since we expect a convergence
rate of

‖xi
� − x�‖ < ρ‖xi−1

� − x�‖, ρ < 1,

we immediately get

‖(xi
� + si

�) − x�‖ < ρ‖xi−1
� − x�‖ + Cn�

ε ≤ (ρ +
Cn�

ε

‖xi−1
� − x�‖

)︸ ︷︷ ︸
ρ̃

‖xi−1
� − x�‖.

As long as we can represent xi−1
� sufficiently good, the term Cn�

ε is small and the
perturbed convergence rate ρ̃ ≈ ρ. As we come closer to the solution x� and fix
the accuracy ε (the rank k, resp.), the convergence will break down (the iteration
stagnates). This is also observed in the numerical tests.

Remark 6.3 (non-symmetry). Although the analysis given here requires the
symmetry of the system matrix A� (which is induced by the symmetry of A and B),
the multigrid method still works well for the non-symmetric case.

In principle, the whole machinery of (algebraic) multigrid methods can be trans-
ferred to the Sylvester case by the tensor product relation. The crucial point is the
connection between the hierarchies of the A matrices and the B matrices since these
are generated independently. This “natural” anisotropy is considered in the next
Section.

6.5. Anisotropic Case. As seen from (3.2) and the derived approximation, the
stiffness matrix A is the sum Ax + Ay, where Ax, Ay belong to the x- and y-variables.
In the case of (3.2), the differential operator A[u](x, y) is A = −∆x − ∆y, i.e., the
x- and y-parts are equal so that Ax and Ay have identical eigenvalues. A typical
anisotropic differential operator is A = −∆x − ε∆y with small, positive ε. In this
case the approximation property contains an additional factor 1/ε, which may be
formulated by the choice σ� = ε. Therefore, we need a smoothing procedure such that
the estimate (6.3) is improved by the same factor σ� = ε. This can be obtained by
the iteration

S�(x�, b�) = S�x� + T�b� with S� = I − A−1
x,�A�, T�b� = A−1

x,�b�, (6.8)

where A� = Ax,� + εAy,�. The terms Ax,� and εAy,� are the discretisations Ax, Ay at
level �.

Lemma 6.4 ([7, Lem 10.1.2]). Let Ax,�, Ay,� be symmetric and positive definite.
In addition, we assume

Ax,� · Ay,� = Ay,� · Ax,�, ‖Ay,�‖2 ≤ const ‖A�‖2 .

Then the iteration (6.8) satisfies the smoothing property with η(ν) = η0(ν − 1) and
Csmσ� = ε.
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Proof. For convenience, we repeat the proof, which is based on the identity

A�S
ν
� = (Ax,� + εAy,�) Sν

� = Ax,�S
ν
� + εAy,�S

ν
� = Ax,�

(
I − A−1

x,�A�

)
Sν−1

� + εAy,�S
ν
�

= (Ax,� − A�)Sν−1
� + εAy,�S

ν
� = −εAy,�S

ν−1
� + εAy,�S

ν
�

= εAy,� (I − S�)Sν−1
� .

The commutativity is used to show that S� is symmetric with eigenvalues in [0, 1]. This
implies ‖ (I − S�)Sν−1

� ‖2 = ρ((I − S�)Sν−1
� ) ≤ η0(ν − 1) (cf. [8, Lemma 10.6.1]).

The final result follows from ‖A�S
ν
� ‖2 = ε‖Ay,� (I − S�)Sν−1

� ‖2 ≤
ε ‖Ay,�‖2 ‖ (I − S�) Sν−1

� ‖2 ≤ ε · const · ‖A�‖2 η0(ν − 1).
Since the extra factor ε from the smoothing property cancels with the 1/ε fac-

tor in the approximation property, the estimate of the multigrid convergence rate is
independent of � and ε.

The commutativity Ax,� · Ay,� = Ay,� · Ax,� holds in the case of the Sylvester
equation because of the tensor structure.

The solution of the system Ax,� in each step of the iteration (6.8) requires the
solution of a system

A�X� = C�, X� ∈ R
√

n�×√
n� ,

which can be done columnwise for full matrices or just for the k column vectors of U
in the R(k)-matrix representation of Definition 1.2.

6.6. Weaker Regularity. In the case of a re-entrant corner of Ω, the full reg-
ularity is not satisfied, but A : H−s(Ω × Ω) → H2−s(Ω × Ω) is an isomorphism for
some s ∈ [0, 1) (cf. [9]). In this case, one has to modify the matrix norms in (6.3) and
(6.5): ∥∥∥A

1−s/2
� Sν

� A
−s/2
�

∥∥∥
2
≤ Csm ‖A�‖1−s

2 σ�η(ν), (6.9a)

‖A−s/2
�

(
A−1

� − pA−1
�−1r

)
A

s/2
� ‖2 ≤ Capp/

(
‖A�‖1−s

2 σ�

)
, (6.9b)

involving fractional powers of A�. In the case of Ax,� ·Ay,� = Ay,� ·Ax,�, it follows that
Aα

� (0 ≤ α ≤ 1) with A� = Ax,� + εAy,� is spectrally equivalent with Aα
x,� + εαAα

y,�.
Using these matrices in (6.9a,b) instead of Aα

� , one can repeat the proof of Lemma
6.4 with σ� = ε1−s and η(ν) = (η0(ν))1−s .

7. Numerical Results. In this section we apply the R(k)-multigrid algorithm
developed in the previous sections to the model problem of Section 1.1 with ω := 1 in
(1.1), namely the first step of Newtons method where we have to solve (1.6) with a
rank one right-hand side C and the two-dimensional discrete Laplacian A. The simple
geometry allows us to use two-dimensional bilinear (tensor) basis functions φi and a
nested hierarchy of grids with a coarse grid that contains n0 = 9 degrees of freedom,
see Figure 7.1.

The computations are performed on a SUN ULTRASPARC III with 900 MHz
CPU clock rate and 150 MHz memory clock rate. We make use of the Lapack and
Blas libraries (http://www.netlib.org) for the truncation procedure and use the
standard C programming language otherwise.

The initial approximation on level � is obtained by prolongation of a solution from
level � − 1, i.e., we use a nested iteration so that only O(1) steps on the fine grid are
necessary in order to reduce the error down to the size of the discretisation error. The
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Fig. 7.1. The three coarsest grids with n0 = 9, n1 = 49 and n2 = 225 interior nodes.

rank on level � − 1, . . . , 0 is chosen as twice the rank k on the fine grid � on which
we want to compute the solution. In the V-cycle multigrid we use ν = 2 pre- and
postsmoothing steps.

7.1. Discretisation Error. First, we perform the multigrid method with rank
k = 20 in order to produce a reference solution on each level � = 0, . . . , 9. The solution
on level � = 9 is used to estimate the discretisation error on level � = 0, . . . , 8, see
Table 7.1. The rank k is large enough so that the truncation has no influence.

� = 3 � = 4 � = 5 � = 6 � = 7 � = 8
n = 312 n = 632 n = 1272 n = 2552 n = 5112 n = 10232

5.1 × 10−2 2.0 × 10−2 7.1 × 10−3 2.5 × 10−3 8.9 × 10−4 1.9 × 10−4

Table 7.1
The relative discretisation error ‖x� − x9‖/‖x9‖ in the L2-norm.

Alternatively, one could use the multigrid method without truncation working
with full matrices instead of the R(k)-matrix format. For level � = 3 this takes only
2.6 seconds to compute an accurate solution, but the complexity is quadratic in n so
that on level � = 5 we need more that 600 seconds for the solution and on level � = 8
we would (theoretically) need approximately 775 hours.

7.2. Truncation Error. Next, we perform the multigrid cycle on level � = 6
with fixed rank k = 2, so that the truncation error ε due to the small rank k becomes
dominant, see Table 7.2. As was expected from the theory, the convergence breaks
down after we get close to the solution. Since we are already at the size of the
discretisation error, we can stop the iteration after three steps which takes 9.7 seconds.

i = 0 i = 1 i = 2 i = 3 i = 4

6.4 × 10−3 4.2 × 10−3 2.8 × 10−3 2.0 × 10−3 2.0 × 10−3

Table 7.2
The relative error ‖xi

� − x�‖/‖x�‖ on level � = 6 in the L2-norm for the iterates i = 0, . . . , 4.

7.3. Large Scale Problems. The last three levels � = 7, 8, 9 in our numerical
test would require to store (and compute) solution matrices X� of size up to 4190209×
4190209. Without the low rank format the storage in double precision of these requires
128 Terabyte. In the R(k)-matrix format we need only 256 MB. In the following
numerical example we use the R(k)-multigrid algorithm based on the R(k)-Richardson
iteration. The time in seconds for the computation of a solution that is accurate up
to the discretisation error is given in Table 7.3.

The nested iteration combined with the multigrid method has a complexity of
O(k2n�) to solve the discrete system A�x� = b� on level �. Although the dependency
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� k i = 0 i = 1 i = 2 i = 3 i = 4 time

7 3 2.3 × 10−3 1.5 × 10−3 9.1 × 10−4 5.4 × 10−4 84.2
8 4 9.6 × 10−4 6.5 × 10−4 4.4 × 10−4 3.0 × 10−4 2.1 × 10−4 1064.1
9 4 3.5 × 10−4 2.4 × 10−4 1.6 × 10−4 1.1 × 10−4 7.0 × 10−5 6964.1

Table 7.3
The relative error ‖xi

� − x�‖/‖x�‖ on level � = 7, 8, 9 in the L2-norm for the iterates i = 0, . . . , 4.

is linear in n�, the rank k for the representation of the solution depends on n�, typically
k = log(n�). Therefore, the overall complexity of our algorithm is O(n� log2(n�)). A
goal for future research is to reduce this complexity down to O(n�).

7.4. Second Model Problem. For the second model problem from Section 1.2
we consider the dependency on the parameter β that governs the non-symmetry of
the system. For β = 0 the model problem is identical to the one considered in the
previous section.

For larger β we face two distinct problems: first, the required rank for the accurate
representation of the solution will increase, because the spectrum of the system matrix
A will become complex and approach the imaginary axis. Second, the convergence
rate of the multigrid method will not be bounded away from 1 as β → ∞, because
the smoother (in this case R(k)-Richardson) is not suitable for convection-dominated
problems.

k β = 1 β = 10 β = 100

1 2.6 × 10−2 6.3 × 10−2 1.0 × 10−1

2 2.3 × 10−3 1.2 × 10−2 3.1 × 10−2

3 4.2 × 10−4 2.4 × 10−3 1.3 × 10−2

4 1.2 × 10−4 6.8 × 10−4 6.1 × 10−3

5 3.2 × 10−5 1.8 × 10−4 3.0 × 10−3

6 7.5 × 10−6 5.2 × 10−5 1.6 × 10−3

7 1.9 × 10−6 1.6 × 10−5 8.1 × 10−4

8 4.9 × 10−7 5.0 × 10−6 4.3 × 10−4

9 1.5 × 10−7 1.6 × 10−6 2.2 × 10−4

Table 7.4
The first k = 1, . . . , 9 singular values of the solution X� on level � = 5 for the parameter

β ∈ {1, 10, 100}.

In Table 7.4 we can clearly see that for β = 100 the decay of the singular values of
the solution is less steep than for β = 1. In the multigrid method we use the damping
parameter θ := 1/‖A�‖2, but the coarsest grid level will now depend on the parameter
β: for β = 1 we choose the coarsest grid level � = 0, and for β = 20, 40, 80 we take
� = 1, 2, 3, so that the ratio β ·h� is constant on the coarsest grid. Of course, for larger
values of β the coarsest grid on which we have to solve the Sylvester equation by some
other means will grow. The convergence rates of the multigrid iteration are given in
Table 7.5. If either the damping parameter θ is chosen too large or the coarsest grid
too coarse, then the multigrid iteration diverges.

7.5. First Model Problem. At last we consider the first model problem from
Section 1.1 (parameter κ(ξ) = 10000 for ξ ∈ (1

2 , 1) × (0, 1)), where a Riccati equa-
tion has to be solved. In each step of Newton’s method (initial guess X�−1 from
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i β = 1 β = 20 β = 40 β = 80

1 1.3 × 10−2 .55 1.3 × 10−2 .44 1.9 × 10−2 .43 2.4 × 10−2 .41
2 7.1 × 10−3 .55 7.5 × 10−3 .57 1.0 × 10−2 .54 1.4 × 10−2 .58
3 4.1 × 10−3 .57 2.2 × 10−3 .29 3.6 × 10−3 .35 5.6 × 10−3 .40
4 2.4 × 10−3 .58 1.2 × 10−3 .55 3.0 × 10−3 .83 3.4 × 10−3 .60
5 1.4 × 10−3 .59 5.6 × 10−4 .46 8.5 × 10−4 .29 2.0 × 10−3 .58
6 8.1 × 10−4 .59 2.5 × 10−4 .45 4.5 × 10−4 .53 1.8 × 10−3 .91
7 4.8 × 10−4 .59 8.8 × 10−5 .35 2.4 × 10−4 .52 1.3 × 10−3 .74

Table 7.5
The relative error ‖xi

�−x�‖/‖x�‖ on level � = 5 in the L2-norm and parameter β ∈ {1, 20, 40, 80}
(left: relative error; right: convergence rate).

the coarse grid) we have to solve a Lyapunov equation which is done by using the
multigrid method. Here, we employ the Jacobi smoother, where the damping fac-
tor is computed as in Section 5 for the coarsest grid solver on level � = 1, i.e.,
θ := 2/‖diag(A�)−1/2 A� diag(A�)−1/2‖2. In the first three steps of the multigrid
method we use the same choice of the damping parameter. From step four on we
use θ := 1/2. The Cauchy matrix approximation C̃ uses a rank of 1. We fix the
discretisation level � = 5 with n� = 16129 degrees of freedom and a solution matrix
X ∈ R

n�×n� . The rank for the R(k)-multigrid algorithm is fixed to k = 20. We
perform three Newton steps and apply i = 10 multigrid steps each.

By Xj we denote the (almost) exact solution of the Lyapunov equation in the j-th
Newton step on level �. By Xj

i we denote the i-th iterate of the multigrid iteration in
the j-th Newton step. In Table 7.6 the relative error ‖Xj − Xj

i ‖2/‖Xj‖2 is reported
for the three Newton steps j = 1, 2, 3.

i NS j = 1 NS j = 2 NS j = 3

1 6.1 × 10−3 .13 7.5 × 10−6 .08 3.3 × 10−7 .74
2 7.8 × 10−3 .13 5.1 × 10−6 .67 2.4 × 10−7 .74
3 1.3 × 10−4 .16 3.8 × 10−6 .75 1.8 × 10−7 .74
4 7.4 × 10−5 .58 2.8 × 10−6 .74 1.3 × 10−7 .74
5 5.1 × 10−5 .69 2.1 × 10−6 .74 9.8 × 10−8 .74
6 3.6 × 10−5 .71 1.5 × 10−6 .74 7.3 × 10−8 .74
7 2.6 × 10−5 .73 1.1 × 10−6 .74 5.4 × 10−8 .74
8 1.9 × 10−5 .73 8.3 × 10−7 .74 4.0 × 10−8 .74
9 1.4 × 10−5 .73 6.1 × 10−7 .74 2.9 × 10−8 .74
10 1.0 × 10−5 .73 4.5 × 10−7 .74 2.1 × 10−8 .74

Table 7.6
Convergence rates for the first i = 1, . . . , 10 steps of the multigrid iteration in the Newton step

j = 1, 2, 3, based on the Jacobi smoother (left: relative error; right: convergence rate).

We conclude that the R(k)-multigrid method is well-suited for the solution of the
linear matrix equations in each step of Newton’s method to solve the algebraic matrix
Riccati equation. The Jacobi smoother yields uniformly bounded convergence rates
ρ ≈ 0.74. If the parameter κ is much smaller, i.e. κ(ξ) = O(1), then the convergence
rate is ρ ≈ 0.52.
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