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Abstract. We study the large time behavior of the solutions to viscous and non-viscous
Hamilton-Jacobi equations with additive noise and periodic spatial dependence. Under general struc-
tural conditions on the Hamiltonian, we show the existence of unique up to constants global in time
solutions, which attract any other solution.
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1. Introduction. We are interested in the long-time behavior of solutions to
equations of the form

du − (
tr

(
A(x)D2u

) − H(Du, x)
)
dt + dW (x, t) = 0 in R

n × (t0,∞) ,(1.1)

where t0 ∈ R is arbitrary,

H ∈ C0,1
loc (Rn × R

n) is Z
n-periodic with respect to x ,(1.2)

and, if Sn and Mn×m are respectively the spaces of n × n symmetric and n × m
matrices,

A ∈ C0,1(Rn; Sn) is Z
n-periodic,(1.3)

and

there exists a Z
n-periodic σ ∈ C0,1(Rn;Mn×m) such that A = σσT .(1.4)

Here we use the standard notation C0,1 and C0,1
loc for the spaces of Lipschitz

continuous and locally Lipschitz continuous functions.
We note that (1.4) immediately implies that A is degenerate elliptic, i.e., for all

x, ξ ∈ R
n × R

n,

(A(x)ξ, ξ) ≥ 0.

If A is uniformly elliptic, i.e., there exists ν > 0 such that for all x, ξ ∈ R
n × R

n,

(A(x)ξ, ξ) ≥ ν|ξ|2,
then (1.4) holds. As a matter of fact, the latter is true also if A is degenerate elliptic
and A ∈ C1,1(Rn; Sn).
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Let (Ω,F , P ) be a standard probability space and

∆ = {(s, t) ∈ R
2 : s � t}.

For each (s, t) ∈ ∆, denote by W (x, t, s, ω) the increment of the random variable
W (x, ·, ω) in the interval [s, t]. Then W (x, t, s, ω) has the form

W (x, t, s, ω) =
M∑
i=1

Fi(x)(Wi(t, ω) − Wi(s, ω)),(1.5)

where, for each i = 1, . . . , M,

Wi is a Brownian motion and Fi ∈ C2(Rn) is Z
n-periodic .(1.6)

In our analysis we do not need to assume that the Brownian motions W1, . . . , WM

are mutually independent. As a matter of fact, throughout the paper, we use that
W = (W1, . . . , WM ) is continuous with respect to t almost surely in ω with increments
in time which are independent and identically distributed over disjoint time intervals,
and that, for all ε > 0 and � ∈ N,

P( sup
t∈[0, l]

|W (t) − W (0)| < ε) > 0 .(1.7)

In view of this, our analysis extends to any random forcing ζ(x, t, ω) for which a
notion of time integral Z(x, t, s, ω) =

∫ t

s ζ(x, ρ)dρ is defined in such a way that Z has
the aforementioned properties. Moreover, using discontinuous viscosity solutions, it
is possible to extend our analysis to equations driven by certain jump processes, like,
for example, kicking force (see [IK]). In order to keep the presentation short, we focus
here on the Brownian case.

Our results hold for all initial data and initial times and for all realizations of
the noise in ΩC , the set of continuous paths of the Brownian motion, which has full
measure (P(ΩC) = 1) or a smaller set Ω̃, also of full measure, to be defined later.

Throughout the paper we write T = [0, 1]n, we denote by C(T) the space of Z
n-

periodic continuous real valued functions, and we use the semi-norm |‖|‖ defined, for
each u ∈ C(T), by

|‖w|‖ = inf
c∈R

‖w − c‖ ,

where ‖‖ is the usual sup-norm.
The deterministic version of (1.1), i.e., the equation

ut − tr
(
A(x)D2u

)
+ H(Du, x) = 0 in R

n × (t0,∞) ,(1.8)

plays a fundamental role in our analysis.
Indeed our main result says that, under some additional assumptions on A, H and

F = (F1, ..., FM ), if (1.8) has a unique up to constants periodic in space and global
in time attracting solution, then so does (1.1). In other words, there exists a unique
up to constants, periodic with respect to x solution uinv : R

n × R × Ω → R of (1.1)
such that, if u is another solution of (1.1), then

lim
t→∞ |‖u(·, t)− uinv(·, t)|‖ = 0 .(1.9)
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We briefly explain the strategy of the proof. The theory of fully nonlinear stochas-
tic pde developed by Lions and one of the authors in [LS1], [LS2] and [LS3], which
applies to more general equations, allows to define pathwise solutions to (1.1). These
can be expressed, using a simple transformation, as solutions of a partial differential
equation with random coefficients.

The comparison principle for viscosity solutions to (viscous) Hamilton-Jacobi
equations implies that the distance between two solutions driven by the same noise
cannot increase. Moreover, whenever the excursions of the Brownian motion remain
small throughout a time interval, the solutions to (1.1) and (1.8) stay close. In view
of (1.9), which holds for solutions of (1.8), the latter converge, as t → ∞ to a unique
up to constants attractive solution. It follows that the distance between solutions
measured in the seminorm |‖ · |‖ decreases throughout such intervals. On the other
hand, the independent increments property of W and (1.7) imply that, as t → ∞,
there exist enough intervals of small excursions for W . Hence the difference of any
two solutions of (1.1) measured in |‖ · |‖ tends to 0 as t → ∞. The claim then follows
in a standard way.

An important step in showing that the solutions to the deterministic and stochas-
tic equations stay close to each other in intervals of small excursions of the Brownian
motion is the fact that, after times of order one, the solutions to (1.1) become Lipschitz
continuous with respect to x, with a Lipschitz constant depending on the realization
of the noise and not the initial datum. This fact, which is of independent interest, is
the main technical result in the paper.

When the equation is of first order, i.e., A ≡ 0, the Lipschitz bound follows from
the growth conditions on the Hamiltonian, which yield uniform L∞-bounds on the
solutions. For second-order equations, i.e., when A �≡ 0, there are two distinct cases.
When H is super-quadratic with respect to the gradient, it is again possible to obtain
universal L∞-bounds on the solutions. The Lipschitz estimate then follows as in the
first-order case. When the Hamiltonian is super-linear but not super-quadratic, the
estimate is more delicate. In this case it is necessary to obtain the Lipschitz bound
without using a priori L∞-bounds for nonnegative solutions, which may not exist.
Typically (see Barles [B], Crandall, Lions and Souganidis [CLS], Lions [L], etc.), the
Lipschitz bounds depend on the spatial oscillations of the initial datum, a fact which is
not enough for the argument here. We overcome this difficulty by obtaining uniform,
after time of order one, estimates on the spacial oscillations of the solutions.

The problem under consideration in this paper is a ”toy” example for far more
complex models in, for example, phase transitions and growth processes (the so-
called KPZ (Kadar-Parisi-Zhang)-equation) and fluid mechanics (stochastically forced
Navier-Stokes equation ).

The stochastic KPZ-equation

du − (
ε∆u − |Du|2) dt − dW = 0

is obtained by linearizing the forced mean curvature flow for small gradients and
large force. Our results apply directly to this equation with additive forcing and more
general operators.

Another concrete example to which our results apply is the stochastic Burger’s
equation with additive noise. Indeed, if u ∈ C(R × (0,∞)) solves the stochastic
Hamilton-Jacobi equation

du + (ux)2dt − dW = 0 ,
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then v = ux solves Burger’s equation

dv + (v2)xdt − dWx = 0 .(1.10)

The unique up to constants random attractor of the Hamilton-Jacobi equation
yields a unique invariant measure for Burger’s equation.

Invariant measures for (1.10) and other closely related equations have been the
object of extensive study. We refer to E, Khanin, Mazel and Sinai [EKMS], Iturriaga
and Khanin [IK], Gomes, Iturriaga, Khanin and Padilla [GIKP] for Burger’s equation
and Mattingly [M1], [M2] for the Navier-Stokes equation with stochastic forcing.

The large-time behavior of solutions of (1.8) depends strongly on whether A ≡ 0
or uniformly elliptic, while very little is known in the degenerate case. When A ≡ 0,
the problem was studied by Fathi [F], Roquejoffre [R], Namah and Roquejoffre, [NR1],
[NR2], the most general results being the ones of Barles and Souganidis [BS2]. The
behavior of (1.8) for uniformly elliptic A was studied by Barles and Souganidis [BS3].

When A = 0 and H is periodic in time, it was shown by Barles and Souganidis
[BS1] (see also Fathi and Mather [FM]) that there are no global attracting solutions.
As matter of fact phenomena like period doubling can occur. In the uniformly elliptic
case, however, it was shown in [BS3] that there exists a unique up to constants attract-
ing solution. Of course, the basic difference between the degenerate and uniformly
elliptic settings is that, in the latter case, the equation admits a strong maximum
principle.

It follows from our results that, even when the equation does not have a strong
maximum principle, the stochastic noise is sufficiently irregular for the solutions to
loose the dependence on the initial data, while this is not true in general for a deter-
ministic time dependent perturbation.

The proofs in our paper are based on general arguments from the theory of vis-
cosity solutions. This allows to consider general Hamiltonians H and matrices A.
In view of the generality of our assumptions, this note extends previous works of
Iturriaga and Khanin [IK], E, Khanin, Mazel and Sinai [EKMS] and Gomes, Itur-
riaga, Khanin and Padilla [GIKP], which consider strictly convex Hamiltonians, and
in [GIKP], a space independent uniformly elliptic second-order operator. If the Hamil-
tonian is strictly convex, the solution of (1.1) can be expressed as the value function
of a control problem. The asymptotic behavior of the solutions then reduces to the
study of the corresponding controlled stochastic and ordinary differential equations.
Here, instead of convexity, we assume some form of asymptotic convexity of the level
sets of H . Moreover, in the viscous case, the matrix A can be degenerate elliptic and
may depend on space.

We remark that Gomes, Iturriaga, Khanin and Padilla [GIKP] show that attract-
ing solutions for strictly convex Hamiltonians and A = εI converge to attracting
solutions of the first-order equation. A similar convergence result holds in our case
for general A’s.

The paper is organized as follows. In Section 2 we introduce the notion of solution,
we state all the assumptions and the main theorems of the paper and we prove some
preliminary facts. In Section 3 we prove the existence of an attracting solution uinv

on R
n× (−∞,∞), assuming that we have the Lipschitz regularization property which

was discussed earlier. Section 4 is devoted to the proof of this property.
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2. Assumptions, Preliminaries and Results. We begin with the notion of
a solution of (1.1). For this, we need the equation

vt − tr
(
A(x)D2v

)
+ H(Dv + DW (x, t, t0), x) = tr

(
A(x)D2W (x, t, t0)

)
.(2.1)

Definition 2.1. A function u : R
n × [a, b] × Ω → R is a viscosity solution of

(1.1), if, for all [t0, t1] ⊆ [a, b], the function

v(x, t, ω) = u(x, t, ω) − W (x, t, t0, ω)

is a viscosity solution of (2.1) in R
n × [t0, t1].

This definition coincides with the more general notion of stochastic viscosity solu-
tions in [LS1], [LS2], [LS3]. Notice that, when A ≡ 0, for the definition we only need
F ∈ C1. When A is uniformly elliptic and sufficiently smooth, for example, when A
has constant coefficients, then it is possible to give an alternative definition requiring
less differentiability of the F . Indeed, consider the solution w of the linear stochastic
pde {

dw(x, t, t0) − tr(A(x)D2w(x, t, t0))dt = dW (x, t),
w(x, t0, t0) = 0.

The basic regularity theory for uniformly parabolic linear equations yields, for
some C > 0, the estimate

‖w(·, t, t0)‖C2(T) ≤ C(‖W‖C0,α([t0,t1]) + ‖F‖C0,α(T)).

In this case we say that u is a viscosity solution of (1.1), if v = u−w(·, ·, t0) solves

vt − tr(A(x)D2v) + H
(
Dv + Dw(x, t, t0), x

)
= 0 in R

n × [t0, t1].

Next we state a proposition which asserts the existence and uniqueness of pathwise
solutions of (1.1). Since the result is an immediate consequence of the theory of
viscosity solutions ([CIL], [B]) and Definition 2.1, we omit the proof.

Proposition 2.2. Assume (1.2),(1.3), (1.4), (1.5) and (1.6). For all ω ∈ ΩC ,
s ∈ R and u ∈ C(T ), there exists a unique stochastic viscosity solution u(·, ·, s, ω) ∈
C

(
R

n × [s,∞)
)

of (1.1) such that u(·, s, s, ω) = u.
Throughout the paper we denote by SW,A(t, s)(u) the stochastic viscosity solution

of (1.1) starting with initial datum u at s. The solution to (1.8) is denoted by
S0,A(t, s)(u). When A ≡ 0 and the context allows it, we write SW (t, s) and S0(t, s)
to denote the solution operators to (1.1) and (1.8) respectively. Finally, whenever it
does not create any ambiguity, we write SW,A(t, s) for both SW,A(t, s) and S0,A(t, s).

Since it will be used later, we note here that, as an immediate consequence of
Proposition 2.2, both S0,A(t, s) and SW,A(t, s) commute with constants, i.e., for all
c ∈ R

n,

SW,A(t, s)(v + c) = SW,A(t, s)(v) + c .(2.2)

We proceed with the assumptions on the Hamiltonian H which we will be using
in this paper.{

There exist K > 0 and q > 1 such that, for all (p, x) ∈ R
n × R

n,
H(p, x) ≥ K−1|p|q − K .

(2.3)
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⎧⎨⎩
There exist R0 > 0 and a strictly increasing Φ∈C

(
[0,∞), [0,∞)

)
with Φ(0) = 0,

such that, for all (p, x) ∈ R
n × R

n with |p| ≥ R0,
DpH(p, x) · p − H(p, x) ≥ Φ(|p|) .

(2.4)

{
There exist R0 and B > 0 such that, for all (p, x) ∈ R

n × R
n with |p| ≥ R0 ,

−DxH(p, x) · p ≤ B|p|2(DpH(p, x) · p − H(p, x)) .

(2.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
There exist R0 > 0 and a strictly increasing Φ ∈ C([0,∞); [0,∞)) with Φ(0) = 0,

such that, for some δ > 0, G(r) = Φ(r)r−(1+δ) is increasing,
G(r) → ∞ as r → ∞, and, for all (p, x) ∈ R

n × R
n with |p| ≥ R0,

DpH(p, x) · p − H(p, x) ≥ Φ(|p|) .

(2.6)

{
There exists C > 0 such that, for all (p, x) ∈ R

n × R
n with |p| ≥ R0 ,

−DxH(p, x) · p ≤ C(DpH(p, x) · p − H(p, x)).
(2.7)

lim sup
|p|→∞

(DpH(p, x) · p − H(p, x))−1|DpH(p, x)| = 0 uniformly in x ∈ R
n .(2.8)

sup
x∈Rn

lim sup
|p|→∞

(DpH(p, x) · p − H(p, x))−1 |p||DpH(p, x)| < ∞ .(2.9)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
There exist a unique λ ∈ R and a unique up to constants U ∈ C(T),
both depending on A and H , such that, for each v ∈ C(T) and t0 ∈ R,
there exists c ∈ R such that
limN→∞ supx∈T

∣∣S0,A(t0 + N, t0)(v) − (U + c) − λN
∣∣ = 0.

(2.10)

Assumptions (2.4) and (2.6) state that the level sets of H as a function of p be-
come convex for large |p|. This asymptotic condition is crucial for obtaining Lipschitz
bounds which do not depend on the initial data and is much weaker than requiring
the Hamiltonian to be convex in p.

The sole purpose of (2.8) and (2.9) is to ensure that the Hamiltonian in (2.1),
which arises after incorporating the noise, still satisfies the growth assumptions (2.3),
(2.4), (2.5) in the non-viscous and (2.3), (2.6), (2.7) in the viscous case, with constants
which may depend on t0, t and ω.

Among all the above, the most important assumption is (2.10). It states that
the corresponding deterministic equation has a global attractor, which consists – up
to constants – of a single trajectory. We refer to the Introduction for a discussion
concerning this fact and to [BS1], [BS2] and [BS3] for results yielding (2.10) as well
as an extensive list of references.

The main result of this paper is the next theorem. The strategy for the proof of
the first part was outlined in the Introduction. As we explain later in this Section
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the second part is a simple consequence of the first and the stability properties of the
viscosity solutions.

Theorem 2.3. Assume (1.2), (1.5), (1.6), (2.3) and (2.10). There exists Ω̃ ⊆ Ω
with P(Ω̃) = 1 such that for every ω ∈ Ω̃:

i) If A ≡ 0, and, in addition, (2.4), (2.5) and (2.8) hold, or if A �≡ 0 satisfies
(1.3), (1.4) and, in addition, (2.6), (2.7), (2.9) hold and Fi ∈ C3(T), there exists a
unique up to constants solution uinv(·, ·, ω) ∈ C(R; C0,1(T)) of (1.1) attracting any
other solution, i.e., for any v ∈ C(T) and s ∈ R,

lim
t→∞ |‖uinv(·, t, ω) − SW (t, s)(v)(·)|‖ = 0.

ii) Assume that A = εÃ is uniformly elliptic and satisfies (1.3). If uε
inv(·, ·, ω) and

uinv
0(·, ·, ω) are the unique up to constants invariant solutions of (1.1) corresponding

to ε > 0 and ε = 0 respectively, then, for any [a, b] ⊂ (−∞, +∞),

lim
ε→0

sup
t∈ [a,b]

|‖uε
inv(·, t, ω) − u0

inv(·, t, ω)|‖ = 0 .

As it was already mentioned in the Introduction for A ≡ 0 and H(p) = |p|2 this
result was first proved by [EKMS] in one dimension and by [IK] in all dimensions for
general strictly convex H and uniformly elliptic x-independent A. Our assumptions
allow, however, to consider nonconvex Hamiltonians and degenerate elliptic A. For
example, H can have the form

H(p, x) = |p|2Ĥ(p̂, x),

where, for p ∈ R
n \ {0}, p̂ = |p|−1p, and Ĥ is periodic in x and uniformly bounded

away from 0. It is straight forward to check that all structural assumptions on H hold.
Moreover, it is proved in [BS2] and [BS3] that, for each v ∈ C(T), S0(t)(v) has a limit
as t → ∞. The up to constants uniqueness of the asymptotic limit of the deterministic
equation is here an assumption, which holds, for example, if Ĥ is independent of x.

Most of the growth conditions on H are needed for the following lemma, which
plays a central role in the paper. As a matter of fact, this lemma is of independent
interest, as it extends known regularity results for viscous Hamilton-Jacobi equations.

For (t1, t2) ∈ ∆, we write

CW (t1, t2, ω) = max
i

sup
t∈[t1,t2]

|
∫ t

t1

dWi(s, ω)| .(2.11)

We have:
Lemma 2.4. Assume (1.2), (1.3), (1.4), (1.5), (1.6), (2.3) and either (2.6),

(2.7), (2.9) and Fi ∈ C3(T) if A �≡ 0 is degenerate elliptic, or (2.4), (2.5) and (2.8),
if A ≡ 0. For all ω ∈ ΩC and (s, t) ∈ ∆, there exists L(s, t, ω) > 0 such that, for all
v ∈ C(T),

inf
c∈R

‖SW,A(t, s)(v) − c‖C0,1(T) ≤ L(s, t, ω).

Moreover, there exists L̂ : (0,∞) × (0,∞) → (0,∞) which is increasing with
respect to the second argument, such that,

if CW (s, t, ω) ≤ K then L(s, t, ω) ≤ L̂(t − s, K) .



8 NICOLAS DIRR AND PANAGIOTIS E. SOUGANIDIS

It follows from Lemma 2.4 that solutions to (1.1) are Lipschitz-continuous in
space with Lipschitz-constant independent of the initial datum. For solutions of the
deterministic time-independent equation (1.8), the lemma holds with an L which
depends only on |t − s|.

The claim about the vanishing viscosity limit asserted in Theorem 2.3 is a sim-
ple consequence of our results and standard arguments form the theory of viscosity
solutions. Indeed Lemma 2.4 yields that the family (uε

inv)ε>0 is uniformly Lipschitz
continuous on any given compact time interval. A simple diagonalization argument
yields a subsequence which converges uniformly on compact intervals to a viscosity
solution u of (1.1) with A ≡ 0. Lemma 3.7 below then asserts that we must have
u(x, t) = u0

inv(x, t)+c(t). But, since both u and u0
inv are solutions, the constant c can-

not depend on time. Therefore the whole family (uε
inv)ε>0 converges up to constants

to u0
inv.

3. Proofs. We begin with a number of preliminary lemmas, which summarize
some of the key properties of the solutions of (1.1). The first lemma is an immediate
consequence of the definition of a solution and the comparison principle for viscosity
solutions (see [CIL]), hence we omit its proof.

Lemma 3.1. For all u, v in C(T) and (s, t) in ∆,

‖SW,A(t, s)(u) − SW,A(t, s)(v)‖C(T) ≤ ‖u − v‖C(T).

For v0 ∈ C0,1(T) and (t1, t2) ∈ ∆ we denote by

LA(t1, t2) = sup
s∈[t1,t2]

‖DS0,A(s, t1)(v0)‖

the uniform Lipschitz constant of the solution of the deterministic equation.
We also write CA and C0 for the constants

CA = max
x∈T, |p|≤LA(t1,t2)

(|DpH(p, x)|+1
)‖F‖C3(T) , if A �≡ 0

and

C0 = max
x∈T, |p|≤LA≡0(t1,t2)

(|DpH(p, x)| + 1)‖F‖C2(T) , if A ≡ 0 .

Lemma 3.2. Let v0∈C0,1(T) and (t1, t2) ∈ ∆. Then∥∥S0,A(t2, t1)(v0) − SW,A(t2, t1)(v0)
∥∥ ≤ (t2 − t1)CA ‖F‖CW (t1, t2, ω) .

Proof. 1. To simplify the presentation we assume that t1 = 0, t2 = T and we use
the notation C = CA ‖F‖L∞ CW (t1, t2, ω), u = SW,A(v0) and v = S0,A(v0).

2. Arguing by contradiction, we assume that there exists (x0, t0) ∈ T×(0, T ) such
that, possibly after exchanging the role of u and v, u(x0, t0) − v(x0, t0) − Ct0 > 0.
Standard arguments from the theory of viscosity solutions (see [CIL]) then yield η > 0
and (Xα, pα, xα, tα), (Yα, pα, yα, sα) ∈ Sn × R

n × R
n × (0, T ) such that, as α → ∞,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|tα − sα| + α|yα − xα|2 → 0, tr (A(yα)Yα) − tr (A(xα)Xα) ≤ Lα|xα − yα|2,
and

C + η(T − tα)−2 + H(pα, xα) − tr(A(xα)Xα)
≤ −η(T − sα)−2 + H(pα + DW (yα, sα), yα) − tr (A(yα)Yα) .
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The (degenerate) ellipticity of A, the choice of C and the above inequalities con-
tradict the fact that η>0.

Note that the above estimates depend on the Lipschitz constant of the determin-
istic equation. Hence to use this lemma, it is necessary to have a universal bound on
those Lipschitz constants, like the one asserted by Lemma 2.4.

The next claim strengthens the assertion of (2.10), which asserts only pointwise
convergence as t → ∞ of the solution operator S0,A(t, s) acting on C(T). It turns out
that this convergence is uniform with respect to the initial data.

Lemma 3.3. Assume (2.10) and the hypotheses of Lemma 2.4. There exists a
unique up to constants function U∗

A ∈ C0,1(T) such that, for all t ∈ R,

lim
k→∞

( sup
v∈C0(T)

|‖S0,A(t,−k)(v) − U∗
A|‖) = 0.

Proof. 1. Since the deterministic equation does not depend on time, we may take
t = 0. Assume that, for some δ > 0, there exist (vk)k∈N ∈ C(T) such that

|‖S0,A(0,−k)(vk) − U∗
A|‖ ≥ δ for all k ∈ N,(3.1)

where U∗
A is the unique (up to constants) limit which exists in view of (2.10).

2. The Lipschitz continuity asserted in Lemma 2.4 yields constants ck such that
the family (v̂k)k∈N defined by

v̂k = S0,A(−k + 1,−k)(vk) − ck

is bounded in C0,1 and thus compact in C(T). Hence there exists a subsequence
km → ∞ such that v̂km → v̂ in C0.

3. Consider the family of maps Sk : C(T) → C(T) given by

Sk(v) = S0,A(0,−k + 1)(v).

The contraction property yields that, as m → ∞,

‖Skm(v̂) − Skm(v̂km)‖ → 0.

But (2.10) implies that

|‖Skm(v̂) − U∗
A|‖ → 0.

Hence, Skm(v̂km) → U∗
A, a contradiction to (3.1).

The next result concerns a technical property of the Brownian motion which
is a consequence of the fact that the increments are independent and identically dis-
tributed. This property plays a fundamental role in our analysis as well as in [EKMS],
[IK] and [GIKP]. To state it, we need the following definition.

Definition 3.4. Fix l, m ∈ N and k ∈ Z. An interval [kl, (k + 1)l] is called an
(l, m)- small noise interval, if

sup
t∈[kl,(k+1)l]

sup
1≤i≤M

|Wi(t) − Wi(kl)| ≤ 1
m

.

We have:
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Lemma 3.5. For almost every path and for any (l, m) ∈ N × N, there are
two sequences of integers (kl,m,±

i )i∈N such that kl,m,±
i → ±∞, as i → ∞, and

[kl,m,±
i l, (kl,m,±

i + 1)l] are (l, m)-small noise intervals.
Proof. 1. We only present the argument for positive values of k.
2. Let

Al,m
k = {ω : sup

kl≤t≤(k+1)l

sup
1≤i≤M

|Wi(t) − Wi(kl)| ≤ 1
m
}.

The increments W (t)−W (kl) of the Brownian motion W (t) = (W1(t), . . . , WM (t))
on the interval [kl, (k + 1)l] are independent and identically distributed. Hence the
events (Al,m

k )k∈N are independent and P(Al,m
k ) is strictly positive and independent of

k. The second Borel-Cantelli lemma then yields that

P({ω ∈ Al,m
k for infinitely many k}) = 1.

The subset Ω̃ of Ω of full measure in which our result holds consists of all of
continuous paths which have, for each (l, m) ∈ N × N, infinitely many (l, m)- small
noise intervals for both positive and negative times. The precise definition of Ω̃ is

Ω̃ = ΩC ∩(l,m)∈N×N (∩∞
j=1 ∪∞

k=j Al,m
k ) ∩ (∩∞

j=1 ∪∞
k=j Al,m

−k )

Next we use Lemmata 2.4, 3.2, 3.3 and 3.5 to establish
Lemma 3.6. Fix ω ∈ Ω̃, t0 and δ > 0. There exists k0 = k0(ω) ∈ N such that, for

all k ≥ k0(ω) and u, v ∈ C(T),

|‖SW,A(t0, t0 − k)(u) − SW,A(t0, t0 − k)(v)|‖ ≤ δ, and
|‖SW,A(t0 + k, t0)(u) − SW,A(t0 + k, t0)(v)|‖ ≤ δ

Proof. 1. Since both estimates are proved similarly, here we only establish the
second.

2. Lemma 3.3 yields an M > 0 such that, for any initial datum û and any m ∈ N,

|‖S0,A(m + M, m)(v̂) − U∗
A|‖ < δ/4.(3.2)

Here we use the fact that, since the deterministic equation is independent of time,

sup
v̂

|‖S0,A(m + M, m)(v̂) − U∗
A|‖ = sup

v̂
|‖S0,A(M, 0)(v̂) − U∗

A|‖.

3. If CA is the constant in Lemma 3.2 for the Lipschitz constant L = L̂(1, 1),
choose m ∈ N such that 4MCA‖F‖ < δm and recall that Lemma 3.5 yields an
(M + 1, m) – small noise interval [j(M + 1), (j + 1)(M + 1)] contained in (t0, +∞).

Fix k0(ω) such that t0 +k0(ω) > (j +1)M. It follows that the small noise interval
is contained in (t0, t0 + k0(ω)].

4. Let t−M = j(M + 1) and t+M = (j + 1)(M + 1). Since [t−M , t−M + 1] is contained
in the small noise interval, Lemma 2.4 asserts that

u0 = SW,A(t−M + 1, t0)(u) and v0 = SW,A(t−M + 1, t0)(v)

are Lipschitz continuous with Lipschitz constant L = L̂(1, 1).
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Applying again Lemma 2.4, we find that the last statement holds on the entire
interval [t−M + 1, (t−M + 1) + M ], which has length M.

5. Using (3.2) and Lemma 3.2, we find

|‖SW,A(t+M , t−M + 1)(u0)−SW,A(t+M , t−M + 1)(v0)|‖
≤ |‖SW,A(t+M , t−M + 1)(u0) − S0,A(t+M , t−M + 1)(u0)|‖

+|‖SW,A(t+M , t−M + 1)(v0) − S0,A(t+M , t−M + 1)(v0)|‖
+|‖S0,A(t+M , t−M + 1)(u0) − U∗

A|‖ + |‖S0,A(t+M , t−M + 1)(v0) − U∗
A|‖

≤ 4(δ/4).

The contraction property guarantees now that the estimate holds for all later
times t > t+M .

Next we construct the global attracting solution uA
inv.

Lemma 3.7. Fix ω ∈ Ω̃. For all u0 ∈ C(T ) and all t ∈ R the limit

ũ(·, t) = lim
k→∞

SW,A(t,−k)(u0)(·)(3.3)

exists in C(T) and is unique up to constants. Moreover, for any t1 < t2, there exists
c(t1, t2) ∈ R such that

SW,A(t2, t1)(ũ(t1)) = ũ(t2) + c(t2, t1).(3.4)

Proof. 1. Lemma 3.6 yields that the family (uk(·, t))k∈N defined by

uk(·, k) = SW,A(t,−k)(u0)(·)

is a Cauchy sequence with respect to the seminorm |‖ · |‖, for each fixed t. Therefore
there exist constants ck(t) such that the sequence uk(·, t) − ck(t) converges in C(T).

2. The identity (3.4) is a consequence of the C0-continuity of the semigroup.
We are now in a position to present the proof of Theorem 2.3.
Proof. In view of Lemma 3.6 and Lemma 3.7, it remains to show that there exists

c(t) such that the function ṽ = ũ − c satisfies, for all t1 < t2,

SW,A(t2, t1)(ṽ(·, t1))(·) = ṽ(·, t2) .

Let t1 < t2 < 0. The semigroup property and (3.4) yield

SW,A(0, t1)(ũ(·, t1)) = SW,A(0, t2) (ũ(·, t2) + c(t2, t1)) .

It follows that

c(t2, t1) = c(0, t1) − c(0, t2) .

Similar expressions for t2 < 0 < t1 and t2, t1 > 0 yield the existence of a solution
on (−∞,∞) by setting

uinv(x, t) = ũ(x, t) + c(t), c(t) = c(max{t, 0}, min{t, 0}).
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4. The Proof of the Lipschitz bounds. The proof of Lemma 2.4 is long and
technical. To simplify the presentation, we divide it into a number of lemmas.

We remind the reader that the sole purpose of assumptions (2.8) and (2.9) is to
ensure that the Hamiltonian in (2.1), which arises after incorporating the noise, still
satisfies the growth assumptions (2.3), (2.4), (2.5) in the non-viscous and (2.3) and
(2.6), (2.7) in the viscous case, with constants depending on the noise only through
the expression in (2.11). Therefore, we will usually omit the dependence of the Hamil-
tonian in (2.1) on t and ω, thus keeping the notation simple.

The first step towards the universal Lipschitz bound is a universal L∞-bound for
nonnegative solutions. This is the object of

Lemma 4.1. Fix ω ∈ ΩC , u0 ∈ C(T) and s ∈ R and assume (2.3) and A ≡ 0.
Let u be the solution of (2.1) on R × [s, T ] with u(·, s) = u0. For all t ≥ s, there
exists a positive constant C(s, t, ω), which is independent of the initial datum u0 and
depends on ω only through the expression in (2.11), such that

‖u(·, t) − min u0‖ ≤ C(s, t, ω).

Proof. 1. If H satisfies (2.3), a straightforward calculation yields that so does
H̄(p, x, t) = H(p + DW (x, t, s, ω), x) with a constant depending on ‖W‖C∞(T×[0,T ]).

Without loss of generality, we may assume that u0(0) = minT u0 = 0 and s = 0.
The extension to the general case is straightforward.

2. For sufficiently large C = C(K) > 0, the function

g(x, t) = C|x|q/(q−1)t−1/(q−1) + Kt + 1

is a super-solution of (2.1).
Indeed, for C large,

−C(q − 1)−1(|x|t−1)q/q−1 + K + H(Cq(q − 1)−1(|x|t−1)1/q−1D|x|, x)
≥ C(q − 1)−1(|x|t−1)q/q−1(K−1q(qC)q−1(q − 1)1−q − 1) − K + K ≥ 0.

For t small enough we clearly have g(·, t) ≥ u(·, t). Since the inf of a family of
super-solutions is also a super-solution, it follows that

ḡ(x, t) = inf
z∈Zn

g(x − z, t)

is a periodic super-solution of (2.1).
When A �≡ 0, a universal L∞-bound for nonnegative solutions is available only

for Hamiltonians H with super-quadratic growth in p. Indeed we have:
Lemma 4.2. Fix ω ∈ ΩC and u0 ∈ C(T) and assume that (2.3) holds with q > 2.

Let u solve (2.1) on R
n× [s, T ] with u(·, s) = u0. For (s, t) ∈ ∆ there exists a constant

C(s, t, ω), independent of the initial datum and depending on ω only via (2.11), such
that

‖u(·, t) − min u0‖ ≤ C(s, t, ω) .

Before we present the proof, we remark that it is not expected, as follows from
the discussion below, to have a universal bound on the L∞-norm for nonnegative
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solutions of the viscous Hamilton-Jacobi equations with quadratic or sub-quadratic
growth H . Indeed, for c > 0, consider the function uc : R

n × [0, T ] → R defined by

uc(x, t) =
n

2
ln(t + c) + (4(t + c))−1|x|2 − n

2
ln(c) ,

which is an exact nonnegative solution to

ut − ∆u + |Du|2 = 0.

It is immediate that, for each c > 0, min uc(x, 0) = 0, uc(·, t) ≥ 0 for all t ≥ 0 and
limc→0 uc(x, 1) = +∞. However the oscillation of uc(x, 1) on each bounded subset of
R

n is bounded uniformly in c.
The above solutions were obtained by applying the Hopf-Cole transform to fun-

damental solutions of the heat equation at time t + c. By applying the Hopf-Cole
transformation to periodic solutions of the heat equation, it is possible to construct
counterexamples in the periodic case in a similar way.

Now we prove Lemma 4.2.
Proof.
1. To simplify the presentation, we assume throughout the proof that s = 0 and

we write u0 for u(·, 0). Finally, as before, we assume that min u0 = 0.
2. Let

β = q − 2 > 0, γ = (1 − θ)(q − 2)(q − 1)−1 and α = γ − 1 + 2θ,

where θ ∈ (0, 2−1) is chosen so that α > 0.
3. For a, b > 0 consider the function Ga,b : R

n × (0,∞) → R given by

Ga,b(x, t) = Kt + 2b max
T

tr(A)tγ + atα + bγ|x|2tγ−1 .

It is immediate that, for any x �= 0, limt→0 Ga,b(x, t) = +∞. Hence, for t small,

Ga,b ≥ u0 .

4. The constants a, b may be chosen so that Ga,b is a super-solution of (2.1).
Indeed, since D2|x|2 = 2I, it only remains to show that

Ra,b(x, t) = aαtα−1 + |x|2tγ−2
(
K−1(2bγ)q(|x|t−θ)q−2 − γ(1 − γ)b)

)
> 0 .

If |x| � tθ, it is possible to find b, depending on q, θ and K but not on a, so that
Ra,b > 0.

If |x| ≤ tθ, it is possible to choose a so that

Ra,b(x, t) ≥ (aα − γ(1 − γ)b)tα−1 > 0.

5. A periodic super-solution can be constructed as the infimum of super-solutions
exactly as in the first order case.

We remark that, since

inf
T

u(t, ·) ≥ −Kt + inf
T

u(0, ·)

and the equations commute with constants, Lemmas 4.1 and 4.2 yield automatically
a bound on the oscillation

osc(u(·, t)) = sup
T

u(·, t) − inf
T

u(·, t).
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Thus a bound on the oscillation is a weaker statement than the bounds on the L∞-
norm of nonnegative solutions asserted by the previous lemmas. We summarize these
comments in the next

Corollary 4.3. Fix ω ∈ ΩC . Under the assumptions of either Lemma 4.1 or
Lemma 4.2, there exists a positive constant C(s, t, ω), depending on ω only through
CW (s, t, ω) as in (2.11), such that, for all (s, t) ∈ ∆ and u0 ∈ C(T),

osc(SW,A(t, s)) ≤ C(s, t, ω).

The following lemma completes the proof of Lemma 2.4 in the first-order case.
Lemma 4.4. If (2.4), (2.5) and (2.8) hold and u solves (1.1) on R

n× [s, T ] with
A ≡ 0, then for all t ∈ [s, T ], u(·, t) is Lipschitz continuous with a Lipschitz constant
bounded by L(s, t, ω), which is nonincreasing for s < t < s + 1 and depends only on
(2.11), H and supt′∈[s,T ] ‖u(·, t′)‖.

Proof. 1. For almost all ω, there exists a K(t, s, ω) > 0 such that, if |p| >
K(t, s, ω), there exist B, R0 > 0 such that

H̃(p, x, t, ω) = H(p + DW (x, t, s, ω), x)

satisfies (2.4) and (2.5) for fixed ω uniformly in t ∈ [s, T ]. Again this is the place
where (2.8) is used. In order to simplify notation, next we suppress the dependence
of H̃ on t, s and ω and write simply H̃(p, x). Finally, we choose s = 0.

2. Following [CLS] (note that (2.4) and (2.5) are (G2) and (3.2) in [CLS]), we
consider the solution ϕ of

ϕ′(t) = ϕ(t)Φ(ϕ(t)−1),(4.1)

where Φ is the increasing function in (2.4).
3. For λ > 0 let

z(x, t) = −ϕ(t)e−λu(x,t).

It follows that

zt − G(Dz, z, x) − ϕ′ϕ−1z = 0,

where

G(p, z, x) = (λz)H̃(−(λz)−1p, x).

Note that, if q = −(λz)−1p, then

DzG(p, z, x) = λ
(
H̃(q, x) − qDpH̃(q, x)

)
,

and

DxG(p, z, x) = λzDxH̃(q, x) = −|p| |q|−1DxH̃(q, x) .

4. If, for some C > 0,

w(x, y, t) = z(x, t) − z(y, t) − C|x − y|
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has a positive maximum M at (x0, y0, t0), then in particular x0 �= y0 , so |x − y| is
smooth in a neighborhood of (x0, y0, t0).

Using the definition of the viscosity solutions with p = C(x0 − y0)|x0 − y0|−1 and
noting that p = Cp̂ we find

0 ≤ G(p, z(x0, t0), x0) − G(p, z(y0, t0), y0) + ϕ′(ϕ−1)(t0)(z(x0, t0) − z(y0, t0))

=
∫ 1

0

[|x0 − y0|p̂ · DxG(p, z(r), x(r)) + DzG(p, z(r), x(r))(z(x0 , t0)−z(y0, t0))]dr

+ϕ′(ϕ−1)(t0)
(
z(x0, t0) − z(y0, t0)

)
,

where

q(r) = −(λz(r))−1p, x(r) = y0+r(x0−y0) and z(r) = z(y0, t0)+r(z(x0, t0)−z(y0, t0)).

Hence

0 ≤
∫ 1

0

(
− C|q(r)|−1|x0 − y0|q̂(r) · DxH̃

(
q(r), x(r)

))
dr

+ϕ′(ϕ−1)(t0)
(
z(x0, t0)−z(y0, t0)

)
−λ

(
z(x0, t0)−z(y0, t0)

) ∫ 1

0

(
q(r) · DqH̃(q(r), x(r))−H̃(q(r), x(r))

)
dr .

Assume next that C is such that

C ≥ λ sup
T

|z|R0 ≥ λϕe‖u−‖R0,

so that |q| ≥ R0 and, hence, DqH̃ · q − H̃ � 0, and recall that ϕ′(ϕ)−1 � 0.
Since by assumption

z(x0, t0) − z(y0, t0) ≥ C|x0 − y0|,

there exists, in view of (2.5), a constant B > 0 such that

0 ≤
(∫ 1

0

(B − λ)g(r)dr+ϕ′(t0)(ϕ(t0))−1

) (
z(x0, t0)−z(y0, t0)),

where

g(r) = q(r) · DqH̃(q(r), x(r))−H̃(q(r), x(r)).

Choosing λ = B + 1 and using (2.4) and (4.1), we find

0 ≤ (z(x0, t0)−z(y0, t0))
∫ 1

0

[Φ(ϕ−1(t0)) − Φ(|q(r)|)]dr .

Recalling that |q| = Ceλu(λϕ)−1 and that Φ is strictly increasing, we obtain, for
C > λeλ‖u−‖∞ , the desired contradiction.

We continue with the Lipschitz bound in the second-order case. Here we ar-
gue using the classical Bernstein method, which yields a universal Lipschitz bound
depending only on the oscillation of the initial datum.
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In the sub-quadratic but super-linear case, we will use this bound iteratively to
obtain a bound for the oscillation which is independent of the initial datum (see
Lemma 4.7). Of course, for a super-quadratic Hamiltonian, the oscillation is easily
bounded by Lemma 4.2, so the Lipschitz bound follows directly from Lemma 4.5.

To this end, let ϕ : [s, T ] → [0,∞) be a solution of the ordinary differential
inequality

ϕt ≤ min(ϕ1/2, 1), ϕ(s) = 0 .(4.2)

Lemma 4.5. Let u solve (2.1) on T × [s, T ] and assume that

H̃(p, x, t, s, ω) = H(p + DW (x, t, s, ω), x) − tr
(
A(x)D2W (x, t, s, ω)

)
satisfies (2.3), (2.6) and (2.7) on [s, T ]. There exist κ ∈ [0, 1) and CR0 > 0, both
independent of the initial datum u(·, s), such that, for all t ∈ [s, T ],

‖Du(·, t)‖ ≤ ϕ(t)−1/2 CR0 (1 + osc(u(·, s))κ).(4.3)

The fact that κ < 1 is very critical, since it implies that, even if the oscillation is
large initially, it will be much smaller at the end of the time interval. It follows from
the proof that, for δ as in (2.6), κ(δ) → 1 as δ → 0. Therefore the method does not
apply to Hamiltonians with just linear growth.

Further, notice that the constants in (2.3), (2.6) and (2.7) depend on the realiza-
tion of the noise in a given time interval, but only through (2.11), so they are bounded
if the interval is a small noise interval.

Finally, we remark that it is straightforward to check that the particular equation

ut − ε∆u + |Du + DW (x, t, s, ω)|2 = 0.

satisfies the conditions of the Lemma 4.5.
For the proof of Lemma 4.5 we need a rough a priori bound on the oscillation.

To this end, let

L(ω) = sup
(x,y,t)∈Rn×Rn×[s,T ]

|H(DW (x, t, s, ω), x) − H(DW (y, t, s, ω), y)| .

Note that the dependence on ω is through (2.11).
Lemma 4.6. For all (s, t) ∈ ∆, we have

osc(u(·, t)) ≤ osc(u(·, s)) + L|t − s|.

Proof. The estimate follows directly from the fact that

osc(u(·, t))t = (sup
T

u(·, t) − inf
T

u(·, t))t ≤ L .

We continue with the proof of Lemma 4.5, which uses some of the techniques of
[CLS].

Proof. 1. To simplify things we assume that s = 0. The functions v(·, t) =
u(·, t) + Kt and u(·, t) have the same Lipschitz constant and v solves an equation
with a nonnegative Hamiltonian. We may therefore assume that the Hamiltonian
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is nonnegative, i.e., K = 0. Moreover, to simplify the presentation, we drop the
dependence on ω and write H̃(p, x, t) instead of H̃(p, x, t, 0, ω). Finally, we write

O0 = osc(u(·, 0)).

2. Let m(t) and xm(t) denote respectively the maximum of the function u(·, t)
and the point where the maximum is assumed, i.e, for all x ∈ T,

m(t) = u(xm(t), t) ≥ u(x, t).

Then

|u(x, t) − m(t)| ≤ osc((u(·, t)) ≤ diam(T)‖Du(·, t)‖ .

Since H̃ ≥ 0, we know that

mt(t) = ut(xm(t), t) = [tr(A(xm(t))D2u(xm(t), t) − H̃(0, xm(t), t)] ≤ 0.

3. For λ > 0 consider the function

z(x, t) = ϕ(t)|Du(x, t)|2 + λ(m(t) − u(x, t)) .

Let (x0, t0) be a point where z achieves its maximum. The goal is to show that
there exist λ > 0 such that either t0 = 0 or |Du(x0, t0)| ≤ R0.

In order to keep the presentation simple, in the sequel we assume that A is the
identity matrix. The modifications needed for general A are straightforward, hence
we omit them.

4. If either t0 = 0 or |Du(x0, t0)| ≤ R0, then

z(x, t) ≤ R2
0 + λ(O0 + LT ).

Hence, for all (x, t) ∈ T × [0, T ],

ϕ(t)|Du(x, t)|2 ≤ R2
0 + λ(O0 + LT ) + λ(u(x, t)−m(t)) ≤ R2

0 + λ(O0 + LT ) .

Assume that

O0 ≥ 1 + LT.

It then follows that, for all (x, t) ∈ T × [0, T ],

ϕ(t)1/2|Du(x, t)| ≤ (R2
0 + λ(O0 + LT ))1/2 ≤ (R2

0 + 2λO0)1/2 .

Since R0 is given, we may assume that λ ≥ R0. The above estimate then can be
simplified to read

‖Du(·, t)‖ ≤ C λϕ(t)−1/2(1 +
(
O0λ

−1
)1/2

) .(4.4)

5. Assume that t0 > 0 and |Du(t0, x0)| > R0. The classical calculations as-
sociated with Bernstein’s method, then yield the following sequence of inequalities,
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where C is the constant in (2.7) and where z and H̃ are evaluated at (x0, t0) and
(Du(x0, t0), x0, t0).

0 ≤ zt − ∆z = λmt − λ(ut − ∆u)
+2ϕDu · D(ut − ∆u) − 2ϕ|D2u|2 + ϕt|Du|2

≤ λH̃ − 2ϕDu · DH̃ − 2ϕ|D2u|2 + ϕt|Du|2
≤ λH̃ − λDu · DpH̃ − 2ϕDu · DxH̃ + ϕt|Du|2
≤ −(λ − C)Φ(|Du|) + ϕt|Du|2.

If 3λ ≥ 4C, then

0 ≤ −λΦ(|Du|) + 4ϕt|Du|2.

Dividing by |Du|1+δ, we obtain, always at (x0, t0),

0 ≤ −λG(|Du|) + 4ϕt|Du|1−δ .

Consider the set

DR0 = {(x, t) ∈ T × [0, T ] : |Du(x, t)| ≥ R0}

and let

λ0 = sup
(x,t)∈DR0

4ϕt(t)G(|Du(x, t)|)−1|Du(x, t)|1−δ.(4.5)

If we choose λ > λ0, then it is impossible for the Bernstein function z to have an
interior maximum, unless at the maximum we have |Du| ≤ R0, in which case (4.4)
holds. It remains to show that λ0 depends only on the data.

6. Let (x̄, t̄) be such that

λ0 = 4φt(t̄)(G(|Du(x̄, t̄)|))−1|Du(x̄, t̄)|1−δ.

If such (x̄, t̄) does not exist, we argue using approximate maximizers — we leave
the details to the reader. Moreover, since φt(0) = 0, if λ0 > 0, then t̄ > 0.

Choose λ ∈ (λ0, 2λ0). Using (4.4) and (4.5), we find, for some universal constant
C > 0, which is independent of λ and the initial datum, that

|Du(x, t̄)| ≤ C ϕt(t̄)(G(|Du(x, t)|)ϕ(t))−1/2|Du(x, t)|1−δ(1 + (O0λ
−1)1/2).

Note that, since G(|Du(x, t)|) ≥ G(R0) and ϕt ≤ ϕ1/2,

|Du(x, t)|δ ≤ C(1 + (O0λ
−1)1/2).

Inserting the above in (4.5) and using (4.2) yield, for a different universal constant
C,

λ0 ≤ C(1 + (O0λ
−1)1/2)(1−δ)/δ ≤ 2(1−δ)/δC(1 + (O0λ0

−1)(1−δ)/2δ).

7. We may assume that

2(1−δ)/δ+1C ≤ λ0,
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and hence

λ0 ≤ C(O0λ0
−1)(1−δ)/2δ,

which implies

λ0 ≤ CO
(1−δ)(1+δ)−1

0 .

It follows that there exists ρ ∈ (0, 1), independent of the initial condition, such
that

λ0 ≤ CO1−ρ
0 .

Inserting a λ with λ ∈ (λ0, 2λ0) in (4.4) yields (4.3).
We conclude with a lemma which provides a universal bound on the oscillation

via a bootstrap procedure.
Lemma 4.7. Assume the hypotheses of Lemma 4.5. There exists a universal

constant C, which is independent of the initial datum, such that, after time T = 1,
the oscillation of u is bounded by C.

Proof. 1. Since we may assume that ϕ(t) ≥ tβ for some β > 0, we find that, if
osc(u(·, 0)) is sufficiently large, then Lemma 4.5 asserts the existence of κ̂ ∈ (0, 1) and
C > 1 such that, after a time interval of length τ ,

osc(u(·, t + τ)) ≤ Cτ−β(osc(u(·, t)))κ̂ .

If the oscillation at some time is already bounded by a power of the universal
constant C, there is nothing to prove. Therefore we assume that,

if Ĉ = C2(1−κ̂)−1
then osc(u) ≥ Ĉ.

If 2κ = (1 + κ̂) < 2, we obtain the simpler recursion

osc(u(·, t + τ)) ≤ τ−β(osc(u(·, t)))κ.

2. Choose a sufficiently small β1 > 0, let κ = ββ1 + κ < 1, and consider the
recursively defined sequences

Ol = Oκ
l−1 and τl = O−β1

l−1 .

If the numbers Ol are given by Ol = O
(κ̄)l

0 , it follows that

osc(u(·,
l∑

i=0

τi)) ≤ max(Ĉ, Ol).

3. Let lM be the smallest integer such that OlM ≤ 2Ĉ. Then

OlM−1 = Oκ(lM −1)

0 ≥ 2Ĉ and OlM ≥ (2Ĉ)κ.

Recall that O0 and lM are sufficiently large, β1 is sufficiently small, 0 ≤ l ≤ lM ,
and define

sl = B(κ)−l

and B = (OlM )−β1 .
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We have

lM∑
l=0

τl =
lM∑
l=0

(O−β1
0 )(κ)l−lM +lM =

lM∑
l=0

(
(O−β1

0 )(κ
lM )

)(κ)l−lM

=
lM∑
l=0

sl,

and, since κ < 1,

((κ)−l((κ)−1 − 1) ≥ r(κ) = (κ)−1((κ)−1 − 1) > 0.

Moreover

B = (OlM )−β1 ≤
(
2Ĉ

)−κβ1

< 1.

Therefore

sl+1sl
−1 = B(κ)−(l+1)−(κ)−l ≤ Br(κ) < 1.

Thus the series
∑

τl converges by comparison with the geometric series. Note that
the powers β1, κ are independent of the length of the a priori chosen time interval.
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