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Abstract

This article deals with the efficient (approximate) inversion of finite element stiffness ma-
trices of general second order elliptic operators with L∞-coefficients. It will be shown that
the inverse stiffness matrix can be approximated by hierarchical matrices (H-matrices). Fur-
thermore, numerical results will demonstrate that it is possible to compute an approximate
inverse with almost linear complexity.

1 Introduction

We are concerned with the numerical solution of large finite element systems of Dirichlet problems

Lu = f in Ω
u = g on ∂Ω

with second order elliptic operators

Lu = −div [A∇u + bu] + c · ∇u + du (1.1)

on bounded Lipschitz domains Ω ⊂ R
n. The Galerkin matrix of such operators is sparse but has

a bandwidth of order N1−1/n, where N is the number of degrees of freedom. Therefore, direct
methods are well suited for small problem sizes, but are not competitive if N is large. In the
latter case usually iterative methods are more efficient. On the other hand, if the coefficient
matrix is ill-conditioned these methods suffer from slow convergence.

The aim of this article is to show that hierarchical matrices (H-matrices) introduced by
Hackbusch et al. [15, 16] can fill this gap. As we will see, they provide a means by which an
approximation of the inverse stiffness matrix can be generated and handled with logarithmic-
linear complexity. Furthermore, no grid hierarchy is required and H-matrices are robust in

∗This work was supported by the DFG priority program SPP 1146 “Modellierung inkrementeller Umformver-
fahren”
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the sense that their efficiency does not depend on the smoothness and only slightly on the
size of the coefficients. The H-approximant might be used directly to solve the finite element
system or it might be used as a black-box preconditioner in an iterative scheme. If it is used as a
preconditioner there is no need to approximate the inverse with high accuracy, and the complexity
can therefore even be reduced. Another application of the inverse are Schur complements, which
play a central role for example in domain decomposition methods.

The structure of H-matrices was originally designed to efficiently represent integral operators
with asymptotically smooth kernel. For this application the existence of H-matrix approximants
is well understood. Even efficient algorithms for the generation of the approximants exist, see
[1, 3]. Close to the application of integral operators are inverses of elliptic operators since they
have an integral representation with the Green function as kernel function:

(L−1ϕ)(x) =
∫

Ω
G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (Ω). (1.2)

If L has smooth coefficients, the Green function is smooth (except for x = y) and the mentioned
existence theorems apply. However, the algorithms for building the approximants cannot be
used, since they are either based on the matrix entries or on the kernel function, neither of
which is accessible in general.

In this article the case of L∞-coefficients is treated. In this case it is not obvious that an
H-matrix approximant exists, since according to the De Georgi-Nash theorem (see [10]), G is
only locally Hölder continuous. Therefore, proofs cannot rely on the smoothness of the kernel
function as they did for integral operators. In [4] we were able to show that the inverse stiffness
matrix of the principal parts, i.e., b = c = 0 and d = 0, can be approximated by H-matrices. In
the present article this result will be extended to operators (1.1) with lower order terms without
restrictions on their size. Furthermore, we will present numerical results that by an H-matrix
inversion based on the Frobenius formulas one is able to (approximately) invert the stiffness
matrix with logarithmic-linear complexity.

The structure of the rest of this article is as follows: In Section 2 a brief review of the
structure of H-matrices will be given. All necessary results and notations for the theorems of
this article from the field of H-matrices will be presented. Section 3 contains the existence theory
of degenerate kernel approximants of the Green function, i.e.,

G(x, y) ≈
k∑

i=1

ui(x)vi(y), x ∈ D1 and y ∈ D2,

on an appropriate pair of domains (D1,D2). The usual way to proof existence of a degenerate
kernel approximant is to exploit the smoothness of the kernel function. In the case of L∞-
coefficients the Green function of the inverse differential operator is not smooth. Therefore,
another technique, which is based on the interior regularity of elliptic problems, has to be used.
We will show that as long as L is invertible the Green function can be approximated by a
degenerate kernel even in the case of dominating lower-order terms. From the numerical results
it will be seen that these terms enter the constants only in a moderate way.

This result is then employed using (1.2) to show that the discrete inverse of L can be ap-
proximated by H-matrices, which in turn leads to the existence of H-matrix approximants to
the inverse stiffness matrix. In Section 4 it is described in detail how to implement an efficient
H-matrix inversion. The presented H-inversion is based on the Frobenius formulas and is used
to produce numerical results for operators with non-smooth coefficients. We will see that this
algorithm is able to compute an approximate inverse with almost linear complexity.
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2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally introduced by
Hackbusch et al. [15, 16]. We will describe the two principles on which the efficiency of H-
matrices is based. These are the hierarchical partitioning of the matrix into blocks and the
blockwise restriction to low-rank matrices. These principles were also used in the mosaic-skeleton
method [19].

In contrast to other efficient methods like wavelet techniques [6, 7, 8], fast multipole and
panel clustering, see [13], [17] and the references therein, H-matrices concentrate on the matrix-
level. They are purely algebraic in the sense that once the H-matrix approximant is built, no
further information about the underlying problem is needed.

Let us assume that M ∈ R
N×N has indices

mij = a(ϕj , ϕi), (2.3)

where ϕi are basis functions with support Xi := supp ϕi, i ∈ I := {1, . . . , N} and a is a bilinear
form. In this section we assume that there is a partition P of the indices I × I of M such that
each block b = s × t, s, t ⊂ I, can be approximated by a matrix of low-rank, i.e.,

Mb ≈ UV T , U ∈ R
s×k, V ∈ R

t×k,

where k is small compared with |s| and |t|. Obviously, by Mb we denote the subblock in the
intersection of the rows s and columns t of M . From Example 2.4 it will be seen that the stiffness
matrix of operators of type (1.1) possesses this property. Section 3 will extend this to the inverse
stiffness matrix.

2.1 The cluster tree

In order to exploit the fact that there is a partition such that each block can be approximated
by a matrix of low rank, we first have to find it from the set of possible subsets of I × I. This
set however is too large to be searched for a partition that will satisfy our needs. Therefore, the
set of subsets b = s × t is restricted to those which consist of index sets s and t stemming from
a cluster tree TI . A tree TI satisfying the following conditions is called a cluster tree:

1. I is the root of TI

2. if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI , so that t = t1 ∪ t2.

The set of sons of t is denoted by S(t), while L(TI) stands for the set of leaves of the tree TI .
The support of a cluster t is the union of the supports of the basis functions corresponding to
the indices in t:

Xt :=
⋃
i∈t

Xi.

A cluster tree is usually generated by recursive subdivision of I so as to minimize the diameter
of each part. For practical purposes the recursion should be stopped if a certain cardinality
nmin of the clusters is reached, rather than subdividing the clusters until only one index is
left. The depth of TI will be denoted by p. For reasonable cluster trees one would always
expect p = O(log N). A strategy based on the principle component analysis is used in [2]. The
complexity of building the cluster tree in the case of quasi-uniform grids can be estimated as
O(N log N).
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Remark 2.1 Sometimes, the number of sons of a cluster in the previous definition of a cluster
tree is not restricted to two. However, this generalization has not proved useful in practice.

2.2 Admissibility condition

In order to be able to approximate each block b of M by a low-rank matrix, b has to satisfy a
certain condition. This so-called admissibility condition will be the criterion for choosing whether
b belongs to P . In the field of elliptic partial differential equations the following condition on
b = s × t has proved useful:

min{diam Xs, diam Xt} ≤ η dist(Xs,Xt), (2.4)

where η > 0 is a given real number. We will see that under quite general assumptions this
condition allows to approximate the Green function of L by a degenerate kernel, i.e., there are
functions ui, vi, i = 1, . . . , k, so that

G(x, y) ≈
k∑

i=1

ui(x)vi(y) in Xs × Xt, (2.5)

where k depends only logarithmically on N . Since by (2.3) the entries of b depend only on the
values of a on the domain Xs × Xt, the degenerate approximation of G on Xs × Xt will finally
lead to a low-rank approximation of the block b.

Condition (2.4) was also used to prove convergence of the ACA algorithm for the efficient
generation of H-matrix approximants in the case of integral equations, cf. [1, 3].

Remark 2.2 In the case of unstructured grids the computation of the distance in (2.4) between
two supports Xs and Xt is too costly. Therefore, for practical purposes the supports are enclosed
into sets of a simpler structure, e.g. boxes or spheres.

2.3 Block cluster tree

Based on a cluster tree TI which contains a hierarchy of partitions of I, we are able to construct
the so called block cluster tree TI×I describing a hierarchy of partitions of I × I by the following
rule:

procedure build block cluster tree(s × t)
begin
if (s, t) does not satisfy (2.4) and s, t �∈ L(TI) then begin

S(s × t) := {s′ × t′ : s′ ∈ S(s), t′ ∈ S(t)}
for s′ × t′ ∈ S(s × t) do build block cluster tree(s′ × t′)

end
else S(s × t) := ∅

end

Applying build block cluster tree to I × I we obtain a cluster tree for the index set I × I. The
set of leaves P := L(TI×I) is a partition of I × I with blocks b = s × t ∈ P either satisfying
(2.4) or consisting of clusters t and s one of which is a leaf in TI . The complexity of building the
block cluster tree in the case of quasi-uniform grids can be estimated as O(η−nN log N), cf. [2].
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We are now in a position to define the set of H-matrices for a partition P with blockwise
rank k

H(P, k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ P}.

Note that H(P, k) is not a linear space, since in general the sum of two rank-k matrices exceeds
rank k.

Remark 2.3 For a block B ∈ R
s×t the low-rank representation B = UV T , U ∈ R

s×k, V ∈ R
t×k,

is only advantageous compared with the entrywise representation, if k(|s| + |t|) ≤ |s| |t|. For
the sake of simplicity in this article we will however assume that each block has the low-rank
representation. Employing the entrywise representation for appropriate blocks will accelerate the
algorithms.

Example 2.4 The stiffness matrix S of the differential operator L from (1.1) is in H(P, nmin).
If b ∈ P satisfies (2.4) then the supports of the basis functions are pairwise disjoint. Hence, the
matrix entries in this block vanish. In the remaining case b does not satisfy (2.4). Then the size
of one of the clusters is less or equal nmin. In both cases the rank of Sb does not exceed nmin.

2.4 Storage and matrix-vector multiplication

The cost of a multiplication of an H-matrix M ∈ H(P, k) and its transposed MT by a vector
x ∈ R

N is inherited from the blockwise matrix-vector multiplication:

Mx =
∑

s×t∈P

Ms×txt and MT x =
∑

s×t∈P

(Ms×t)T xs.

Since each block s×t has the representation Ms×t = UV T , U ∈ R
s×k, V ∈ R

t×k (see Remark 2.3),
O(k(|s| + |t|)) units of memory are needed to store Ms×t and the matrix-vector products

Ms×txt = UV T xt and (Ms×t)T xs = V UT xs

can be done in O(k(|s|+ |t|)) operations. Exploiting the hierarchical structure of M it can there-
fore be shown that both storing M and multiplying M and MT by a vector has O(η−nkN log N)
complexity. For a rigorous analysis the reader is referred to [2]. Therefore, H-matrices are well
suited for iterative schemes such as Krylov subspace methods.

3 Approximation of FE inverses

In Example 2.4 it was mentioned that the stiffness matrix of a general elliptic operator with L∞-
coefficients can be represented as an H-matrix. In this section it will be proved that moreover
its inverse can be approximated by an H-matrix. For this purpose it will first be shown that the
Green function of L and the bounded Lipschitz domain Ω ⊂ R

n can be approximated on a pair
D1 × D2 of domains satisfying

diam D2 ≤ η dist(D1,D2).

Since we consider Dirichlet problems we assume that L : H1
0 (Ω) → H−1(Ω) is an invertible

second order partial differential operator

Lu = −div [A∇u + bu] + c · ∇u + du, (3.6)
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where A(x) ∈ R
n×n is symmetric with entries aij ∈ L∞(Ω) and

0 < λ ≤ λ(x) ≤ Λ (3.7)

for all eigenvalues λ(x) of A(x) and almost all x ∈ Ω. The bound Λ/λ on the condition numbers
of A will be denoted by κ := Λ/λ. Furthermore, let b(x), c(x) ∈ R

n and d(x) ∈ R with
bi, ci, d ∈ L∞(Ω), i = 1, . . . , n.

3.1 Degenerate approximation of the Green function

In [4] we have investigated the principal part L0 of such operators, i.e., operators with b = c = 0
and d = 0. For these operators it is shown in [12] that in the case n ≥ 3 a Green function
G0 : Ω × Ω → R with the following properties exists:

G0(x, ·) ∈ H1(Ω \ Br(x)) ∩ W 1,1
0 (Ω) for all x ∈ Ω and all r > 0, (3.8a)

a(G0(x, ·), ϕ) = ϕ(x) for all ϕ ∈ C∞0 (Ω) and x ∈ Ω, (3.8b)

where Br(x) is the open ball centered at x with radius r and

a(u, v) =
∫

Ω
∇v · A∇udx. (3.9)

Furthermore, for x, y ∈ Ω it holds that

|G0(x, y)| ≤ cn(κ)
λ

|x − y|2−n. (3.10)

In the case of invertible operators L of type (3.6) a Green function G := (L−1
0 L)−1G0 satis-

fying (3.8), where

a(u, v) =
∫

Ω
∇v · A∇udx +

∫
Ω
∇v · b udx +

∫
Ω

c · ∇u v dx +
∫

Ω
duv dx, (3.11)

can be defined. Notice that

G − G0 = [(L−1
0 L)−1 − I]G0 = −L−1L1G0,

where L1 := L − L0 is the lower order part of L. Since L−1L1 is an operator of order −1,
L−1L1G0 is smoother than G0. Hence, the singularity of G0 at x = y is carried over to G and
we may assume that there is a constant cn such that for x, y ∈ Ω it holds that

|G(x, y)| ≤ cn(κ, b, c, d)
λ

|x − y|2−n. (3.12)

In the case n = 2 the existence of a Green function for operators of type (3.6) has been
proved more rigorously in [9]. In this case instead of (3.10) for x, y ∈ Ω one has the following
bound on the Green function

|G(x, y)| ≤ c(κ, b, c, d)
λ

log |x − y|. (3.13)

We will make use of the following characteristic relation between L−1 and G, which is equiv-
alent to (3.8b):

(L−1ϕ)(x) =
∫

Ω
G(x, y)ϕ(y) dy for all ϕ ∈ C∞0 (Ω). (3.14)

In the sequel D ⊂ R
n is a domain. The proof of the following basic lemma is mainly based

on the Poincaré inequality, cf. [5], and can be found in [4].
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Lemma 3.1 Let D be convex and X a closed subspace of L2(D). Then for any k ∈ N there is
a subspace Vk ⊂ X satisfying dimVk ≤ k so that

distL2(D)(u, Vk) ≤ cA
diam D

n
√

k
‖∇u‖L2(D) (3.15)

for each u ∈ X ∩ H1(D), where cA depends only on the spatial dimension n.

The following set will be used in Lemma 3.1 as X:

X(D) = {u ∈ H1
loc(D) : a(u, ϕ) = 0 ∀ϕ ∈ C∞0 (D) and u|D\Ω = 0}, (3.16)

where a(·, ·) is the bilinear form defined in (3.11). Hence, the set X(D) consists of L-harmonic
H1

loc-functions vanishing outside of Ω. A proof for the fact that X(D) is a closed subspace of
L2(D) can be found in [4, Lemma 2.2]. We remark that the extension of G(x, ·), x ∈ Ω, to R

n

by zero is in X(D) for all D ⊂ R
n satisfying dist(x,D) > 0.

By the following Caccioppoli inequality we are able to estimate the gradient on a compact
subset by the norm of the function on an enclosing domain. This inequality provides a means
to overcome the lack of regularity of G.

Lemma 3.2 Let K ⊂⊂ D. There is cR = cR(κ, λ, b, c, d) such that

‖∇u‖L2(K) ≤
cR

dist(K,∂D)
‖u‖L2(D) (3.17)

for all u ∈ X(D).

Proof. Let η ∈ C1(D) satisfy 0 ≤ η ≤ 1, η = 1 in K, η = 0 in a neighborhood of ∂D and
|∇η| ≤ 2/δ in D, where we set δ = dist(K,∂D). Since K ′ := supp η ⊂⊂ D, the definition (3.16)
of X(D) implies u ∈ H1(K ′). Hence, ϕ := η2u ∈ H1

0 (D) may be used as a test function in
a(u, ϕ) = 0 due to the dense embedding of C∞0 (D) in H1

0 (D):

−
∫

D
(∇η2u) · b udx −

∫
D

η2u c · ∇udx −
∫

D
dη2|u|2 dx =

∫
D

(∇η2u) · A∇udx

= 2
∫

D
ηu(∇η) · A∇udx +

∫
D

η2(∇u) · A∇udx.

Hence, ∫
D

η2|A1/2∇u|2 dx = −2
∫

D
ηu(∇η) · A∇udx − 2

∫
D

η(∇η) · b |u|2 dx

−
∫

D
η2(∇u) · b udx −

∫
D

η2u c · ∇udx −
∫

D
dη2|u|2 dx.

For the first integral on the right hand side of the last equation we obtain∣∣∣∣
∫

D
ηu(∇η) · A∇udx

∣∣∣∣ ≤
∫

D
|A1/2∇η| |ηA1/2∇u| |u|dx

≤ 2

√
Λ
δ

‖ηA1/2∇u‖L2(D)‖u‖L2(D).
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The third integral can be estimated as follows∣∣∣∣
∫

D
η2(∇u) · budx

∣∣∣∣ ≤
∫

D
η|b| η|∇u| |u|dx ≤ ‖|b|‖∞

∫
D

η|∇u| |u|dx

≤ ‖|b|‖∞
(∫

D
η2|∇u|2 dx

)1/2

‖u‖L2(D)

≤ ‖|b|‖∞√
λ

‖ηA1/2∇u‖L2(D)‖u‖L2(D)

and similarly one has for the forth integral∣∣∣∣
∫

D
η2u c · ∇udx

∣∣∣∣ ≤ ‖|c|‖∞√
λ

‖ηA1/2∇u‖L2(D)‖u‖L2(D).

Since
2‖ηA1/2∇u‖L2(D)‖u‖L2(D) ≤

1
ε
‖ηA1/2∇u‖2

L2(D) + ε‖u‖2
L2(D)

with ε := 4
√

Λ/δ + λ−1/2‖|b| + |c|‖∞ we end up with

‖ηA1/2∇u‖2
L2(D) ≤ 2

(
ε2

2
+

4
δ
‖|b| + d‖∞

)
‖u‖2

L2(D).

From δ ≤ diam Ω one gets
‖ηA1/2∇u‖L2(D) ≤

c

δ
‖u‖L2(D),

where c2 = 16Λ + diam2D(λ−1/2‖|b| + |c|‖∞ + ‖d‖∞) + 8diam D‖|b|‖∞, and hence

‖∇u‖L2(K) ≤ ‖η∇u‖L2(D) ≤ λ−1/2‖ηA1/2∇u‖L2(D) ≤
c

λ1/2δ
‖u‖L2(D).

Remark 3.3 From the previous proof it can be seen that d does not enter estimate (3.17) if
d ≥ 0.

Lemma 3.4 Assume that D2 ⊂ D is a convex domain such that for some η > 0 it holds that

0 < diam D2 ≤ η dist(D2, ∂D).

Then for any ε > 0 there is a subspace W ⊂ X(D2) so that

distL2(D2)(u,W ) ≤ ε‖u‖L2(D) for all u ∈ X(D) (3.18)

and dim W ≤ cn
η�| log ε|�n+1 + �| log ε|�, where cη = cAcRe(2 + η).

Proof. Let 	 := �| log ε|�. We consider a nested sequence of convex domains

Kj = {x ∈ R
n : dist(x,D2) ≤ rj}

with real numbers rj := (1 − j/	)dist(D2, ∂D), j = 0, . . . , 	. Notice that D2 = K� ⊂ K�−1 ⊂
. . . ⊂ K0 ⊂ D. Using the definition (3.16) of the space X we set Xj := X(Kj).
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Applying Lemma 3.1 to Kj with the choice k := �(cAcR(2+η)	ε−1/�)n� we can find a subspace
Vj ⊂ Xj satisfying dimVj ≤ k and

distL2(Kj)(v, Vj) ≤ cA
diam Kj

n
√

k
‖∇v‖L2(Kj) (3.19)

for all v ∈ Xj ∩ H1(Kj). From Lemma 3.2 applied to (Kj ,Kj−1) instead of (K,D) we obtain

‖∇v‖L2(Kj) ≤
cR

dist(Kj , ∂Kj−1)
‖v‖L2(Kj−1) = cR

	

r0
‖v‖L2(Kj−1) (3.20)

for all v ∈ Xj−1. Since any v ∈ Xj−1 also belongs to Xj ∩ H1(Kj), the estimates (3.19) and
(3.20) together with diam Kj ≤ (2 + η)r0 may be combined to

distL2(Kj)(v, Vj) ≤ ε1/�‖v‖L2(Kj−1) for all v ∈ Xj−1. (3.21)

Let u ∈ X(D) and v0 := u|K0 ∈ X0. By the last estimate we have v0|K1 = u1 + v1 with
u1 ∈ V1 and

‖v1‖L2(K1) ≤ ε1/� ‖v0‖L2(K0).

Consequently, v1 belongs to X1. Similarly, for all j = 1, . . . , 	 we are able to find an approximant
uj ∈ Vj so that vj−1|Kj = uj + vj and ‖vj‖L2(Kj) ≤ ε1/� ‖vj−1‖L2(Kj−1). Using the restrictions of
Vj to the smallest domain D2 = K� let

W := span{Vj |D2, j = 1, . . . , 	}.

Then W is a subspace of X(D2) and since v0|D2 = v� +
∑�

j=1 uj|D2 we are led to

distL2(D2)(v0,W ) ≤ ‖v�‖L2(D2) ≤
(
ε1/�

)�
‖v0‖L2(K0) ≤ ε‖u‖L2(D),

where the last inequality is due to K0 ⊂ D.
The dimension of W is bounded by

∑�
j=1 dim Vj ≤ 	k. Since ε−1/� ≤ e we obtain dim W ≤

(cAcRe(2 + η))n	n+1 + 	.
The previous lemma will now be applied to the Green functions G(x, ·) with x ∈ D1 ⊂ Ω.

For this purpose let gx be the extension of G(x, ·) to R
n \ D1, i.e.,

gx(y) :=

{
G(x, y), y ∈ Ω \ D1

0, y ∈ R
n \ Ω

. (3.22)

Then gx is in X(Rn \ D1). Note that its approximant Gk(x, ·) from the following theorem is of
the desired form (2.5).

Theorem 3.5 Let D1 ⊂ Ω and D2 ⊂ R
n convex. Assume that there is η > 0 such that

0 < diam D2 ≤ η dist(D1,D2).

Then for any ε > 0 there is a separable approximation

Gk(x, y) =
k∑

i=1

ui(x)vi(y) with k ≤ kε := cn
η�| log ε|�n+1 + �| log ε|�,
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so that for all x ∈ D1

‖G(x, ·) − Gk(x, ·)‖L2(D2∩Ω) ≤ ε‖G(x, ·)‖L2(D̂2), (3.23)

where D̂2 := {y ∈ Ω : 2η dist(y,D2) < diam D2} and

cη = 2cAe(1 + η)
√

16κ + λ−1
(
diam2D(λ−1/2‖|b| + |c|‖∞ + ‖d‖∞) + 8diam D‖|b|‖∞

)
.

Proof. Let D = {y ∈ R
n : 2η dist(y,D2) < diam D2}. Note that because of dist(D1,D) > 0,

we have gx ∈ X(D) for all x ∈ D1. Since in addition diamD2 ≤ 2η dist(D2, ∂D), Lemma 3.4
can be applied with η replaced by 2η. Let {v1, . . . , vk} be a basis of the subspace W ⊂ X(D2)
with k = dim W ≤ cn

2η�| log ε|�n+1 + �| log ε|�. By means of (3.18) gx can be decomposed into
gx = ĝx + rx with ĝx ∈ W and ‖rx‖L2(D2) ≤ ε‖gx‖L2(D). Since gx and ĝx vanish outside of Ω, we
actually have ‖rx‖L2(D2∩Ω) ≤ ε‖G(x, ·)‖L2(D̂2). Expressing ĝx by means of the basis of W , we
obtain

ĝx =
k∑

i=1

ui(x)vi

with coefficients ui(x) depending on the index x ∈ D1. The function Gk(x, y) :=
∑k

i=1 ui(x)vi(y)
satisfies estimate (3.23).

Note that since the constant cA does not depend on Ω, the geometry enters cη only through
the diameter. Hence, the shape of the domain does not influence our approximation result.

The existence of degenerate approximants to the Green function will now be used to prove
existence of H-matrix approximants to the discrete inverse of L and the inverse stiffness matrix.

3.2 H(P, k)-Approximation of discrete operators

Using a finite element discretization, H1
0 (Ω) is approximated by Vh ⊂ H1

0 (Ω), i.e., for all v ∈
H1

0 (Ω)
inf

vh∈Vh

‖v − vh‖H1 → 0 for h → 0. (3.24)

In agreement with the assumptions of Section 2 let N = dimVh be the dimension and {ϕi}i∈I a
basis of Vh, where I := {1, . . . , N} is used as an index set. The notation for the support of the
finite element basis function is generalized to subsets t ⊂ I as follows:

Xi := suppϕi ⊂ Ω for i ∈ I, Xt :=
⋃
i∈τ

Xi for t ⊂ I. (3.25)

In order to avoid technical complications, we consider a quasi-uniform and shape-regular
triangulation. Hence, the step size h := maxi∈I diam Xi fulfills

vol Xi ≥ cvh
n. (3.26)

The supports Xi may overlap. In accordance with the standard finite element discretization we
require that each triangle belongs to the support of a bounded number of basis functions, i.e.,
there is a constant cM > 0 so that

cMvol Xt ≥
∑
i∈t

vol Xi. (3.27)
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We use the notation J for the natural bijection J : R
N → Vh defined by Jx =

∑
i∈I xiϕi. For

quasi-uniform and shape-regular triangulations it is known (see [14, Theorem 8.8.1]) that there
are constants 0 < cJ,1 ≤ cJ,2 (independent of h and N) such that

cJ,1‖x‖h ≤ ‖Jx‖L2(Ω) ≤ cJ,2‖x‖h for all x ∈ R
N , (3.28)

where ‖ · ‖h is the naturally scaled Euclidean norm induced by the scalar product 〈x, y〉h =
hn

∑
i∈I xiyi. Since J is also a function from R

N to H1
0 (Ω), the adjoint J∗ ∈ L(H−1(Ω), RN )

with respect to 〈·, ·〉h is defined. We define the following three N × N matrices,

S = J∗LJ, B = J∗L−1J and M = J∗J.

S is the stiffness matrix, B the Galerkin discretization of the inverse of L and M is the mass
matrix. The matrices S and M are sparse, while B as well as S−1 and M−1 are dense.

Remark 3.6 M is positive definite and S is invertible for sufficiently small h. Since the prin-
cipal part of L is coercive and the lower order terms constitute a compact operator due to the
compact embedding of L2 in H−1, L satisfies Garding’s inequality

(Lu, u)L2(Ω) ≥ γ‖u‖2
H1(Ω) − c‖u‖2

L2(Ω) for all u ∈ H1(Ω).

From the Céa-Polski Lemma, cf. [18], S is invertible, if h is sufficiently small.

We need the following lemma [11] by which the spectral norm of an H-matrix can be estimated
by its blockwise norms. P is again assumed to be generated as in Section 2.3.

Lemma 3.7 There is a constant csp such that for any matrix M ∈ H(P, k) the following in-
equality holds:

‖M‖2 ≤ csp p max
b∈P

‖Mb‖2.

Theorem 3.8 Let Xt be convex for all t ∈ TI . For any ε > 0 let kε ∈ N be chosen as in
Theorem 3.5. Then for k ≥ max{kε, nmin} there is BH ∈ H(P, k) such that

‖B − BH‖2 ≤ cn
ε

λ
p, (3.29)

where cn = cn(κ, b, c, d, η,Ω) depends on η from (2.4) and diam Ω. p is the depth of the cluster
tree TI defined in Section 2.1.

Proof. Let b = s × t ∈ P with min{#s,#t} ≤ nmin. In this case we simply set

(BH)b := Bb = (J∗L−1J)b.

Since the block (BH)b has at most nmin columns or rows, rank (BH)b ≤ k holds.
If b = s× t ∈ P with min{#s,#t} > nmin, then b satisfies (2.4). Applying Theorem 3.5 with

D1 = Xs, D2 = Xt there is G̃b(x, y) =
∑kε

i=1 ub
i(x)vb

i (y) such that

‖G − G̃b‖L2(Xs×Xt) ≤ ε‖G‖L2(Xs×X̂t)
,

where X̂t := {x ∈ Ω : 2η dist(x,Xt) ≤ diam Xt}. Let the functions ub
i and vb

i be extended to Ω
by zero. We define the integral operator

Kbϕ =
∫

Ω
G̃b(·, y)ϕ(y) dy for supp ϕ ⊂ Ω

11



and set (BH)b = (J∗KbJ)b. The rank of (BH)b is bounded by kε since each term ub
i (x)vb

i (y) in
G̃b produces one rank-1 matrix in (J∗KbJ)b.

Let x ∈ R
t and y ∈ R

s. To see that (BH)b approximates the block Bb, remember the
representation (3.14) of L−1 and use (3.28). The estimate

〈(B − BH)bx, y〉h = 〈J∗(L−1 − Kb)Jx, y〉h = ((L−1 − Kb)Jx, Jy)L2

≤ ‖G − G̃b‖L2(Xs×Xt)‖Jx‖L2(Xt)‖Jy‖L2(Xs)

≤ ε‖G‖L2(Xs×X̂t)
‖Jx‖L2(Ω)‖Jy‖L2(Ω)

≤ εc2
J,2‖G‖L2(Xs×X̂t)

‖x‖h‖y‖h

proves ‖(B − BH)b‖2 ≤ εc2
J,2‖G‖L2(Xs×X̂t)

.
Although G(x, ·) ∈ W 1,1(Ω) for all x ∈ Ω, G(·, ·) does not belong to L2(Ω × Ω) as soon as

n ≥ 4. From (3.12) it can be seen that ‖G‖L2(Xs×X̂t)
may increase when the sets Xs, X̂t are

approaching each other. The construction of X̂t however ensures

δ := dist(Xs, X̂t) ≥ 1
2
dist(Xs,Xt) ≥ 1

2η
diam Xs

as well as 2ηδ ≥ diam Xt due to (2.4). Hence (3.12) implies for the case n ≥ 3

‖G‖L2(Xs×X̂t)
≤ cn(κ, b, c, d)

λ
δ2−n

√
(vol Xs)(vol X̂t).

Using vol X̂t ≤ ωn(1
2diam X̂t)n ≤ ωn(η + 1/2)nδn and vol Xs ≤ ωn(ηδ)n, where ωn is volume of

the unit ball in R
n, we see that

‖G‖L2(Xs×X̂t)
≤ c̄η

cn(κ, b, c, d)
λ

δ2 with c̄η := ωn(η(η + 1/2))n/2.

The rough estimate δ ≤ diam Ω together with Lemma 3.7 yields (3.29). Using (3.13) the case
d = 2 can be treated in a similar way.

Remark 3.9 Assume that each (possibly non-convex) set Xt has a convex superset Yt satisfying
the admissibility condition (2.4). Then Theorem 3.8 remains valid for Xs × Xt. Therefore,
according to Remark 2.2 the assumption on the convexity of Xt in Theorem 3.8 is reasonable
even for practical purposes.

The previous theorem shows that we are able to approximate the discrete inverse of L by
H-matrices. Our aim however is to prove that the inverse of the stiffness matrix S possesses this
property. For this purpose we use the fact that S−1 can be approximated by M−1BM−1. The
last product, in turn, can be approximated by an H-matrix. In [4] we have already presented
the details of the above arguments. Since they are quite technical we just give the main results
without proofs.

The finite element approximation is connected with the Ritz projection Ph = JA−1J∗L :
H1

0 (Ω) → Vh. If u ∈ H1
0 (Ω) is the solution of the variational problem a(u, v) = f(v), uh = Phu

is its finite element solution. The FE error is then given by

eh(u) := ‖u − Phu‖L2(Ω),

12



and the weakest form of the finite element convergence is described by

eh(u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω), (3.30)

where εh → 0 as h → 0.

Remark 3.10 Due to our quite weak assumptions on the smoothness of the coefficients in (3.6),
one cannot specify the behavior of εh for h → 0.

Lemma 3.11 It holds that ‖S−1 − M−1BM−1‖2 ≤ 2c−4
J,1c

2
J,2εh.

Since the product of two H-matrices is an H-matrix with augmented rank, cf. [11], it
remains to show that M−1 can be approximated by an H-matrix NH. Then, CH := NHBHNH
approximates S−1.

Lemma 3.12 For any ε > 0, there is NH ∈ H(P, kε) satisfying

‖M−1 − NH‖2 ≤ ε‖M−1‖2

with kε = O(| log ε|n).

Gathering all previous results we obtain the existence of H-matrix approximants to the
inverse stiffness matrix.

Theorem 3.13 Let εh > 0 be the finite element error from (3.30) and p the depth of the cluster
tree TI defined in Section 2.1. Then there is a constant c̃ > 0 defining k := c̃p2 logn+1 p

εh
and

there is CH ∈ H(P, k) such that
‖S−1 − CH‖2 ≤ cnεh, (3.31)

where cn = cn(κ, λ, ‖L−1‖H1←H−1, b, c, d, η,diam Ω). If εh = O(hβ) for some β > 0, k =
O(logn+3 N) holds.

Theorem 3.13 states that S−1 can be approximated to an accuracy determined by the FE
error, which is sufficient since the accuracy of the solution cannot be improved by a better
approximation of S−1. In the following section, however, an inversion algorithm is devised,
which, as we will see in the numerical results, can reach any prescribed accuracy.

4 Algorithms

Since H(P, k) is not a linear space, we have to replace the usual matrix operations by trun-
cated ones. Starting from the H-matrix addition, we define an H-matrix multiplication. Using
these modified operations it is possible to define an H-matrix inversion based on the Frobenius
formulas. These ideas already appeared in the early papers on H-matrices, cf. [15, 16].

4.1 Truncated addition

In order to make the sum of two H(P, k)-matrices be in H(P, k), we have to add them blockwise
and truncate each sum UV T , U = (U1, U2) ∈ R

s×2k, V = (V1, V2) ∈ R
t×2k, of two rank-k blocks

U1V
T
1 and U2V

T
2 to a matrix of rank at most k. For this purpose we have to assume that for a

given precision ε > 0 a matrix R of rank 	 ≤ k exists such that ‖UV T −R‖2 < ε. The matrix R
can be found by the following algorithm, which was also used in [2] for finding the approximant
of lowest rank in an ε-neighborhood of a low-rank matrix.
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procedure truncate(U, V, k, var Ũ , var Ṽ )
begin

Compute the QR-decompositions U = QURU and V = QV RV .
Compute M := RURT

V ∈ R
2k×2k.

Compute the singular value decomposition M = XSY T .
Find the smallest 	 such that s�+1 ≤ εs1, where s1 ≥ · · · ≥ s2k are the diagonal entries of S.
Let S� and Y� be the first 	 columns of S and Y , respectively.
Compute Ũ := QUXS� and Ṽ := QV Y�.

end

Obviously, Ũ Ṽ T has rank 	 and for the error in spectral norm it holds that

‖UV T − Ũ Ṽ T ‖2 =
s�+1

s1
‖UV T ‖2 ≤ ε‖UV T ‖2.

The actual rank of a block within an H-matrix may therefore be less than k.
The truncated addition will be denoted by ⊕ε and we define the addition of two submatrices

A, B in the entries b̂ ∈ TI×I by

A ⊕ B = {Ab ⊕ε Bb for all b ∈ P, b is a descendant of b̂ in TI×I}.
The previous truncation algorithm needs O(k2(|s|+|t|)) operations if b = s×t. Hence, exploiting
the block-hierarchy the complexity for the H-matrix addition of two matrices from H(P, k) can
be shown to be of order η−nk2N log N .

4.2 Truncated matrix-matrix multiplication

Since the partition P consists of the leaves of the block cluster tree TI×I , we are able to recursively
define a modified matrix-matrix multiplication C

⊕= A � B, A ∈ H(P, k), B ∈ H(P, k), making
use of the partitioned matrix-matrix multiplication. Let r × s, s × t, r × t ∈ TI×I be block
clusters. In order to define what is meant with Cr×t

⊕= Ar×s �Bs×t we have to distinguish three
cases:

1. All three blocks r × s, s × t and r × t have sons in the tree TI×I .[
Cr1×t1 Cr1×t2

Cr2×t1 Cr2×t2

]
⊕=

[
Ar1×s1 Ar1×s2

Ar2×s1 Ar2×s2

]
�

[
Bs1×t1 Bs1×t2

Bs2×t1 Bs2×t2

]

is recursively defined by

Cr1×t1
⊕= Ar1×s1 � Bs1×t1 , Cr1×t1

⊕= Ar1×s2 � Bs2×t1 ,

Cr1×t2
⊕= Ar1×s1 � Bs1×t2 , Cr1×t2

⊕= Ar1×s2 � Bs2×t2 ,

Cr2×t1
⊕= Ar2×s1 � Bs1×t1 , Cr2×t1

⊕= Ar2×s2 � Bs2×t1 ,

Cr2×t2
⊕= Ar2×s1 � Bs1×t2 , Cr2×t2

⊕= Ar2×s2 � Bs2×t2 .

2. One of the blocks r × s and s × t is a leaf in TI×I .
Assume that s × t is a leaf, then Bs×t has a representation Bs×t = UBV T

B , UB ∈ R
s×k,

VB ∈ R
t×k.

Cr×t
⊕= Ar×s � Bs×t
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in this case is defined as
Cr×t := Cr×t ⊕ Ar×sUBV T

B ,

where Ar×sUB are k H-matrix-vector products.

3. r × t has no sons in TI×I , and r × s, s × t have sons in the tree TI×I .
For the definition of

Cr×t
⊕=

[
Ar1×s1 Ar1×s2

Ar2×s1 Ar2×s2

]
�

[
Bs1×t1 Bs1×t2

Bs2×t1 Bs2×t2

]

we introduce matrices R1, R2, R3 and R4 by

R1 = R2 = R3 = R4 = 0

and

R1
⊕= Ar1×s1 � Bs1×t1 , R1

⊕= Ar1×s2 � Bs2×t1 ,

R2
⊕= Ar1×s1 � Bs1×t2 , R2

⊕= Ar1×s2 � Bs2×t2 ,

R3
⊕= Ar2×s1 � Bs1×t1 , R3

⊕= Ar2×s2 � Bs2×t1 ,

R4
⊕= Ar2×s1 � Bs1×t2 , R4

⊕= Ar2×s2 � Bs2×t2 ,

and set

Cr×t := Cr×t ⊕k

[([
R1 0
0 0

]
⊕k

[
0 R2

0 0

])
⊕k

([
0 0

R3 0

]
⊕k

[
0 0
0 R4

])]
.

If the truncation accuracy ε was chosen to be the machine precision then C
⊕= A � B would

coincide with C := C + AB. The complexity of the truncated matrix-matrix multiplication can
be estimated as O(η−nk2N log2 N), cf. [11].

4.3 Inversion

We assume that each block As×s, s ∈ TI , of A ∈ H(P, k) is invertible. This is for example the
case if A is positive definite. The matrix block As×s corresponding to s ∈ TI \L(TI) is subdivided
into the sons of s × s:

As×s =
[
As1×s1 As1×s2

As2×s1 As2×s2

]
.

According to the Frobenius formulas for the inverse of A it holds that:

A−1
s×s =

[
A−1

s1×s1
+ A−1

s1×s1
As1×s2S

−1As2×s1A
−1
s1×s1

−A−1
s1×s1

As1×s2S
−1

−S−1As2×s1A
−1
s1×s1

S−1

]
,

where S is the Schur complement S = As2×s2 − As2×s1A
−1
s1×s1

As1×s2. The H-matrix inverse
Cs×s of As×s is defined by replacing the matrix-matrix multiplication and the addition by the
H-versions. We need a temporary matrix T ∈ H(P, k), which together with C is initialized to
zero.
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procedure invertH(s,A, varC)
begin
if s ∈ L(TI) then Cs×s := A−1

s×s is the usual inverse.
else begin

invertH(s1, A,C).
Ts1×s2

�= Cs1×s1 � As1×s2 .
Ts2×s1

�= As2×s1 � Cs1×s1 .
As2×s2

⊕= As2×s1 � Ts1×s2.
invertH(s2, A,C).
Cs1×s2

⊕= Ts1×s2 � Cs2×s2.
Cs2×s1

⊕= Cs2×s2 � Ts2×s1.
Cs1×s1

⊕= Ts1×s2 � Cs2×s1.
end

end

The matrix A is destroyed during the previous algorithm and C ∈ H(P, k) contains an approx-
imant of A−1. The cost for the computation of the H-inverse is mainly determined by the cost
for the H-multiplication. Therefore, an approximation to the inverse of A can be obtained with
complexity O(η−nk2N log2 N).

5 Numerical experiments

In this section the practical influence of the various terms of the differential operator (3.6) on the
efficiency and accuracy of the H-inverse is investigated. For simplicity all tests are performed on
a uniform triangulation of the unit square Ω := (0, 1)2 in R

2. In each case the stiffness matrix S
is built in the H-matrix format, see Example 2.4. Then the inversion algorithm from Section 4.3
is applied to it with a relative truncation accuracy ε. Hence, the rank k is adaptively chosen and
is therefore expected to vary among the blocks. All test were carried out on a single processor
of a SunFire 6800 – 900MHz.

Let uh ∈ R
N be the finite element solution, i.e., the solution of Suh = b, where b is the vector

with the components

bi =
∫

Ω
fϕi dx, i = 1, . . . , N,

and ũh = Cb, where C is the computed H-matrix approximant of S−1. Since

‖uh − ũh‖2 = ‖uh − CSuh‖2 ≤ ‖IN − CS‖2 ‖uh‖2 (5.32)

the expression ‖IN − CS‖2 is an upper bound on the relative accuracy of ũh compared with
the finite element solution uh. Note that ũh cannot be a better approximation of u than uh is,
since the proposed method is built on top of the finite element method. Hence, in the following
computations we will rely on the expression ‖IN − CS‖2 as a measure for the accuracy.

5.1 Principal parts

In the first example we consider operators L = −div A(x)∇. The coefficients A of L are chosen
to be of the following form

A(x) =
[
1 0
0 α(x)

]
, x ∈ Ω,
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where α(x) = 1 in the lower region of Figure 1 and a random number from the interval [0, a]
in the remaining part of the unit square. In order to avoid averaging effects the coefficient
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Figure 1: The coefficient α(x)

α possesses a two-level random structure: the randomly chosen coefficient on each triangle is
multiplied by a coefficient chosen randomly on a scale of length

√
h, where the grid size h is

defined through h(
√

N/2 + 1) = 1.
In the following table the accuracy ‖IN − CS‖2 of the H-matrix C and the CPU time

consumption are compared for different a and different problem sizes N . The truncation accuracy
ε is chosen such that ‖IN − CS‖2 is of order h.

a = 1.0 a = 10.0 a = 100.0
N h ε time [s] accuracy time [s] accuracy time [s] accuracy

14400 8.3e − 3 1e − 5 29.4 8.5e − 3 28.4 1.1e − 2 29.0 1.1e − 1
38025 5.1e − 3 2e − 6 146.7 6.2e − 3 138.6 6.9e − 3 143.2 1.5e − 2
65025 3.9e − 3 5e − 7 341.3 3.4e − 3 327.6 3.2e − 3 338.1 6.0e − 3

129600 2.8e − 3 2e − 7 1074.9 2.6e − 3 1008.0 2.8e − 3 1032.3 4.7e − 3
278784 1.9e − 3 5e − 8 3452.1 1.6e − 3 3201.7 2.0e − 3 3320.1 4.4e − 3
529984 1.3e − 3 2e − 8 9210.0 1.3e − 3 8529.0 1.5e − 3 8868.7 3.1e − 3

In the next set of tests the same quantities for a smooth but oscillating coefficient in the
principal part are computed, i.e., α is chosen to be the following function

α(x) = a(1 + cos(b2πx) sin(b2πy)).

By changing the coefficient a we are able to prescribe the amplitude of the oscillation and by b
the number of oscillations in x- and y-direction of Ω = (0, 1)2. The following table contains the
results for N = 65025 and ε = 5e − 7.
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a = 1.0 a = 10.0 a = 100.0
time [s] accuracy time [s] accuracy time [s] accuracy

b = 1 333.4 3.2e − 3 334.4 5.0e − 3 385.4 8.0e − 3
b = 10 327.6 2.8e − 3 326.8 3.0e − 3 373.7 2.7e − 3
b = 100 329.7 3.1e − 3 330.2 2.6e − 3 394.3 2.0e − 3
b = 1000 331.9 2.7e − 3 333.1 3.5e − 3 388.2 1.8e − 3

The experiments show that in the absence of lower-order terms neither the accuracy nor the
CPU times needed to compute the approximant do depend much on the coefficients.

5.2 Convection-diffusion

In this section operators of the type

L = −∆ + c · ∇

will be considered. In the first example the convection coefficient c is randomly chosen, i.e.,
c(x) ∈ [−a, a]2 for x ∈ Ω. The following table shows ‖IN − CS‖2 for different parameters a.

a = 1.0 a = 10.0 a = 100.0
N h ε time [s] accuracy time [s] accuracy time [s] accuracy

14641 8.2e − 3 1e − 5 31.4 7.1e − 3 31.5 7.5e − 3 31.2 9.5e − 3
38416 5.1e − 3 2e − 6 153.6 6.5e − 3 154.1 6.6e − 3 155.7 8.0e − 3
65025 3.9e − 3 5e − 7 355.9 2.9e − 3 356.9 3.0e − 3 356.2 3.5e − 3

129600 2.8e − 3 2e − 7 1100.3 2.5e − 3 1104.3 2.5e − 3 1106.4 2.6e − 3
278784 1.9e − 3 5e − 8 3503.2 1.5e − 3 3505.8 1.6e − 3 3518.7 1.5e − 3
597529 1.3e − 3 2e − 8 11072.6 1.4e − 3 11111.1 1.5e − 3 11105.7 2.0e − 3

In the next example we investigate operators

Lu = −ε∆u + ux + uy

for different parameters ε > 0. We are particularly interested in a convection dominated setting.

ε = 0.1 ε = 0.01 ε = 0.001
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 30.0 5.7e − 3 29.4 9.4e − 4 60.9 2.7e − 4
38416 145.5 4.2e − 3 154.9 4.6e − 4 259.3 1.2e − 4
65025 336.8 1.9e − 3 362.3 2.6e − 4 481.0 2.5e − 5

129600 1046.5 1.6e − 3 1133.0 2.0e − 4 1233.0 1.8e − 5
278784 3311.4 9.4e − 4 3665.6 1.1e − 4 2998.5 1.3e − 5
597529 10452.4 1.0e − 3 11701.8 1.2e − 4 11370.6 9.5e − 6

Since the above tables show that it is possible to find an H-matrix C that approximates S−1,
from (5.32) it is obvious that ũh approximates the finite element solution uh. This is especially
true in the presence of boundary layers as is illustrated in the following example. The solution
of

−ε∆u + ux + uy = f,

where
f(x, y) = (x + y)(1 − e(x−1)/εe(y−1)/ε) + (x − y)(e(y−1)/ε − e(x−1)/ε)
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with zero boundary conditions is known to be

u(x, y) = xy(1 − e(x−1)/ε)(1 − e(y−1)/ε).

Figure 2 compares the restrictions of u and ũh to the set {(x, x), x ∈ (0, 1)} for ε = 0.01 and
N = 14641. Obviously, the proposed inversion procedure is able to handle boundary layers as
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Figure 2: The solutions u and ũh.

long as the underlying finite element method is stable.
In the next example we consider convection in a direction that is aligned with the grid, i.e.,

operators
Lu = −ε∆u + ux

for different parameters ε > 0 are investigated.

ε = 0.1 ε = 0.01 ε = 0.001
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 30.3 6.3e − 3 31.4 6.6e − 4 47.4 1.3e − 4
38416 145.7 4.9e − 3 161.4 5.7e − 4 226.1 6.3e − 5
65025 339.0 2.2e − 3 365.7 1.8e − 4 463.9 1.8e − 5

129600 1053.9 1.9e − 3 1152.1 1.8e − 4 1235.8 1.4e − 5
278784 3323.3 1.1e − 3 3657.8 1.5e − 4 4135.5 6.3e − 6
597529 10457.6 1.0e − 3 11646.8 1.3e − 4 12208.7 7.9e − 6

It is well known that if the ratio ε/h gets small the finite element discretization suffers from
the loss of stability. As a consequence the stiffness matrix becomes ill-conditioned. It may even
happen that S is not invertible. This behavior is observable for small N if ε tends to zero: when
changing ε = 0.01 to ε = 0.001 the CPU time for N = 14641 increases by a factor of 1.5, while
it is almost not influenced in the case N = 597529, where the discretization is stable.

The proposed inversion procedure can also be applied to Shishkin meshes, which should be
used for a better convergence of the finite element method.

5.3 Diffusion-reaction

As a third kind of example we consider the operator Lu = −∆u + du with a randomly chosen
reaction term d(x) ∈ [0, a] for x ∈ Ω.
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a = 10.0 a = 100.0 a = 1000.0
N time [s] accuracy time [s] accuracy time [s] accuracy

14641 31.2 5.5e − 3 32.3 1.8e − 3 34.7 2.1e − 4
38416 154.4 4.9e − 3 161.6 1.3e − 3 172.2 7.2e − 5
65025 357.1 2.1e − 3 369.1 6.1e − 3 394.2 4.6e − 5

129600 1106.5 1.9e − 3 1133.9 5.8e − 4 1222.8 5.4e − 5
278784 3502.8 1.2e − 3 3610.1 3.7e − 4 3876.2 3.6e − 5
597529 11100.7 1.1e − 3 11500.8 3.6e − 4 12242.4 3.2e − 5

Since by adding a positive d to the operator −∆ the distance of the spectrum to zero is
increased. Hence, the larger d the better the approximation works.

Negative d, i.e., the Helmholtz equation, can also be handled as long as the inverse of L is
guaranteed to exist. If an integral formulation of the Helmholtz equation is discretized, it is
known that due to the oscillatory kernel the rank of the blocks in the H-matrix approximant
depends on the wave number. Therefore, the method can still be applied, but it is only efficient
if the wave number is not too large. The same effect can be observed here.

Each column of the following table shows the approximation results for the respective d in
the case N = 129600. In order to be able to guarantee ‖IN − CS‖2 ∼ h we have to choose a
higher truncation accuracy ε if the modulus of d is increased. Note that d is now a constant.

d = −1.0 d = −10.0 d = −100.0 d = −1000.0 d = −10000.0
ε 2.0e − 7 1.0e − 7 2.0e − 9 5.0e − 10 2.0e − 11
accuracy 2.5e − 3 2.8e − 3 2.5e − 3 3.8e − 3 2.9e − 3
time [s] 1029.1 1076.7 1386.6 1678.3 3144.2

Hence, for large wave numbers the inversion procedure can be applied, but gets less efficient.
As a last example we consider values d that are close to the eigenvalues of the operator ∆.

In the case of resonance, i.e., −d is an eigenvalue of S, the stiffness matrix S is not invertible.
Close to resonance the stiffness matrix is ill-conditioned. The functions

uk(x, y) := sin(2πkx) sin(2πky), k = 0, 1, . . . ,

solve the eigenproblem

−∆u = λu in Ω = (0, 1)2

u = 0 on ∂Ω

with corresponding eigenvalues λk := (2πk)2. In the following table N = 129600 and −d is
chosen in a neighborhood of the second eigenvalue λ1 = 4π2.

d −39.0 −39.5 −40.0 −40.15 −40.2 −40.25 −41.0
ε 2.0e − 8 2.0e − 8 1.0e − 8 2.0e − 9 5.0e − 10 2.0e − 9 2.0e − 8
accuracy 1.9e − 3 1.7e − 3 2.0e − 3 1.6e − 3 2.3e − 3 1.3e − 3 1.5e − 3
time [s] 1109.4 1114.6 1168.2 1299.4 1414.0 1292.6 1109.1

We conclude from the above numerical experiments that the proposed method is robust
with respect to non-smooth and anisotropic coefficients. Even convection-diffusion problems
with dominating convection can be solved efficiently without special adaption of the algorithm
to this class of problems. Hence, the proposed inversion procedure can be applied whenever a

20



stable discretization of the operator L is available. Helmholtz’ equation can be treated but the
algorithms are only efficient for relatively small wave numbers.
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