Max-Planck-Institut
fiir Mathematik

in den Naturwissenschaften
Leipzig

H-matrix preconditioners in
convection-dominated problems

by

Sabine Le Borne and Lars Grasedyck

Preprint no.: 62 2004

H-MATRIX PRECONDITIONERS IN CONVECTION-DOMINATED
PROBLEMS

SABINE LE BORNE* AND LARS GRASEDYCK'

Abstract. Hierarchical matrices provide a data-sparse way to approximate fully populated
matrices. In this paper we exploit H-matrix techniques to approximate the LU-decompositions of
stiffness matrices as they appear in (finite element or finite difference) discretizations of convection-
dominated elliptic partial differential equations. These sparse H-matrix approximations may then be
used as preconditioners in iterative methods. Whereas the approximation of the matrix inverse by an
‘H-matrix requires some modification in the underlying index clustering when applied to convection-
dominant problems [11], the H-LU-decomposition works well in the standard H-matrix setting even
in the convection dominant case. We will complement our theoretical analysis with some numerical
examples.

Key words. Hierarchical matrices, data-sparse approximation, preconditioning, convection-
dominant problems

AMS subject classifications. 65F05, 65F30, 65F50

1. Introduction. In a series of papers, the technique of hierarchical matrices,
or H-matrices in short, has been introduced [3, 4, 6, 7, 8]. H-matrices provide an
inexpensive but sufficiently accurate approximation to fully populated matrices as
they appear in boundary element methods or finite element methods. In finite element
methods, it is the inverse of the stiffness matrix as well as the matrices L and U in
an LU-decomposition which are typically fully populated.

An H-matrix approximation is based on a certain hierarchical block structure of
the matrix in which some (preferably large) off-diagonal blocks are represented by
low-rank approximations. Such a block structure and the resulting approximations
for (inverse) matrices arising in the discretization of uniformly elliptic PDEs can
be computed and stored in almost linear complexity, i.e., O(nlogy n) with moderate
parameter « [1]. The constants in these complexity estimates depend on the structure
of the involved H-matrices and have been computed exactly in [4].

In a previous paper [11], the approximation quality for standard H-matrices has
been analyzed when applied to the inverse matrices that stem from convection-domi-
nated problems with constant convection. Some modifications have been derived in
which the direction and magnitude of the convection influence the block structure of
the resulting H-matrix, leading to significant improvements in the approximation by
an H-matrix compared to the standard setting.

In the case of a non-constant dominant convection, the standard H-matrix turns
out to provide a satisfactory approximation which is due to the numerical diffusion
induced in a discretization.

In this paper, after a brief introduction to H-matrices in Section 2, we will use
‘H-matrices to approximate the matrix factors in an LU-decomposition of the stiffness
matrix. In [12], an analysis is provided for the Laplace equation in two spatial dimen-
sions. In Section 3, we will describe the recursive construction of an LU-decomposition
using H-matrix arithmetic, and then we focus on H-LU-decompositions for the stiff-
ness matrix of the convection-dominant convection-diffusion equation, both for con-

*Department of Mathematics, Box 5054, Tennessee Technological University, Cookeville, TN
38505 (sleborne@tntech.edu).
fMax Planck Institute for Mathematics in the Sciences, Leipzig, Germany (lgr@mis.mpg.de).

1

2 Le Borne, Grasedyck

stant and non-constant convection directions. We will use the H-matrix approxi-
mations of the LU-decomposition as preconditioners in Krylov-accelerated iterative
methods. In Section 4, we will provide some numerical tests to illustrate the efficiency
of the resulting method.

2. A brief introduction to H-matrices. An H-matrix approximation to a
given (full) matrix is obtained by replacing certain blocks of the matrix by matrices
of low rank, stored in so-called Rk-format as will be further explained below. The
formal definition of an H-matrix depends on appropriate hierarchical partitionings of
the index set and also of the product index set which are organized in (block) cluster
trees as defined next. Instead of fixed partitionings, these trees will provide hierar-
chies of partitionings which gives a hierarchical matrix its name.

DEFINITION 2.1 (Cluster tree). Let I be a finite index set and let Ty = (V, E) be

a tree with verter set V and edge set E. For a vertexr v € V we define the set of sons
of v as Sw) :={w € V| (v,w) € E}. The tree Ty is called a cluster tree of I if its
vertices consist of subsets of I and satisfy the following conditions:

1. I €V is the root of Ty and v C I, v#0, for allv e V.

2. For all v €V there either holds S(v) =0 or v=U,cg()W-
In the following we identify V and Ty, i.e., we write v € Ty instead of v € V. The
nodes v € V are called clusters.

For regular grids one can construct the cluster tree T7 in a cardinality balanced
way, i.e., an index cluster is divided into a certain number of sons of approximately
the same size with respect to the number of indices (see [6, 8]). In this paper we
restrict our attention to the case of two (or no) sons per cluster which is the easiest
with respect to analysis and implementation, and we are not aware of any disadvan-
tages compared to an arbitrary number of sons. For locally refined grids, the results
from [4] indicate that the cardinality balanced clustering is not optimal with respect
to the complexity of adaptive H-matrix updates. Instead, on can use a geometrically
balanced approach as described in [5] which is used in the remainder of this paper,
including the numerical tests. In the case of regular grids, however, both approaches
are the same.

DEFINITION 2.2 (Leaf, father, level, depth). Let T be a cluster tree. The set
of leaves of the tree Tt is L(Tr) = {v € Ty | S(v) = 0}. The uniquely determined
predecessor (father) of a non-root vertex v € Ty is denoted by F(v). The levels of the
tree Tt are defined by

T =1, TV ={veT|Fu)eT V} forteN,

and we write level(v) = ¢ if v € TI“). The depth of T is defined as d(T') := max{{ €

No | TI(Z) #(0}. For any cluster tree T} there holds I = J{v | v € L(T)}.
A hierarchy of block partitionings of the product index set I x I is based upon a
cluster tree Tt and is organized in a block cluster tree:

DEFINITION 2.3 (Block cluster tree). Let Tt be a cluster tree of the index set I.
A cluster tree Ty is called a block cluster tree (based upon Ty) if for all v € Tl(lx)[

there existt,s € Tl(l) such that v =t x s. The nodes v € Ty« are called block clusters.

H-matrix preconditioners 3

Analogously to the cluster tree, for any block cluster tree T there holds I x I =
U{v | v € L(Trx1)}, i.e., the leaves of the block cluster tree provide a disjoint block
partition of the product index set I x I.

The objective is to construct a block cluster tree from a given cluster tree such
that the leaves (of the block cluster tree) correspond to (preferably large) matrix
blocks with “smooth” data that can be approximated by low rank matrices in the
following Rk-matrix representation:

DEFINITION 2.4 (Rk-matrix representation). Let k,n,m € Ny. Let M € R**™
be a matrixz of at most rank k. A representation of M in factorized form

M = ABT, A e Rk B e R™¥F (2.1)

with A and B stored in full matriz representation, is called an Rk-matrix representa-
tion of M, or, in short, we call M an Rk-matriz.

If the rank k is small compared to the matrix size given by n and m, we obtain
considerable savings in the storage and work complexities of an Rk-matrix compared
to a full matrix [4].

In the following construction, we will build a block cluster tree iteratively starting
from I x I and refining the block clusters if they do not satisfy a certain admissibil-
ity condition. The choice of the admissibility condition depends on the underlying
continuous problem (i.e., elliptic partial differential equation, in particular its associ-
ated Green’s function) and shall ensure that all admissible blocks allow a sufficiently
accurate Rk-approximation. A typical admissibility condition for uniformly elliptic
problems is as follows:

block cluster s x t is admissible < min(diam(s), diam(t)) <n dist(s,t). (2.2)

Here, “diam” and “dist” denote the Euclidean diameter/distance of the (union of
the) supports of the basis functions (grid points in the case of finite differences) with
indices in s, t, resp. A given cluster tree along with an admissibility condition allows
the following canonical construction of a block cluster tree:

Let the cluster tree T7 be given. We define the block cluster tree T7x s
by root(T) := I x I, and each vertex s x t € T has the set of successors

0 if s x t admissible,
S(sxt):=g 0 if min{#t,#s} < nmin, (2.3)
{s'xt'| s eS(s),t' € S(t);} otherwise.

The parameter n,,;, ensures that blocks do not become too small where the ma-
trix arithmetic of a full matrix is more efficient than any further subdivision. It is
typically set to Nin = 32 or even N, = 64. The leaves of a block cluster tree
obtained through this construction will be used in the definition of an H-matrix:

DEFINITION 2.5 (H-matrix). Let k,nmin € No. The set of H-matrices induced
by a block cluster tree T := T« with blockwise rank k and minimum block size Nmin
is defined by

H(T, k) := {M € R™* |Vt x s € L(T) : rank(M |1xs) < k or min{#t, #s} < Nmin}-

4 Le Borne, Grasedyck

A matric M € H(T, k) is said to be given in H-matriz representation if the blocks
M|ixs with rank(M|ixs) < k are in Rk-matriz representation (and the remaining
blocks with min{#t, #s} < nmin are stored as full matrices). The set of indices
(i,5) € I x I that belong to Rk-matrixz blocks is called the farfield while the comple-
ment is called the nearfield.

Both the accuracy and (storage) complexity of an H-matrix approximation to a
given matrix depend on the construction of an appropriate cluster tree, i.e., a hierarchy
of index set partitionings. Details regarding approximation errors for blocks that
satisfy the admissibility condition, i.e., for blocks that have a large distance compared
to their diameters as well as storage requirements for full, Rk- and H-matrices are
given in [4]. The intuitive objective in the construction of a cluster tree, given the
standard admissibility condition (2.2), is to partition the index set into well separated
clusters of vertices that are geometrically close to each other. As a result, relatively
large blocks become admissible and we obtain an accurate H-matrix approximation
that is inexpensive to store.

3. H-matrix approximations to the LU-decomposition. Typically, the fac-
tors L and U in an exact LU-decomposition of a sparse matrix A suffer from significant
fill-in as illustrated in Figure 3.1. Here, the stiffness matrix A (left) and its LU-factors
(middle) are presented which results from an upwind finite element discretization of
the convection-diffusion equation —Au + u, = f with Dirichlet boundary conditions
on a regular triangulation of the square Q = [—1,1] x [—1,1]. In this example, the
problem size has been set to n = 10000. A count of the non-zero entries in the LU-
decomposition for various problem sizes yields a non-optimal complexity of (’)(n%)
for the number of non-zero entries. The ordering of the unknowns results from the
clustering process in the H-matrix construction. It is well-known that the ordering
of the unknowns affects the sparsity pattern of the LU-decomposition as well as the
approximation quality of an incomplete LU-decomposition (ILU).

Fi1a. 3.1. Sparsity pattern of a typical stiffness matriz A (left), its LU-factors (middle), and
an H-matriz approzimation to its LU-factors (right).

Figure 3.1 (right) shows an H-matrix approximation to the LU-factors. Admis-
sible off-diagonal blocks are represented by Rk-matrices with ranks at most five. For
the larger off-diagonal blocks, one can observe the exponential decay of the first five
singular values which are plotted in grey on a logarithmic scale.

3.1. Construction of the H-matrix LU-decomposition. The computation
of H-matrix approximations to the LU-factors is done recursively (with respect to the
block clustering) and is of complexity O (nlog® nk?) where n denotes the problem

H-matrix preconditioners 5

size and k denotes the maximum rank of the Rk-blocks. It requires a triangular solve
TX = B for an unknown matrix X with a given (upper or lower) triangular matrix T
and a given right hand side matrix B which we will describe first: For n < npi,, we
define X := T~ B and use the standard (dense) matrix arithmetic. We assume a 2 x 2
block structure of the matrix which is induced by the hierarchy of index partitionings,
and we assume that the triangular solve is defined already on all coarser levels. We
will solve for the unknown blocks X;; in

L1y X1 Xi2) _ (Bu B
Loy Lo Xo1 Xoo By B
in the following four steps:

1. Solve L11 X311 = By for X11 by a triangular solve (with Lq1) on the next
coarser level.

2. Solve L11X12 = Bis for Xi2 by a triangular solve (with Li1) on the next
coarser level.

3. Solve Ly X1 = Bay — Loy X131 for Xo; by a triangular solve (with Laz) on the
next coarser level.

4. Solve L22X22 = BQQ — L21X12 for X22 by a triangular solve (Wlth LQQ) on the
next coarser level.

Any matrix arithmetic in the previous four steps will be replaced by (approximate)
‘H-matrix arithmetic which will ensure almost optimal complexity for the computa-
tional cost as well as storage for the resulting matrix blocks X;;. The triangular solve
involving an upper triangular matrix follows analogously.

To compute an H-LU-decomposition A = LU, we use a standard (dense) LU-
decomposition A = LU on the coarsest level (where n < i), and we assume that
the H-LU-decomposition is defined already on all coarser levels. We will solve for the

unknown blocks L;;, U;; in
Ly Ui Ur
Loy Lo Uao

1. Solve Ay; = L11Uq1 for Ly1,U;; by an H-LU-decomposition on the next
coarser level.

2. Solve Aj9 = L11Us2 for Uqa by a triangular solve (with Lq1).

Solve Aay = La1Uz; for Loy by a triangular solve (with Usq).

4. Solve LogUss = Age — Lo1Uis for Log, Uss by an H-LU-decomposition on the
next coarser level.

7N\

B

s

SN—
Il

in the following four steps:

@

Again, any matrix arithmetic will be replaced by (approximate) H-matrix arith-
metic which will ensure almost optimal complexity for the computational cost as well
as storage for the resulting matrix blocks L;;, Us;.

Whereas the classical H-matrix uses a fixed rank for the Rk-blocks, it is possible
to replace it by a variable rank in order to enforce a desired accuracy within the
individual blocks. We will demonstrate the performance of both approaches in the
numerical tests in Section 4.

6 Le Borne, Grasedyck

3.2. The case of constant convection. In this section, we consider the model
convection-diffusion equation with constant convection

—eAu + (21) -Vu=f1in Q, (3.1)
2

u=gonl:=00. (3.2)

with € € (0,1) and constant by,bs € R.

In the case of dominant convection (i.e., € < 1), the non-zero entries in the stiff-
ness matrix obtained through some upwind discretization typically differ significantly
in their magnitudes, and it is helpful to distinguish between large and small matrix
entries. One may neglect the small matrix entries by replacing them with zeros and
then order the unknowns in a downwind manner such that one obtains an upper trian-
gular matrix which can be used as a preconditioner [2, 10, 9]. Such an ordering is not
determined uniquely, and the following Lemma guarantees that such an ordering can
be obtained through the standard H-matrix construction using a geometric partition
by ordering the cluster sons according to the convection direction. This, in turn, will
ensure that the quality of the H-LU-decomposition will improve as ¢ — 0 since the
stiffness matrix tends towards an upper triangular matrix.

LEMMA 3.1. Let (by,b2)T denote the constant convection direction in (3.3). We
assume an upwind discretization. Let Tt be a geometrically balanced cluster tree, i.e.,
a cluster r is subdivided into two successors s,t by ’cutting’ along either a vertical or
horizontal line. Let (x;,y;) be the point associated with an index i. If s,t result from
a vertical cut such that x; < x; for all indices i € s, j € t, then we will order the
indices in s before those in t if by > 0. If by < 0, we will order indices in t before
those in s. Correspondingly, if s,t result from a horizontal cut such that y; < y; for
all indices © € s, j € t, then we will order the indices in s before those in t if bo > 0.
If by < 0, we will order indices in t before those in s. The resulting H-matrix will
have all “large” entries in the lower triangular part, i.e., a;; > aj; if j <i. Ase —0
in (3.1), the stiffness matriz tends to be a lower triangular matriz.

We point out that the above Lemma establishes a significant difference between
the computation of H-LU-factors and an approximate H-inverse matrix: In [11], it
is shown that the computation of a convergent approximate H-matrix inverse in the
case of dominant, constant convection requires the adjustment of the clustering as
well as the admissibility condition to the convection direction and its magnitude. The
Lemma above states that such an adjustment is not required for the computation of
‘H-LU-factors.

3.3. The case of arbitrary convection. In this section, we consider the model
convection-diffusion equation with arbitrary convection

—eAu+b-Vu=fin Q, (3.3)
u=gonI :=0Q. (3.4)

with € € (0,1) and arbitrary (possibly cyclic) b = (by(z), ba(z))". If the convection is
acyclic one may still imitate downwind ordering strategies to obtain a mostly triangu-
lar matrix using the standard clustering algorithm. In the cyclic case, however, such
an ordering does not exist, not even without the restriction of a standard clustering.
Even though some convection-adapted clustering may seem reasonable, we found in

H-matrix preconditioners 7

our numerical results that the standard clustering still yields the best and very sat-
isfactory results. One explanation may be the numerical viscosity of the underlying
discretization.

4. Numerical results for H-matrix preconditioners. In this section we will
demonstrate some numerical results using the H-LU-decomposition as a precondi-
tioner. All tests were performed on a Dell Workstation 530 with a Xeon 2.4GHz
processor using the standard H-matrix library HL1B (cf. http://www.hlib.org).
Throughout all tests, we set the admissibility condition parameter n = 4.0 (2.2). Our
test problem is the convection-diffusion equation (3.3), discretized on a regular trian-

gulation on the square Q = [—1,1] x [—1,1] using Tabata’s upwind triangle scheme
[13, Chap. III, Sec. 3.3.1]. In all tests we choose a cyclic convection direction defined
by

b(,CL', y) - (bl(za y)a bQ(Za y))T with bl(xay) =0.5- Y, bQ(Za y) =z —0.5. (41)

In the first set of tests, the number of unknowns is n = 160000. We compare the
required storage (Figure 4.1) and time (Figure 4.2) to obtain a certain approximation
accuracy of the H-LU-factors when using fixed ranks (diamonds) in the Rk-blocks
compared to adaptive ranks (squares). In the case of adaptive ranks, we choose the
local ranks k such that o < dog where o; denotes the i’th largest singular value of
the respective matrix block, and § = 1077, = 1,..,5 for the results shown in Figures
4.1, 4.2.

4 T T T T T T T T 4

T T T T T
O adaptive o N N
¢ fixed rank <

accuracy
®

accuracy
®

O fixed rank
o O adaptive

o

o

8 8
600 700 800 900 1000 1100 1200 1300 1400 1500 600 700 800 900 1000 1100 1200 1300 1400 1500
Storage in MB storage in MB

Fic. 4.1. Approzimation accuracy versus required storage of LU-factors for fixzed rank (dia-
monds) or adaptive rank (squares); left for ¢ = 1.0 and right for convection-dominant case with
e = le—16.

The x-axis measures the required storage of the H-LU-factors in megabytes,
whereas the y-axis shows the accuracy ||[(L*U™)"'A — I||5 of the H-LU-factors on
a logarithmic scale. The left plots in both Figures 4.1, 4.2 show the results where
e = 1.0 in the convection-diffusion equation (3.3), i.e., when the convection is only
moderate. We notice that for both choices - adaptive or fixed ranks - the approxima-
tion accuracy improves exponentially as the used storage (Figure 4.1) and the required
time to compute the H-LU-factors (Figure 4.2) increase (in view of the logarithmi-
cally scaled y-axis). It is apparent that a much faster convergence is obtained when
adaptive ranks are used. The advantage of adaptive ranks over fixed ranks becomes
even more apparent in the convection dominant case: The plots on the right of Fig-
ures 4.1, 4.2 show the results where ¢ = le — 16 in the convection-diffusion equation

8 Le Borne, Grasedyck

eps=1.0, circles eps=1e-16, circles
T T T

4 T T T 4 T T
¢ fixed rank & o
O adaptive 0
o 0
2r 0 4 2k o
<o o
) 0
.

o) o)
2 2
2 ¢ P
§ . g s

4 . 4

:
.
6 1 -6
o adaptive
o ¢ fixed rank
.
o

8 L L L L L L L L L » L L L L L L
30 40 50 60 70 80 9 100 110 120 130 10 15 20 25 30 35 40 45
time in seconds time in seconds

F1c. 4.2. Approzimation accuracy versus required time to compute H-LU-factors for fized rank
(diamonds) or adaptive rank (squares); left for e = 1.0 and right for convection-dominant case with
e=le—16.

(3.3). The advantage of adaptive ranks can be explained by the non-symmetric nature
of the stiffness matrix with greatly varying magnitudes of matrix entries: Whereas
some Rk-blocks require a large rank to obtain a certain accuracy, other blocks are
close to zero blocks, and imposing a fixed rank onto these blocks will yield hardly any
improvement in accuracy but still be costly with respect to storage and time.

Consequently, we will choose adaptive ranks in the following numerical tests where
we use the H-LU-factors as preconditioners in a bicgstab iteration. As before, we
choose a cyclic convection (4.1). Table 4.1 displays results for a moderate convec-
tion (e = 1.0 in (3.3)), and in Table 4.2 the same tests are repeated for a dominant
convection (¢ = le — 16 in (3.3)). We record the times for the construction of the
‘H-LU-factors for various problem sizes (n = 40000, 80089, 160000, 320356) and ac-
curacies § responsible to determines the local ranks in the Rk-blocks. For a fixed
accuracy, the time increases linearly as the problem size increases. Next, we record
the time it takes to reduce the initial residual ro := ||Azg — b||2 by a factor of 1078
and the required number of iteration steps. We notice that the construction of the
‘H-LU-preconditioner dominates the solution time, and with respect to the combined
solution time, the least accurate H-LU-decomposition will yield the shortest solution
time although the convergence rate is the worst. This may change, however, if a more
accurate solution is desired, if we try to solve a worse conditioned test problem or
if we further increase the problem size n. For the lowest accuracy 0.1, the number
of iteration steps increases as the problem size increases, whereas for higher accura-
cies the preconditioner becomes optimal since the number of required steps remains
constant as we increase the problem size.

The set-up time of the preconditioner has less impact when it is used for solving
systems of equations such as the (Navier-) Stokes equations. Here, the problem size
becomes d - n + p where d denotes the spatial dimension, n the number of velocity
unknowns (per spatial dimension) and p the number of pressure unknowns. Here, we
would only require an H-LU-decomposition of the first diagonal block of the stiffness
matrix which is of size n X n in order to construct a preconditioner. Therefore, the
time for the construction of the H-LU-factors will decrease relative to the time per
iteration step.

TABLE 4.1

H-matrix preconditioners

e = 1.0, cyclic convection, adaptive rank

time LU-decompose (in sec.) time solver/#steps
n\accuracy || 0.1 le-2 le-3 le-4 0.1 le-2 le-3 le-4
40000 6.55 | 8.63 | 10.50 | 12.51 || 0.70/3 | 0.51/2 | 0.54/2 | 0.29/1
80089 12.78 | 17.61 | 22.15 | 26.93 | 1.63/4 | 1.42/3 | 1.00/2 | 1.07/2
160000 || 34.18 | 46.45 | 57.28 | 68.84 || 4.06/4 | 1.42/3 | 2.39/2 | 2.61/2
320356 68.55 | 98.96 | 126.25 | 154.03 || 8.88/5 | 8.11/4 | 4.54/2 | 4.85/2
TABLE 4.2
e = le — 16, cyclic convection, adaptive rank
time LU-decompose (in sec.) time solver/#tsteps
n\accuracy 0.1 le-2 | le-3 | le-4 0.1 le-2 le-3 le-4
10000 2.80 | 3.46 | 3.98 | 448 || 0.72/4 | 0.38/2 | 0.39/2 | 0.20/1
80089 539 | 6.74 | 7.97 | 951 || 1.59/5 | 1.01/3 | 0.71/2 | 0.73/2

160000 || 14.09 | 17.50 | 20.79 | 24.23 || 3.81/5 | 2.41/3 | 1.68/2 | 1.74/2
320356 || 27.46 | 35.65 | 43.03 | 51.77 || 9.38/7 | 4.31/3 | 3.03/2 | 3.15/2

REFERENCES
[1] M. BEBENDORF AND W. HACKBUSCH, Ezistence of H-matriz Approzimants to the inverse FE-
Matriz of Elliptic Operators with L°-Coefficients, Numerische Mathematik, 95 (2003),
pp. 1-28.
[2] J. BEY AND G. WITTUM, Downwind numbering: Robust multigrid for convection diffusion
problems, Applied Numerical Mathematics, 23 (1997), pp. 177-192.
[3] S. BOrRM, L. GRASEDYCK, AND W. HACKBUSCH, Hierarchical matrices, 2003. Lecture Notes
No. 21, Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
[4] L. GRASEDYCK AND W. HACKBUSCH, Construction and arithmetics of H-matrices, Computing,
70 (2002), pp. 295-334.
[5] L. GRASEDYCK, W. HACKBUSCH, AND S. LE BORNE, Adaptive geometrically balanced clustering
of H-matrices, Computing, 73 (2003), pp. 1-23.
[6] W. HACKBUSCH, A sparse matriz arithmetic based on H-matrices. Part I: Introduction to
‘H-matrices, Computing, 62 (1999), pp. 89-108.
[7] W.HACKBUSCH, L. GRASEDYCK, AND S. BORM, An introduction to hierarchical matrices, Math.
Bohem., 127 (2002), pp. 229-241.
[8] W. HACkBUSCH AND B. KHOROMSKI1J, A sparse H-matriz arithmetic. Part II: Application to
multi-dimensional problems, Computing, 64 (2000), pp. 21-47.
[9] W. HACKBUSCH AND T. PROBST, Downwind GaufS-Seidel Smoothing for Convection Dominated
Problems, Numerical Linear Algebra with Applications, 4 (1997), pp. 85-102.
[10] S. LE BORNE, Ordering techniques for two- and three-dimensional convection-dominated elliptic
boundary value problems, Computing, 64 (2000), pp. 123-155.
[11] , H-matrices for convection-diffusion problems with constant convection, Computing, 70
(2003), pp. 261-274.
[12] M. LINTNER, The eigenvalue problem for the 2D Laplacian in H-matriz arithmetic and appli-
cation to the heat and wave equation, Computing, 72 (2004), pp. 293-323.
[13] H. Roos, M. STYNES, AND L. ToOBISKA, Numerical methods for singularly perturbed differential

equations: convection diffusion and flow problems, vol. 24 of Computational Mathematics,
Springer, Berlin, 1996.

