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Abstract. Based on first principles, we derive a general model to describe the
spatio-temporal dynamics of two morphogens. The diffusive part of the model
incorporates the dynamics, growth and curvature of one- and two-dimensional
domains embedded in R

3. Our generalized diffusion process includes spatio-
temporal varying diffusion coefficients, advection and dilution terms. We
present specific examples by analyzing a third order activator-inhibitor mech-
anism for the kinetic part. We carry out illustrative numerical simulations
on two-dimensional growing domains having different geometries. Compari-
sons with former results on fixed domains show the crucial role of growth and

curvature on pattern selection. Evidence is given that both effects might be
biologically relevant in explaining the selection of some observed patterns and
in changing or enhancing their stability.

1. Introduction

Since the seminal paper by Turing [32], reaction-diffusion models have been pro-
posed to account for pattern formation in a wide variety of biological situations (for
a review see [21]). The simplest version of the model consists of two coupled non-
linear reaction-diffusion equations describing the spatio-temporal evolution of the
concentration of two substances (termed morphogens by Turing). Turing showed
that for conditions under which the reaction kinetics admitted a linearly stable
spatially uniform steady state, it was possible for diffusion to cause an instability,
leading to spatially varying profiles in morphogen concentration. These are the
Turing patterns and they arise from the so called diffusion-driven instability. It has
been shown that these models exhibit a variety of spatial patterns consistent with
those observed in a number of biological systems. However, the identification of
morphogens forming patterns via the Turing instability has proved to be elusive so
far, although patterns due to a diffusion-driven instability have been observed ex-
perimentally in some chemical systems [7, 12] and morphogens have been identified
in some systems [30].
From a theoretical viewpoint, the hypothesis that spatial patterns in early develop-
ment arise via a Turing instability has been criticized for a number of reasons. For
example, Turing patterns are sensitive to initial conditions and to perturbations in
parameter values. However, it has been shown that boundary conditions can have
a profound effect on mode selection and robustness of patterning [2, 13], at least
in the one-dimensional case. It has also been shown, again for the one-dimensional
case, that robustness can be enhanced by considering growth of the domain [10].
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The original Turing paper did not take into account the effect of domain growth
and changes in geometry, yet these processes are a vital part of the development
of any organism, leading to changes in patterning that are not simply quantita-
tive, for example, intensity of color, number of stripes, but are also qualitative,
for instance, changes in type and spatial location of stripes or spots. One striking
example, which has been often cited recently, is the coat pattern of the angelfish
Pomacanthus imperator [16].
An important question arises then, as to whether the appearance of some patterns,
as well as their stability (instability) can be understood by taking into account the
growth of the organism. Several models have been proposed for this and we now
briefly review them.
Murray [21] found that changes in spatial scale can produce dramatic changes in
the patterns exhibited by the Turing model. In [2] the effect of a growing domain
is incorporated by choosing a time dependent scaling factor. In [16] the authors
proposed a reaction-diffusion system to describe the changes in the stripe patterns
of Pomacanthus as the fish grows. In particular, they showed that the reaction-
diffusion system went through a frequency-doubling cascade which preserved the
pattern wavelength as the domain grew, consistent with the patterning observed
on the fish. Meinhardt et al. have also studied several consequences of growth
in pattern formation (see [20] and references therein). In this work a comparison
between activator-inhibitor and activator-substrate models is presented.
Varea et al., [33] studied the evolution of Turing patterns in a two-dimensional
domain with curved boundaries. By imposing specific chemical concentrations on
the boundary (simulating a chemical source there) they reproduced some aspects
of the developing pigmentation patterns in Pomacanthus. In a subsequent paper,
Varea et al. [34] investigated the effect of curvature on pattern selection in a
Turing model on a fixed sphere. Their simulations show the emergence of different
symmetries on this surface and are reminiscent of skeletal patterns in radiolaria.
Turing patterns on a growing sphere were recently investigated numerically by
Chaplain et al. [8] in an application to metastasis in a growing tumor. Liaw et
al. [18] simulated a Turing model on part of a spherical surface and showed that
they could reproduce various patterns that are exhibited on the hard wings of lady
beetles.
The case of domain growth being directly controlled by one of the chemicals in the
Turing model has been studied on a simple one-dimensional domain [11] and also
on complex two-dimensional surfaces [15]. In the latter, the authors show possi-
ble applications to morphogenesis of single-celled chlorophyte algae which exhibit
branching processes, whorl formation in Acetabularia and repeated dichotomous
branching in Micrasterias.
This brief review shows that understanding the effects of growth and geometry on
Turing patterns is currently an issue of importance. Therefore, in this paper we
consider a general growing two-dimensional surface and investigate, numerically,
the effect on the stability of patterns of growth and geometry, particularly the
growth rate and the curvature of the domain. Note that the work by Crampin et
al. [10] already addresses the effects of growth rate and functional form at least for
simple one-dimensional domains.
The main purpose of the paper is to provide a general framework for the study of
pattern formation using reaction diffusion equations in which the effects of both
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growth and geometry are taken into account. The paper is organized as follows.
In Section 2 we derive the model for growing and curved one- and two-dimensional
domains. We begin by considering the diffusive part of the process and then we
simply add the nonlinear kinetic interaction terms and write down the equations
in non-dimensional form. We then study the special case of isotropic growth and
include some remarks on the diffusion-driven instability on fixed two-dimensional
domains. We conclude by listing some typical geometries and growth functions. In
Section 3 we restrict ourselves to a particular model, which includes third order
kinetics. Here we carry out the Turing bifurcation analysis for a fixed domain in
detail. In Section 4 we present several numerical simulations in order to investigate
the differences in the pattern formation process on different surfaces (e.g. the
square and the cone) and growing domains. In Section 5 we discuss a number of
open problems in this area.

2. Construction of the model

2.1. Diffusion in growing and curved domains. To derive the appropriate
form for a system of coupled reaction-diffusion equations on a growing domain we
first parametrize the domain. For the one-dimensional case, let us consider the
parameter s ∈ [0, 1] (the spatial parameter) and define the mapping ψt, such that
for every time t ≥ 0,

ψt : [0, 1] −→ R
3, ψt(s) ≡ X(s, t) =

⎛
⎝ x(s, t)

y(s, t)
z(s, t)

⎞
⎠ . (1)

X(s, t) represents a curve in space parametrized by s, for each time t. This curve,
which we denote Ct, can be used to represent a one-dimensional spatial domain
which grows in time. It will be convenient for later use to introduce at this stage
the arc length as a function of s and t:

σ(s, t) =
∫ s

0

|Xs(s′, t)| ds′. (2)

For two-dimensional growth we assume that for every time t ≥ 0, there is a surface
St parametrized by (ζ, η) ∈ Ω0 ⊂ R2 that models the shape and size of the growing
domain (the organism). Hence, there is a mapping

ψt : Ω0 ⊂ R
2 −→ R

3, ψt(ζ, η) ≡ X(ζ, η, t) =

⎛
⎝ x(ζ, η, t)

y(ζ, η, t)
z(ζ, η, t)

⎞
⎠ , (3)

that defines a two-dimensional surface St embedded in R
3.

Before deriving the equations for the reaction-diffusion system on the growing do-
mains parametrized as above, we make the following simplifying assumptions:

(a) For every fixed t ≥ 0, the growth function ψt : Ω0 ⊂ Rp → R3, for p = 1, 2 is
C2, and such that if Ω0 is a fixed domain (which could be the whole space
Rp), then Ωt ≡ ψt(Ω0) models the geometry of the growing organism.
That is ψt(Ω0) is the region occupied by the organism at time t and we
also assume it is differentiable with respect to this variable. In addition, we
assume that the mapping is continuously differentiable on the parameter t.
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(b) When p = 1, equation (1) defines a regular curve Ct embedded in R3 for
every t, that is,

Xs(s, t) �= 0, (4)

for all s ∈ [0, 1] = Ω0 and t ≥ 0.
When p = 2, equation (3) defines a regular surface St in R3, that is,

Xζ ×Xη �= 0, (5)

for all (ζ, η) ∈ Ω0 and all t ≥ 0.
Now, suppose that φ denotes the concentration (molecules per unit volume) of a
chemical substance, depending on (X, t) ∈ R3 × [0,∞). We make the standard
assumption that the morphogen diffuses according to Fick’s law, which states that
the flux vector J of the substance molecules is proportional to the concentration
gradient, i.e.,

J = −D∇φ,
where D ≥ 0 is the diffusion coefficient. Consider a region in space Ω, and notice
that for a surface element dS on ∂Ω with outer unit normal n, −J ·n dS represents
the flow of particles out through the element. Then, as usual, by Fick’s law we can
write

d

dt

∫
Ω

φdX = D

∫
∂Ω

∇φ · n dS. (6)

In our models, φ will denote the concentration of the morphogens per unit length or
per unit surface. The domain of integration in equation (6) is a domain Ω lying on
the curve Ct or on the surface St, and consequently depends on time. The spatial
diffusion takes place in the local variables on the surface or the curve, and we have
to take into account both the geometry of the domain and the fact that it varies
with time. In other words, the gradient that appears in Fick’s law refers to the
intrinsic gradient on the curve (surface).
For the case of two interacting chemicals with concentrations u and v, equation (6)
should be expressed in terms of the concentration vector w = (u, v)T and the 2×2
constant matrix of diffusivities D = Dij :

d

dt

∫
Ω

w dX = D
∫

∂Ω

∇w · n dS +
∫

Ω

R(w) dX, (7)

where R(w) = (f(u, v), g(u, v))T is the reaction kinetics vector. We shall not con-
sider cross diffusion, and the matrix of diffusivities will be regarded as the diagonal
matrix D =diag(D1, D2) with Di positive constants. Thus, for the derivation of
the diffusive part of the model, it will be sufficient to deal with equation (6) for
only one substance, and we shall incorporate the kinetic functions later, which will
be the only coupling terms in our equations.

2.1.1. One dimension. Consider a domain which grows in one dimension, parame-
trized as in equation (1). Let φ = φ(X(s, t), t) be the morphogen concentration per
unit length, and consider a segment of the curve Ct, defined by Ω(t) ≡ ψt([s1, s2], t),
where [s1, s2] ⊂ [0, 1] and ψt is the growth function. Making a change of variables
we have that

d

dt

∫ s2

s1

φ(X(s, t), t)σs(s, t) ds = D

∫ s2

s1

∂s

(
∇Xφ · |Xs|

|Xs|
)
ds.
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Here σs(s, t) = |Xs|. We denote φ̃(s, t) ≡ φ(X(s, t), t), and compute the derivatives
inside the integrals to obtain∫ s2

s1

(
φ̃tσs + φ̃σst −D

(
φ̃ss

σs
− σss

(σs)2
φ̃s

))
ds = 0,

which holds for every interval [s1, s2] ⊂ (0, 1) and every t ≥ 0. Dropping the tildes
for notational convenience we obtain the following equation on the fixed coordinates
s and t

φt =
D

(σs)2

(
φss − σss

σs
φs

)
− σst

σs
φ, (8)

which can also be expressed as

φt =
D

σs
∂s

(
1
σs
φs

)
− ∂t (lnσs) φ.

Therefore, for the case of two morphogens, with concentrations u and v, respec-
tively, which diffuse on the time-varying curve Ct parametrized by s, the corre-
sponding equations are:

ut =
D1

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u

vt =
D2

(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v. (9)

Here Di > 0 are the constant diffusion coefficients and σ(s, t) is determined by the
growth function. Note that all the terms on the right hand side of (9) are space-time
dependent. Their physical interpretation is as follows:

Di

(σs)2
(·)ss = diffusion term, −Di

σss

(σs)3
(·)s = advection term,

and, − σst

σs
(·) = dilution term, for i = 1, 2.

2.1.2. Two dimensions. Consider the surface St embedded in R3 and described in
terms of the parameters (ζ, η) ∈ Ω0 ⊂ R2 for each value of t by equation (3). As
usual we define

h1 := |Xζ |, h2 := |Xη|,
and the normal vector is given by N(ζ, η, t) = Xζ ×Xη �= 0, since we assume St is
regular for each t. We also have the expression for the metric on the surface, which
is given by

dl2 = dx2 + dy2 + dz2 = gijdxidxj ,

where x1 = ζ, x2 = η and gij = Xxi ·Xxj , i, j = 1, 2. We denote

E = |Xζ |2 = g11, F = Xζ ·Xη = g12, G = |Xη|2 = g22.

Here we are assuming that the parametrization (ζ, η) is such that it defines an
orthogonal system on St, that is,

Xζ ·Xη = 0, (10)

for each time t. Hence the matrix G of coefficients of the first fundamental form is

G =
(
g11 g12
g21 g22

)
=
(
h2

1 0
0 h2

2

)
,
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with inverse

G−1 =
1

g11g22

(
g22 −g21
−g12 g11

)
=

1
h2

1h
2
2

(
h2

2 0
0 h2

1

)
.

Clearly |N(ζ, η, t)| = h1h2 at each time t. Now, let φ be the morphogen concentra-
tion of a substance on the surface St, that is, φ = φ(X, t) is the number of molecules
per unit area at time t, and X ∈ St. Consider a region Ω(t) on the surface, where
diffusion takes place, and assume Ω(t) = ψt(Ω0) for some open, bounded domain
Ω0 ∈ R2, with ∂Ω0 smooth. Then the diffusion process for φ on Ω(t) is given by

d

dt

∫
Ω(t)

φ(X, t) dSX = D

∮
∂Ω(t)

∇φ · n dl. (11)

Here ∂Ω(t) is a regular curve on the surface and n is the unit vector normal to the
curve, which lies on the tangent plane. We suppose that the curve ∂Ω(t) is the
image under the growth function of ∂Ω0, a closed curve in R2, and assume that
the former is parametrized by (ζ0(s), η0(s)). Let τ ∈ R3 be the tangent vector to
∂Ω(t). Therefore, τ = ζ′0Xζ + η′0Xη, with |τ |2 = h2

1ζ
′
0
2 + h2

2η
′
0
2 �= 0. In (11), n lies

on the tangent plane, |n| = 1 and n · τ = 0; hence n = αXη + βXζ , where

α = −h1

h2

ζ′0
|τ | , and, β =

h2

h1

η′0
|τ | . (12)

Changing variables in the line integral along ∂Ω(t) and applying Stokes theorem
on the integral along the curve ∂Ω0 ⊂ R2 we obtain∮

∂Ω(t)

∇φ · n dl =
∮

∂Ω0

∇φ · (αXη + βXζ) |τ | ds

=
∮

∂Ω0

(
−h1

h2
∂ηφ

)
dζ +

(
h2

h1
∂ζφ

)
dη

=
∫

Ω0

(
h2

h1
∂ζφ

)
ζ

+
(
h1

h2
∂ηφ

)
η

dζdη.

The last formula is valid for any time t ≥ 0. Now if we change variables on the left
hand side of equation (11) we get

d

dt

∫
Ω(t)

φ(X, t) dSX =
d

dt

∫
Ω0

φ(X(ζ, η, t), t)h1h2 dζdη

=
∫

Ω0

((φt + ∇φ ·Xt) h1h2 + φ(h1h2)t) dζdη.

Denote φ̃(ζ, η, t) ≡ φ(X(ζ, η, t), t). Clearly φ̃t = φt + ∇φ · Xt and φ̃ζ = ∂ζφ,
φ̃η = ∂ηφ. Therefore the molecular diffusion mechanism expressed by equation
(11) can be written as∫

Ω0

(
φ̃th1h2 + φ̃(h1h2)t −D

((
h2

h1
φ̃ζ

)
ζ

+
(
h1

h2
φ̃η

)
η

))
dζdη = 0.

As Ω0 is arbitrary, and dropping the tildes for notational convenience, we obtain

φt = D	sφ− φ∂t(ln(h1h2)), (13)
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where

	sφ =
1

h1h2

((
h2

h1
φζ

)
ζ

+
(
h1

h2
φη

)
η

)
, (14)

is the Laplace-Beltrami operator, which is the intrinsic Laplace operator in mani-
folds. Hence the equations describing the case of two morphogens, with concentra-
tion u and v respectively, diffusing on the surface St are

ut = D1	su− ∂t(ln(h1h2))u
vt = D2	sv − ∂t(ln(h1h2)) v, (15)

where u = u(ζ, η, t), v = v(ζ, η, t), (ζ, η) ∈ Ω0, t ∈ [0,∞), and Di > 0 with i = 1, 2
are the constant diffusion coefficients.

2.2. The full model. Recalling the analysis of the previous section, the reaction-
diffusion model we wish to study takes the form

For one dimension:

ut =
D1

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u+ f(u, v)

vt =
D2

(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v + g(u, v). (16)

For two dimensions:

ut = D1	su− ∂t(ln(h1h2))u+ f(u, v)
vt = D2	sv − ∂t(ln(h1h2)) v + g(u, v). (17)

In both cases the components of the kinetic part, f(u, v) and g(u, v), are given by
nonlinear functions of the morphogen concentrations.

2.2.1. The nondimensional form of the model. We can carry out the standard pro-
cedure to write down the equations in nondimensional form (see [21]) and obtain:

ut =
d

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u+ γ̃f(u, v)

vt =
1

(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v + γ̃g(u, v), (18)

for one-dimension. Analogously, in two dimensions:

ut =
d

h1h2

((
h2

h1
uζ

)
ζ

+
(
h1

h2
uη

)
η

)
− ∂t(ln(h1h2))u + γ̃f(u, v)

vt =
1

h1h2

((
h2

h1
vζ

)
ζ

+
(
h1

h2
vη

)
η

)
− ∂t(ln(h1h2)) v + γ̃g(u, v), (19)

where d = D1/D2 is the ratio of the diffusion coefficients and the parameter γ̃ is
similar to the one defined by Arcuri and Murray [2] and by Kondo and Asai in [16].
In their work, the time-dependence of the growing domain was included explicitly
in this parameter. Recently Crampin et al. [10] defined a time-dependent γ̃ using
a growth function for a one-dimensional domain; in their work the coefficients of
diffusivity are affected by a factor 1/(γ̃(t))2. Our model is a generalization of this



8 R. G. PLAZA, F. SÁNCHEZ-GARDUÑO, P. PADILLA, R. A. BARRIO, AND P. K. MAINI

particular case. We drop the time dependence of γ̃ since it can be expressed via
the quantities σ−2

s and (h1h2)−1 affecting the coefficients of diffusivity, which also
include geometrical effects. In what follows, γ̃ is the constant appearing above
and represents the relative strengths of the reaction terms. Natural questions arise
about the effects of the new dilution and advection terms on diffusion-driven in-
stability. In particular we conjecture that the effective space-time varying diffusion
coefficients play an important role in both the emergence and the selection of pat-
terns. Linear stability analysis of this system is one of the new open problems to
be tackled.

2.2.2. Isotropic growth. We begin with the simplifying hypothesis of isotropic growth.
By this, we mean that the growth of the curve or surface takes place in the same
proportion in all directions as time increases. In mathematical terms, this means
that the growing manifold can be parametrized as follows:

X(s, t) = ρ(t)X0(s), in one dimension, (20)
X(ζ, η, t) = ρ(t)X0(ζ, η), in two dimensions. (21)

This assumption seems natural in physical applications and it simplifies our analy-
sis. Here X0 is a fixed two-dimensional (surface) or one-dimensional (curve) mani-
fold. The growth function ρ(t) satisfies our previous regularity assumptions and is
constrained to ρ(0) = 1 and ρ̇(t) > 0 for all t. In this way the effects of curvature
and growth can be uncoupled and studied separately. For instance, take the hy-
pothesis of isotropic growth in one dimension. If we denote ˙ := d/dt, ′ := d/ds, and
σ(s) =

∫ s

0 |X ′
0(ξ)| dξ (the arc length of the “fixed” curve X0(s)), then equations

(18) clearly take the form

ut =
d

ρ2σ′2

(
uss − σ′′

σ′ us

)
− ρ̇

ρ
u+ γ̃f(u, v)

vt =
1

ρ2σ′2

(
vss − σ′′

σ′ vs

)
− ρ̇

ρ
v + γ̃g(u, v). (22)

Additionally we have the relations σ′ = |X ′
0|, σ′′ = (X ′

0 ·X ′′
0 )/|X ′

0|. Notice that the
arc length satisfies σ̇ > 0 for all s. If we are considering a growth function such
that there is local expansion everywhere, then σ′ ≥ 1. Thus, our equations will
be completely determined as long as we provide both the growth function ρ and
the “steady” curve X0(s). Although the isotropic growth assumption is not always
biologically appropriate, it is still convenient to study as it could provide some
insight for pattern selection in the most general case, and it could even represent
a good model for pattern evolution on animals in which shape changes very little.
In addition, it is of intrinsic mathematical interest.

2.2.3. Diffusion driven instability on a non-growing two-dimensional manifold. The
fact that the diffusion, advection and dilution terms depend on space and also on
time makes it difficult to carry out the standard stability analysis by means of the
plane wave decomposition [21]. Turing bifurcation analysis starts with determining
the conditions for the appearance of a diffusion-driven instability. For simplicity
and for the rest of this section we shall assume that ρ(t) ≡ 1, that is, no growth is
considered, and consequently we will take into account only geometrical effects. To
make our remarks even simpler we shall focus on the two-dimensional model and,
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in addition, assume that S is a compact orientable Riemannian manifold embedded
in R3. Thus, our linearized equations around the steady state take the form:

wt = D	sw + γ̃Jw, (23)

where D is the matrix of diffusivities:

D =
(
d 0
0 1

)
,

and 	s is the Laplace-Beltrami operator on S defined in equation (14). The main
difficulty to carry out the appropriate stability analysis is due to the presence of
transport coefficients, implicit in the Laplace-Beltrami operator. We define the
linear operator L as

L := D	s + γ̃J, (24)

so that the condition for diffusion driven instability is that the eigenvalues of L have
positive real part for certain wave numbers (eigenvalues) associated with 	s on S.
We start by observing the following standard result (see, for example, [24], pp.
703-704.): The spectrum of the Laplace-Beltrami operator −	sf = −gji∇i∇jf
on a compact orientable Riemannian manifold S, and denoted by σ(−	s), has the
following properties:

(1) σ(−	s) has no finite accumulation point and lies on the positive real line,
that is, it forms a discrete sequence 0 = ν0 < ν1 < . . . νk < . . . where
νk → +∞ as k → ∞.

(2) For each ν ∈ σ(−	s), the associated eigenspace is finite-dimensional, and
(3) The eigenspaces corresponding to different eigenvalues are orthogonal.

Hence, let us denote the set of scalar eigenfunctions of 	s on S as wk, such that

	swk = −k2wk.

Based on the analysis by Chaplain et al. [8] for the particular case of the unit
sphere, we are able to prove a more general result for certain manifolds, given in
the following lemma.

Lemma 1. Let S be a compact orientable Riemannian manifold embedded in R
3. A

complex number λ ∈ C is in the spectrum of L if and only if there exists k ∈ R and
a scalar eigenfunction wk of the Laplace-Beltrami operator on S (	swk = −k2wk)
such that

det(−Dk2 + γ̃J − λI) = 0. (25)

Proof. For the “if” part, let us assume that the determinant is 0 for some k ∈ R.
Then take w0 ∈ ker(−Dk2 + γ̃J − λI) ⊂ C2. Therefore

(L − λI)wkw0 = wk(−Dk2 + γ̃J − λI)w0 = 0.

The “only if” part follows by supposing that the determinant is different from 0 for
all k ∈ R and some λ ∈ C. Consider L as an operator in L2(S,C2). L is conjugate
to its Fourier transform L̂, with (L̂−λI)ŵ(k) = (−Dk2 + γ̃J −λI)ŵ(k). The right
hand side of the last equation is invertible for all k, so we can write (L − λI)−1 as
the convolution with the Fourier transform of (−Dk2 + γ̃J − λI)−1, and hence λ is
in the resolvent. �
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The spatially uniform steady state will become unstable for suitable spatially vary-
ing disturbances if the solution to the spectral problem Lw = λw satisfies Re λ > 0
for some k �= 0. By the standard stability theory in [21], equation (25) allows us to
arrive at the conditions for diffusion driven instability. The excited modes will be
associated with the eigenfunctions of 	s on S, just as was stated by Chaplain et.
al. [8] for the particular case of the sphere. We point out that formally, these con-
ditions are the same as for the standard Turing instability. However, we emphasize
that the geometrical effects on the actual selection of modes are contained in the
operator L, via the selection of k, the wave number.
We start by examining the conditions for pattern emergence for the case of isotropic
growth. This allows us to isolate geometrical effects from growth effects. The
isotropic nondimensional model has the following form:

ut =
d

ρ(t)2
Lu− ρ̇

ρ
u+ γ̃f(u, v)

vt =
1

ρ(t)2
Lv − ρ̇

ρ
v + γ̃g(u, v), (26)

where (x, t) ∈ Rp ×R+. For p = 2, L is a second order differential spatial operator
which is simply the Laplace-Beltrami operator defined before, while for p = 1 it is
given by Lu = (uss − (σ′′/σ′)us)/σ′(s)2. Recall that d is the ratio of diffusivities
and γ̃ is the scale factor introduced in ection 2.2.1. To complete the mathematical
problem we must add certain boundary conditions, such as Dirichlet or zero flux
type (for studying self organization of patterns) or periodic boundary conditions
(for finite domains excluding effects on boundaries).

2.3. Examples. We now consider some concrete examples to illustrate the appli-
cation of the above ideas:

2.3.1. Typical growth functions. Typical growth functions ρ(t) that we will consider
are:

(a) No growth: Here ρ(t) ≡ 1, for all t. This case reduces to Turing’s model and
serves as the “control” case to enable us to identify the effects of domain
curvature and also how pattern changes when we do indeed impose growth.

(b) Linear growth: ρ(t) = 1 + bt, where b > 0. Although such a growth
function is probably biologically implausible, its relative simplicity justifies
its consideration as a base case.

(c) Exponential growth: ρ = exp (kt), where k > 0. This is a reasonable growth
model for the initial phases of growth of certain tissues.

(d) Logistic or saturated growth: In this case the growth function is given by

ρ(t) =
exp (kt)

1 + 1
m (exp (kt) − 1)

,

where k > 0 and m > 1. Notice that ρ(0) = 1 and ρ → m > 1 as t → ∞.
In this case, growth is initially approximately exponential before finally
saturating. This is, in a phenomenological sense, a biologically reasonable
growth function.
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2.3.2. Typical geometries in one dimension. Let us constrain ourselves to the isotropic
growth assumption. In one dimension the general model is given by equations (22).
Hence, let us consider the simplest domains:

(a) Straight line. After the non-dimensionalization in the previous section, we
can consider the “planar” domain defined by

X0(s) =

⎛
⎝ s

0
0

⎞
⎠ , for s ∈ [0, 1]. (27)

Here σ′ = |X ′
0| = 1 and X ′′

0 ≡ 0. Thus there are no transport terms due
to curvature or other geometrical properties. Therefore equations (22) take
the form:

ut =
d

ρ(t)2
uss − ρ̇

ρ
u+ γ̃f, (28)

and similarly for the inhibitor v. This is the special case studied by Crampin
et al. [10] (compare with equation (20) in [10], page 1101). Substitution of
the different growth functions leads to different systems of equations. Neu-
mann boundary conditions at s = 0 and s = 1 complete the mathematical
problem.

(b) Ellipse. Consider the ellipse given by

X0(s) =

⎛
⎝ p cos s

q sin s
0

⎞
⎠ , for s ∈ [0, 2π] (29)

where p and q are positive numbers. We can compute X ′
0 · X ′′

0 and |X ′
0|2

to arrive at

ut =
d

ρ(t)2(p2 sin2 s+ q2 cos2 s)

(
uss − (p2 − q2) sin(2s)

2(p2 sin2 s+ q2 cos2 s)
us

)
− ρ̇

ρ
u+γ̃f. (30)

This example could be helpful in the study of geometrical effects. The
choice of the growth function and periodic boundary conditions completes
the mathematical problem to be studied. The case of a circular closed ring
corresponds to the case p = q = 1, and since X ′

0 ·X ′′
0 = 0 and |X ′

0| = 1, we
notice that we arrive at the same system of equations (28) as in the straight
line case. Here, of course, the necessary boundary conditions are periodic
rather than the usual zero flux case for the straight line domain.

(c) Parabola. Consider the open curved domain defined by

X0(s) =

⎛
⎝ s

as2

0

⎞
⎠ , for s ∈ R. (31)

Computing σ′(s) =
√

1 + 4as2, σ′′(s) = 4a2s/σ′ we obtain

ut =
d

ρ(t)2(1 + 4a2s2)

(
uss − 4a2s

1 + 4a2s2
us

)
− ρ̇

ρ
u+ γ̃f. (32)

Any other one-dimensional domain could be treated in a similar fashion.
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2.3.3. Typical geometries in two dimensions. We now consider a selection of two-
dimensional manifolds, which serve as model systems for the study of the effects of
curvature and shape. We present three specific cases: a planar domain, a disk and
a cone.

(a) Planar domain. The simplest case is the one of a planar domain which
grows isotropically in time. In this case the model for the domain is simply

X(ζ, η, t) ≡ ρ(t)

⎛
⎝ ζ

η
0

⎞
⎠ , (33)

and clearly the system of equations reduces to the typical reaction-diffusion
model in a plane with a time-varying diffusion coefficient due to growth:

ut =
d

ρ2
(uζζ + uηη) − 2ρ̇

ρ
u+ γ̃f. (34)

When there is no growth, we obtain Turing’s original model in two dimen-
sions for a planar fixed domain.

(b) Growing sphere. Consider the isotropically growing sphere with radius ρ:

X(ζ, η, t) ≡ ρ(t)

⎛
⎝ sin η cos ζ

sin η sin ζ
cos η

⎞
⎠ , (35)

where ζ ∈ [0, 2π], η ∈ [0, π]. We have

h2
1 = |Xζ |2 = ρ2 sin2 η, h2

2 = |Xη|2 = ρ2,
h1

h2
= sin η.

Consequently, equations (19) take the form:

ut =
d

ρ2

(
uηη +

1
sin2 η

uζζ − cos η
sin η

uη

)
− 2ρ̇

ρ
u+ γ̃f. (36)

On account of sin2 η ≥ 0 for η ∈ [0, π], we have singular effective diffusion
coefficients at the boundaries. These equations have been used for the
calculations in reference [34], with ρ̇ = 0.

(c) Growing cone. To illustrate the effects of curvature we shall consider the
following domain:

X(ζ, η, t) ≡ ρ(t)

⎛
⎝ ζ cos η

ζ sin η
aζ

⎞
⎠ , (37)

where ζ ∈ (0,∞), η ∈ [0, 2π] and a is the aspect ratio of the cone. Therefore

h2
1 = |Xζ |2 = (1 + a2)ρ2, h2

2 = |Xη|2 = ζ2ρ2,
h1

h2
=

√
(1 + a2)
ζ

.

Hence, the equation for one morphogen takes the form

ut =
d

(1 + a2)[ρ(t)]2

(
uζζ +

(1 + a2)
ζ2

uηη +
1
ζ
uζ

)
− 2ρ̇

ρ
u+ γ̃f. (38)
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3. Specific model

For the remainder of this paper we focus on reaction kinetics of the model introduced
in [4]. This is

f(u, v) ≡ αu(1−r1v2)+v(1−r2u), g(u, v) ≡ βv

(
1 +

αr1
β
uv

)
+u(γ+r2v). (39)

This particular kinetics was proposed because it captures many of the mechanisms
crucial in pattern generation and selection. By suitable choices of the parameters α
and β, the uniform steady state (0, 0) can be driven unstable by diffusion. Further-
more, it is known that quadratic interactions select spot patterns, while third order
terms favor the selection of stripes [14, 22]. In equations (39), the parameters r1
and r2 measure the strength of the third and second order interactions, respectively.

3.1. Linear stability analysis for fixed domains. The stationary states (u∗, v∗)
of the system of equations (39) are the intersection points of the nullclines

αu(1 − r1v
2) + v(1 − r2u) = 0 and βv + αr1uv

2 + u(γ + r2v) = 0. (40)

It is easy to show that (u∗, v∗) must satisfy the equation

v = − (α+ γ)
(1 + β)

u, with β �= −1. (41)

Observe that, apart from the origin (u = v = 0), in principle the system (39) has
two more equilibria. The abscissae of these points are the real roots of the equation

u2
0 + bu0 + c = 0,

where

ε :=
(α+ γ)
(1 + β)

, u = u0/ε, b = − r2
r1α

, and c =
(γ − αβ)
αr1(1 + β)

.

In order to keep the analysis as simple as possible we impose the condition α = −γ
which, for finite values of u, implies v∗ = 0. Hence, from the equations of the
nullclines, we have γu∗ = 0, and, if we consider γ �= 0, then we have that the only
finite equilibrium of the system (39) is (0, 0). We are currently studying the general
case without this condition, and the results will be presented elsewhere [17].
The linear approximation of the kinetics in equations (39) around the equilibrium
(0, 0) is

u̇ = −γu+ v
v̇ = γu+ βv,

(42)

from which we have that the trace and determinant of the Jacobian matrix are:
trJ [f, g](0,0) = (β−γ) and detJ [f, g](0,0) = −γ(1+β), respectively. The eigenvalues
of the Jacobian matrix J [f, g](0,0) are

λ1, λ2 =
(β − γ) ±√(β − γ)2 + 4γ(β + 1)

2
.

By using the linear approximation (42), we derive the conditions under which (0, 0)
can exhibit diffusion driven instability [21, 4] for fixed domains. By choosing the
appropriate parameters in the Turing space the instability mechanism can be trig-
gered. Now, we are going to seek the parameter values compatible with the above
conditions. Let us consider the possibilities, depending on the sign of γ:
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Case 1: γ > 0. In order to satisfy all conditions we must choose β such that
β < γ, β < −1 and β > (D2/D1)γ > 0. There is no value of β satisfying all these
restrictions.
Case 2: γ < −1. In this case there are no values of β for which all conditions are
satisfied.
Case 3: −1 < γ < 0. One can verify that the values of β for which the conditions
in [21, 4] hold are: −1 < (D2/D1)γ < β < γ.

In what follows we shall fix the value of γ = −α = −0.899. Therefore, β has to
be negative and larger than −1. The previous analysis allows us to choose suitable
parameters in Turing space for which (0, 0) is linearly unstable in the presence of
diffusion, and the subsequent dynamics is governed by the full nonlinear terms,
which we investigate numerically.

4. Numerical calculations in two-dimensions

Given that Crampin et al. [10] have carried out a considerable number of numerical
simulations for one-dimensional growing domains by considering different growth
functions (exponential, logistic) we restrict our calculations to several simple two-
dimensional growing manifolds. There have been previous numerical calculations of
patterns forming in static domains of different sizes to simulate growth [33]. This
situation would correspond to a very slow growing regime (t = ετ , with ε ∼ 0)
when the diffusion terms are not affected by growth. Indeed, in equations (22) ρ̇ is
negligible and an expansion of 1/ρ2 up to linear order in ετ is constant, resulting
in the usual non-growing equations and justifying the previous calculations in very
slow growing domains. In order to show simultaneously the effects of geometry and
of growth on pattern selection, we present simple numerical calculations in two-
dimensional manifolds assuming a fast reaction rate (ε = 1) and isotropic growth.
For simplicity, in all the calculations shown here we choose a linear growth function
ρ(t) = 1 + bt, where b > 0 and at t = 0 it is assumed that the size is normalized.
In all the calculations, the Turing system is solved by a simple Euler method, and
therefore time is discretized, that is t = m∆t, where m is an integer.

4.1. Growing planar domain. The simplest case is the one of a planar domain
which grows isotropically in time. In this case the discretized version of the model
(see [4]), in which a finite variation of the concentrations ∆u and ∆v is calculated
for a discrete increment of time ∆t, can be written as

∆u =
[
δd∇2u− δ′u+ αu(1 − r1v

2) + v(1 − r2u)
]
∆t

∆v =
[
δ∇2v − δ′v + βv

(
1 + αr1

β uv
)
− u(α− r2v)

]
∆t. (43)

where δ = δ0/ρ
2 and δ′ = 2ρ̇/ρ. Here δ conveniently sets the spatial scale and δ0

gives the initial size of the domain. In these equations u and v represent N ×M
matrices defined in a grid, and the Laplacian is discretized in the grid with lattice
sites denoted by (i, j). The form is

∇2u|(i,j) =

⎛
⎜⎜⎝

[ar(i, j)u(i+ 1, j) − u(i, j)] +
[al(i, j)u(i− 1, j) − u(i, j)] +
[au(i, j)u(i, j + 1) − u(i, j)] +
[ad(i, j)u(i, j − 1) − u(i, j)]

⎞
⎟⎟⎠
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where the matrix elements of ar, al, au and ad are unity except at the boundary,
where they are set equal to zero when the lattice site has no right(r), left(l), up(u)
or down(d) neighbor, respectively. This ensures zero flux boundary conditions, and
it is equivalent to setting n̂ · ∇u = 0 at the boundary with normal vector n̂. The
initial values for the matrices are taken as random everywhere.
In Fig. 1, typical results are shown for u , which is defined by a gray scale in the
plane. We only show one morphogen pattern in all figures, since we verified that
the concentration of v is the same as u with a phase shift of π. The stability of
the numerical scheme used in our simulations was analysed out in [1]. There the
authors used a finite-differences scheme to solve the space discretization of their
system ensuring that the discrete intervals used in the simulations are correct. We
observe that the value b = 5 × 10−4 was small enough to allow a fair convergence
of the patterns.
Observe that the square symmetry appears when the domain is very small. This
effect of the domain size was already observed elsewhere [3]. As the domain grows,
new spots emerge in the diagonals of the lattice. This occurs until the domain is
large enough and existing spots split. This is in agreement with former similar
calculations using the Schnakenberg model [19, 9]. The final result is that for
large enough domains one obtains the commonly found hexagonal lattice. This
was verified by performing a calculation taking the last pattern as initial condition
and stopping the growth to allow the pattern to converge in a bigger lattice. The
calculation was not carried out to larger sizes because the spots become of the order
of the finite spatial grid, and their resolution is not accurate.

4.2. Growing sphere. There have been various numerical calculations in the past
that deal with a spherical domain. In particular, some of us have performed static
calculations on spheres of different sizes [34]. The simulations by Chaplain et al.
[8] cover the case of dynamical growth. Nevertheless we must point out that there
are two main differences in their model and ours: they do not consider the dilution
term and they use the Schnakenberg kinetic term. We do not include simulations
on the sphere, since we intend to make a more detailed comparison in a future
publication.

4.3. Growing cone. Here we consider the lateral surface of a cone in which we cut
off its base. The cone itself stands on a horizontal plane. The variables (η, ζ) are
defined as (i, j) in a M ×N grid. Now, the discrete equations for our model read
exactly as in (43), except that the differential operator ∇2u has to be discretized
according to equation (24) following the methodology carried out in [1] and replaced
by

Lu(i, j) = d[u(i, j + 1) + u(i, j − 1) − 2u(i, j)] +

+
(1 + a2)
j2

[u(i+ 1, j) + u(i− 1, j) − 2u(i, j)] +

+
1
2j

[u(i, j + 1) − u(i, j − 1)], (44)

and the same for v(i, j). The effective diffusion coefficient is now

δ =
δ0

(1 + a2)ρ(t)2
,
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Figure 1. Numerical calculation in a growing square domain of
N = M = 48. The concentration of u is shown in a gray scale.
Each one of the 50 pictures is a snap taken every 5000 time steps
of ∆t = 0.02. The initial δ0 = 11, and the growth factor is b = 5×
10−4. Therefore, for the last picture in the bottom right δ = 0.2956
and the final size is ρf = 6.1. The parameters for the system were:
d = 0.516, α = 0.899, β = −0.91, r1 = 0.5, and r2 = 0.4, in order
to give a spot pattern.

where a is the aspect ratio of the cone. For a = 0 one has a disk, for a = 1 the
cone has a height of the same size as the radius of its base, and for a > 1 the cone
is acute. Care has to be taken to perform the calculation away from j = 0 to avoid
singularities, this means that the cone is really truncated at its apex, by removing
a very small piece. The boundary conditions have to be periodic in the angular
variable η, and zero flux at the bottom of the cone (j = M). At the minimum
value of j the boundary condition is that the functions at a given point i have that
same value as that at the corresponding point i + π, so continuity at the singular
point is fulfilled. One of the things we noticed here is that the selected pattern
on the surface of the cone strongly depends on its aspect ratio. Thus, it is worth
presenting several typical cases.
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4.3.1. The disk. When a = 0 we get a disk whose radius grows continuously. Barrio
et al. [3] already considered a static disk embedded in a square. They incorporate
the growth of the disk not as part of an inner dynamics but by simply carrying
out the numerical simulations at different increasing radius. We used their static
calculations to check that the previous results are reproduced.

Figure 2. Numerical calculation showing a concentration of u in
a growing disk obtained with the equations for the cone with a = 0.
Each picture is taken every 10 000 time steps of ∆t = 0.01. The
growing factor is again b = 3.5 × 10−4. The parameters for the
system were kept as in the former figure.

In the present case, when the growth rate is comparable with the reaction times,
the patterns have not enough time to become stable, and one obtains a series of
transient patterns whose symmetry and form changes continuously. However, the
series of centrosymmetric patterns observed in the static (or slow growth) regime
are still recognizable [3].
In Fig. 2 we show a series of patterns of u obtained numerically in a grid of M = 48
and N = 24 starting with a size given by δ0 = 0.8. Observe that for a very small
size one obtains only a central spot, and as the domain grows centered patterns
with various symmetries, notably five, emerge. The spot pattern is not as regular
as in the static calculations, because there is no time for a given structure to settle.
However, several centrosymmetric patterns appear as the disk grows, notably with
five-, six- and seven-fold symmetry, respectively, in agreement with previous static
calculations [1].

4.3.2. Symmetric cone. We now consider the case where the radius of the base is
equal to the height. With no loss of generality, we took R = a = 1. Numerical
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results are illustrated in Fig. 3 where we show the distribution of the morphogen
u on the surface of the cone. We include the top views on the right of each pattern
to facilitate the appreciation of the symmetry.

Figure 3. Series of patterns obtained on a cone of aspect ratio
one (a = 1) with zero-flux boundary conditions at the bottom.
The values of the parameters are exactly as in the previous figure
except that each snap is taken every 100 000 time steps. To the
right of each cone there is a top view to facilitate the recognition
of the pattern angular symmetry.

Observe that as the cone grows several centrosymmetric patterns arise, notably
three and five fold. When the cone is large these symmetries are lost and lines of
spots start appearing.

4.3.3. Acute cone. Here we show that peculiar patterns arise when the aspect ratio
of the cone changes. For instance, Fig. 4 shows a calculation on a cone with aspect
ratio a = 2. The parameters are exactly as in Fig. 3. One remarkable feature
revealed by the simulations is the evolution from rings on the tip to spots.
When the cone is bigger the annular stripes disappear and the spots align in a sort
of helicoidal fashion that resembles pine cones. This is a beautiful example of a
pattern modified by the curvature of the surface.
To illustrate this point better we show a numerical calculation using a = 3 in Fig.
5. Here we have also changed some of the parameters: The initial size is given by
δ0 = 1.8 (smaller starting size than before), the growth rate was somewhat faster,
b = 5× 10−4, and each panel shows results every 100 000 time steps, thus the final
linear scale was 3.15 and the final δ = .1814.
These patterns resemble very much the ones observed on the tails of reptilians, like
lizards, where it is seen that a pattern of aligned spots and stripes coexist. The
important feature that these calculations show is that the interplay of curvature and
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Figure 4. Numerical calculation of a growing cone with a = 2.
Each picture is taken every 100 000 time steps of ∆t = 0.01. The
parameters for the system were kept as in the former figure. Ob-
serve the alignment of the spots and the appearance of vertical
stripes for large cones.

Figure 5. Numerical calculation of a growing cone with a = 3.
The parameters for the system are given in the text. Observe that
vertical stripes form more easily in this case, compared to Fig. 4.

growth rate of the domain dictate the final selection of the pattern, without having
to invoke a variation of the diffusion rate or of the non-linear parameters (r1 and
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r2). They also show that transient patterns may be important when considering
pattern formation in a growing animal.

4.3.4. Static cone. For comparison purposes, we carry out some numerical calcula-
tions on non-growing cones until they converged to a stable pattern. We took two
cases corresponding to cones of different size and the same aspect ratio from the
transient patterns already shown.

Figure 6. (a) Final steady state of the pattern shown in the bot-
tom right of Fig. 5. (b) Pattern obtained in a cone of constant
size equal to the one in (a). Observe that the alignment of spots
is lost in the static calculation.

Figure 7. As Fig. 6, except that the final size of the cone is
larger, and the grid used was N = 48 and M = 96. The time step
was adjusted to ∆t = 0.002 to assure convergence.

In Fig. 6 we show the comparison of a pattern obtained by growing the cone from
δ = 1.8 to a final size of δ = 0.2363 using a grid of N = 24 andM = 48 and a growth
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rate b = 5×10−4 and we compare it with the pattern obtained in a cone of constant
size δ = 0.2363. Observe that the alignment of spots caused by the domain growth
is lost in the static pattern. The same effect is even more noticeable in a similar
calculation on a cone of larger size, shown in Fig. 7. This shows that transient
processes can play an important role in selecting the pattern of a growing animal,
since the stable pattern has no time to appear.

5. Conclusions and discussion

We have presented a general theoretical framework to investigate the role of cur-
vature and growth of one- and two-dimensional domains in pattern formation and
selection via the Turing instability. The theory can be applied to other space-time
dynamics not presented here. The formal bifurcation analysis (local and global) for
our full reactive-diffusive models which take into account the dynamics of the one
or two-dimensional domain embedded in R3 is an important challenge from both
theoretical and applied points of view. In fact, the corresponding Turing bifurca-
tion analysis for these growing domains still as an unsolved problem which we are
presently pursuing. (We are presently carrying out some analysis on these matters.)
We presented some specific examples with explicit forms of the reaction equations,
restricting ourselves to the case of isotropic growth. In this case, our equations
allow a separate examination of the geometrical spatial effects and of the ones due
to growth.
It is well documented (see [6]) that there are individuals which grow in a pro-
portional manner. This means that all macroscopic characteristic lengths (length,
width, height) keep the same proportion as the individual develops. The result of
this is that one adult looks like an amplification in three dimensions of its juvenile
stage. Equivalently, its contour at later stages is a homogeneous magnification of
that at earlier stages. This is isometric growth which occurs in some fishes like ‘Ci-
chlasoma (Nandopsis) urophthalmus’ (Günther 1862). Meanwhile there are other
organisms which grow in such a way that they do not preserve the proportions be-
tween their different linear typical dimensions. This is allometric growth (see [26]).
Pattern selection could cruciably depend on the two types of growth. For example,
Crampin et al. [11] considered a one-dimensional growing domain which grows in
a different manner in certain subdomains. One of the challenges in this area is the
incorporation of allometric growth. It is also interesting to point out that seasonal
effects on the growth of an organism can be incorporated into the model.
We also presented several numerical calculations in growing domains to illustrate
the new features that are due to growth. We have restricted our examples to a
linear growing function, in order to keep uniformity and for the sake of simplicity
and comparison, but it is clear that other simple functions could be easily imple-
mented in a numerical program, according to the specific application of interest.
The important result rendered by these calculations is that new patterns can be
robustly selected due to the effect of either curvature and/or growth, which would
be unstable otherwise.
In particular, the calculations on the cone show a peculiar alignment of spots,
closely resembling the actual array found in reptilian tails and in pine acorns.
We are convinced that transient patterns during domain growth are important
in simulating living organisms. The analysis of pattern formation, selection and
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stabilization on domains with geometries resembling the actual shape of animal
bodies, is a difficult task and this provides challenging work for the future.
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