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Abstract

We propose a wavelet based multiresolution Hartree-Fock method suitable for quasi two-dimensional
extended systems. Intended applications are metallic slabs and excitons confined in quantum wells
of semiconductor heterostructures. The method uses a periodic supercell approach, which allows for
an incorporation of single impurities. Special emphasis has been laid on low rank tensor product
decompositions of orbitals, which take into account the strongly anisotropic character of these systems
in one direction. Wavelets provide hierarchical bases that can be adapted to the anisotropic behaviour
of the orbitals. We discuss some technical features related to the wavelet expansion of Ewald potentials,
which are used to describe the interaction between particles. Due to the vanishing moment property of
wavelets, we can achieve sparse representations for the quantities involved. An illustrative example for
this are jellium slabs, where we discuss various sparsity features of matrices related to Coulomb and
exchange potentials. Benchmark calculations for a homogeneous electron gas finally demonstrate the
computational feasibility and numerical accuracy of our approach.

1 Introduction

A challenging problem for computational physics and chemistry are strongly anisotropic systems like
surfaces of solids or thin layers of various types of materials. Such kind of systems became of considerable
technological interest, we just want to mention semiconductor heterostructures, carbon nanotubes or
Langmuir-Blodgett films of organic molecules. Many interesting applications in quantum many-particle
theory arise from the physics of surfaces and layers. An intrisic feature of these systems is that they extend
fairly homogeneously into the directions parallel to the boundary and show a strongly anisotropic behaviour
in the direction perpendicular to it. It is this quasi two-dimensional character which makes them diffult to
handle in computations. Wavelet based multiresolution analysis provides numerical tools [7, 8, 10], which
might help to improve the efficiency of computational many-particle methods for these systems. In solid
state physics, wavelets have been intensively studied in the context of density functional theory (DFT)
[3, 22], see e.g. Refs. [14, 25, 42, 60] for some recent developments. Within the present work, we discuss a
multiresolution Hartree-Fock (HF) approach to quasi two-dimensional extended systems. Special emphasis
has been laid on low rank tensor product approximations of HF orbitals. This has been accomplished
by contracting the wavelet basis in the homogeneous directions according to some systematic contraction
scheme, which incorporates basic physical insights. Such kind of construction allows us to combine the
advantages of systematic basis sets like wavelets with basis sets highly adapted to the properties of the
system under consideration. The latter approach has been proven to be extremely successful in quantum
chemistry, where Gaussian-type basis functions enable accurate HF calculations with comparatively small
basis sets [26]. Although we limit ourselves in the present work to the HF method, it should be mentioned
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that from a computational point of view this method has much in common with more sophisticated many-
particle theories, which enable a treatment of electron correlations. It is due to the exchange operator that
HF requires the computation of two-electron integrals with respect to the Coulomb interaction. These
integrals serve as a starting point for post HF calculations. The standard post HF methods in quantum
chemistry, like many-body perturbation theory or the coupled cluster method, require no additional two-
electron integrals beyond those already present from a HF calculation. This is not the case for our
envisaged treatment of electron correlations within multiresolution analysis [18, 19, 36]. However, we
can make use of the algorithms, already implemented for the HF method, to calculate the additional
two-electron integrals. In this sense HF serves as a benchmark problem for the development of more
sophisticated many-particle methods using wavelet bases.

Conventional metallic surfaces attracted considerable interest in computational physics and have been
considered as an important benchmark problem for DFT. A simplified approach to metallic surfaces and
slabs is the jellium model where nuclear charges are smeared out into a uniform positive background
charge-density, which abruptly discontinues at the surface. Starting with Lang and Kohn’s seminal paper
[32], jellium surfaces have been extensively studied for various kinds of density functionals [13, 24, 33, 45,
46, 63]. They proved to be of considerable significance for the development of new density functionals.
Therefore a strong need for accurate many-body benchmark calculations exists. Remarkably, there are
essentially only two many-particle methods that can deal with jellium surfaces, namely quantum Monte
Carlo (QMC) [1, 34] and the Fermi hypernetted-chain (FHNC) method [30, 31]. It exists an ongoing
controversy concerning the accuracy of these calculations [41]. Significant deviations with respect to
results obtained from DFT calculations [2, 62] exist and presently the reasons for these discrepancies have
not been completely settled.

Conduction electrons in semiconductor heterostructures provide an analogous problem on a different
energy- and length-scale. The characteristic length-scales of semiconductor layers are between one to
two orders of magnitude larger than the typical atomic length-scale. Presently, this makes atomistic
many-particle calculations almost impracticable. Nevertheless quantum effects play a prominant role for
example in the design of optoelectronic devices [9]. Using the concept of quasi-particles with effective
masses, interesting optical properties of semiconductors can be described by effective model Hamiltonians
rather similar to those encountered for metallic systems. A new feature arises from the presence of a
second species of quasi-particles, these are the holes associated to conduction electrons. Due to comparable
effective masses of both species, the Born-Oppenheimer approximation is not applicable and a simultaneous
treatment of electrons and holes in many-particle calculations becomes necessary. These excitonic systems
share several common features with ordinary atoms and molecules. In excitonic systems, electrons and
holes interact via modified Coulomb interactions. The corresponding Schrödinger equation in SI units⎡

⎣He +Hh + Eg −
Ne∑
i=1

Nh∑
j=1

e2

4πε|re,i − rh,j|

⎤
⎦Ψ (re,1 . . . , rh,1 . . .) = EΨ (re,1 . . . , rh,1 . . .) , (1)

He =
Ne∑
i=1

(
− �

2

2me
∆i + Ve(re,i)

)
+
∑
i<j

e2

4πε|re,i − re,j| , (2)

Hh =
Nh∑
i=1

(
− �

2

2mh
∆i + Vh(rh,i)

)
+
∑
i<j

e2

4πε|rh,i − rh,j| , (3)

where re,i, rh,i denote electron and hole coordinates, respectively, looks very much like for a pure many-
electron system except that electrons and holes attract each other. The simplest excitons consist of a single
electron-hole pair. Under certain circumstances, these excitons combine with each other to form biexcitons
or even exciton molecules [50]. Of special interest are biexcitons confined in quantum wells formed by
semiconductor heterostructures or quantum dots. For nanostructured materials, the diameter of excitons
becomes comparable to the thickness of a layer, which means that the properties of these systems lie
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somewhere in between that of free 2d- and 3d-excitons [9]. Therefore these excitons provide interesting
two-scale problems, that can be handled similar to jellium slabs. Various types of computational methods
have been already applied to excitonic systems. Many-particle effects were treated by DFT [43, 47, 61] or
by variational methods [6, 28, 29]. A straightforward application of DFT methods, however, is hampered
by a lack of knowledge concerning the detailed form of the exchange-correlation potential for excitons.
The construction of such a potential requires some input from many-body calculations for a convenient
reference system, as it is the case with the homogeneous electron gas in quantum chemistry. Variational
methods are either based on an ad hoc ansatz for the wavefunction [29] with only a small number of
variational parameters or used linear expansions in one-particle basis sets similar to standard methods in
quantum chemistry [6, 28].

2 Supercell approach to electronic structure calculations

The standard approach to HF electronic structure calculations for infinite periodic systems is based on
Bloch orbitals [44]. These orbitals are defined according to Bloch’s theorem by their translational sym-
metry. Furthermore, Bloch orbitals can be used within many-body perturbation theory [4, 57, 58] and
coupled cluster theory [27] for the treatment of electron correlations in extended systems. However, the
computational effort is rather large so that applications are presently restricted to polymers. Localized
Wannier orbitals provide an alternative to delocalized Bloch orbitals. Taking advantage of the exponen-
tial decay of Wannier orbitals for insulators and semiconductors, it is possible to perform HF [55] and
correlated calculations [56] for extended systems with these orbitals.

The continuous spectrum of the HF Hamiltonian for Bloch orbitals requires an efficient computation
of integrals in reciprocal space. These integrals are restricted to the first Brillouin zone (BZ) for semicon-
ductors and to the region inside the Fermi surface for metals. Different types of quadrature schemes have
been developed for metals, semiconductors and insulators [39, 44]. An alternative to quadrature schemes
in reciprocal space are real space supercells. There exists a one-to-one correspondence between quadrature
formulas in reciprocal space and real space supercells [16, 17, 40]. The supercell constitutes of a cluster
of unit cells that is periodically extended into the whole space. Within this setting, the nonrelativistic
supercell Hamiltonian 1 becomes

HSC =
N∑

i=1

(
−1

2
∆i + Vext(ri)

)
+
∑
R

∑
i<j

1
|ri − rj − R| , (4)

where R are supercell lattice vectors, which map the original supercell into its periodic images. Only the
N electrons assigned to the original supercell are treated explicitly and their interactions with electrons
in other supercells are formally taken into account via the lattice sum in front of the Coulomb potential.
It is however well known that this lattice sum does not converge and has to be replaced by an Ewald
potential. Therefore, supercell Hamiltonians can be treated in electronic structure calculations almost
like finite systems. The energy per supercell is given by the multiple integral

ESC =
∫

SC
d3r1 . . .

∫
SC
d3rN Ψ∗(r1, . . . , rN )HSC Ψ(r1, . . . , rN ), (5)

with corresponding normalization condition for the wavefunction∫
SC
d3r1 . . .

∫
SC
d3rN Ψ∗(r1, . . . , rN )Ψ(r1, . . . , rN ) = 1. (6)

We have adopted the supercell approach for two reasons. In our envisaged applications, we have to deal
with excitons that are coupled to impurities or confined into quantum dots. Such kind of additional

1If not otherwise mentioned, atomic units have been used throughout this paper.
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structures destroy the symmetry of the original primitive lattice. Therefore, the standard reciprocal
space method is no longer applicable. Instead, the supercell approach provides a natural setting in
this case, because of the local character of these additional structures in real space. For insulators and
semiconductors with single impurities, the supercell approach became a standard method in solid state
physics, see e.g. Refs. [15, 21, 35, 44]. The other reason is related to a possible extension of our method to
correlated wavefunctions. In previous papers [18, 19, 36], we have discussed a product ansatz for wavelet
approximations of correlated wavefunctions. This ansatz provides a sparse representation of electron
correlations in real space, which can be efficiently exploited in the supercell approach. Furthermore,
we can benefit from previous work within the QMC method, where the supercell approach has been
extensively applied to jellium models and semiconductors [20].

It is decisive for practical applications to obtain fast convergence of the properties of a system with
respect to the size of the supercell. Due to the one-to-one correspondence mentioned above, we can benefit
in the supercell approach from optimized quadrature schemes in reciprocal space [15, 16]. Furthermore,
the symmetry properties of many-electron wavefunctions [48, 49] can be exploited in order to improve
convergence with respect to the supercell size. For metallic systems, however, the convergence is rather
slow and in order to get rid of finite size errors it becomes necessary to extrapolate the results to an
infinitely large supercell. Such kind of procedures have been extensively applied in QMC calculations for
jellium models [20]. Despite its fundamental importance, we do not want to further pursue this subject
in the present work. Instead, we are focusing on efficient and accurate numerical methods for solving the
HF equation of a supercell with fixed size.

2.1 Basic definitions and notations for periodic systems

Before we can proceed with our discussion of the HF method, it is necessary to define a few basic quantities
and to discuss some useful modifications of multiresolution analysis in the periodic supercell setting. We
assume in the following that the system has an orthorhombic unit cell where the lattice vectors

A1 = (2u1 , 0, 0) , A2 = (0, 2u2 , 0) , A3 = (0, 0, 2u3) , (7)

are compatible with the underlying dyadic wavelet grid. According to standard conventions, we take
reciprocal lattice vectors

B1 = 2π
(
2−u1 , 0, 0

)
, B2 = 2π

(
0, 2−u2 , 0

)
, B3 = 2π

(
0, 0, 2−u3

)
. (8)

Dyadic lattice vectors are mainly chosen for notational convenience and in more general cases it is possible
to use different scaling factors along each direction of the lattice. The calculation of the Coulomb integrals
requires only minor modifications in this case. Relaxing the constraint of orthogonal lattice vectors is more
problematic and needs some fundamental modifications in the calculation of elementary one- and two-
electron integrals. For our envisaged systems, however, this case seems to be of minor importance and we
refrain from a further discussion of this topic. Another comment concerning our intended applications is
appropriate at this place. In Section 1 we have mentioned several systems like jellium slabs, which require
periodicity only in two dimensions. Nevertheless, we have based our approach on a three dimensional
periodic lattice. Its is straightforward for such kind of systems to obtain an effective periodicity in two
dimensions by choosing |A1| sufficiently large compared to the thickness of the slab.

The supercell lattice vectors are defined as integer multiples of unit cell lattice vectors

D1 = N1A1, D2 = N2A2, D3 = N3A3, (9)

with length, sectional area and volume of the supercell given by

LSC = N1 2u1 , ASC = N2N3 2u2+u3, VSC = LSCASC . (10)
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For further usage, we also define translation vectors with respect to the supercell

Rn =
∑

i

ni Di, ni ∈ Z, (11)

and the corresponding wave vectors

k =
∑

i

ni

Ni
Bi, ni ∈ Z, (12)

consistent with the reciprocal lattice of the supercell.
Two different types of tensor products can be used in order to obtain multivariate wavelets in R

3 from
an univariate wavelet basis in R. In the first case, standard tensor products of univariate wavelets are
used to define a multivariate wavelet basis. Within such kind of approach, combinations of wavelets on
different levels occur and the tensor products have no well defined levels any more. These wavelet tensor
products are therefore denoted as anisotropic wavelets. In the second case mixed tensor products of
univariate wavelets and scaling functions on the same level are used to construct the multivariate wavelet
basis. The resulting tensor products have well defined levels and are denoted as isotropic wavelets. Due
to the quasi two-dimensional character of our systems, we use a mixture of both types of tensor products.
Since we can expect that the HF orbitals behave rather uniform in the directions parallel to the slab,
it is reasonable to use isotropic wavelets in these directions. In order to take into account the strongly
anisotropic behaviour in the perpendicular direction, we have ultimately chosen anisotropic tensor products
of univariate wavelets perpendicular to the slab with isotropic tensor products in the parallel directions.
Further details concerning these tensor products, as well as some basic facts about wavelets can be found
in Appendix A.

At next we want to adopt the wavelet basis to the periodic structure of the supercell. According to the
tensor product ansatz for the multivariate wavelet basis it is obvious that we can limit our discussion to
an univariate wavelet basis {ψl,ai

(xi) : l, ai ∈ Z} in the i’th direction. To each wavelet ψl,a(xi), we assign a
lattice coordinate 2−lai that specifies its location in real space. The set of wavelets {ψl,ai

(xi) : ai ∈ Z} on
a fixed level l span a regular one dimensional lattice with lattice constant 2−l. Depending on the specific
size of the unit cell, we have to distinguish two cases. In the first case, the wavelet level l satisfies the
inequality l ≥ −ui, which means that the distance between centers of neighbouring wavelets is smaller
or equal to the unit cell size in the corresponding direction. Whereas in the second case, the reverse
inequality l < −ui holds. Compatibility between supercell and wavelet lattice requires that only those
wavelet levels l, which satisfy the consistency condition

2ui+lNi ∈ N, (13)

can be used in the periodic setting. To get a standardized notation that comprises both cases, we introduce
the integers

Ml,i := 2min{ui+l,0}Ni, (14)

and corresponding index sets
Ωl,i := {n : 0 ≤ n ≤Ml,i − 1}. (15)

Before we consider periodic wavelets, it is convenient to define a wavelet basis attached to the supercell.
For this we introduce translation vectors within the supercell

tl,n :=
∑

i

ni 2−min{l+ui,0} Ai, ni ∈ Ωl,i, (16)

and wave vectors
κ :=

∑
i

ni

Ni
Bi, ni ∈ Ωl,i, (17)
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Figure 1: Supercell wavelets generated by linear combinations of wavelets within a supercell of size Ni = 4
and ui = 1
.

restricted to the first BZ of the reciprocal lattice. By construction, these wave vectors reduce to the
zero wave vector in the first BZ of the reciprocal supercell lattice. This condition can be modified in
such a way that the wave vectors reduce to an arbitrary reference vector [16, 48, 49]. In the following,
we adopt the notation that Greek characters denote momenta restricted to the first BZ, whereas Latin
characters k, q are used for unconstraint momenta (12). In the remaining part of this section, we again
limit our discussion to one lattice direction. Since it is of no significance to specify the direction explicitly
by denoting the index i for a specific component of vectors (16), (17) or index sets (14), (15), it is skipped
in the following for the sake of notational simplicity. For example, instead of writing tl,m,i for the i’th
component of the vector tl,m, we use the shorthand notation tl,m in the following. We can now define
univariate supercell wavelets

ψκ
l,c(x) :=

1√
Ml

∑
m∈Ωl

eiκtl,m ψl,c(x− tl,m) =
1√
Ml

∑
m∈Ωl

eiκtl,m ψl,2ltl,m+c(x), (18)

for wave vectors κ through appropriate linear combinations of wavelets within the supercell. The transla-
tion parameters c of the supercell wavelets belong to the index set

Λl =
{
c : 0 ≤ c < 2max{u+l,0}

}
, (19)

which means that the lattice coordinate 2−lc of the wavelet ψl,c is within the first unit cell. This construc-
tion is schematically depicted in Fig. 1. For a biorthogonal wavelet basis, we can derive orthogonality
relations between supercell wavelets and their dual counterparts∫

dxψκ′
j,a(x) ψ̃

κ∗
l,b (x) =

1√
MjMl

∑
p∈Ωj

∑
q∈Ωl

ei(κ
′tj,p−κtl,q)

∫
dxψj,2jtj,p+a(x)ψ̃l,2ltl,q+b(x)
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=
δj,l δa,b

Mj

∑
p∈Ωj

ei(κ
′−κ)tj,p

= δκ,κ′ δj,l δa,b. (20)

In the second line, we have used the orthogonality relation for biorthogonal wavelets (see Appendix A for
details). For j = l, this lead us to the equation

tj,p − tj,q = 2−j(b− a), (21)

which can be only satisfied for p = q and a = b, since by definition the left-hand side of Eq. (21) corresponds
for p �= q to a shift from one unit cell to another. Obviously this is inconsistent with the definition of
parameters a, b where we have assumed that the associated lattice coordinates are located in the first unit
cell. The product between components of wave and translation vectors yields

(κ′ − κ)tj,p = 2π
n′ − n

N
2−min{j+u,0} p

= 2π
n′ − n

Mj
p, (22)

from which we immediately obtain the orthogonality relation (20).
Periodic wavelets are constructed by applying the periodic extension operator R to supercell wavelets

Rψκ
l,c(x) :=

∑
m∈Z

ψκ
l,c(x−Rm) =

∑
m∈Z

ψκ
l,2lRm+c(x). (23)

If a reduction to a nonzero wave vector in the first BZ of the reciprocal supercell lattice is required
[16, 48, 49], the definition (23) has to be modified by introducing an additional phase factor. Orthogonality
relations for periodic wavelets are obtained with respect to dual supercell wavelets∫

dxRψκ′
j,a(x) ψ̃

κ∗
l,b (x) = δκ,κ′ δj,l δa,b. (24)

Further details concerning refinement relations for periodic wavelets are given Appendix B. Plane waves
consistent with periodic boundary conditions can be conveniently expanded in the periodic wavelet basis

1√
D
eikx =

∑
j

∑
a∈Λj

bkj,a Rψk|j
j,a (x), (25)

where the level dependent projection of a wave vector k into the first BZ is given by the common residue

k|j = k mod
(

2πMj

2uN

)
. (26)

The periodic wavelet coefficients

bkj,a = 2−max{j+u,0}/2 ei 2−jka ˆ̃ψ
∗
(2−jk), (27)

can be directly evaluated using the Fourier transform of the dual mother wavelet ˆ̃
ψ(ω) :=

∫
dx e−iωxψ̃(x).

3 Discrete Hartree-Fock equations for quasi two-dimensional systems

According to our envisaged applications, we have developed a discretization scheme for 3d-periodic HF
equations, which is based on the assumption that the system is strongly inhomogeneous in one (perpen-
dicular) direction and fairly homogeneous in the other two (parallel) directions. Within this scheme, we
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define a decomposition of the periodic HF orbitals into local components φκ
n (r) with compact support in

a neighbourhood of the supercell. The periodic HF orbitals can be recovered by applying the periodic
extension operator

Rφκ
n (r) =

∑
m∈Z3

φκ
n (r −Rm). (28)

Due to the quasi two-dimensional character of the systems, we expect that the coupling between the
perpendicular and parallel directions in the Hamiltonian remains rather weak. The local components are
therefore expressed as linear combinations

φκ
n (r) =

K∑
i=1

(∑
α

Cκ
n,i,α ζ

κ
α,i(r)

)
(29)

of tensor product functions
ζκα,i(r) = ψκ1

α (x)Φ
κ‖
i (y, z), (30)

where univariate supercell wavelets ψκ1
α

2 are taken in the perpendicular direction and contracted isotropic
supercell wavelets γ

κ‖
α in the parallel directions

Φ
κ‖
i (y, z) =

∑
α

d
κ‖
i,α γ

κ‖
α (y, z). (31)

It is reasonable to assume that the Kronecker rank K of the tensor product decomposition for the HF
orbitals (29) can be kept small and almost independent of the size of the supercell through an appropriate
choice of the contracted basis functions (31). In order to simplify the construction of the Fock matrix, a
common set of basis functions in the parallel directions (31) has been chosen which does not depend on
the perpendicular component κ1 of the wave vector. Two possible approaches for these basis functions
seem to be possible. In the first approach, the basis functions (31) are obtained from HF orbitals of the
corresponding homogeneous system in either two or three dimensions. An even simpler choice would be
a contraction of wavelets using plane waves or other appropriate systematic basis functions. The second
approach consists in a self-consistent solution of the HF equations with respect to these parameters.
According to the tensor product decomposition of the orbitals (29), this requires the treatment of a
nonlinear optimization problem rather similar to the multi-configuration self-consistent field method.

From a computational point of view it is convenient to express expectation values with respect to the
supercell in terms of local components (29) of the HF orbitals. This can be accomplished by introducing
a finite version of the periodic extension operator

RMφ
κ
n (r) :=

∑
m∈M3

φκ
n (r − Rm), (32)

where M
3 corresponds to a cube in Z

3, centred at the origin, which contains M3 lattice points. For HF
orbitals, the normalization condition with respect to the supercell∫

VSC

d3rRφκ∗
n (r)Rφκ′

n′ (r) = δκ,κ′δn,n′ (33)

can be expressed through unbounded integrals by considering an ensemble of supercells∫
VSC

d3rRφκ∗
n (r)Rφκ′

n′ (r) =
1
M3

∫
R3

d3rRMφ
κ∗
n (r)RMφκ′

n′ (r) +O(M−1) (34)

=
∫

R3

d3r φκ∗
n (r)RMφκ′

n′ (r) +O(M−1).

2In formulas where details concerning type, level and location of wavelets are not relevant, we use a single Greek wavelet
index (ψα) to simplify our notation.
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Replacing the periodic extension operator (28) by its finite variant (32), we approximate the supercell
integral (33) by an average over a finite cube of supercells with surface error of O(M−1). Taking the limit
M → ∞, we obtain an alternative version∫

R3

d3r φκ∗
n (r)Rφκ′

n′ (r) = δκ,κ′δn,n′ (35)

of the normalization condition (33) in terms of unbounded integrals with respect to local components (29)
of the HF orbitals.

The total HF energy can be split into a sum of one-particle, Coulomb and exchange contributions

EHF = E0 + Ec + Ex, (36)

where we have to express each part in terms of local components (29) of the orbitals. This can be achieved
using the same type of argument as for the normalization condition (35). The one-particle contribution
becomes

E0 = 2
∑
κ,n

∫
VSC

d3rRφκ∗
n (r)

(
−1

2
∆ + Vext(r)

)
Rφκ

n (r) (37)

=
2
M3

∑
κ,n

∫
R3

d3rRMφ
κ∗
n (r)

(
−1

2
∆ + Vext(r)

)
RMφ

κ
n (r) +O(M−1)

= 2
∑
κ,n

∫
R3

d3r φκ∗
n (r)

(
−1

2
∆ + Vext(r)

)
RMφ

κ
n (r) +O(M−1), (38)

where, in the second line, we have used the translational symmetry of the Hamiltonian. Analogous
expressions can be obtained for the Coulomb

Ec = 2
∑
κ,κ′

∑
n,n′

∫
VSC

∫
VSC

d3rd3r′Rφκ∗
n (r)Rφκ

n (r)UEwald(r, r′)Rφκ′∗
n′ (r′)Rφκ′

n′ (r′) (39)

=
2
M6

∑
κ,κ′

∑
n,n′

∫
R3

∫
R3

d3rd3r′RMφ
κ∗
n (r)RMφκ

n (r)UEwald(r, r′)RMφ
κ′∗
n′ (r′)RMφ

κ′
n′ (r′) +O(M−1)

= 2
∑
κ,κ′

∑
n,n′

∫
R3

∫
R3

d3rd3r′ φκ∗
n (r)RMφ

κ
n (r)UEwald(r, r′)φκ′∗

n′ (r′)RMφ
κ′
n′ (r′) +O(M−1),

and exchange

Ex = −
∑
κ,κ′

∑
n,n′

∫
VSC

∫
VSC

d3rd3r′Rφκ′∗
n′ (r)Rφκ

n (r)UEwald(r, r′)Rφκ∗
n (r′)Rφκ′

n′ (r′) (40)

= −
∑
κ,κ′

∑
n,n′

∫
R3

∫
R3

d3rd3r′ φκ′∗
n′ (r)RMφκ

n (r)UEwald(r, r′)φκ∗
n (r′)RMφκ′

n′ (r′) +O(M−1)

parts of the HF energy. Here we have already introduced an Ewald potential, which provides the necessary
modification of the Coulomb interaction in order to get the two-electron integrals converged. The Ewald
potential is discussed in more detail in Section 5. It only remains to perform the limit M → ∞ to derive
the final expressions for the HF expectation value of the energy

E0 = 2
∑
κ,n

∫
R3

d3r φκ∗
n (r)

(
−1

2
∆ + Vext(r)

)
Rφκ

n (r), (41)

Ec = 2
∑
κ,κ′

∑
n,n′

∫
R3

∫
R3

d3rd3r′ φκ∗
n (r)Rφκ

n (r)UEwald(r, r′)φκ′∗
n′ (r′)Rφκ′

n′ (r′), (42)
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Ex = −
∑
κ,κ′

∑
n,n′

∫
R3

∫
R3

d3rd3r′ φκ′∗
n′ (r)Rφκ

n (r)UEwald(r, r′)φκ∗
n (r′)Rφκ′

n′ (r′). (43)

Variation of the HF energy (36) with respect to the orbital coefficients Cκ
n,i,α yields the discrete closed

shell HF equation ∑
j,β

[
hκij,αβ + 2Jκ

ij,αβ −Kκ
ij,αβ

]
Cκ

n,j,β = εκn C
κ
n,i,α, (44)

where the Fock matrix consists of one-particle

hκij,αβ =
∫

R3

d3r ζκ∗
α,i (r)

(
−1

2
∆ + Vext(r)

)
Rζκβ,j(r), (45)

Coulomb
Jκ

ij,αβ =
∑
κ′,n′

∫
R3

∫
R3

d3rd3r′ ζκ∗
α,i (r)Rζκβ,j(r)UEwald(r, r′)φκ′∗

n′ (r′)Rφκ′
n′ (r′), (46)

and exchange

Kκ
ij,αβ =

∑
κ′,n′

∫
R3

∫
R3

d3rd3r′ ζκ∗
α,i (r)Rφκ′

n′ (r)UEwald(r, r′)φκ′∗
n′ (r′)Rζκβ,j(r

′). (47)

matrices. The strongly anisotropic character of these equations is expressed through the double indices
α, i where we assume card{α} � card{i} for the cardinalities of the corresponding index sets.

4 Construction of the Fock matrix

From a formal point of view our treatment of the HF method is completely standard and the only multi-
scale feature that has entered into our discussion so far is the tensor product decomposition of the orbitals
(29). At next we want to discuss some applications of multiresolution analysis to the construction of the
Fock matrix, which is the time determining step for the solution of the discrete HF equations (44). Coulomb
and exchange matrices can be computed in an efficient way using sparse nonstandard representations of
Ewald potentials in the wavelet basis. Concerning a detailed discussion of certain sparsity properties
related to Ewald potentials, we refer to Section 6 below. The nonstandard representation of integral
operators has been introduced into multiresolution analysis by Beylkin, Coifman and Rokhlin [7, 8]. A
typical feature of this representation is that couplings between wavelets on different levels are replaced by
couplings between wavelets and scaling functions on the same level. It provides an efficient scheme for the
calculation of two-electron integrals, which has been discussed in detail in Ref. [18]. Due to the relatively
small number of degrees of freedom in the parallel directions, we advocate a two-step procedure. The first
step involves the construction of intermediate nonstandard Coulomb

(p,q)J
κ‖κ′

‖
stuv,j,a =

∫
R3

∫
R3

d3rd3r′ ψ(p)
j,a (x)Φ

κ′
‖∗

s (r‖)RΦ
κ′

‖
t (r‖)UEwald(r, r′)Φ

κ‖∗
u (r′‖)RΦ

κ‖
v (r′‖)ψ

(q)
j,0 (x′), (48)

and exchange integrals

(p,q)K
κ‖κ′

‖
stuv,j,a =

∫
R3

∫
R3

d3rd3r′ ψ(p)
j,a (x)Φ

κ′
‖∗

s (r‖)RΦ
κ‖
t (r‖)UEwald(r, r′)Φ

κ‖∗
u (r′‖)RΦ

κ′
‖

v (r′‖)ψ
(q)
j,0 (x′), (49)

which remain fixed during the self-consistent solution of the HF equation. We demonstrate in Section 6
below, that these integrals are sparse with respect to the index a, due to the vanishing moment property
of the wavelet basis. It should be noticed that within the nonstandard scheme, pure scaling function
integrals (p = q = 0) are required on the coarsest level only.
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For the calculation of intermediate Coulomb and exchange integrals, we have to expand products of
basis functions in the parallel directions within the wavelet basis. Such kind of expansion requires wavelet
coupling coefficients between supercell and periodic wavelets

η
κ‖,κ′

‖
α,β,µ :=

∫
R2

d2r‖ γ
κ‖∗
α (r‖)Rγ

κ′
‖

β (r‖) γ̃µ(r‖), (50)

and sums involving contraction coefficients (31)

η
κ‖,κ′

‖
st,µ :=

∑
α,β

d
κ‖∗
s,α d

κ′
‖

t,β η
κ‖,κ′

‖
α,β,µ . (51)

Computation of wavelet coupling coefficients and their properties has been described in detail in Ref. [18].
With these coefficients at hand, the wavelet expansion of a product of basis functions is given by

Φ
κ‖∗
s (r‖)RΦ

κ′
‖

t (r‖) =
∑
α

η
κ‖,κ′

‖
st,α γα(r‖). (52)

The Ewald potential can be represented in the nonstandard form

UEwald(r1, r2) =
jmax∑
j=j0

∑
p,q

′∑
a,b

〈γ(p)
j,a |UEwald|γ(q)

j,b〉 γ̃(p)
j,a (r1) γ̃

(q)
j,b(r2), (53)

where the wavelet matrix elements of the Ewald potential are given by

〈γ(p)
j,a |UEwald|γ(q)

j,b〉 =
∫

R3

∫
R3

d3r1d
3r2 γ

(p)
j,a (r1)UEwald(r1, r2) γ

(q)
j,b(r2). (54)

A prime at the sum over p, q indicates that pure scaling function matrix elements contribute on the coarsest
level only. We use the same symbol γ for isotropic 2d and 3d wavelets. The latter are given by tensor
products of univariate and isotropic 2d wavelets, i.e.

γ
(p)
j,a(r) = ψ

(p1)
j,a1

(x) γ
(p‖)

j,a‖ (r‖), (55)

with obvious relations between the parameters p and p1, p‖ characterizing the wavelet types on both
sides of the equation, see Appendix A for further details. Inserting the wavelet expansion (53) into
the integrals (48) and (49), reveals after some algebraic manipulations, the following expressions for
intermediate Coulomb

(p1,q1)J
κ‖κ′

‖
stuv,j,a1

= (p1,q1)J̄
κ‖κ′

‖
stuv,j,a1

+
jmax∑
n=1

(p1,q1)Hn
b−2na1

(0,0)J̄
κ‖κ′

‖
stuv,j+n,b, (56)

and exchange integrals

(p1,q1)K
κ‖κ′

‖
stuv,j,a1

= (p1,q1)K̄
κ‖κ′

‖
stuv,j,a1

+
jmax∑
n=1

(p1,q1)Hn
b−2na1

(0,0)K̄
κ‖κ′

‖
stuv,j+n,b, (57)

where the individual terms

(p1,q1)J̄
κ‖κ′

‖
stuv,j,a1

=
∑
p‖,q‖

′∑
a‖

⎡
⎣∑

b‖

η
κ′

‖,κ′
‖

st,j,p‖,a‖+b‖
η
κ‖,κ‖
uv,j,q‖,b‖

⎤
⎦ 〈γ(p)

j,a |UEwald|γ(q)
j,0〉, (58)
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(p1,q1)K̄
κ‖κ′

‖
stuv,j,a1

=
∑
p‖,q‖

′∑
a‖

⎡
⎣∑

b‖

η
κ′

‖,κ‖
st,j,p‖,a‖+b‖

η
κ‖,κ′

‖
uv,j,q‖,b‖

⎤
⎦ 〈γ(p)

j,a |UEwald|γ(q)
j,0〉, (59)

correspond to sums with contributions from the same level only. The derivation of expressions (56) and
(57) uses the biorthogonality of the wavelet basis and multiscale relations for bilinear forms of univariate
wavelets, see Appendix A for further details.

In each iteration of the self-consistent solution of the HF equation, the Fock matrix has to be con-
structed from intermediate Coulomb (48) and exchange (49) integrals. This requires the evaluation of
univariate wavelet coupling coefficients in the perpendicular direction

ηκκ′
α,β,ν :=

∫
dxψκ∗

α (x)Rψκ′
β (x) ψ̃ν(x), (60)

and their contractions with orbital coefficients

ηκ
′κ1

n′,u,β,ν :=
∑
α

Cκ′∗
n′,u,α η

κ′
1κ1

α,β,ν , ηκ1κ′
n′,u,α,ν :=

∑
β

Cκ′
n′,u,β η

κ1κ′
1

α,β,ν , ηκ
′κ′

n′,uv,ν :=
∑
α

Cκ′∗
n′,u,α η

κ′
1κ′

n′,v,α,ν . (61)

The computational complexity for the evaluation of the coefficients (60) and (61) can be estimated with
respect to size of the univariate wavelet basis within a unit cell. It should be emphasized that we take a
given supercell with a fixed number of electrons and consider the computational complexity with respect
to a refinement of the wavelet basis. Within a unit cell, the cardinality of the univariate wavelet basis

card{ψα} = O(L), with L = 2jmax , (62)

increases exponentially with the finest wavelet level jmax. Straightforward combinatorial arguments [19],
based on the hierarchical structure and compact supports of wavelets, show that the cardinality of wavelet
coupling coefficients (60)

card{ηκκ′
α,β,ν} = O

(
L log(L)2

)
, (63)

increases almost linear with the number of univariate wavelets in a unit cell. The estimated cardinalities
of the contracted coefficients (61)

card{ηκ1κ′
n′,u,α,ν} = O (KL log(L)) , (64)

card{ηκ′κ′
n′,uv,ν} = O

(
K2 L

)
, (65)

also depend on the Kronecker rank K, which is assumed to be small i.e. K � L. It is possible to calculate
these coefficients with O

(
K2 L log(L)2

)
computational complexity.

For the evaluation of Coulomb

Jκ
st,αβ =

∑
κ′,n′

∑
u,v

∑
m

∑
p1,q1

′∑
c

[∑
d

ηκ
′κ′

n′,uv,m,p1,c+d η
κ1κ1
α,β,m,q1,d

]
(p1,q1)J

κ′
‖κ‖

stuv,m,c, (66)

and exchange

Kκ
st,αβ =

∑
κ′,n′

∑
u,v

∑
m

∑
p1,q1

′∑
c

[∑
d

ηκ1κ′
n′,u,α,m,p1,c+d η

κ′κ1
n′,v,β,m,q1,d

]
(p1,q1)K

κ‖κ′
‖

suvt,m,c, (67)

matrix elements further contractions of the coefficients (60) and (61) are required. In order to estimate
the computational complexity of the Fock matrix, we have assumed that the intermediate Coulomb and
exchange integrals (48) and (49) are sparse. Focusing on the sums in the square brackets, we obtain com-
putational complexities of O

(
K4L log(L)2

)
and O

(
K4 L2

)
for Coulomb and exchange matrix elements,

respectively. The L2 dependence of the exchange matrix elements is deminished by the exponential decay
of the exchange interaction, which has not been taken into account by our formal arguments. This topic
is further discussed in Section 6.
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5 Wavelet representation of Ewald potentials

A standard approach to electronic structure calculations for periodic systems [20, 55] is to replace the
Coulomb interaction in the Hamiltonian (4) by an Ewald potential

UEwald(ri, rj) =
∑
R

erfc(
√
λ|ri − rj − R|)

|ri − rj − R| +
4π
VSZ

∑
k �=0

1
|k|2 e

−k2

4λ
+ik(ri−rj) − π

λVSZ
, (68)

which takes into account the Coulomb interaction between an electron located at ri and another electron
at rj as well as with all the mirror images of the second electron located at rj + R in other supercells. In
order to make this sum converge, the interaction with a homogeneous background charge-density has to be
subtracted resulting in the Ewald potential (68). The parameter λ > 0 can be adjusted to get a balanced
convergence of the real and reciprocal lattice sums. For the evaluation of elementary two-electron integrals
(54), we can rely on techniques originally developed for the Coulomb interaction in Ref. [18]. First we
observe, that due to the presence of absolute length-scales |Di| cf. Eq. (11), no simple scaling relation
between different wavelet levels exists. Consequently, we cannot directly apply the iterative scheme of
Beylkin, Dahmen and Micchelli as outlined in Ref. [18] for the Coulomb interaction. However, it is
straightforward to adapt the Gaussian transform method to the first term in the Ewald potential. By a
simple change of the integration variable, we obtain the integral representation

erfc(
√
λ|r1 − r2 − R|)

|r1 − r2 − R| =
2√
π

∫ ∞
√

λ
dt e−t2|r1−r2−R|2. (69)

This means that we can apply the Gaussian transform method described in Ref. [18] by changing the
integration interval for the auxilliary variable t from [0,∞) to [

√
λ,∞). Analogously to Ref. [18], we

introduce the functions

GEwald(j, ai, t) = 2−j
∑
Ri

∫
R

∫
R

dx1dx2 ϕ(x1 − ai + 2jRi) e−(x1−x2)22−2jt2 ϕ(x2), (70)

where the lattice sum factorizes into sums for single components Ri of the supercell vectors.
Once we have obtained the integrals for scaling functions on level j, refinement relations can be applied

in order to get the corresponding wavelet integrals on level j − 1. There is however a simple alternative
to compute wavelet integrals (p or q �= 0) by means of the direct sum

〈γ(p)
j,a |UEwald|γ(q)

j,0〉 =
∑
R

∫
R3

∫
R3

d3r1d
3r2 γ

(p)
j,a (r1)

1
|r1 − r2 −R|γ

(q)
j,0(r2). (71)

For wavelet integrals, the constant term in the Ewald potential (68) vanishes. This is due to the vanishing
moment property of wavelets. Therefore it is possible to take limλ → 0 for these integrals. In this limit,
the wavelet integral of the Ewald potential (54) is equivalent to the direct sum (71).

An interesting observation can be made for a specific choice of the coarsest level j0 in the wavelet basis,
where only a single grid point a = 0 remains in the supercell. For this case, all integrals (54) involving
scaling functions on the coarsest level exactly vanish

〈γ(p)
j0,0|UEwald|γ(0)

j0,0〉 = 0, if 2j0+uiNi = 1. (72)

In order to proof this statement, we first consider the function (70) for this specific choice of the parameters

GEwald(j0, 0, t) = 2−j0
∑
n∈Z

∫
R

∫
R

dx1dx2 ψ
(0)(x1 + n) e−(x1−x2)22−2j0 t2 ψ(p)(x2)

= 2−j0

∫
R

∫
R

dx1dx2 e
−(x1−x2)22−2j0 t2 ψ(p)(x2)

=
√
π

t
δ0,p, (73)
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where we have used the partition of unity 1 =
∑

a ϕ(x+a), which applies for all kinds of scaling functions.
The integral with respect to the first term in the Ewald potential (68), therefore, becomes

∫
R3

∫
R3

d3r1d
3r2 γ

(p)
j0,0(r1)

∑
R

erfc(
√
λ|r1 − r2 − R|)

|r1 − r2 − R| γ
(0)
j0,0(r2) = 2πδ0,p

∫ ∞
√

λ
dt

1
t3

=
π

λ
δ0,p, (74)

which exactly cancels the contribution of the third term to the integral, since by definition we have
VSC = 2−3j0 . A simple calculation for the Fourier integrals appearing in the reciprocal lattice sum∫

R

dx ei2
−j0kxψ(0)(x) =

∑
a∈Z

∫ 1

0
dx ei2

−j0kxψ(0)(x− a) (75)

=
∫ 1

0
dx ei2πnx

= 0, if k = 2j02πn �= 0,

demonstrates that the second term also vanishes. The simple physical reason behind Eq. (72) is that the
only function, consistent with periodic boundary conditions, which can be represented by scaling functions
on level j0 is the constant function. By definition of the Ewald potential, however, the interaction energy
between an arbitrary and a constant charge distribution vanishes.

6 Multiresolution Hartree-Fock for jellium slabs

An essential feature of wavelet expansions is their sparsity due to the vanishing moment property. Within
this section, we want to discuss some sparsity properties of intermediate Coulomb (48) and exchange
(49) integrals. For this it is necessary to study the asymptotic smoothness of the corresponding kernel
functions, which is conveniently done for jellium slabs, where orbital contributions in the parallel directions
are known explicitly. The HF orbitals factorize into simple products

Rφk‖
n (r) = Rξk‖

n (x)
1√
ASC

eik‖r‖ , (76)

where the parallel directions correspond to plane waves. According to our tensor product ansatz (29), we
take a wavelet expansion

ξ
k‖
n (x) =

∑
α

C
k‖
n,α ψα(x) (77)

for the perpendicular part of the orbitals. Within our approach, we consider a supercell of the form shown
in Fig. 2 with unit cells extending over the whole width of the supercell in the direction perpendicular to
the slab. Furthermore it is required that the width of the slab is small compared to the size of the supercell
i.e. S � D1. As a consequence, we can assume that the perpendicular parts of the orbitals ξ

k‖
n (x) have

compact supports within the supercell and belong to momentum k1 = 0. The remaining dependence on
momenta parallel to the slab is due to the nonlocal exchange operator present in the HF equations. For
this reason, there have been no exact HF calculations for jellium surfaces or slabs reported in the literature.
However, numerous approximate HF calculations, following the pioneering work of Bardeen [5], have been
published see e.g. [23, 37, 51, 52, 53, 54]. Within these calculations, the nonlocal exchange operator was
approximated by a local potential. As a consequence, the perpendicular part ξn(x) does no longer depend
on the momenta in the parallel directions, which greatly simplifies the numerical treatment. The same
type of argument applies to DFT, where only local potentials appear in the Kohn-Sham equation.
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Figure 2: Supercell for a jellium slab

After these introductory remarks, we want to consider intermediate Coulomb integrals (48) for jellium
slabs. It is straightforward in this case to integrate out the parallel directions analytically. The Fourier
representation of the Ewald potential leads to an effective Coulomb potential

UJ(x, x′) =
1

A2
SC

∫
ASC

∫
ASC

dr2‖ dr
′2
‖ UEwald(r, r′)

=
4π
VSC

∑
k1 �=0

eik1(x−x′)

k2
1

, (78)

which can be expressed through a reciprocal lattice sum in the perpendicular direction. Taking a wavelet
representation of this potential, we can identify the corresponding integrals with intermediate Coulomb
integrals (48)

(s,t)Jj,a =
∫

R

∫
R

dx dx′ ψ(s)
j,a(x)UJ (x, x′)ψ(t)

j,0(x
′)

=
4π
VSC

2−j
∑
q1 �=0

eia2−jq1

q21
ψ̂(s)(2−jq1)∗ ψ̂(t)(2−jq1). (79)

In order to study the analytic behaviour of the effective Coulomb potential (78) near the diagonal, we
have introduced an infrared cutoff parameter ε and performed the transition to the continuum limit

UJ(x, x′) ∼ 2
ASC

[∫ −ε

−∞
dk1

eik1(x−x′)

k2
1

+
∫ ∞

ε
dk1

eik1(x−x′)

k2
1

]

=
4

ASC

[
cos (ε(x− x′))

ε
+ (x− x′) Si

(
ε(x− x′)

)− π

2
|x− x′|

]
, (80)

where the sum has been replaced by an integral. For our following considerations it is not essential to
specify the parameter ε. However, it seems to be convenient to require coincidence of the effective potential
(78) and its asymptotic expansion (80) along the diagonal. A simple computation using Eq. (78) yields

UJ(x, x) =
πL2

SC

3VSC
, (81)

from which we obtain, together with Eq. (80), the condition

ε =
12

πLSC
. (82)
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It should be emphasized that Eq. (80) is only valid asymptotically near the diagonal and does not yield the
correct continuum limit of the effective potential (78). The infrared cutoff introduces some arbitraryness
in the long-range behaviour, which cannot be cured by an appropriate choice of the parameter ε. This
limitation, however, does not affect our considerations, which just rely on the properties of the effective
potential near the diagonal. It follows immediately from the Taylor series of the cosine and integral sine
that the first two terms in the asymptotic formula (80) contain only even powers of |x− x′|. Therefore it
is the linear |x−x′| term which determines the regularity of the effective potential and hence the sparsity
of the intermediate Coulomb integrals (48). Pure scaling function integrals (79) are well approximated by
the asymptotic formula (80), as can be seen in Fig. 3 a) for different size of the supercell. This is due to the
interpolation property of our scaling functions. For intermediate Coulomb integrals involving wavelets, a
very fast decay can be observed beyond a certain characteristic value of the translation parameter a, which
is shown in Fig. 3 b). Beyond this characteristic value, the supports of the wavelets or scaling functions
in the integrand do not overlap anymore. Therefore, the diagonal cusp of the effective potential does not
contribute to the integrals.

Exchange potentials for jellium slabs can be treated along the same line as the Coulomb potential.
The kernel function of the effective exchange potential in the perpendicular direction

U
k‖k′

‖
K (x, x′) =

1
A2

SC

∫
ASC

∫
ASC

dr2‖ dr
′2
‖ e

−i(k′
‖−k‖)r‖ UEwald(r, r′) e

i(k′
‖−k‖)r′‖

=
4π
VSC

∑
k1

′ eik1(x−x′)

k2
1 + |k‖ − k′

‖|2
, (83)

however, depends on the momenta parallel to the slab. A prime at the reciprocal lattice sum indicates
that it restricts to those values of k1 for which the denominator does not vanish. Again, intermediate
exchange integrals (49) correspond to integrals of the wavelet representation of the kernel function (83)

(s,t)K
k‖k′

‖
j,a =

∫
R

∫
R

dx dx′ ψ(s)
j,a(x)U

k‖k′
‖

K (x, x′)ψ(t)
j,0(x

′)

=
4π
VSC

2−j
∑
q1

′ ei2
−jaq1

q21 + |k‖ − k′
‖|2

ψ̂(s)(2−jq1)∗ ψ̂(t)(2−jq1). (84)

In the following we assume |k‖ −k′
‖| > 0, otherwise we would just recover the effective Coulomb potential

(78). Due to the absence of an infrared divergence in this case, we can perform the continuum limit for
the effective exchange kernel (83)

U
k‖k′

‖
K (x, x′) =

2π
ASC

e
−|k‖−k′

‖| |x−x′|

|k‖ − k′
‖|

, (85)

which has allready been stated in Bardeen’s early paper [5]. It can be seen from Fig. 4 a) that pure
scaling function integrals are very good approximated by the continuum Eq. (85) over the whole range of
momenta |k‖ − k′

‖|. Close to the diagonal, the intermediate exchange integrals involving wavelets behave
rather similar to the Coulomb case, as it is shown in Fig. 4 b). Obviously this is due to the fact that, up
to a constant term, both effective potentials have in leading order the same asymptotic behaviour close
to the diagonal. This leading order term ∼ |x−x′| determines the regularity of the effective potentials on
the diagonal and thereby the magnitude of the wavelet integrals. At larger distances from the diagonal,
an exponential decay can be observed depending on the total parallel momentum |k‖ − k′

‖|.
Intermediate Coulomb and exchange integrals for jellium slabs can be directly computed using Eqs. (79)

and (84). The reciprocal lattice sums converge fast depending on the decay properties of the Fourier
transform of scaling function and wavelet. For more general cases, discussed in Section 3, the computation
of intermediate integrals is much more involved and leads to additional approximation errors. We just want
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Figure 3: Intermediate Coulomb integrals for jellium slabs. a) Asymptotic effective potential UJ(x, x+ a)
(dashed lines) and pure scaling function integrals (0,0)J0,a for various size of the supercell (D2 = D3 = 80
bohr): (◦) D1 = 80 bohr, (�) D1 = 160 bohr, (�) D1 = 240 bohr. b) Different types of integrals: (�)
|(0,0)J0,a| (pure scaling functions), (�) |(0,1)J0,a| (mixed scaling function and wavelet), (◦) |(1,1)J0,a| (pure
wavelets) for a supercell of size D1 = 240 bohr, D2 = D3 = 80 bohr. The integrals have been calculated
for SDD6 wavelets and scaling functions.
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Figure 4: Intermediate exchange integrals for jellium slabs at different momenta |k‖ − k′
‖|: (◦) 0 bohr−1,

(�) 0.13 bohr−1, (�) 0.26 bohr−1, (+) 0.52 bohr−1 (supercell size D1 = 240 bohr, D2 = D3 = 80 bohr). a)

Asymptotic effective potential U
k‖k′

‖
K (x, x+a) (dashed lines) and pure scaling function integrals (0,0)K

k‖k′
‖

0,a .

b) Mixed scaling function and wavelet integrals |(0,1)K
k‖k′

‖
0,a |. The integrals have been calculated for SDD6

wavelets and scaling functions.
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Figure 5: Approximation error for intermediate exchange integrals at different wavelet levels j. Relative
errors in the Frobenius norm F (j, jmax) with |k‖| ≤ 3.7 bohr−1 are shown for various values of the finest
wavelet level jmax: (�) 0, (�) 1, (◦) 2. The integrals have been calculated for SDD6 wavelets and scaling
functions.

to draw attention on the wavelet products appearing in the expressions (48) and (49) for these integrals.
It should be emphasized however, that all approximation errors can be controlled in a systematic way, in
order to achieve certain absolute or relative accuracies. The jellium model provides an independent test for
the numerical accuracy of the general algorithm. Contributions from fine wavelet levels are truncated in
Eq. (56) at a level jmax. This constitutes the essential approximation error in our scheme, which is based
on the nonstandard evaluation of integrals. We have considered relative errors of intermediate exchange
integrals (49) at different wavelet levels j in the Frobenius norm

F (j, jmax)2 :=

∑
k‖,k′

‖

∑
s,t

∑
a

∣∣∣∣ (s,t)Kk‖k′
‖

j,a (jmax) − (s,t)K
k‖k′

‖
j,a (∞)

∣∣∣∣
2

∑
k‖,k′

‖

∑
s,t

∑
a

∣∣∣∣ (s,t)Kk‖k′
‖

j,a (∞)
∣∣∣∣
2 , (86)

where the argument jmax denotes the finest wavelet level in Eq. (56) and ∞ indicates the use of Eq. (84).
Convergence of the relative Frobenius error with respect to jmax is very fast and almost independent of j,
as can be seen from Fig. 5. Typically, the errors are reduced by two orders of magnitude by incorporating
the next finer wavelet level in Eq. (56).

6.1 Numerical studies for a homogeneous electron gas

In order to study the numerical accuracy of our method, we considered the homogeneous electron gas,
which corresponds to the limiting case of a jellium slab filling up the whole supercell. Beside HF energies
at various electron densities, we have also considered Frobenius errors for the exchange part of the Fock
matrix. Due to the definition of the Ewald potential, the Coulomb part (46) of the Fock matrix vanishes for
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Table 1: Hartree-Fock energies per electron (hartree) of a homogeneous electron gas at various densities
and supercell size. The relative Frobenius errors (F ) of the exchange part of the Fock matrix have
been calculated according to Eq. (86). SDD6 wavelets and scaling functions have been used for these
calculations.

rs Ne Da jb jmax
c EHF Eexact

d ∆E F (j, jmax)
0.5 114 4 1 2 1.57884880 1.57884476 4.0 ×10−6 3.6 ×10−5

1 114 8 0 1 0.25373817 0.25373662 1.6 ×10−6 3.6 ×10−5

2 114 16 -1 0 -0.00705256 -0.00705313 5.7 ×10−7 3.6 ×10−5

4 114 32 -2 -1 -0.03700668 -0.03700693 2.5 ×10−7 3.6 ×10−5

a Length of the supercell (bohr).
b Finest level of the wavelet expansion.
c Finest wavelet level in Eq. (56).
d Exact HF energy.

a homogeneous electron gas. The remaining exchange matrix elements (47) can be directly obtained by first
integrating out the parallel directions, analogously to the case of intermediate integrals (84). Integration
in the perpendicular direction yields a one dimensional reciprocal lattice sum, which converges reasonably
fast to be summed up numerically. A straightforward calculation, using the effective kernel (83), yields
the following expression for exchange matrix elements in a supercell wavelet basis

(s,t)K
κ1,k‖
ja,lb =

1
LSC

∑
k′

∫
LSC

∫
LSC

dx dx′ Rψ(s)κ1

j,a (x)∗ eik
′
1x U

k‖k′
‖

K (x, x′) e−ik′
1x′ Rψ(t)κ1

l,b (x′) (87)

=
1

LSC

∑
k′

∫
R

∫
R

dx dx′ ψ(s)κ1

j,a (x)∗ eik
′
1x U

k‖k′
‖

K (x, x′) e−ik′
1x′
ψ

(t)κ1

l,b (x′)

= Nj,l

∑
k′

∑
q1

′δq1|j ,κ1
δq1|l,κ1

ei(2
−ja−2−lb)q1

|q1 − k′1|2 + |k‖ − k′
‖|2

ψ̂(s)(2−jq1)∗ψ̂(t)(2−lq1),

where the constant
Nj,l =

4π
VSC

2−max{j+u1,0}/2 2−max{l+u1,0}/2 (88)

depends on the wavelet levels j, l. In Fig. 6 we have plotted exchange matrix elements (87) versus the
distance of the wavelet centers 2−j |a − b|. After an initial exponential decay, these matrix elements
approach almost constant values. This is due to the fact that the reduced one-particle density matrix for
a homogeneous electron gas has an oscillatory behaviour and decays only algebraically with respect to the
inter-electron distance. At sufficiently large distances, the Coulomb singularity does not contribute to the
integral (87) any more. Therefore, it is the oscillatory behaviour of the density matrix which determines
the magnitude of exchange matrix elements at large distances [19]. Nevertheless, the absolute magnitudes
of these matrix elements are rather small and decay very fast with respect to the wavelet level j, as can
be seen from Fig. 6.

We have calculated relative errors for the exchange matrix (47) in the Frobenius norm (86) together
with HF energies per electron at electron densities rs = 0.5, 1, 2, and 4 for supercells containing 114
electrons. It can be seen from Table 1 that we obtain relative errors of ≈ 10−5 for the exchange matrix
by choosing a wavelet discretization comparable to the mean radius per electron rs. This corresponds to
absolute errors of ≈ 10−6 hartree for the energy per electron. The test calculations for a homogeneous
electron gas demonstrate the computational feasibility of our approach.
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Figure 6: Exchange matrix elements (|k‖| = 0 bohr−1) for a homogeneous electron gas (87) with Fermi
momentum kF = 2 bohr−1. Different types of matrix elements are plotted versus the distance of the
wavelet centers 2−j |a− b|: (◦) |(0,0)K0,0

ja,jb| (pure scaling functions), (�) |(0,1)K0,0
ja,jb| (mixed scaling function

and wavelet), (+) |(1,1)K0,0
ja,jb| (pure wavelets). Left and right parts of the figure correspond to levels j = 0

and j = 1, respectively. A supercell (D1 = D2 = D3 = 32 bohr) which consists of a single unit cell has
been chosen. Matrix elements have been calculated for SDD6 wavelets and scaling functions.

7 Conclusions

Many interesting developments in modern physics and chemistry originate from the peculiar properties
of quasi two-dimensional systems. Due to their strongly anisotropic behaviour in one direction, these
systems present a great challenge to numerical simulations. The inherent two-scale character of the
problem suggests an application of recently developed numerical techniques in multiresolution analysis.
We have studied a multiresolution HF approach to quasi two-dimensional systems based on wavelets and
low rank tensor product expansions. The method has been tailored for systems where the coupling between
the anisotropic and isotropic directions is rather weak. This is definitely the case for jellium slabs, which
provide a guideline for such kind of systems. Thin jellium slabs and related systems, like excitons in
quantum wells, are often considered as purely two-dimensional systems. For certain applications this is
not really appropriate from a physical point of view. Nevertheless, we can use these results as a guiding
principle for the construction of a tensor product basis. This is similar to the highly successful linear
combination of atomic orbitals approach in molecular physics. We further follow along this line for the
construction of the Fock matrix, which comprises the most expensive part of a HF calculation. The
physical insight concerning the homogeneous directions of the system has been expressed in terms of
intermediate exchange and Coulomb integrals. These integrals do not change during the self-consistent
solution of the HF equation. As a consequence, we can essentially restrict the necessary update of the
Fock matrix, during each iteration, to the anisotropic part of the orbitals. The intermediate integrals have
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sparse representations in a wavelet basis, which enable an efficient computation of the Fock matrix.
Although, the present work is in particular limited to the HF approach, it also has some consequences

for post HF methods. Accurate HF wavefunctions usually serve as a starting point for many-particle
methods, where correlated wavefunctions are expressed through correlation operators acting on a Slater
determinant. Furthermore, we want to emphasize that our numerical techniques, originally developed for
the exchange part of the Fock operator, provide a foundation for the evaluation of more general integrals,
required by many-particle methods, as it has been discussed in Ref. [19]. Another possible application of
HF wavefunctions are QMC calculations, where Slater determinants form a part of the trial wavefunction.
This seems to be especially promising with respect to the high demands on the numerical accuracy of trial
wavefunctions in QMC calculations for strongly anisotropic systems.
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Appendices

A Basic notions of multiresolution analysis

The purpose of this appendix is to provide some basic definitions and properties of wavelets in order to
make the paper fairly self-contained. We give a brief discussion of multiresolution analysis in one dimension
and provide some basic notions for the multi-dimensional case. For further details the reader is referred e.g.
to Refs. [10, 11, 22, 38], which present excellent introductions into the subject. Multiresolution analysis
leads to a decomposition of the Hilbert space L2(R) into an infinite sequence of ascending subspaces
· · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · ·, where the index j runs over all integers. The union of these subspaces⋃

j Vj is dense in L2(R). On each subspace Vj, the mother scaling function ϕ(x) provides a basis

ϕj,a(x) := 2j/2ϕ(2jx− a) (89)

via the operations of dilation and translation. The dilation factor 2j scales the size of the basis functions,
which means that with increasing j, the ϕj,a provide a finer resolution in L2. An explicit embedding of
Vj into the larger space Vj+1 is given by the refinement relation

ϕj,a(x) = 21/2
∑

b

hb−2a ϕj+1,b(x), (90)

where the number of filter coefficients ha is finite for the scaling functions used in our applications. Wavelet
spaces Wj are defined as complements of Vj in Vj+1, where the corresponding wavelet basis is generated
from a mother wavelet ψ(x) analogously to Eq. (89)

ψj,a(x) := 2j/2ψ(2jx− a). (91)

A refinement relation similar to Eq. (90)

ψj,a(x) = 21/2
∑

b

gb−2a ϕj+1,b(x), (92)

relates the mother wavelet to scaling functions on the next finer level. This construction leads to a
hierarchical decomposition of L2 =

⊕
l∈Z

Wl into wavelet subspaces Wl [11]. Sometimes it is convenient
to use common symbols for scaling functions and wavelets

ψ
(0)
j,a (x) := ϕj,a(x), ψ

(1)
j,a(x) := ψj,a(x). (93)
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We freely adopt to this notation whenever it seems to be beneficial. In a biorthogonal wavelet basis there
exists a sequence of dual spaces Ṽj, W̃j , which satisfy the orthogonality relations W̃j ⊥ Vj and Ṽj ⊥ Wj.
The corresponding dual wavelets ψ̃j,a := 2j/2ψ̃(2jx − a) and scaling functions ϕ̃j,a := 2j/2ϕ̃(2jx − a)
provide a biorthogonal basis in L2

〈ϕj,a|ϕ̃j,b〉 = δa,b, 〈ψj,a|ψ̃l,b〉 = δj,l δa,b. (94)

The sparsity of wavelet approximations is due to the vanishing moment property∫
dxxk ψ(x) = 0, for k = 0, . . . , n− 1. (95)

This property leads to a vast decay of wavelet coefficients for smooth functions with respect to the level
of refinement. Furthermore, it enables sparse representations of singular kernel functions, like Coulomb
potentials, that satisfy the asymptotic smoothness condition [7, 8]. For our numerical studies, we have
used the univariate biorthogonal wavelets with six vanishing moments of Sweldens [59], based on the
interpolating scaling function of Deslauriers and Dubuc [12]. In the text, we refer to this basis as the
SDD6 wavelet basis.

Isotropic 2d- and 3d-wavelets have been used for the construction of basis functions in the parallel
directions and for the wavelet representation of Ewald potentials, respectively. These wavelets are obtained
by taking mixed tensor products of univariate wavelets ψj,a and scaling functions ϕj,a on the same level
j. In the 2d case, beside scaling functions

γ
(0)
j,a‖(r‖) = ϕj,a2(y)ϕj,a3(z), (96)

there are three different types of isotropic wavelets

γ
(1)
j,a‖(r‖) = ψj,a2(y)ϕj,a3(z), (97)

γ
(2)
j,a‖(r‖) = ϕj,a2(y)ψj,a3(z),

γ
(3)
j,a‖(r‖) = ψj,a2(y)ψj,a3(z).

Correspondingly in the 3d case, isotropic scaling functions and wavelets are given by

γ
(0)
j,a (r) = ϕj,a1(x)ϕj,a2(y)ϕj,a3(z), (98)

γ
(1)
j,a (r) = ψj,a1(x)ϕj,a2(y)ϕj,a3(z),

...
γ

(4)
j,a (r) = ψj,a1(x)ψj,a2(y)ϕj,a3(z),

...
γ

(7)
j,a (r) = ψj,a1(x)ψj,a2(y)ψj,a3(z).

According to this scheme, the scaling functions γ(0)
j,a and wavelets γ(1)

j,a , γ
(2)
j,a . . . belong to well defined levels

j. However, the various types of isotropic wavelets might have otherwise different properties. Sometimes it
becomes necessary to specify for an isotropic wavelet γ(p)

j,a , the type of function ψ(pi)
j,ai

in a specific direction.
According to our notation (93), pi = 0, 1, depending whether there is a scaling function or a wavelet.

Filter coefficients for multiscale relations of bilinear forms are required in Eq. (56). These coefficients
can be obtained from the two-scale relations∫

dx1dx2 ψ
(p)
j,a (x1) f(|x1 − x2|)ψ(q)

j,0 (x2) =
∑

b

(p,q)Hb−2a

∫
dx1dx2 ψ

(0)
j+1,b(x1) f(|x1 − x2|)ψ(0)

j+1,0(x2), (99)
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with
(0,0)Hb := 2

∑
c

hb+chc,
(1,0)Hb := 2

∑
c

gb+chc, etc. (100)

Recursive application of the two-scale relations

(p,q)H2
b =

∑
c

(p,q)Hc
(0,0)Hb−2c, (101)

(p,q)H3
b =

∑
c

(p,q)H2
c

(0,0)Hb−2c, (102)

... (103)

provides multiscale filter coefficients to arbitrary fine levels.

B Refinement relations for periodic wavelets and scaling functions

In order to complete our discussion of supercell wavelets in Section 2.1, we provide here refinement relations
for periodically extended supercell wavelets and scaling functions. Since from a formal point of view, the
refinement relations for wavelets and scaling functions are completely equivalent, we restrict ourselves to
scaling functions. The ordinary two-scale refinement relation for scaling functions (90) extends to the
periodic setting for the cases j + ui ≥ 0 and j + ui < 0, differently. Here ui relates to the unit cell
lattice vectors (7). To simplify our notation, we drop the directional index i in the following. In the case
j+u ≥ 0, straightforward application of Eq. (90), together with tj,n = tj+1,n, Mj = Mj+1 and Ωj = Ωj+1,
cf. Eqs. (14), (15) and (16), yields the refinement relation for periodically extended supercell scaling
functions

Rϕκ
j,a(x) = 21/2

∑
b∈Z

hb−2a Rϕκ
j+1,b(x)

= 21/2
∑

c∈Λj+1

(∑
m∈Z

h2j+1tj+1,m+c−2a e
−iκtj+1,m

)
Rϕκ

j+1,c(x)

= 21/2
∑

c∈Λj+1

hκ
j+1,c−2a Rϕκ

j+1,c(x). (104)

Here we have introduced periodic filter coefficients

hκ
j,a =

∑
m∈Z

h2jtj,m+a e
−iκtj,m , (105)

in order to obtain a compact notation. The corresponding relation in the case j + u < 0 is of the form

Rϕκ
j,0(x) = hκ′

j+1,0 Rϕκ′
j+1,0(x) + hκ

j+1,0 Rϕκ
j+1,0(x), (106)

where a linear combination of two supercell scaling functions appears, which belong to two different wave
vectors

κ′ =
2π

2uN

(
n+

Mj+1

2

)
and κ =

2π
2uN

n. (107)

This is due to the fact that the first wave vector coincides with the second after reduction to the first BZ
on level j, i.e. κ′|j = κ. Furthermore we have used tj,n = 2tj+1,n and Mj+1 = 2Mj for the derivation of
the refinement relation (106), cf. Eqs. (14), (15) and (16).
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C Symmetry relations for symmetric biorthogonal wavelet bases

The usage of symmetric biorthogonal wavelet bases for the representation of translational invariant kernel
functions, like interaction potentials, allows for some additional savings with respect to storage require-
ments. In order to employ symmetry, we have to bear in mind that seven different types of isotropic
three-dimensional wavelets exist. Each type is centred on a regular lattice. These lattices, however, are
shifted against one another. The consequences for the inversion symmetry of wavelet matrix elements of
translational invariant kernel functions are most easily demonstrated for the Coulomb interaction. In the
case of symmetric scaling functions and wavelets, the Coulomb matrix elements

〈γ(p)
j,a |

1
r12

|γ(q)
j,0〉 :=

∫
R3

∫
R3

d3r1d
3r2 γ

(p)
j,a(r1)

1
|r1 − r2| γ

(q)
j,0(r2), (108)

satisfy inversion relations

〈γ(p)
j,−a|

1
r12

|γ(q)
j,0〉 = 〈γ(p)

j,a+s(p,q)
| 1
r12

|γ(q)
j,0〉, (109)

with shift vectors

s(p,q)i
:=

⎧⎪⎪⎨
⎪⎪⎩

0 if (pi, qi) = (0, 0)
1 if (pi, qi) = (0, 1)

−1 if (pi, qi) = (1, 0)
0 if (pi, qi) = (1, 1)

, (110)

depending on the specific combinations of wavelets and scaling functions in each direction. The inversion
relations hold for each component of the vector a separately. Therefore, the storage requirement for
Coulomb matrix elements are reduced by a factor of eight.

In order to make use of symmetry for the Ewald potential, we have to consider a combination of
translation and inversion symmetry. The translational symmetry of the Ewald potential manifests itself
in the relation

UEwald(r1, r2) = UEwald(r1 + Rn, r2) = UEwald(r1, r2 + Rn), (111)

which immediately yields the corresponding relation for the wavelet matrix elements

〈γ(p)
j,a+2jRn

|UEwald|γ(q)
j,0〉 = 〈γ(p)

j,a |UEwald|γ(q)
j,0〉. (112)

According to Eq. (112), we can substitute −ãi → ai with ãi = 2j+uiNi − ai in the Ewald matrix elements
and use Eq. (109) to obtain the symmetry relation

〈γ(p)
j,a |UEwald|γ(q)

j,0〉 = 〈γ(p)
j,−ã|UEwald|γ(q)

j,0〉 = 〈γ(p)
j,ã+s(p,q)

|UEwald|γ(q)
j,0〉. (113)

Therefore, Ewald matrix elements are invariant with respect to the substitution

ã + s(p,q) → a. (114)

Let us assume that
2j+ui−1Ni + s(p,q)i

/2 < ai < 2j+uiNi. (115)

From the definition of ãi and inequality (115), we obtain

s(p,q)i
< ãi + s(p,q)i

< 2j+ui−1Ni + s(p,q)i
/2. (116)

As a consequence of this inequality only Ewald matrix elements with

max(s(p,q)i
, 0) ≤ ai ≤ 2j+ui−1Ni + s(p,q)i

/2 (117)

have to be calculated and stored. Due to translation-inversion symmetry, the storage requirements for
Ewald potentials reduce by a factor of eight.
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