
�����������	�
���
�

für Mathematik
in den Naturwissenschaften

Leipzig

Approximate Inverse Preconditioning of

FE Systems for Elliptic Operators with

non-smooth Coefficients

by

Mario Bebendorf

Preprint no.: 7 2004

Approximate Inverse Preconditioning of FE

Systems for Elliptic Operators with non-smooth

Coefficients∗

Mario Bebendorf†

February 26, 2004

Abstract

A new class of approximate inverse preconditioners for large finite element stiffness ma-
trices arising from elliptic partial differential operators is introduced which guarantees a
bounded number of iterations of the conjugate gradients method. This preconditioner can
be generated, stored and multiplied by a vector with almost linear complexity. Since the
proposed preconditioner is robust with respect to varying coefficients and does not need a
grid hierarchy it may be used as a black-box method.

Mathematics Subject Classification (2000): 35C20, 65F05, 65F50, 65N30
Keywords: Approximate inverse, preconditioning, non-smooth coefficients

1 Introduction

In this article a new preconditioning technique for large finite element stiffness matrices of general
second order elliptic partial differential operators

Lu = −div [A(x)∇u + bu] + c · ∇u + du (1.1)

on a bounded Lipschitz domain Ω ⊂ R
n with coefficients aij , bi, cj , d ∈ L∞(Ω), i, j = 1, . . . , n, is

proposed. The Galerkin matrix of operators (1.1) is sparse but has a bandwidth of order N1−1/n,
where N is the number of degrees of freedom. Due to fill-in effects direct methods are therefore
well suited for small problem sizes, but are not competitive if N is large. In the latter case
usually iterative methods such as Krylov subspace methods are more efficient. The advantage of
these solution techniques is that the coefficient matrix enters the computation only through the
matrix-vector product. The convergence rate usually depends on the condition number of the
coefficient matrix. Since L is a second order operator the condition number of the FE stiffness
matrix S grows like N2/n for large N , but also depends significantly on the coefficients of L. By
preconditioning, i.e., replacing Sx = b by SCu = b, x = Cu, or CSx = Cb, where C is a right
or a left preconditioner, respectively, one tries to improve the condition number and hence the
convergence properties of the Krylov subspace method.

If L has smooth coefficients there are many developed and well known preconditioning tech-
niques, e.g. multigrid or the Bramble, Pasciak and Xu (BPX) algorithm [8]. If the coefficients

∗This work was supported by the DFG priority program SPP 1146 “Modellierung inkrementeller Umformver-
fahren”

†Fakultät für Mathematik und Informatik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Ger-
many, bebendorf@math.uni-leipzig.de

1

are non-smooth these methods might still work but suffer from poor convergence rates, if the
respective method is not adapted to the coefficients. The aim of this article is to present a pre-
conditioner, which adapts itself to the coefficients and, what is even more important for practice,
does not need a grid hierarchy.

For preconditioning the best choice for C would obviously be C = A−1. However, the
computation of A−1 is usually more costly than solving Ax = b for x. Hence, not A−1 but an
approximation of A−1 is used for preconditioning. This idea gives rise to the class of approximate
inverse preconditioners. Their main advantage is that if many systems with different right
hand sides have to be solved computing the preconditioner explicitly will be more efficient than
an implicit preconditioner as given for example by the multigrid method. Additionally, the
approximate inverse can be easily updated if many systems with coefficient matrices differing in
only a small number of entries have to be solved. The inverse of a FE stiffness matrix however
is a dense matrix in general, since it corresponds to the inverse operator L−1, which can be
represented as a non-local integral operator

L−1ϕ(x) =
∫

Ω
G(x, y)ϕ(y) dy, (1.2)

where G denotes the Green function of L. In order to avoid large dense matrices so called sparse
approximate inverse (SAI) preconditioners, see [7, 9, 10], have been introduced. In this approach
for a given matrix A the quantity ‖I−AC‖F is usually minimized for matrices C having a certain
sparsity pattern. Our aim, in contrast, is to use a dense approximation of the inverse of the FE
stiffness matrix. Therefore, the approximant will be enabled to capture more properties of A−1

that are important for preconditioning. Nevertheless, it will be possible to generate, store and
multiply the approximant by a vector with almost linear complexity.

In the last years fast methods for the treatment of large dense matrices have considerably
spread. After the introduction of the fast multipole method [15], numerous methods based on
degenerate approximations

G(x, y) ≈
k∑

�=1

u�(x)v�(y), x ∈ D1, y ∈ D2 (1.3)

on a pair of domains (D1,D2) lying in a certain distance relative to their diameters, have been
developed. Looking at (1.3) from an algebraic point of view this means nothing but a low-rank
approximation of the associated block As×t in the rows and columns s, t ⊂ {1, . . . , N} of A:

As×t ≈ UV T ,

where U ∈ R
s×k, V ∈ R

t×k and k is small compared with |s| and |t|. The ideas of the fast multi-
pole method originally aiming at an efficient approximate evaluation of matrix-vector products
have recently been extended to a structure called hierarchical (H-) matrices [13, 14], see also [18].
Basically, these are matrices that are low-rank on each block of a certain partition stemming from
a recursive subdivision of the set of matrix indices. In addition to the efficient matrix-vector mul-
tiplication this structure provides approximate operations like matrix addition, matrix-matrix
multiplication and matrix inversion of dense matrices with almost linear complexity. Multiplica-
tion with H-matrices can easily be parallelized, see [4]. Furthermore, H-matrices can be stored
in an almost linear amount of units of memory. The structure of H-matrices has originally been
applied to integral equations, see [3, 5]. Although FE stiffness matrices are sparse, it can be seen
that they can be represented by H-matrices without approximation. Since the bandwidth of a
stiffness matrix is of order N1−1/n, the rank of each block of S−1 above or below the diagonal

2

will be of the same order. Since the band has many zeros in it, it may be expected that to
approximate each block a much lower rank is sufficient. Recently [6], it was shown that the
inverse of a FE stiffness matrix for operators of type (1.1) can be approximated by an H-matrix
with blockwise rank of order logn+3 N . For this purpose it was proved that the Green function in
(1.2) can be approximated in the sense of (1.3). Interestingly, this approximation is very robust
with respect to varying coefficients.

In a recent publication [11] a similar approach for preconditioning was investigated. The
inverse of A is approximated on a matrix partition similar to the partition of a hierarchical
matrix. But in contrast to H-matrices, a blockwise constant approximation of the inverse is
used, i.e., only one real number represents all entries of each block. Obviously, this needs less
memory than storing a low-rank matrix and for preconditioning the approximant does not have
to be too accurate. However, a certain accuracy is needed and the block constant approach is
not adaptive, i.e., there is no possibility to guarantee a given accuracy on each block. In our
approach the approximate inverse will be calculated with a prescribed accuracy, although this
accuracy will not be too high. This will enable us to guarantee a bounded number of iterations
of the conjugate gradients method. The procedure in [11] to compute the real number for each
block cannot be used if one tries to approximate the block by a matrix of low-rank. For obtaining
our approximate inverse preconditioner the H-arithmetic will be employed.

The structure of the rest of this article is as follows: In Section 2 a brief introduction
to the structure of H-matrices will be given. All results and notations from the field of H-
matrices necessary for this article will be presented. Section 3 is devoted to the theory of
preconditioning. A condition on the accuracy of the approximate inverse will be derived which
guarantees the existence of an eigenvalue cluster leading to super-linear convergence of the
preconditioned conjugate gradient method. In Section 4 this condition is used when generating
the approximate inverse by an approximate block inversion procedure known as the H-matrix
inversion. In this purely algebraic way, a preconditioner can be obtained from any stiffness
matrix. Finally, in Section 5 numerical results for elliptic partial differential operators with non-
smooth coefficients will be presented. It will be seen that the proposed preconditioner can be
computed, stored and multiplied by a vector with almost linear complexity. Furthermore, it can
be seen that with this preconditioner a bounded number of iterations of the conjugate gradients
method can be achieved.

2 Hierarchical matrices

This section gives a brief overview over the structure of H-matrices originally introduced by
Hackbusch et al. [13, 14]. We will describe the two principles on which the efficiency of H-
matrices is based. These are the hierarchical partitioning of the matrix into blocks and the
blockwise restriction to low-rank matrices. These principles were also used in the mosaic-skeleton
method [18].

In this article we will be interested in matrices M ∈ R
N×N with indices

mij = a(ϕj , ϕi), i, j = 1, . . . , N,

where ϕi are basis functions with support Xi := supp ϕi, i ∈ I := {1, . . . , N} and a is a bilinear
form. Note that this does not imply that M is sparse. Also the variational formulation of non-
local operators is of this form. In order to be able to approximate each block b = s× t, s, t ⊂ I,
of M by a matrix of low-rank, i.e.,

Mb ≈ UV T , U ∈ R
s×k, V ∈ R

t×k,

3

where k is small compared with |s| and |t|, b has to satisfy a certain condition, which is caused by
the operator L hidden in a. In the field of elliptic partial differential operators the corresponding
Green function G(x, y) for L has a singularity for x = y. Hence, the following condition on
b = s × t has proved useful:

min{diam Xs, diam Xt} ≤ η dist(Xs,Xt), (2.4)

where η > 0 is a given real number and the support of a cluster t is the union of the supports of
the basis functions corresponding to the indices in t:

Xt :=
⋃
i∈t

Xi.

Note that condition (2.4) implies that the partition we are looking for has to be refined to-
wards the diagonal of M , since the diagonal entries arise from the interaction of the same basis
functions, i.e. dist(Xs,Xt) = 0.

2.1 The cluster tree

Since M cannot be approximated globally by a single low-rank matrix, we have to subdivide M
into blocks satisfying (2.4). One possibility is to recursively subdivide a block b = s × t into
four subblocks s1 × t1, s1 × t2, s2 × t1 and s2 × t2, where s = s1 ∪ s2 and t = t1 ∪ t2, until its
parts satisfy condition (2.4). Another possibility is proposed in [5]. The rule how to subdivide
a cluster t is given by the so called cluster tree TI satisfying the following conditions:

1. I is the root of TI

2. if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI , so that t = t1 ∪ t2.

The set of sons of t is denoted by S(t), while L(TI) stands for the set of leaves of the tree TI .
A cluster tree is usually generated by recursive subdivision of I so as to minimize the diameter
of each part. For practical purposes the recursion should be stopped if a certain cardinality
nmin of the clusters is reached, rather than subdividing the clusters until only one index is left.
The depth of TI will be denoted by p. For reasonable cluster trees one would always expect
p ∼ log N . A strategy based on the principle component analysis is used in [2]. The complexity
of building the cluster tree in the case of quasi-uniform grids can be estimated as O(N log N).

Remark 2.1 Sometimes, the number of sons of a cluster in the previous definition of a cluster
tree is not restricted to two. This generalization has however not proved useful in practice.

2.2 The block cluster tree

Based on a cluster tree TI which contains a hierarchy of partitions of I, we are able to construct
the so called block cluster tree TI×I describing a hierarchy of partitions of I × I by the following
rule:

procedure build block cluster tree(s × t)
begin

if (s, t) does not satisfy (2.4) and s, t
∈ L(TI) then
S(s × t) := {s′ × t′ : s′ ∈ S(s), t′ ∈ S(t)}
for s′ × t′ ∈ S(s × t) do build block cluster tree(s′ × t′)

endif
else S(s × t) := ∅

end

4

Applying build block cluster tree to I × I we obtain a cluster tree for the index set I × I.
Upon completion of the algorithm the set of leaves P := L(TI×I) is a partition of I×I with blocks
b = s×t ∈ P either satisfying (2.4) or consisting of clusters t and s with min{|s|, |t|} ≤ nmin. The
complexity of building the block cluster tree in the case of quasi-uniform grids can be estimated
as O(η−nN log N), cf. [2].

Remark 2.2 In the case of unstructured grids the computation of the distance in (2.4) between
two supports Xs and Xt is too costly. Therefore, for practical purposes the supports are enclosed
into sets of a simpler structure, e.g. boxes or spheres.

We are now in a position to define the set of H-matrices for a partition P with blockwise
rank k

H(P, k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ P}.

Note that H(P, k) is not a linear space, since in general the sum of two rank-k matrices exceeds
rank k.

Remark 2.3 For a block B ∈ R
s×t the low-rank representation B = UV T , U ∈ R

s×k, V ∈ R
t×k,

is only advantageous compared with the entrywise representation, if k(|s| + |t|) ≤ |s| |t|. For
the sake of simplicity in this article we will however assume that each block has the low-rank
representation. Employing the entrywise representation for appropriate blocks will accelerate the
algorithms.

2.3 Storage and matrix-vector multiplication

The cost of multiplying an H-matrix M ∈ H(P, k) and its transposed MT by a vector x ∈ R
N

is inherited from the blockwise matrix-vector multiplication:

Mx =
∑

s×t∈P

Ms×txt and MT x =
∑

s×t∈P

(Ms×t)T xs.

Since each block s×t has the representation Ms×t = UV T , U ∈ R
s×k, V ∈ R

t×k (see Remark 2.3),
O(k(|s|+|t|)) units of memory are needed to store Ms×t and the matrix-vector products Ms×txt =
UV T xt and (Ms×t)T xs = V UT xs can be done in O(k(|s| + |t|)) operations. Exploiting the
hierarchical structure of M it can therefore be shown that both storing M and multiplying M and
MT by a vector has O(η−nkN log N) complexity. For a rigorous analysis the reader is referred
to [2]. Therefore, H-matrices are well suited for iterative schemes such as Krylov subspace
methods. The matrix-vector multiplication of an H-matrix by a vector can be computed in
parallel. See [4] for an appropriate scheduling algorithm.

2.4 Where can H-matrices be applied ?

The structure of H-matrices was originally designed to accelerate the building process and the
matrix-vector multiplication of discrete integral operators with smooth kernels having an alge-
braic singularity at x = y. This kind of integral operator arises for example from the boundary
element method. Condition (2.4) was also used to prove convergence of the ACA algorithm [3, 5]
for the generation of low-rank approximants based on few of the original matrix entries.

Although H-matrices are primarily aiming at dense matrices, the stiffness matrix S of the
differential operator L from (1.1) is in H(P, nmin). If b ∈ P satisfies (2.4) then the supports of
the basis functions are pairwise disjoint. Hence, the matrix entries in this block vanish. In the

5

remaining case b does not satisfy (2.4). Then the size of one of the clusters is less or equal nmin.
In both cases the rank of Sb does not exceed nmin.

Recently, it was shown [6] that in the case of the Dirichlet problem together with S also its
inverse can be approximated by H-matrices on each block of a partition satisfying (2.4). Let L
be a uniformly elliptic, i.e., for the coefficient A(x) ∈ R

n×n of L it holds that A is symmetric
with aij ∈ L∞(Ω) and

0 < λ ≤ λ(x) ≤ Λ

for all eigenvalues λ(x) of A(x) and almost all x ∈ Ω. Let eh(u) := ‖u − Phu‖L2(Ω) be the finite
element error, where Ph : H1

0 (Ω) → Vh is the Ritz projector mapping u ∈ H1
0 (Ω) to its finite

element solution, i.e., the solution of a(uh, vh) = f(vh) for all vh ∈ Vh. The weakest form of the
finite element convergence is described by

eh(u) ≤ εh‖f‖L2(Ω) for all u = L−1f, f ∈ L2(Ω),

where εh → 0 as h → 0.

Theorem 2.4 Let p be the depth of the cluster tree TI defined in Section 2.1. Then there is a
constant c > 0 defining k := cp2 logn+1(p/εh) and there is CH ∈ H(P, k) such that

‖S−1 − CH‖2 ≤ c εh,

where c depends on the coefficients of L, the diameter of Ω and η.If εh = O(hβ) for some β > 0,
k = O(logn+3 N) holds.

To prove the previous theorem the integral representation

L−1ϕ(x) =
∫

Ω
G(x, y)ϕ(y) dy

with the Green function G of L and Ω was used. In contrast to operators arising from the
boundary element method the kernel function G is locally only in H1 with respect to each
variable. It is nevertheless shown in [6] that G and hence the inverse of the finite element
stiffness matrix can be approximated.

3 Spectral equivalence and eigenvalue clusters

When speaking about the complexity of an algorithm for the solution of a linear system we are
investigating a sequence of systems

ANxN = bN , N → ∞

where AN ∈ R
N×N is invertible. However, for the sake of readability the index N will be

dropped in the rest of this article whenever this dependency is obvious from the context. A right
preconditioner C ∈ R

N×N for A is an invertible matrix which reduces the condition number of
A, i.e., for the condition number of the coefficient matrix AC of the equivalent linear system

ACu = b,

where x = Cu, it holds that
cond2(AC) ≤ cond2(A).

6

Usually, C is expected to be multiplied by a vector much easier than A−1. Therefore, the choice
C = A−1, which is optimal with respect to the condition number, is not valid for preconditioning.

In this article a preconditioner for the finite element stiffness matrices S ∈ R
N×N is proposed.

Since the spectral condition number of S grows with N , we will show how to generate matrices
C such that the behavior of the eigenvalues of the product AC is improved.

Definition 3.1 Let {AN}N∈N and {CN}N∈N be sequences of Hermitian matrices. Assume that
there are two constants c1, c2 > 0 independent of N such that all eigenvalues λ of ANCN satisfy
c1 ≤ λ ≤ c2. Then {AN}N∈N and {C−1

N }N∈N are said to be spectrally equivalent.

In this case
cond2(ANCN) ≤ c2/c1

holds and the preconditioned conjugate gradients method for the solution of Ax = b:

Let x0 ∈ RN be an arbitrary vector.

Calculate r0 = Ax0 − b, p0 = v0 = Cr0 and ρ0 = (v0, r0).
for k = 0, 1, 2, . . . , N − 1 do

qk = Apk

xk+1 = xk − αkpk, where αk = ρk

(pk,qk)

rk+1 = rk − αkqk

vk+1 = Crk+1

ρk+1 = (vk+1, rk+1)
pk+1 = vk+1 + βkpk, where βk = ρk+1

ρk

is known to converge linearly, as can also be seen from the following error estimate, cf. [1]. Let
the spectrum of AC be decomposed in the following way:

σ(AC) = {λ′
i, i = 1, . . . , p} ∪ M ∪ {λ′′

i , i = 1, . . . , q}, M ⊂ [a, b].

Theorem 3.2 For the error xk − x of the PCG it holds that

‖xk − x‖A ≤ 2(cond2(AC) + 1)p
(√

b/a − 1√
b/a + 1

)k−p−q

‖x0 − x‖A, k = 0, . . . , N − 1.

Therefore, if A and C−1 are spectrally equivalent we may take M = σ(AC). Then the PCG
converges linearly, i.e., the number of iterations depends only on the condition number of AC and
not upon N . From the last theorem it can also be seen that few small or large eigenvalues do not
affect the rate of convergence. Therefore, even more important for the rate of convergence is the
distribution of eigenvalues within the spectrum. Spectral equivalence gives a lower and an upper
bound for the eigenvalues of AC. There is no condition on the distribution of the eigenvalues
within this interval. A faster convergence of the PCG can be obtained by a condition on this
distribution neglecting the size of the interval.

Definition 3.3 By γN (ε) we denote the number of eigenvalues of AN lying outside a circle with
radius ε around the origin. The eigenvalues of a sequence of matrices {AN}N∈N is said to have
a cluster at 0, if

γN (ε) ≤ c(ε)

for all N ∈ N and all ε > 0, where c(ε) does not depend on N . {AN}N∈N is said to have a
cluster at z ∈ C, if {AN − zIN}N∈N has a cluster at 0.

7

If AN and CN are Hermitian, and {ANCN}N∈N has a cluster at 1 then the PCG converges
super-linearly, i.e., for all 0 < q < 1 and for all sufficiently large N the residual at the k-th
iteration is bounded by cqk. Why this super-linear convergence happens is explained in [1]. If
AN and CN are not Hermitian, we can apply the PCG to the normal equations AH

NANx = AH
Nb.

In this case instead of the eigenvalues the singular values have to be inspected.
Since in practice we do not want to investigate the spectrum of AC for an eigenvalue cluster,

we need a criterion which is easy to check. It is known that if ‖I − AC‖2 =: δ < 1 then A and
C are spectrally equivalent, since by the triangle inequality

‖AC‖2 ≤ ‖I‖2 + ‖I − AC‖2 = 1 + δ

and from the Neumann series one has

‖(AC)−1‖2 ≤
∞∑

k=0

‖I − AC‖k
2 =

1
1 − δ

.

Hence, cond2(AC) ≤ (1 + δ)/(1 − δ). The following theorem states that for the existence of
eigenvalue clusters the approximation C of A does not have to be too accurate.

Theorem 3.4 Let {AN}N∈N ⊂ R
N×N be a bounded sequence, i.e. ‖AN‖F ≤ c, where c does

not depend on N . Then both the singular values and the eigenvalues of {AN}N∈N cluster at 0.

Proof. By µN (ε) we denote the number of non-increasingly ordered singular values σi(A) of A
lying outside a circle with radius ε around the origin. Let ε > 0 and assume that µN (ε) > c2/ε2.
Then

c2 < µN (ε)ε2 ≤
N∑

i=1

|σi(A)|2 = ‖A‖2
F ≤ c2,

which gives the contradiction. Hence, µN (ε) ≤ c2/ε2. Let δ = eε and λi(A) be the eigenvalues
of A such that |λ1(A)| ≥ |λ2(A)| ≥ . . . ≥ |λN (A)|. If γN (δ) < µN (ε), we are done. In the other
case, i.e. γN (δ) ≥ µN (ε), we use Weyl’s inequality

γN (δ)∏
i=1

|λi(A)| ≤
µN (ε)∏
i=1

σi(A)
γN (δ)∏

i=µN (ε)+1

σi(A) ≤ ‖A‖µN (ε)
2 εγN (δ)−µN (ε).

On the other hand
γN (δ)∏
i=1

|λi(A)| ≥ δγN (δ)

and the last two inequalities give(
δ

ε

)γN (δ)

≤
(c

ε

)µN (ε) ⇐⇒ γN (eε) ≤ µN (ε) ln
c

ε
,

which proves the assertion.

Therefore, if {AN}N∈N and {CN}N∈N are two sequences of matrices such that

‖IN − ANCN‖F ≤ c (3.5)

with a constant c > 0 which does not depend on N , the eigenvalues of the sequence {ANCN}N∈N

cluster at 1 and PCG converges super-linearly. Especially, the number of iterations of PCG is
then bounded by a constant.

8

Theorem 3.5 Assume that (3.5) holds, then the preconditioned conjugate gradients method
applied to the system Ax = b converges to any prescribed accuracy in a bounded number of
iterations.

Remark 3.6 Instead of using the Frobenius norm it is sometimes more convenient to use the
spectral norm ‖ · ‖2. Since ‖ · ‖F ≤ √

N‖ · ‖2 for N ×N matrices, (3.5) then has to be replaced by

‖I − AC‖2 ≤ c√
N

.

4 Algorithms

In this section it is described how the preconditioner is generated from the stiffness matrix
S. From Theorem 2.4 we know that an approximation of S−1 exists in the set of H-matrices.
Therefore, our aim is to find it in this set using the H-arithmetic. Since S is in H(P, nmin),
see Section 2.4, the generation of the preconditioner can be completely done in the format of
H-matrices.

Since H(P, k) is not a linear space, we have to replace the usual matrix operations by trun-
cated ones. Starting with the H-matrix addition, an H-matrix multiplication is defined. Using
these modified operations it is possible to define an H-matrix inversion based on the Frobenius
formulas. These ideas already appeared in the early papers on H-matrices, cf. [13, 14]. Due
to the various representations of matrix blocks for the implementation many cases have to be
distinguished. Therefore only the main ideas of the H-arithmetic are presented. According to
the remark after Definition 3.3 we may restrict ourselves to symmetric positive definite matrices.
Hence, the usual H-arithmetic can be simplified to a symmetric one leading to approximately
half the amount of operations and storage.

4.1 Truncated addition

In order to make the sum of two H(P, k)-matrices be in H(P, k), we have to add them blockwise
and truncate each sum UV T , U = (U1, U2) ∈ R

s×2k, V = (V1, V2) ∈ R
t×2k, of two rank-k

blocks U1V
T
1 and U2V

T
2 to a rank-k matrix. This truncated addition will be denoted by ⊕k and

we define the addition of two submatrices A, B in the entries b̂ ∈ TI×I , the cluster tree from
Section 2.2, by

A ⊕ B = {Ab ⊕k Bb for all b ∈ P, b is a descendant of b̂ in TI×I}.
The truncation can be done by the following algorithm, which was already presented in [2] to
find the approximant with lowest rank to a prescribed accuracy:

procedure truncate(U, V, k, var Ũ , var Ṽ)
begin

Compute the QR-decompositions U = QURU and V = QV RV .

Compute M := RURT
V ∈ R2k×2k.

Compute the singular value decomposition M = XSY T .

Let S� and Y� be the first � columns of S and Y , respectively.

Compute Ũ := QUXS� and Ṽ := QV Y�.
end

Obviously, Ũ Ṽ T has rank � and the error in spectral norm can be controlled using

‖UV T − Ũ Ṽ T ‖2 =
s�+1

s1
‖UV T ‖2,

9

where si is the i-th largest entry of the diagonal matrix S. Therefore, by the following criterion

s�+1 ≤ εs1

the rank � of a block may be adaptively chosen to guarantee a relative error ε. The actual rank
of a block within an H-matrix may therefore be less than k. The previous truncation algorithm
needs O(k2(|s|+|t|)) operations if b = s×t. Hence, exploiting the block-hierarchy the complexity
for the H-matrix addition of two matrices from H(P, k) can be shown to be of order k2N log N .

4.2 Truncated matrix-matrix multiplication

Since the partition P consists of the leaves of the block cluster tree TI×I , it is possible to
recursively define a modified matrix-matrix multiplication C⊕= A � B, A ∈ H(P, k), B ∈
H(P, k), making use of the partitioned matrix-matrix multiplication. Let r × s, s × t, r × t ∈
TI×I be block clusters. In order to define what is meant with Cr×t⊕= Ar×s �Bs×t, we focus on
the 2 × 2 partition of the blocks[

Cr1×t1 Cr1×t2

Cr2×t1 Cr2×t2

]
⊕=

[
Ar1×s1 Ar1×s2

Ar2×s1 Ar2×s2

]
�
[
Bs1×t1 Bs1×t2

Bs2×t1 Bs2×t2

]

with the sons of the clusters s, t and r. Hence, we define

Cr1×t1⊕= Ar1×s1 � Bs1×t1 , Cr1×t1⊕= Ar1×s2 � Bs2×t1 ,

Cr1×t2⊕= Ar1×s1 � Bs1×t2 , Cr1×t2⊕= Ar1×s2 � Bs2×t2 ,

Cr2×t1⊕= Ar2×s1 � Bs1×t1 , Cr2×t1⊕= Ar2×s2 � Bs2×t1 ,

Cr2×t2⊕= Ar2×s1 � Bs1×t2 , Cr2×t2⊕= Ar2×s2 � Bs2×t2 .

Obviously, the result C is an H(P, k)-matrix. If the truncation would not produce any
approximation error, then C⊕= A � B would coincide with C := C + AB. The complexity of
the truncated matrix-matrix multiplication can be estimated as O(k2N log2 N), cf. [12].

4.3 Inversion

We assume that each block As×s, s ∈ TI , of A ∈ H(P, k) is invertible. This is for example the
case if A is symmetric positive definite. Let s ∈ TI \ L(TI). The corresponding matrix block
As×s is subdivided into the sons of s × s:

As×s =
[
As1×s1 As1×s2

As2×s1 As2×s2

]
.

According to the Frobenius formulas for the inverse of A it holds that:

A−1
s×s =

[
A−1

s1×s1
+ A−1

s1×s1
As1×s2S

−1As2×s1A
−1
s1×s1

−A−1
s1×s1

As1×s2S
−1

−S−1As2×s1A
−1
s1×s1

S−1

]
,

where S is the Schur complement S = As2×s2 − As2×s1A
−1
s1×s1

As1×s2. The H-matrix inverse
Cs×s of As×s is defined by replacing the matrix-matrix multiplication and the addition by the
H-versions. We need a temporary matrix T ∈ H(P, k), which together with C is initialized to
zero.

10

procedure invertH(s,A, varC)
begin
if s ∈ L(TI) then Cs×s := A−1

s×s is the usual inverse.
else begin

invertH(s1, A,C).
Ts1×s2�= Cs1×s1 � As1×s2.
Ts2×s1�= As2×s1 � Cs1×s1.
As2×s2⊕= As2×s1 � Ts1×s2.
invertH(s2, A,C).
Cs1×s2⊕= Ts1×s2 � Cs2×s2.
Cs2×s1⊕= Cs2×s2 � Ts2×s1.
Cs1×s1⊕= Ts1×s2 � Cs2×s1.

end
end

Then C ∈ H(P, k) is an approximation of A−1. The matrix A is destroyed during the previous
algorithm. The cost for the calculation of the H-inverse is mainly determined by the cost for
the H-multiplication. Therefore, an approximation to the inverse of A can be obtained with
complexity O(k2N log2 N).

The same algorithm can also be used for preconditioning boundary element (BE) Galerkin
matrices. We already mentioned in Section 2.4 that BE Galerkin matrices can be efficiently
treated by H-matrices. Since elliptic boundary integral operators are pseudo-differential oper-
ators and its inverses have the same property, we are also able to approximate the inverses by
H-matrices.

4.4 Updating the preconditioner

If many linear systems with coefficient matrices differing in only a small number of entries have
to be solved, after a small update the preconditioner generated for one matrix can be used for
preconditioning the other. Assume that A and

Ã = A + αeie
T
j

with the canonical vectors ei, ej ∈ R
n are invertible. Then due to the Sherman-Morisson formula

for the inverse of Ã it holds that

Ã−1 = (A + αeie
T
j)−1 = A−1 − α

1 + αeT
j A−1ei

A−1eie
T
j A−1.

Hence, Ã−1 and A−1 differ only by matrix of rank 1. In the case that A and Ã have p different
entries, the update will be of rank at most p. Using the H-matrix addition we are able to
compute an approximation C ∈ H(P, k) of Ã−1. Obviously, this much faster than building a
new preconditioner for Ã.

Since S is in H(P, nmin) the H-inversion procedure can be directly applied to S. Due to
Remark 3.6 for preconditioning the blockwise accuracy has to be chosen such that globally

‖I − SC‖2 ≤ c√
N

holds. We need the following lemma [12] by which the spectral norm of an H-matrix can be
estimated by its blockwise norms. P is again assumed to be generated as in Section 2.

11

Lemma 4.1 There is a constant c such that for any matrix M ∈ H(P, k) the following inequality
holds:

‖M‖2 ≤ c p max
b∈P

‖Mb‖2.

Therefore, a blockwise rank k ∼ log N is sufficient. Hence, C can be computed, stored and
multiplied by a vector with complexity N logn+3 N .

5 Numerical Results

We consider the Dirichlet boundary value problem

Lu = 0 in Ω
u = f on ∂Ω

with L = −div A(x)∇. The coefficients A of L are chosen to be of the following form

A(x) =
[
1 0
0 α(x)

]
, x ∈ Ω,

where α(x) = 1 in the lower region of Figure 1 and a random number from the interval [0, a]
in the remaining part of the unit square. In the following tables we compare the conjugate

20

40

60

80

100

20

40

60

80

100

0
25
50
75

20

40

60

80

00

Figure 1: The coefficient α(x)

gradients method (CG) with a diagonally preconditioned CG (DPCG) and the H-approximate
inverse preconditioned CG (HPCG). The relative accuracy of the residual is 1e − 8. The tests
were carried out on an Intel Pentium IV (2.666GHz) with 2GB of core memory.

In Table 1 the amplitude a of the coefficient A(x) is chosen to be 1. For increasing problem
sizes N in the third column the norm ‖I − SC‖2 and in the forth column the time to compute
the approximate inverse C is shown. The truncation accuracy we have used for C can be found
in the second column. In the fifth and sixth column the number of iterations and the CPU-time
for unpreconditioned CG can be found. Column seven holds the number of iterations when
using a diagonal preconditioner. Finally, in the last two columns the number of iterations and

12

CG DPCG HPCG
N ε ‖I − SC‖2 Tappr #iter T #iter #iter T

38025 710−4 1.6 13.5s 864 19.7s 747 10 0.8s
50176 510−4 1.9 21.9s 978 35.4s 877 9 1.0s
65025 410−4 1.7 35.5s 1116 62.1s 985 10 1.6s
82944 310−4 1.7 48.2s 1281 70.1s 1107 8 1.6s

159201 210−4 2.0 118.5s 1776 178.1s 1586 9 3.9s
193600 110−4 1.1 173.6s 1998 269.1s 1696 8 4.8s
233289 110−4 1.3 230.7s 2181 424.6s 1927 9 6.9s

Table 1: Amplitude a = 1

CG DPCG HPCG
N ε ‖I − SC‖2 Tappr #iter T #iter #iter T

38025 710−4 3.4 13.3s 1245 28.4s 791 10 0.8s
50176 510−4 2.7 21.3s 1444 51.8s 926 10 1.1s
65025 410−4 2.6 34.8s 1653 91.2s 1037 10 1.6s
82944 310−4 4.6 46.1s 1845 101.4s 1176 10 1.9s

159201 210−4 2.4 114.0s 2631 263.2s 1661 10 4.2s
193600 110−4 1.3 169.6s 2855 399.9s 1848 9 5.0s
233289 110−4 1.6 228.5s 3237 599.4s 1992 9 7.0s

Table 2: Amplitude a = 10

the time for the solution of the linear systems by PCG using the proposed approximate inverse
preconditioner from this article are presented. In Table 2 and 3 the same results are shown for
the amplitudes a = 10 and a = 100, respectively.

These numerical results show that the conjugate gradients method without preconditioning
cannot be used in practice for the solution of FE systems. Even with a diagonal preconditioner
the situation does not improve much. With the proposed approximate inverse preconditioner
it is however possible to solve such systems in a bounded number of iterations. In contrast to
CG or DPCG for the new preconditioner the number of iterations does not depend much on the
amplitude a. Since we used the same truncation accuracy for all three amplitudes, the proposed
preconditioner is able to adapt itself to jumping coefficients. This preconditioner is particularly

CG DPCG HPCG
N ε ‖I − SC‖2 Tappr #iter T #iter #iter T

38025 710−4 9.9 13.5s 3108 71.0s 1353 13 1.0s
50176 510−4 10.6 22.2s 3616 126.6s 1493 13 1.4s
65025 410−4 14.0 35.8s 4127 226.5s 1659 14 2.4s
82944 310−4 17.9 46.2s 4745 256.4s 1908 14 2.7s

159201 210−4 23.1 118.1s 6636 659.4s 2693 13 5.5s
193600 110−4 18.6 172.5s 7356 1000.6s 3011 12 7.1s
233289 110−4 23.6 232.6s 8230 1516.7s 3297 12 9.0s

Table 3: Amplitude a = 100

13

efficient if the same system with many right hand sides has to be solved.

References

[1] O. Axelsson and G. Lindskog: On the rate of convergence of the preconditioned conjugate gradient
method. Numer. Math. 48, 499–523, 1986.

[2] M. Bebendorf: Effiziente numerische Lösung von Randintegralgleichungen unter Verwendung von
Niedrigrang-Matrizen. dissertation.de, Verlag im Internet, 2001. ISBN 3-89825-183-7.

[3] M. Bebendorf: Approximation of boundary element matrices. Numer. Math. 86, 565–589, 2000.

[4] M. Bebendorf and R. Kriemann: Fast Parallel Solution of Boundary Integral Equations and Related
Problems. Preprint, 2003.

[5] M. Bebendorf and S. Rjasanow: Adaptive Low-Rank Approximation of Collocation Matrices. Com-
puting 70, 1–24, 2003.

[6] M. Bebendorf and W. Hackbusch: Existence of H-Matrix Approximants to the Inverse FE-Matrix of
Elliptic Operators with L∞-Coefficients. Numer. Math. 95, 1–28, 2003.

[7] M. W. Benson and P. O. Frederickson: Iterative solution of large sparse linear systems arising in
certain multidimensional approximation problems, Utilitas Math. 22, 127–140, 1982.

[8] J. H. Bramble, J. E. Pasciak, and J. Xu: Parallel multilevel preconditioners, Math. Comp. 55, 1–22,
1990.

[9] E. Chow and Y. Saad: Approximate inverse preconditioners via sparse-sparse iterations, SIAM J.
Sci. Comput. 19, 995–1023, 1998.

[10] J. D. F. Cosgrove, J. C. Diaz, and A. Griewank: Approximate inverse preconditioning for sparse
linear systems, Internat. J. Comput. Math. 44, 91–110, 1992.

[11] Ph. Guillaume, A. Huard and C. Le Calvez: A Block Constant Approximate Inverse for Precondi-
tioning large Linear Systems, SIAM J. Matrix Anal. Appl. 24, 822–851, 2003.

[12] L. Grasedyck: Theorie und Anwendungen Hierarchischer Matrizen. Dissertation, Universität Kiel,
2001.

[13] W. Hackbusch: A sparse matrix arithmetic based on H-matrices. I. Introduction to H-matrices.
Computing 62, 89–108, 1999.

[14] W. Hackbusch and B. N. Khoromskij: A sparse H-matrix arithmetic. II. Application to multi-
dimensional problems. Computing 64, 21–47, 2000.

[15] V. Rokhlin: Rapid solution of integral equations of classical potential theory. J. Comput. Phys.
60:187–207, 1985.

[16] E. Tyrtyshnikov: A unifying approach to some old and new theorems on distribution and clustering.
Linear Algebra Appl. 232, 1–43, 1996.

[17] E. Tyrtyshnikov: Clusters, Preconditioners, Convergence. Linear Algebra Appl. 263, 25–48, 1997.

[18] E. Tyrtyshnikov: Mosaic-skeleton approximations. Calcolo 33, 47–57 (1998), 1996.

14

