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CONVEX INTEGRATION AND THE Lp THEORY OF
ELLIPTIC EQUATIONS

KARI ASTALA, DANIEL FARACO, AND LÁSZLÓ SZÉKELYHIDI JR

Abstract. We consider elliptic partial differential equations and
provide a method constructing solutions with critical integrabil-
ity properties. We illustrate the technique by studying isotropic
equations and equations in non-divergence form in the plane.

1. introduction

In the theory of the elliptic partial differential equations with
bounded measurable coefficients the solutions are basically assumed
to have square summable derivatives; for equations of non-divergence
form the assumptions concern the second derivatives. It is well known
that there is a range of exponents beyond the p = 2 where the Lp-
theory of derivatives is still valid. Recent developments in the theory
of planar quasiconformal mappings, in particular the area distortion
theorem obtained by the first author in [1] and the invertibility of Bel-
trami Operators proved in [4], have in two dimensions provided the
precise range for these exponents, see [2], [20] and Theorem 1.1 be-
low. For more information see also the monograph [3]. These ranges
of exponents depend only on the ellipticity constants of the equation.

It is a natural question if restricting the range of the ellipticity matrix
could yield higher integrability for the gradients of the solutions. We
present in this article a general method for constructing examples which
show that such improved regularity is not possible and that beyond the
critical exponents the theory is not valid anymore.

Let us start by recalling the basic notations and the positive results.

Theorem 1.1. Let K � 1 and 2K
K+1

� q. Let Ω ⊂ R2 be a bounded

domain and let σ(x) : Ω → R2×2
sym be a measurable function such that

for almost every x,

(1)
1

K
I � σ(x) � KI

in the sense of quadratic forms.
Let u ∈ W 1,q

loc (Ω) be a weak solution of the equation

(2) div σ(x)∇u = 0

in Ω. Then u ∈ W 1,p
loc (Ω) for all p < 2K

K−1
.

1



2 KARI ASTALA, DANIEL FARACO, AND LÁSZLÓ SZÉKELYHIDI JR

Here R2×2
sym represents the space of symmetric matrices with real en-

tries.

Theorem 1.1 was obtained by Leonetti and Nesi in [20] where they
discovered that under the assumptions (1), (2) the solution u = �f ,
where f is a K-quasiregular mapping, with the same K. Since the
work of the first author [1] says that a K quasiregular mapping in W 1,q

is immediately in W 1,p whenever 2K
K+1

< q < p < 2K
K−1

, Theorem 1.1
follows. In addition, in the theorem we have included the end point
q = 2K

K+1
. This case follows from the recent result of Petermichl and

Volberg (see [4],[28],[10]).
The classical examples built on the radial stretching u(x) =

�(x|x| 1
K
−1) show that for general σ the range of exponents p, q can

not be improved without extra assumptions. On the other hand, there
was the hope that if the range of σ was restricted then the gradients
would enjoy higher integrability. A basic example pointing towards
this direction is the work of Piccinini and Spagnolo [29]. There it is
shown that if σ(x) = ρ(x)I, where ρ is a real valued function with
1/K ≤ ρ(x) ≤ K, then u has a better Hölder regularity than in the
case of a general σ.

Our first theorems show, however, that for Sobolev regularity one
can not improve any of the critical exponents 2K

K+1
, 2K

K−1
even if the

essential range of σ consists of only two matrices.

Theorem 1.2. Let Ω be a bounded domain in R2 and let K > 1.
Then there exists a measurable function ρ1 : Ω → { 1

K
, K} such that the

solution u1 ∈ W 1,2(Ω) to the equation

(3)

{
div ρ1(x)∇u1(x) = 0 in Ω

u1(x) = x1 on ∂Ω

satisfies for every B(x, r) ⊂ Ω the condition

(4)

∫
B(x,r)

|∇u1| 2K
K−1 = ∞.

Theorem 1.3. For every α ∈ (0, 1) there exists a measurable function
ρ2 : Ω → { 1

K
, K} and a function u2 ∈ Cα(Ω) such that u2(x) = x1 on

∂Ω,

div ρ2(x)∇u2(x) = 0

in the sense of distributions and u2 ∈ W 1,q(Ω) for all q < 2K
K+1

, but for
every B(x, r) ⊂ Ω

(5)

∫
B(x,r)

|∇u2| 2K
K+1 = ∞.

As a particular consequence, Theorems 1.2 and Theorem 1.3 apply
also to the quasiregular mappings since u1 = �f where f is quasiregular
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with

(6) ∂zf = ±k∂zf, k =
K − 1

K + 1
.

The same ideas yield extremal solutions also to the Beltrami equation

(7) ∂zf = ±k∂zf,

for details see Remark 3.4.

Remark 1.1. Our methods do not imply that ρ1 and ρ2 in the above
theorems could be equal. Surprisingly, in the analogous problem for
the Beltrami equation (7) a simple argument shows that this choice
can be made. To see this, let f2 be the very weak solution of (7)
constructed in Theorem 3.2, with dilatation µ : Ω → {±k} and u2 =
�f2 satisfying (5). Let f1 be the classical homeomorphic solution to
the same equation, i.e. f1 ∈ W 1,2

loc and ∂zf1 = µ∂zf1. Suppose that

there exists a ball B ⊂ Ω where
∫

B
|∇f1| 2K

K−1
+ε < ∞ for some ε > 0.

Since ∇f2 ∈ Lq(B) for any q < 2K
K+1

, we deduce that ∇f1 ∈ Lp0(B) and
∇f2 ∈ Lq0(B) for some dual exponents p0 and q0. But then, for example
by [19, Lemma 6.4], the composition f = f2 ◦ f−1

1 is in W 1,1(f1B) and
f obeys the chain rule. Therefore ∂zf = 0 a.e. and by Weyl’s lemma f
is analytic. But then f2 = f ◦f1 is also quasiregular, which contradicts
the fact that f2 /∈ W 1,2(B).

Let us then consider linear elliptic equations in the non-divergence
form. The following theorem follows from the recent work of Astala,
Iwaniec and Martin in [2] where quasiconformal techniques are ap-
plied for developing the precise Lp theory for planar equations in non-
divergence form.

Theorem 1.4. Let K ≥ 1, let Ω ⊂ R2 be a bounded domain and let
A(x) : Ω → R2×2

sym be a measurable function such that for a.e. x ∈ Ω,

(8)
1√
K

I � A(x) �
√

K I, det A(x) ≡ 1.

Let u ∈ W 2,q(Ω), q > 2K
K+1

, be a solution of the equation

(9) Tr
(
A(x)D2u(x)

)
= 0

where D2u(x) =
(
∂iju(x)

)
ij

is the Hessian matrix of u. Then u ∈
W 2,p

loc (Ω) for all p < 2K
K−1

.

The latter condition on A(x) in (8) is a normalization which can al-
ways be made since A is bounded above and below and (9) is pointwise
linear.

A key fact of the proof is that under the assumptions of the theo-
rem, the complex gradient of u, ∂zu = (ux,−uy) is a K-quasiregular
mapping. Therefore the ideas from [1],[4],[28] apply.
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Concerning the sharpness of the theorem, an example due to Pucci,
built on an appropriate radial function shows that there are no Lp esti-
mates at the lower critical exponent p = 2K

K+1
. Nevertheless, examples

built on radial functions do not seem to work with the upper critical
exponent. We not only provide the required examples but again show
that the range of A(x) is as simple as one can ask for.

Theorem 1.5. Let K ≥ 1 and let Ω ⊂ R2 be a bounded domain.

There exists a measurable A3 : Ω →
{( 1√

K
0

0
√

K

)
,

(√
K 0
0 1√

K

)}
such that the solution u3 ∈ W 2,2(Ω) to the equation

(10)

{
Tr(A3(x)D2u3) = 0 in Ω

u3(x) = x1 on ∂Ω

satisfies for every B(x, r) ⊂ Ω

(11)

∫
B(x,r)

|D2u3| 2K
K−1 = ∞.

Theorem 1.6. . For every α ∈ (0, 1) there exists a measurable

mapping A4 : Ω →
{( 1√

K
0

0
√

K

)
,

(√
K 0
0 1√

K

)}
and a function

u4 ∈ W 2,q(Ω) ∩ C1,α(Ω) for all q < 2K
K+1

, such that

(12) Tr(A4(x)D2u4) = 0

in the sense of distributions but for every B(x, r) ⊂ Ω

(13)

∫
B(x,r)

|D2u4| 2K
K+1 = ∞.

Theorem 1.2 is a generalization of [11] which in turn has roots in [22]
where Milton proposed as extremal configurations the so-called layered
construction with infinitely many scales involved. In [11] the second
author interpreted Milton’s idea from a different point of view intro-
ducing the so-called staircase laminates and used Beltrami Operators
to complete the technical details left open by Milton. Unfortunately,
the method in [11] yield only a sequence of equations of the type (3),
such that the corresponding solutions {uj}∞j=1 satisfy

lim
j→∞

∫
B

|∇uj| 2K
K−1 = ∞.

Moreover, the method is not valid for showing that the lower critical
exponent 2K

K+1
is sharp.

In this work we replace the use of Beltrami Operators by versions
of convex integration. It was discovered by V. Šverák and S. Müller
that the method of convex integration, introduced by M. Gromov [14]
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for solving partial differential inclusions could be adapted to the Lips-
chitz setting. This method has then been successfully applied to pro-
duce minimizers to certain variational problems motivated by nonlinear
elasticity where direct methods fail due to lack of lower semicontinuity
([24, 23]). The same authors also used convex integration in [25] to con-
struct counterexamples to regularity for elliptic systems (see also [33]).
The method has been intensively studied and adapted to produce weak
solutions to various other problems [17, 32, 18, 35]. Another, similar
method for solving partial differential inclusions, which followed more
closely the classical Baire category approach to solving ordinary differ-
ential inclusions has been pursued by B. Dacorogna and P. Marcellini
in [8] (see also [9, 36]).

Generally, convex integration is a method for solving differential in-
clusions of the type

(14) ∇f(x) ∈ E

where E is a given closed set of matrices. Roughly speaking the method
consists of iteratively constructing layers within layers of oscillations,
starting with an affine function whose gradient is in a suitably defined
”hull” of E (see Section 2) and iteratively pushing the gradients to-
wards E itself. During the iteration scheme it suffices to keep track
of the gradient distribution of the approximating sequence, instead of
controlling the pointwise behavior of the gradients.

Our plan of proof for Theorems 1.2, 1.3 and Theorem 1.5, 1.6 is as
follows. We rewrite the equations as differential inclusions, in Lemmas
3.1 4.1, and then proceed with convex integration. The first step is
to find a sequence of laminates (see Definition 2.1) with the required
integrability properties. These will be called the staircase laminates,
following [11, 12]. We remark that the construction of this type of
laminates seems very flexible and adaptable to other situations. For
example in [5] and [6] they have been used in relation with the problem
of regularity of rank-one convex functions.

Once we find staircase laminates supported in the appropriate sets,
we proceed in a different way for the lower and upper critical expo-
nents. For the upper critical exponents we are dealing with honest
quasiregular mappings. This allows us to fit the set of solutions of (3)
into a natural metric space setting. Then we can adapt the elegant
method of B. Kirchheim in [17] and use Baire category. This approach
is based on the observation that points of continuity of the gradient
are typically residual.

For the lower critical exponent we are not able to find a natural met-
ric space setting. The reason is that the only norm which we are able to
bound is the W 1,1 norm (see Remark 3.6). Instead we follow the lines
of the original approach of Müller and Šverák [25] of successive modifi-
cation on smaller and smaller sets via a sequence of in-approximations.
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In our case the in-approximations take a particularly simple form, as
the corresponding p−rank-one convex hull is the whole space, but we
need to take care that the gradients diverge on sufficiently large sets in
any ball of the domain. This approach also has the advantage that we
get very precise information on the integrability of the gradient, namely

that our solutions have gradient in the space L
2K

K+1

weak (see Theorem 3.2).

2. Preliminaries

We start by introducing the following notation. For matrices A ∈
R2×2 write A = (a+, a−) where a+, a− ∈ C denote the conformal co-
ordinates. That is, if we identify the vector v = (x, y) ∈ R

2 with the
complex number v = x + iy, the relation

Av = a+v + a−v

holds. For future reference we record that multiplication of matrices in
conformal coordinates corresponds to

(15) AB = (a+b+ + a−b−, a+b− + a−b+),

and that TrA = 2�a+. Also

det A = |a+|2 − |a−|2,
|A|2 = 2|a+|2 + 2|a−|2,
‖A‖ = |a+| + |a−|,

(16)

where |A| and ‖A‖ denote the Hilbert-Schmidt and the operator norm
respectively.

By M(Rm×n) we denote the set of signed Radon measures on R
m×n

with finite mass. By the Riesz representation theorem, M(Rm×n) can
be identified with the dual of the space C0(R

m×n) of continuous func-
tions vanishing at infinity. Given ν ∈ M(Rm×n) with finite first mo-
ment we use the notation

ν =

∫
Rm×n

λdν(λ)

and call ν the barycenter of ν

Now we turn to convex integration. The basic building block for
solving partial differential inclusions is the following lemma. Here,
and in the rest of the paper, we will say that a mapping f : Ω →
R

2, continuous up to the boundary, is piecewise affine (or piecewise
quadratic) if there exists a decomposition of Ω into countable pairwise
disjoint open subsets Ωi with |∂Ωi| = 0 and∣∣∣Ω \

⋃
i

Ωi

∣∣∣ = 0,

such that f is affine (resp. quadratic) on each subset Ωi.
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Lemma 2.1. Let α ∈ (0, 1), ε, δ > 0 and let Ω ⊂ Rn be a bounded
domain.

(i) Let A, B ∈ Rm×n with rank(A − B) = 1 and suppose C =
λA + (1 − λ)B for some λ ∈ (0, 1). There exists a piecewise
affine Lipschitz mapping f : Ω → Rm such that
(a) f(x) = Cx if x ∈ ∂Ω,
(b) [f − C]Cα(Ω) < ε,

(c) |{x ∈ Ω : |∇f(x) − A| < δ}| = λ|Ω|,
(d) |{x ∈ Ω : |∇f(x) − B| < δ}| = (1 − λ)|Ω|.

(ii) If in addition to part (i) we assume that A, B ∈ Rn×n
sym , then

the map f can be chosen so that f = ∇u for some piecewise
quadratic u ∈ W 2,∞(Ω).

Proof. Part (i) of the lemma is standard in the literature (see [24]),
but usually with C0 instead of Cα approximation in (b). The estimate
[f − C]Cα < ε is obtained by rescaling the function. That is, fixing
r > 0 we cover Ω by small copies of itself upto measure zero, so that∣∣∣Ω \

∞⋃
i=1

(ai + riΩ)
∣∣∣ = 0

with ri < r, and then place in each copy the rescaled function fri,ai
(x) =

rif(r−1
i (x− ai)) +Cai. The estimate follows immediately since the Cα

norm decreases as r → 0.
Part (ii) is an easy example of convex integration. Firstly, [17, Propo-

sition 3.4] yields a piecewise quadratic scalar function u1 such that

• u1(x) = 1
2
〈Cx, x〉 if x ∈ ∂Ω,

• ∣∣{x ∈ Ω : D2u1(x) = A}∣∣ > (1 − ε)λ|Ω|,
• ∣∣{x ∈ Ω : D2u1(x) = B}∣∣ > (1 − ε)(1 − λ)|Ω|,
• dist

(
D2u1(x), [A, B]

)
< δ a.e. in Ω.

However, we need a function u such that D2u(x) belongs to a δ
neighborhood of {A, B} instead of a neighborhood of the whole segment
[A, B]. To achieve this, we iterate the construction of u1 to produce
a sequence of piecewise quadratic functions {ui}∞i=1 with the following
properties: let

Ui =
{
x ∈ Ω : dist

(
D2ui, {A, B}) < δ

}
.

Then,

(1) ui(x) = 1
2
〈Cx, x〉 if x ∈ ∂Ω,

(2)
∣∣{x ∈ Ω : D2ui(x) = A}∣∣ > (1 − ε)λ|Ω|,

(3)
∣∣{x ∈ Ω : D2ui(x) = B}∣∣ > (1 − ε)(1 − λ)|Ω|,

(4) uj(x) = ui(x) for x ∈ Ui whenever j � i,
(5) |Ω \ Ui+1| ≤ 1

4
|Ω \ Ui| and Ui ⊂ Ui+1,

(6) dist
(
D2ui, [A, B]

)
< δ a.e. in Ω.
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It follows from (4) and (6) that the sequence {ui} converges strongly
in W 2,∞ to a function u such that dist (D2u(x), {A, B}) < δ almost
everywhere in Ω.

The sequence {ui} is defined by induction. We have already defined
u1. Suppose that ui is given. Then, since ui is piecewise quadratic,
Ω \ Ui has a decomposition

Ω \ Ui =
⋃
j

Ũj ∪ N

where Ũj are open sets on which D2ui = C̃ for some C̃ with

dist
(
C̃, [A, B]

)
< δ and |N | = 0. Hence we can write

C̃ = λ̃(A + D̃) + (1 − λ̃)(B + D̃),

where 0 < λ̃ < 1, and D̃ = λ̃A + (1 − λ̃)B − C̃ satisfies that |D̃| ≤ δ.
Therefore, if we set Ã = A + D̃ and B̃ = B + D̃

(17) C̃ = λ̃Ã + (1 − λ̃)B̃,

with |Ã − A| < δ and |B̃ − B| < δ and

rank(Ã − B̃) = rank(A − B) = 1.

Thus, we can use again [17, Proposition 3.4] in each Ũj to produce ũj

such that

• ũj(x) = 1
2
〈C̃x, x〉 if x ∈ ∂Ũj

• ∣∣{x ∈ Ũj : dist (D2ũj, {A, B}) < δ}∣∣ > 3
4
|Ũj|.

Then the function ui+1 obtained from ui by replacing ui by ũj on Ũj

(modulo an affine function) fulfills the properties (1)-(6).
It remains to show that we can get the correct volume proportions.

To this end, for a given function u with dist (D2u, {A, B}) < δ let

µu =
∣∣{x ∈ Ω : |D2u(x) − A| < δ}∣∣.

The construction outlined above shows that for every ε there exists a
function u with

(1 − ε)λ < µu < (1 + ε)λ.

Take ε = 1/2. Then there is no loss of generality assuming the
existence of a function u1with

(18)
λ

2
< µu1 < λ.

Choose Ã ∈ B(A, δ) such that

C = (λ + ε1)Ã + (1 − λ − ε1)B,

for some small 0 < ε1 < δ/2. Now for arbitrary ε2 > 0 we re-
peat the above construction with (λ + ε1) in the place of λ to ob-
tain a function u2 equal to 1/2〈Cx, x〉 on the boundary and such that
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dist (D2u2(x), {A, B}) < δ and

µu2 > (λ + ε1)(1 − ε2).

Now chose ε2 > 0 so that

(19) µ2 > λ.

From (18) and (19) we deduce that

t
def
=

µu2 − λ

µu2 − µu1

satisfies t ∈ (0, 1), and λ = tµ2 + (1 − t)µ1. Finally we divide Ω in
two regions Ω1, Ω2 with |Ω1| = t|Ω| and |Ω2| = (1 − t)|Ω|, and place
rescaled copies of u1 and u2 in Ω1 and Ω2 respectively. This defines
our final mapping u. It follows that µu = tµ2 + (1 − t)µ1 = λ and this
concludes the proof. �

The matrix A, B in the above lemma are said to be rank-one con-
nected and the measure λδA+(1−λ)δB corresponding to A and B from
Lemma 2.1 is called a laminate of first order. The construction in the
lemma can be iterated by modifying the map f in the regions where
is affine. For example, in the region where {|∇f(x) − B| ≤ δ}, f can
be replaced it with a map(also given by the lemma) whose gradient
oscillates, on a much smaller scale between neigborhoods of the two
rank-one connected matrices C1, C2 such that

(20) B = λ′C1 + (1 − λ′)C2.

Notice that, as in (17), (20) implies that if |∇f(x) − B| ≤ δ, then
∇f(x) = λ′C̃1 + (1 − λ)C̃2 where C̃1, C̃2 are rank-one connected and
they lie in corresponding neigborhoods of C1 and C2. Thus, on each
region where f is affine, we can apply Lemma 2.1 to obtain the new
mapping. On the level of the gradient distribution this amounts to
replacing δB by λ′δC1 + (1 − λ′)δC2 . This type of iteration motivates
the following definition ([7], [25],[26] )

Definition 2.1. The family of laminates of finite order L is the small-
est family of probability measures in M(Rm×n) such that

(1) L contains all Dirac masses.

(2) Suppose
∑N

i=1 λiδAi
∈ L and A1 = λB+(1−λ)C where λ ∈ [0, 1]

and rank(B − C) = 1. Then the probability measure

N∑
i=2

λiδAi
+ λ1(λδB + (1 − λ)δC)

is also contained in L.

Proposition 2.1. Let ν =
∑N

i=1 αiδAi
∈ L(Rm×n) be a laminate of

finite order with barycenter ν = A. Then, for every α ∈ (0, 1), 0 <
δ < min |Ai − Aj | and every bounded open set Ω ∈ Rn, there exists a
piecewise affine Lipschitz mapping f : Ω → Rm such that
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i) f(x) = Ax on ∂Ω,
ii) [f − A]Cα(Ω) < δ,

iii) |{x ∈ Ω : |∇f(x) − Ai| < δ}| = αi|Ω|, thus
iv) dist (∇f(x), spt ν) < δ a.e. in Ω.

Moreover, if Ai ∈ Rn×n
sym , then the map f can be chosen so that f = ∇u

for some u ∈ W 2,∞(Ω).

Proof. The proof is by induction using Lemma 2.1. The precise argu-
ment is given in [25, Lemma 3.2] with the C0 norm instead of the Cα

and matrices in Rn×n. The case of symmetric matrices is handled using
part ii) of Lemma 2.1 instead of part i). �

Finally, we recall the definition of certain semiconvex envelopes of
sets of 2 × 2 matrices.

Definition 2.2. Let E ⊂ R2×2. The polyconvex hull of E is given by

Epc =

{
A ∈ R

2×2 : there exists ν ∈ M(R2×2) such that

ν = A, spt ν ⊂ E and det A =

∫
R2×2

det dν

}
Similarly the lamination hull of E is given by

Elc =

{
A ∈ R

2×2 : ν = A for some laminate of finite order ν ∈ L(R2×2)

}
,

and in particular the first lamination hull is

Elc,1 =

{
A ∈ R

2×2 : ν = A for some laminate of first order ν

}
.

3. Isotropic equations

We start by transforming the set of solutions to the isotropic equation
into solutions to a certain differential inclusion.

Definition 3.1. For a set ∆ ⊂ C ∪ {∞}, let

(21) E∆ = {A = (a+, a−) : a− = µa+ for some µ ∈ ∆},
i.e. E∆ is the set of matrices with second complex dilatation in ∆. In
particular E0 denotes the set of conformal matrices, and E∞ the set of
anti-conformal matrices.

By (15) we get the right-conformal invariance of E∆, namely that

(22) E∆ = E∆X for all X ∈ E0 \ {0}.
Lemma 3.1. Let K � 1 and k = K−1

K+1
. Let Ω ⊂ R2 be a bounded

domain. Then u : Ω → R is a weak solution to

div ρ(x)∇u(x) = 0
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for some ρ ∈ L∞(Ω, {K, 1
K
}) if and only if u = f1 for some f : Ω → R2

satisfying

(23) ∇f ∈ E{k,−k}.

Proof. It is convenient to identify R2 with C, so that f1 = �(f). Ac-
cordingly, let us write f = u + iv. Standard calculations show that

2∂zf = ∂xu + ∂yv + i(∂yu − ∂xv),

2∂zf = ∂xu − ∂yv + i(∂yu + ∂xv),

hence the condition ∇f ∈ E{k,−k}, or ∂zf = µ∂zf , is equivalent to the
system

(1 − µ)∂xu = (1 + µ)∂yv,

(1 − µ)∂yu = −(1 + µ)∂xv.

In other words

(24)
1 − µ

1 + µ
∇u = J∇v,

where J =

(
0 1
−1 0

)
. But in a simply connected 2-dimensional domain

Ω a vector-field is divergence-free if and only if it has the form J∇v.
Hence (24) is equivalent to

div
1 − µ

1 + µ
∇u = 0.

�

3.1. Upper critical exponent. Our strategy is as follows. First, we
define an appropriate closed and bounded subset X ⊂ W 1,2 which
contains all strong solutions to (23). Since bounded subsets of W 1,2

are metrizable under the weak topology, we deduce that (X, w), where
w denotes the weak W 1,2 topology is a metric space. Then we prove
that functions in X are points of continuity of the map ∇ : (X, w) �→ L2

only if they satisfy the inclusion (23). From this we deduce, using that
∇ is a Baire-1 mapping, that the set of solutions in X is residual.
Finally we show that the set of functions in X for which (4) holds in
any fixed ball B(x, r) is also residual. For this we use the staircase
laminate construction introduced in [11].

Definition 3.2. Let

∆k =

{
reiφ : r < k, r2 cos2 φ >

(1 − r2)(r2 − k4)

(1 − k2)2

}
,
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shown in Figure 1, and let U = E∆k
(c.f. (21)). Let X be the closure

in the weak topology of W 1,2 of the set

(25) X0 =

⎧⎨
⎩ f ∈ W 1,∞(Ω, R2) :

• f piecewise affine
•∇f(x) ∈ U a.e.
• f(x) = x on ∂Ω

⎫⎬
⎭ .

Note that ∆k, and hence U , is open, and that E{k,−k} ⊂ U . In
Lemma 3.3 we show that X is a bounded subset of W 1,2 and hence the
weak topology is metrizable.

−k k−1 1

i

−i

Figure 1. The set ∆k in the complex plane.

The proofs here are very similar to the work of Kirchheim in [17].
The main difference is that we are dealing with unbounded sets, and so
we need to make use of elliptic theory, in particular the relevant apriori
estimates and higher integrability, in order to obtain a complete metric
space X whose topology coincides with the weak W 1,2 topology.

Lemma 3.2. Let E{k,−k} be as in Lemma 3.1 and let Elc,1
{k,−k} be the

first lamination hull. Then

Elc,1
{k,−k} = Epc

{k,−k} = E∆k

with ∆k given in Definition 3.2.

Proof. ,
First we will prove that Epc

{k,−k} = Elc,1
{k,−k}.

Recall that X ∈ Epc
{k,−k} if and only if X = ν for some probability

measure ν supported on E{k,−k} and satisfying

det ν =

∫
det dν

The crucial information to use is that F �→ det F is a convex function
when restricted to E{k,−k}. Let us write

ν = λνk + (1 − λ)ν−k
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where ν±k are probability measures with spt νk ⊂ Ek and spt ν−k ⊂ E−k

and barycenters Y and Z respectively. Then by Jensen’s inequality we
get

det X ≥ λ det Y + (1 − λ) detZ.

Since X = λY + (1 − λ)Z, expanding det X gives det(Y − Z) ≤ 0.
Now consider pairs tY and sZ with t, s > 0 such that for some

λ′ ∈ (0, 1) we have λ′(tY ) + (1 − λ′)(sZ) = X. Linear independence
gives

λ′ =
λ

t
and s =

1 − λ

1 − λ′ ,

so that such pairs are parametrized by t ∈ (λ,∞) with s = s(t) → ∞
as t → λ. Let d(t) = det(tY − s(t)Z). By the calculation above
d(1) ≤ 0 and since det Y, detZ > 0 we have d(t) → +∞ as t → λ.
Thus there exists t0 ∈ (λ, 1) such that d(t0) = 0. But that implies that

X ∈ Elc,1
{k,−k}.

Next we obtain an explicit description of the lamination hull. A
matrix X = (x+, x−) is in the first lamination hull of E{k,−k} if and
only if there exists λ ∈ (0, 1), and matrices Y = (y+, y−) ∈ Ek and
Z = (z+, z−) ∈ E−k such that

X = λY + (1 − λ)Z and |y+ − z+| = |y− − z−|
Substituting y− = ky+, z− = −kz+, x− = µx+ and writing t = (1−2λ)

we see that X ∈ Elc,1
{k,−k} if and only if

|µ + kt| = k|k + tµ|
for some t ∈ [−1, 1].

Let p(t) = |µ+kt|2−k2|k+tµ|2. Then p(t) is a quadratic polynomial
in t, with leading term k2(1 − |µ|2)t2.

Notice that

p(1) = (1 − k2)|µ + k|2 ≥ 0, p(−1) = (1 − k2)|µ − k|2 ≥ 0.

Therefore if p is concave it has no roots in [−1, 1]. So we may assume
|µ| < 1 and then if p has a root in [−1, 1], the minimum of p also lies
in [−1, 1]. The discriminant of p is:

D = 4k2
{

(1 − k2)2(�µ)2 − (1 − |µ|2)(|µ|2 − k4)
}

and the minimum is at

t0 =
(1 − k2)�µ

k(1 − |µ|2) .

Suppose D ≥ 0. Then if |µ| > k,

t20 =
(1 − k2)2(�µ)2

k2(1 − |µ|2)2
≥ |µ|2 − k4

k2(1 − |µ|2) > 1
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whereas if |µ| ≤ k, then

|t0| =
(1 − k2)|�µ|
k(1 − |µ|2) ≤ (1 − k2)

(1 − |µ|2) ≤ 1.

This proves that p has a root in [−1, 1] if and only if µ ∈ ∆k and thus
finishes the second part of the lemma.

�
Remark 3.1. The above lemma implies that the G-closure of {k,−k}
for the problem (6) is ∆k. Similar computations can be found in [12]
and [27].

3.1.1. Points of continuity of ∇.

Lemma 3.3. The space (X, w) is metrizable, and for any f ∈ X we
have ∇f(x) ∈ U a.e. in Ω. Furthermore the set of continuity points of
the map ∇ : (X, w) → L2(Ω, R2×2) is residual in (X, w).

Proof. The key information seems to be that we are dealing with elliptic
equations, in particular with quasiregular mappings. To prove that
(X, w) is metrizable we need to show that X0 is bounded in W 1,2.
There is no loss of generality in assuming that Ω ⊂ B(0, 1

2
). Therefore

for f ∈ X0 the Lipschitz mapping f̃ = fχΩ + xχB(0,1)\Ω is a well

defined K-quasiregular mapping by the definition of U . Thus, �f̃ = u
is a solution to

div σ(x)∇u(x) = 0 in B(0, 1),

where σ is a matrix measurable function satisfying (1). Testing the
equation with v(x) = u(x) − x1 yields the estimate∫

B(0,1)

|∇u|2 � K4π,

and using the same argument for �(f̃) we obtain that

(26)

∫
B(0,1)

|∇f̃ |2 ≤ C(K).

Finally, the Sobolev embedding theorem yields the required bound,

(27) ‖f‖W 1,2(Ω) ≤ C(K, Ω)

for f in X0 and by the weak lower semicontinuity of the W 1,2 norm
for f in X. This shows that (X, w) is metrizable with metric d. Let
us remark that by the compactness of Sobolev embedding the weak
topology in W 1,2(Ω) is equivalent to the the strong topology in L2(Ω)
and in fact, by the Hölder regularity of quasiregular mappings (see for
example [19]) to the supremum norm topology. There is no problem in
any of the statements with the boundary since Ω ⊂ B(0, 1

2
).
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To prove that ∇f(x) ∈ U a.e. for any f ∈ X we use the weak
continuity of F �→ det F in W 1,p for p > 2. Note that if fn ⇀ f in
W 1,2(Ω), then also fn ⇀ f in W 1,p(Ω) for some p > 2 by the higher
integrability of quasiregular mappings. This means that ∇f(x) ∈ Upc

for any f ∈ X, and Upc = U by Lemma 3.2.

We now show that ∇ is a Baire-1 mapping. Let ∆k be matrix of
different quotients (Recall that we have extended functions in X by
the identity outside Ω so that ∆kf(x) is defined a.e. in Ω). For all
Sobolev functions f ∈ W 1,2 we have that

lim
k→∞

‖∇f − ∆k(f)‖L2(Ω,R2×2) = 0.

On the other hand ∆k is easily seen to be a continuous operator from
L2(Ω, R2) → L2(Ω, R2×2). By Sobolev embedding this implies that ∆k

is continuous as a map from (X, w) → L2(Ω, R2×2). Therefore ∇ is a
pointwise limit of continuous mappings, i.e a Baire-1 mapping. It is
then a classical result that the points of continuity form a residual set
in (X, w) (See [17, page 53] ). �

Lemma 3.4. The set of points of continuity in (X, d) of ∇ satisfy
∇f(x) ∈ E{k,−k} almost everywhere.

The proof is exactly as in [17] Proposition 3.17. Here we reproduce
it for the reader’s convenience. The main point is that if f is piecewise
affine with an affine piece A ∈ U \ E{k,−k}, then (since U = Elc,1

{k,−k})

there exists a rank-one segment through A in U of length proportional
to the distance to E{k,−k}. This permits us, with the help of Lemma
2.1, to produce a perturbation of f showing that it cannot be a point
of continuity.

Proof. Suppose for a contradiction that {x ∈ Ω : ∇f(x) ∈ U \E{k,−k}}
has positive measure, where f ∈ X is a point of continuity. Then by
Lusin’s theorem there exists a compact Ω0 ⊂ Ω (with |Ω0| = m > 0)
such that ∇f is continuous on Ω0, and ∇f(Ω0) ∩ E{k,−k} = ∅. Since
∇f(Ω0) is compact,

(28) ε =
1

2
dist (∇f(Ω0), E{k,−k}) > 0.

Let

V = Nε

(∇f(Ω0)
) ∩ U

be the ε−neighborhood of ∇f(Ω0) in U . Since U = Elc,1
{k,−k}, to any

A ∈ V there exists a rank-one segment connecting Ek to E−k and
containing A. Moreover, as dist (A, E{k,−k}) � ε by (28), there exists a
rank-one matrix CA ∈ R2×2 with |CA| � ε such that

(29) [A − CA, A + CA] ⊂ U .



16 KARI ASTALA, DANIEL FARACO, AND LÁSZLÓ SZÉKELYHIDI JR

Furthermore, since f is a point of continuity, there exists δ > 0 such
that

‖∇g −∇f‖2
L2 <

1

8
ε2m whenever d(g, f) < δ.

Take a sequence of piecewise affine functions X0 � fn → f in (X, d).
Then in particular (since ∇ is continuous at f), ∇fn → ∇f in measure,
i.e. |{x : |∇fn(x) − ∇f(x)| > ε}| → 0 as n → ∞. Therefore there
exists n and Ω1 ⊂ Ω0 with |Ω1| > m

2
so that

d(fn, f) <
δ

2
, ‖∇fn −∇f‖2

L2 <
1

8
ε2m

and for all A ∈ ∇fn(Ω1) there exists a rank-one matrix CA with |CA| >
ε so that (29) holds. Since Ω is covered up to measure zero by open
sets on which fn is affine, there exists finite number of disjoint open
sets Gi ⊂ Ω such that fn(x) = Aix for x ∈ Gi,

[Ai − Ci, Ai + Ci] ⊂ U
for some rank-one matrix Ci with |Ci| > ε and |⋃Gi| > m

2
.

For each i Lemma 2.1 supplies a piecewise affine function φi such
that φi ∈ W 1,∞

0 (Gi, R
m),

(30) ‖φi‖∞ <
δ

2
and

∫
|∇φi| > ε|Gi|

Let g = fn +
∑

χGi
φi. Then g ∈ X,

d(g, f) ≤ d(g, fn) + d(fn, f) <
δ

2
+

δ

2
= δ

but using Cauchy-Schwarz∫
S

Gi

|∇g −∇fn|2 ≥ 1

|⋃Gi|
∑

i

(∫
Gi

|∇φi|
)2

> ε2|
⋃

Gi|

and hence

‖∇g −∇f‖2
L2 ≥ 1

2
‖∇g −∇fn‖2

L2 − ‖∇fn −∇f‖2
L2 ≥ 1

8
ε2m.

This gives the required contradiction. �

Corollary 3.1. The set of mappings f in X such that ∇f(x) ∈ E{k,−k}
is residual.

3.1.2. Staircase laminates and integrability.

Proposition 3.1 (The strong staircase). Every A ∈ U is the center of
mass of a sequence of laminates of finite order νn ∈ L supported in U
with

(31) lim
n→∞

∫
R2×2

|λ| 2K
K−1 dνn = ∞
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Proof. Let A = (1, 0) in conformal coordinates. Then the claim was
proved in [11], obtaining measures νn ∈ L supported in E{k,−k} ∩ D,
where D denotes diagonal matrices. We shift the construction by con-
sidering the measures ν̃n(·) = νn(· + (1, 0)). Recall that νn are sup-
ported on matrices of the form j

1+k
(±1, k) and (n, 0) (in conformal

coordinates). Therefore spt ν̃n ⊂ U ∩ D. This proves the claim for
A = (2, 0).

Since the sets are invariant under precomposition with conformal
matrices (see (22), the same is true whenever A is a conformal matrix.
Finally we claim that for every A ∈ U there is a rank-one segment
[P, Q] contained in U with Q ∈ E0 such that A = λP + (1 − λ)Q and
λ ∈ [0, 1). Indeed, writing A = (a+, a−) in conformal coordinates, let
Q = (a+−a−, 0) ∈ E0. Clearly rank(A−Q) � 1, since A−Q = (a−, a−).
Because U is lamination convex (see Lemma 3.2) and contains E0, it
also contains the whole segment [A, Q]. Furthermore, as U is open, the
segment can be nontrivially extended to some P ∈ U so that A ∈ [P, Q].
Then the required laminates can be defined as

νn = λδP + (1 − λ)ν̂n,

where ν̂n are laminates with barycenter Q, constructed in the previous
step. �
Proposition 3.2. For any ball B = B(x, r) ⊂ Ω the set

XB,M = {f ∈ X :

∫
B(x,r)

|∇f | 2K
K−1 ≤ M}

is closed and has no interior in X.

Proof. By lower-semicontinuity of the norm XB,M is closed in the weak
topology of W 1,2(Ω).

Suppose for a contradiction XB,M has nonempty interior for some B
and M . Then there exists f ∈ X0 ∩ XB,M and ε > 0 such that∫

B

|∇g| 2K
K−1 ≤ M

whenever g ∈ X with d(g, f) < ε.
Take any subdomain Ω0 ⊂ B where f is affine, say f(x) = Ax

with A ∈ U . By Proposition 3.1 there exists a laminate ν ∈ L with

barycenter ν = A such that
∫

R2×2 |λ|
2K

K−1 dν > 2M . Correspondingly, by
Proposition 2.1 there exists a sequence φj ∈ W 1,∞(Ω0, R

n) such that

∇φj ⇀ A in W 1,2(Ω0), φj = A on ∂Ω0 and limj→∞
∫

Ω0
|∇φj| 2K

K−1 ≥ 2M .

Then the sequence fj = f + χΩ0(φj − A) satisfies fj ∈ X \ XB,M for
sufficiently large j. On the other hand d(fj, f) → 0, and this is a
contradiction. �
Corollary 3.2. The set of points in X such that

∫
B(x,r)

|∇f | 2K
K−1 = ∞

for all B(x, r) ⊂ Ω is residual in (X, d).
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Proof. This follows since

{f ∈ X :

∫
B(x,r)

|∇f | 2K
K−1 < ∞ for some B(x, r)} =

∞⋃
M=1

∞⋃
i=1

XBi,M

where Bi is an enumeration of balls in Ω with rational centers and radii.
Therefore since each XBi,M is of first category, the (countable) union
is also of first category. �

Combining Corollaries 3.1 and 3.2 yields the following theorem:

Theorem 3.1. Let K > 1 and k = K−1
K+1

. For any bounded open set

Ω ⊂ R2 there exists a mapping f ∈ W 1,2(Ω; R2) with the following
properties:

(i) f(x) = x on ∂Ω,
(ii) ∇f(x) ∈ E{k,−k} a.e. in Ω,

(iii) For any ball B ⊂ Ω we have
∫

B
|∇f(x)| 2K

K−1 dx = ∞.

3.2. Lower critical exponents. In the following J = (0, 1) in con-
formal coordinates, i.e.

J

(
x1

x2

)
=

(
x1

−x2

)
.

This subsection consists essentially of two parts. First we deal with
the geometry of E{k,−k}, in particular we show that any matrix A lies
on a rank-one connection between E{k,−k} and E∞ whose length is
proportional to |A|. Then we define the staircase laminates in Lemma
3.7. The construction is much more explicit then the corresponding
staircase for the upper critical exponents. The reason is that in contrast
with the case of the upper exponent, there are no apriori bounds on
the gradient, and so it becomes crucial to know precisely where the
gradients of the approximating sequence lie.

In the second part we proceed with convex integration. The setting
is quite general once the specific geometric properties have been es-
tablished. In Proposition 3.3 we show the existence of piecewise affine
maps f with the desired integrability property given by (39), which
solve the inclusion up to a small L∞ error. Moreover, the size of the
error can be made to depend on |∇f |. Then in Theorem 3.2 we show
that the L∞ error can be successively removed. The main estimate
is in (54), it guarantees that the limit mapping lies in the space LqK

w ,
where qK = 2K

K+1
is the critical exponent. Having made the size of the

error depend on the size of the gradient enables us to show that (54)
does not depend on the fact that qK < 2. In fact, because qK < 2, it
would be sufficient for the error to be independent of |∇f |. This would
allow for a substantial simplification of the proof of Proposition 3.3 and
Lemma 3.7. However, we prefer this approach because it extends to
higher dimensions.
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We begin with two simple lemmas regarding the geometry of rank-
one lines in R2×2:

Lemma 3.5. Let A, B ∈ R2×2 with det B �= 0 such that det(A−B) = 0,

and let σ =
∣∣ b−

b+

∣∣. Then

|B| �
√

2

∣∣∣∣1 + σ

1 − σ

∣∣∣∣|A|,

where 1+∞
1−∞ = −1.

Proof. First we assume that B is not anti-conformal and write A and
B in conformal coordinates:

A = (a+, a−), B = (z, µz)

for some µ ∈ C with |µ| = σ. Since det(A − B) = 0, we have

|z − a+|2 − |µz − a−|2 = 0,

which we can rewrite as

|z|2 − 2�
(
z
a+ − µa−
1 − |µ|2

)
+

|a+|2 − |a−|2
1 − |µ|2 = 0.

Completing the square yields∣∣∣∣z − a+ − µa−
1 − |µ|2

∣∣∣∣ =
|µa+ − a−|

1 − |µ|2 .

But then we estimate

|z| � 1

1 − |µ|2
(|a+ − µa−| + |µa+ − a−|

)
� 1

1 − |µ|2
(
(|a+| + |a−|)(1 + |µ|)) =

|a+| + |a−|
1 − |µ| .

Hence, using (16)

|B|2 = 2(1 + σ2)|z|2

� 2
1 + σ2

(1 − σ)2

(|a+| + |a−|
)2

� 2
(1 + σ)2

(1 − σ)2
|A|2.

To treat the case of anti-conformal B we can repeat the above calcu-
lation with B = (0, z). �
Lemma 3.6. Let K > 1 and k = K−1

K+1
. Every A ∈ R2×2 \ {0} lies on

a rank-one segment connecting E∞ and Ek. In particular there exist
P ∈ E∞ \ {0} and Q ∈ Ek \ {0} with rank(P − Q) = 1 such that
A ∈ [P, Q] and

(32)
1

cK
|A| < |P − Q| < cK |A|,
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where cK > 1 depends only on K. The same holds if we replace Ek by
E−k.

Proof. It suffices to prove the lemma for Ek. We can introduce coordi-
nates in R2×2 related to E∞ and Ek since they are linearly independent
two-dimensional subspaces. Accordingly, to every matrix A there exist
z, w ∈ C so that A lies in the plane Lz,w spanned by the matrices (0, z)
and (w, kw). Since det(0, z) < 0 < det(w, kw) and the determinant
is a quadratic form, there exists two linearly independent rank-one di-
rections in Lz,w. It is then easy to see that for A ∈ Lz,w there exist
nonzero P ∈ Lz,w ∩ E∞ and Q ∈ Lz,w ∩ Ek so that A ∈ [P, Q]. The
upper estimate (32) follows from Lemma 3.5 and for the lower estimate
observe that

dist (A, E∞) + dist (A, Ek) � |A − P | + |A − Q| = |P − Q|,
and (32) follows by the linear independence of E∞ and Ek. �
Lemma 3.7 (One weak step). Let A ∈ Br(nJ) for some 0 < r < 1/2.
There exists a laminate νA of third order with the following properties:

• νA = A,
• spt νA ⊂ E{k,−k} ∪

{
(n + 1)J

}
,

• spt νA ⊂ {
ξ ∈ R2×2 : c−1

K n < |ξ| < cKn
}

• (1 − c−1
K

r
n
)βn < νA

({(n + 1)J}) < (1 + cK
r
n
)βn,

where

(33) βn =
n

n + 1

1 − k + 2n

1 + k + 2n

and cK > 1 is a constant only depending on K.

tCkR

E∞

Ek

E−k

(n + 1)JR

E0

P̃R

P

Q

A

(n + 1)C−kR

Figure 2. One weak step towards infinity.
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Proof. Using Lemma 3.6 there exists P ∈ E∞ and Q ∈ Ek with
rank(P − Q) = 1 such that A = λ1P + (1 − λ1)Q for some λ1 ∈ [0, 1].
Hence λ1δP +(1−λ1)δQ is a laminate. Since |A−nJ | < r, from Lemma

3.5 applied to A − nJ and P − nJ ∈ E∞ we have |P − nJ | <
√

2r,
hence

|P − A| < 3r and |P − Q| >
n

cK
.

But then for some cK > 1

(34) λ1 > 1 − r

cKn
.

Now JP is conformal, so that JP = tR for some t > 0 and R ∈ SO(2).
Moreover, n|J | − √

2r < |P | < n|J | + √
2r, and P = tJR, hence

(35) |t − n| < r.

Define the matrices

(36) Ck =
1

1 + k
(1, k), C−k =

1

1 + k
(−1, k)

in conformal coordinates. Note that C±k ∈ E±k respectively and
det(J − C±k) = 0. Moreover, let

P̃ =
(
−1 − (t − n)

2
, n +

1 + (t − n)

2

)
.

By direct calculation P = λ2tCk + (1− λ2)P̃ and P̃ = λ3(n + 1)C−k +
(1 − λ3)(n + 1)J , where

λ2 =
1 + k − (t − n)(1 + k)

2n + 1 + k + (t − n)(1 − k)
(37)

λ3 =
(1 − t + n)(1 + k)

2(n + 1)
.(38)

In particular, by Definition 2.1

νA =λ1

(
λ2δtCk

+ (1 − λ2)
(
λ3δ(n+1)C−k

+ (1 − λ3)δ(n+1)J

))
+ (1 − λ1)δQ

is a laminate with barycenter A, and

νA

({(n + 1)J}) = λ1(1 − λ2)(1 − λ3).

Thus, by direct calculation using (34), (35), (37) and (38) we get(
1 − c−1

K

r

n

)
βn < νA

({(n + 1)J}) <
(
1 + cK

r

n

)
βn.

Finally, from Lemma 3.5 we get c−1
K n < |Q| < cKn, and this concludes

the proof.
�
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Proposition 3.3 (The weak staircase). Let K > 1 and k = K−1
K+1

. Let

α ∈ (0, 1), δ > 0 and τ : [0,∞) → (0, 1/2] a continuous, non increasing

function with τ(0) > 0 and
∫ ∞

1
τ(t)

t
dt < ∞.

For any bounded open set Ω ⊂ R2 and any nonzero matrix F
with |F − J | < τ(|F |) there exists a piecewise affine mapping f ∈
W 1,1(Ω; R2) ∩ Cα(Ω; R2) with the following properties:

(i) f(x) = Fx on ∂Ω,
(ii) [f − F ]Cα(Ω) < δ,

(iii) dist
(∇f(x), E{k,−k}

)
< τ

(|∇f(x)|) a.e. in Ω,

and there exists a constant cK,τ > 0 so that for all t > 1 we have

(39)
1

cK,τ

t−
2K

K+1 <
∣∣{x ∈ Ω : |∇f(x)| > t}∣∣ < cK,τ t

− 2K
K+1 .

Proof. We define a sequence of piecewise affine mappings {fn} induc-
tively using repeatedly Proposition 2.1. Let f1(x) = Fx in Ω. For the
inductive step we assume the existence of a piecewise affine Lipschitz
mapping fn : Ω → R2 such that

(a) fn(x) = Fx on ∂Ω,
(b) [fn − F ]Cα(Ω) < (1 − 2−n)δ,

(c) dist
(∇fn(x), E{k,−k} ∪ {nJ}) < τ(|∇fn(x)|) a.e. in Ω,

and with Ωn = {x ∈ Ω : |∇fn(x) − nJ | < τ(n)} we have

(40)
n−1∏
j=1

(
1 − c−1

K

τ(j)

j

)
βj <

|Ωn|
|Ω| <

n−1∏
j=1

(
1 + cK

τ(j)

j

)
βj .

By assumption |F−J | < τ(|F |), so f1 satisfies (c). Moreover, |J | =
√

2,
so τ(n) � τ(|J |), hence Ω1 = Ω. We deduce that f1 satisfies the
inductive hypothesis. To obtain fn+1 we modify fn on the set Ωn.
Because fn is piecewise affine, we have a decomposition into pairwise
disjoint open subsets Ωn,i such that

∣∣∣Ωn \
∞⋃
i=1

Ωn,i

∣∣∣ = 0,

and fn(x) = Aix + bi in Ωn,i for some Ai ∈ Bτ(n)(nJ) and bi ∈ R2. For
each i we use Proposition 2.1 with the laminate νAi

from Lemma 3.7
to obtain a piecewise affine Lipschitz mapping gi : Ωn,i → R2 with

(d) gi(x) = Aix + bi on ∂Ωn,i,
(e) [gi − fn]Cα(Ωn,i) < 2−(n+1+i)δ,

(f) c−1
K n < |∇gi(x)| < cKn a.e. in Ωn,i,

(g) dist
(∇gi(x), E{k,−k} ∪ {(n + 1)J}) < τ(cKn) a.e. in Ωn,i,
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and

(
1 − c−1

K

τ(n)

n

)
βn <

<

∣∣∣∣{x ∈ Ωn,i : |∇gi(x) − (n + 1)J | < τ
(
(n + 1)

)}∣∣∣∣ <
(
1 + cK

τ(n)

n

)
βn.

(41)

We then define

fn+1(x) =

{
fn(x) if x ∈ Ω \ ⋃∞

i=1 Ωn,i

gi(x) if x ∈ Ωn,i

It is clear that fn+1(x) = Fx on ∂Ω, and from (e) we get [fn+1 −
fn]Cα(Ω) < 2−(n+1)δ, hence (b) follows. Because τ is non increasing, (c)

follows from (g). Finally (40) follows from (41).
It is clear that the limit f(x) = limn→∞ fn(x) exists pointwise almost

everywhere. Observe that we obtain fn+1 from fn by modifying on a
nested sequence of open sets Ωn whose measure

|Ωn| < |Ω|
n−1∏
j=1

(
1 + cK

τ(j)

j

)
βj < |Ω|cK,τ

n

n∏
j=1

1 − k + 2j

1 + k + 2j
<

cK,τ

n
|Ω|

converges to zero, since by the condition on τ the product
∏

j

(
1+c τ(j)

j

)
converges. Thus the limit mapping f is piecewise affine. Moreover, it
satisfies (i)-(iii) by our construction.

Finally, the distribution function of ∇f can be estimated as follows.
Using (g), for n ∈ N we have

|∇f(x)| >
n

cK

in Ωn, and |∇f(x)| < cKn in Ω \ Ωn.

Hence, for given t > cK let n1 be the integer part of cKt and n2 the
integer part of c−1

K t. Then

Ωn1+1 ⊂ {x ∈ Ω : |∇f(x)| > t} ⊂ Ωn2 ,

so it remains to estimate |Ωn| using (40). As observed already, the

product
∏

j

(
1 + c τ(j)

j

)
converges for any c to a finite positive num-

ber. Moreover, taking logarithms we see that for some constant c > 0
independent of n∣∣∣log

( n∏
j=1

βj

)
+ log n +

n∑
j=1

2k

1 + k + 2j

∣∣∣ < c,

hence for a possibly different constant c > 0

(42)
∣∣∣log

( n∏
j=1

βj

)
+

2K

K + 1
log n

∣∣∣ < c,
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since k + 1 = 2K
K+1

. But this implies the estimate (39). Finally (39)

implies that ∇fn is uniformly bounded in L1, hence f ∈ W 1,1 by dom-
inated convergence. �

Theorem 3.2. Let K > 1, k = K−1
K+1

and let F ∈ R2×2 \ {0}. For any

α ∈ (0, 1), δ > 0 and for any bounded open set Ω ⊂ R2 there exists a
mapping f ∈ W 1,1(Ω; R2) ∩ Cα(Ω; R2) with the following properties:

(i) f(x) = Fx on ∂Ω,
(ii) [f − F ]Cα(Ω) < δ,

(iii) ∇f(x) ∈ E{k,−k} a.e. in Ω,
(iv) For any ball B ⊂ Ω there exists a constant cB > 1 such that

1

cB
t−

2K
K+1 <

∣∣{x ∈ B : |∇f(x)| > t}∣∣ < cBt−
2K

K+1

for all t � 1.

In particular f ∈ W 1,q(Ω) for all q < 2K
K+1

and for any ball B ⊂ Ω we

have
∫

B
|∇f(x)| 2K

K+1 dx = ∞.

Proof. We construct a sequence of piecewise affine mappings fn induc-
tively, similarly to the proof of Proposition 3.3, but with one impor-
tant difference: this time we will obtain fn+1 from fn by modifying the
mapping almost everywhere, and so in order to guarantee the point-
wise convergence of the gradients, in addition we need to control the
L1-norm of the difference ∇fn+1 −∇fn.

The basic construction in each step is as follows: Let A be a nonzero
matrix and let ε = dist (A, Ek). Furthermore, let ω ⊂ Ω be any open
subset. Using Lemma 3.6 there exist matrices P, Q0 with rank(P −
Q0) = 1, P ∈ E∞, Q0 ∈ Ek with |P − Q0| > c−1

K |A| such that A ∈
[P, Q0]. Moreover

(43) dist (A, Ek) = ε � |A − Q0| < cKε

using Lemma 3.5. Let Q ∈ [A, Q0] with

(44) |A − Q| = (cK − 1

4
)ε.

Then |Q − Q0| ≤ 1
4
ε. Moreover

(45) |P − Q| � |P − Q0| − ε

4
� 3

4
|P − Q0| >

3

cK4|A|
since |P − Q0| � |A − Q0| � ε.

For any η > 0 Lemma 2.1 yields a piecewise affine Lipschitz mapping
g : ω → R

2 with g(x) = Ax if x ∈ ∂ω,

(46) [g − A]Cα(ω) < η/2,
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and for some ε̃ ∈ (0, ε/4) to be chosen later

∣∣{x ∈ ω : |∇g(x) − P | < ε̃}∣∣ =
|A − Q|
|P − Q| |ω|∣∣{x ∈ ω : |∇g(x) − Q| < ε̃}∣∣ =
|A − P |
|P − Q| |ω|.

Observe that (44) and (45) imply that for some cK > 1

(47)
1

cK

ε

|A|
|A − Q|
|P − Q| < cK

ε

|A| .

Let ω̃ = {x ∈ ω : |∇g(x) − P | < ε̃}. We modify g in ω̃ using Propo-
sition 3.3, to yield a piecewise affine mapping h : ω → R2 with the
following properties:

(a) h(x) = Ax on ∂ω,
(b) [h − A]Cα(ω) < η,

(c) dist
(∇h(x), E{k,−k}

)
< ε/2 min

(|∇h(x)|−k, 1
)

a.e. in ω,
(d)

∫
ω
|∇h(x) − A|dx < Cε|ω|

and for all t > |A|

(48)
1

cK
|A| 2K

K+1 t−
2K

K+1 <
∣∣{x ∈ Ω : |∇h(x)| > t}∣∣ < cK |A| 2K

K+1 t−
2K

K+1 .

More precisely, on each subset of ω̃ where g is affine, that is Dg = Ã
a.e in ω̃ for a matrix Ã s we replace it with a map of the form

h̃(x) = g̃(Rx).

Here, R = J−1P (so that R is conformal) and g̃ : R(ω̃) → R2 is given

by Proposition 3.3 with g̃(y) = ÃR−1y on the boundary of R(ω̃) and

τÃ(t) =
ε

2|R| min
((

t|R|)−k
, 1

)
.

At this point we choose ε̃ so that ε̃|R−1| < τÃ(|ÃR−1|), because then

|ÃR−1 − J | = |ÃR−1 − PR−1| � ε̃|R−1| < τÃ(|ÃR−1|),
so the conditions of the proposition are fulfilled. Recall that E{k,−k} is
invariant under pre-multiplication with conformal matrices (see (22)),
hence

dist
(∇h̃, E{k,−k}

)
� dist

(∇g̃R, E{k,−k}R
)

< |R| ε

2|R| min
((|R||∇g̃|)−k

, 1
)

� ε

2
min

(
|∇h̃|−k, 1

)
.

The properties (a) and (48) also follow directly from our construction
and Proposition 3.3, and (b) follows from (46) and the fact that in
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getting h from g, we apply the proposition at most countably many
times (in each subdomain of ω̃ where g is affine). Moreover,∫

ω

|∇h(x) − A|dx �
∫

ω̃

|∇h(x)| + |A|dx +

∫
ω\ω̃

|∇g(x) − A|dx

� 2|A||ω̃| +
∫ ∞

|A|

∣∣{x ∈ ω̃ : |∇h(x)| > t}∣∣dt +
ε

2
|ω|

� (2 + cK)|A| |A − Q|
|P − Q| |ω| + cKε|ω|

� cKε|ω|,
for some cK > 1 from (47) and (48).

Now we proceed with defining the sequence {fn} such that

(49) dist
(∇fn(x), E{k,−k}

)
� |F |1+k2−n min

(|∇fn(x)|−k, 1
)
.

Let f0(x) ≡ Fx. To obtain fn+1 from fn, decompose Ω into a union of
pairwise disjoint open sets of diameter no more than 1

n
with∣∣∣Ω \

⋃
i

Ωn
i

∣∣∣ = 0,

so that fn is affine in each Ωn
i , with ∇fn = An

i . In each Ωn
i we apply the

above construction with η = 2−(n+i+1)δ and εn = |F |1+k2−n in order to
obtain fn+1 with

[fn+1 − fn]Cα(Ω) < 2−(n+1)δ(50) ∫
Ω

|∇fn+1 −∇fn|dx < cK2−n.(51)

Observe that (49) follows automatically from property (c). Thus the
sequence converges to some limit f in W 1,1(Ω) and Cα(Ω). Clearly
f(x) = Jx on ∂Ω, [f − Fx]Cα < δ, and from (3) it follows that
∇f(x) ∈ E{k,−k} almost everywhere in Ω. To conclude with the proof
of the theorem, we provide estimates from above and below for the
distribution function of the gradient ∇f .

To get an estimate from above, recall that fn+1 is obtained from
fn using the construction outlined in (43)-(48) above. In particular,

let Ω̃n
i ⊂ Ωn

i denote the open subset corresponding to ω̃ and assume
∇fn(x) = An

i on Ωn
i with |An

i | > 1. From (47) and (49) we deduce

(52)
∣∣Ω̃n

i

∣∣ < cK

dist (An
i , E{k,−k})∣∣An

i

∣∣ ∣∣Ωn
i

∣∣ < cK2−n
∣∣An

i

∣∣− 2K
K+1 |F |1+k,

and

(53)
∣∣Ω̃n

i

∣∣ >
1

cK

dist (An
i , E{k,−k})∣∣An

i

∣∣ ∣∣Ωn
i

∣∣ >
1

cK

2−n
∣∣An

i

∣∣− 2K
K+1 |F |1+k
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Recall that k + 1 = 2K
K+1

. Then for t > 1 we have

∣∣{x ∈ Ω : |∇fn+1(x)| > t}∣∣ =

∞∑
i=1

∣∣{x ∈ Ωn
i : |∇fn+1(x)| > t}∣∣

=
∞∑
i=1

∣∣{x ∈ Ω̃n
i : |∇fn+1(x)| > t}∣∣ +

∣∣{x ∈ Ωn
i \ Ω̃n

i : |∇fn+1(x)| > t}∣∣,
which by (48) and (52) is controlled by,

� cK(

∞∑
i=1

∣∣Ω̃n
i

∣∣∣∣An
i

∣∣ 2K
K+1 t−

2K
K+1 +

∣∣{x ∈ Ω : |∇fn(x)| > t}∣∣)
< cK(|F | 2K

K+1 2−n

( ∞∑
i=1

∣∣Ωn
i

∣∣)t−
2K

K+1 +
∣∣{x ∈ Ω : |∇fn(x)| > t}∣∣)

� cK(|F | 2K
K+1 2−n|Ω|t− 2K

K+1 +
∣∣{x ∈ Ω : |∇fn(x)| > t}∣∣, )

where the sums are over all i such that |An
i | > 1. But then, passing to

the limit, we see that

(54)
∣∣{x ∈ Ω : |∇f(x)| > t}∣∣ < 2|F | 2K

K+1 cKt−
2K

K+1 .

For the estimate from below, we argue in a similar way. Let B ⊂ Ω be
an open ball. For large enough n0 ∈ N there exists i such that Ωn0

i ⊂ B
and ∇fn0 = An0

i with |An0
i | ≥ |F |. But then by the construction there

exists a constant cK such that for t > |An0
i |∣∣{x ∈ B : |∇fn0+1(x)| > t}∣∣ � cK

∣∣{x ∈ Ω̃n0
i : |∇fn0+1(x)| > t}∣∣

> cK |F | 2K
K+1 t−

2K
K+1 |Ωn0

i |.
Next, arguing exactly as we did for bounding the distribution func-

tion from above, but with (53) instead of (52), we obtain that

(55)
∣∣{x ∈ Ω̃n0

i : |∇f(x)| > t}∣∣ � cK2−N0|F | 2K
K+1 t−

2K
K+1 |Ωn0

i |.
This concludes the proof of (iv), and the proof of the theorem. �

Remark 3.2. In Theorem 3.2 one could also take F = 0. Indeed, let F̃
be a nonzero rank-one matrix. By Lemma 2.1 there exists a piecewise
affine Lipschitz mapping f0 : Ω → R2 such that f0(x) = 0 on ∂Ω and

∇f0(x) ∈ B1/2|F̃ |(F̃ ) ∪ B1/2|F̃ |(−F̃ ),

in other words there exist pairwise disjoint open subsets Ωi ⊂ Ω such
that ∇f0 ≡ Fi in Ωi for some Fi ∈ R2×2 \ {0} and |Ω \ ∪iΩi| = 0. Let

f(x)
def
= fi(x) in Ωi,

where fi is the mapping corresponding to Ωi and boundary value Fi

provided by Theorem 3.2. It follows that f ∈ W 1,1 ∩ Cα and satisfies
the conditions (i)-(iv) of the theorem, with F = 0.
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Remark 3.3. Theorem 3.2 answers a question of B.Yan on the exis-
tence of very weak quasiregular mappings with arbitrary affine bound-
ary values. Namely, in the papers [35, 36] Yan constructed very weak
quasiregular mappings f : Ω → Rn for n � 3 such that ∇f(x) satisfies
that ‖∇f‖n = ρ det∇f where ρ(x) ∈ {1, K} and f − Ax ∈ W 1,p

0 (Ω)
for p < nK

K+1
where A is any matrix in 2×2. A question raised in [35] is

whether such mappings exist fulfilling the more demanding condition

(56) ‖∇f‖n = K det∇f a.e.

For n = 2 Theorem 3.2 answers this in positive and in fact the control
on the range of the gradient is substancially more precise than (56).
It is an interesting question what happens in higher dimensions (see
[13]).

Remark 3.4. It can be easily seen that by minor modifications Theo-
rems 3.1 and 3.2 yield very weak solutions with the same properties to
the classical Beltrami equation. We just need to replace the definition
of E∆ with

{A = (a+, a−) : a− = µa+ for some µ ∈ ∆}
and observe that the geometric properties necessary for the proof, Lem-
mas 3.5, 3.6 and 3.7 still hold.

Remark 3.5. Very weak solutions which fail to be solutions are really
false solutions in the sense that they do not enjoy any of the spe-
cial properties of honest weak solutions, like openess and discreteness,
maximum principles and so forth. The investigation of this type of
pathological solutions to elliptic equations started with the classical
example by Serrin, [30], see also [16] for the concept of weak mini-
mizer. Other types of very weak quasiregular mappings can be found
in [15, Theorem 6.5.1,Theorem 11.6.1]. It is interesting however that
our mappings are Hölder continuous for any exponent 0 < α < 1. A
different type of Hölder continuous very weak quasiregular mappings
haven been constructed by Jan Maly [21] using radial functions.

Remark 3.6. We conclude the section by discussing why we were not
able to use the Baire Category argument. Theorem 3.2 implies that for
any F ∈ R2×2 we can find a sequence fj such that Dfj(x) ∈ Ek,−k a.e in
Ω and Dfj converge to F weakly in W 1,p for every p < 2K

K−1
. Therefore

the natural set U as in definition 3.2 is the entire R2×2, which yield no
bound in the corresponding X. A way to go around this is to restrict
the attention to a subset of E, which still supports the appropriate
laminate. The difficulty is that then the set U will contain rank-one
lines, which prevent us to have a bound in any W 1,p for p > 1.

4. Equations in non-divergence form

We follow the same lines as in the case of isotropic equations, since
from the point of view of differential inclusions the structure of both
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problems is very similar. The entire construction lies in the set of 2 by
2 symmetric matrices R2×2

sym. Therefore during the whole section we use
the topology of this 3 dimensional vector space. For a set ∆ ∈ C∪{∞}
we use the notation

(57) E∆ = {A = (a+, a−) : 2a+ = µa− + µa− for some µ ∈ ∆}.
Notice that E∆ ⊂ R

2×2
sym by definition. Then E0 are anticonformal ma-

trices and E∞ are symmetric conformal matrices. That is E∞ is the
real one dimensional subspace spanned by the identity.

We start by reinterpreting the equation as a differential inclusion.
Recall that for symmetric matrices, (15) implies that

(58) Tr(AB) = 2�(a+b+ + a−b−) = 2a+b+ + (a−b− + a−b−).

Lemma 4.1. Let K � 1 and k = K−1
K+1

. Let Ω ⊂ R2 be a bounded
domain. Then u : Ω → R is a solution to

(59) Tr
(
A(x)D2u(x)

)
= 0 in Ω

with some measurable A(x) : Ω →
{( 1√

K
0

0
√

K

)
,

( √
K 0
0 1√

K

)}
if and only if for almost every x ∈ Ω

D2u(x) ∈ E{k,−k}.

Proof. Let A = (a+, a−), B = (b+, b−) ∈ R2×2
sym with A > 0 and put

µA = a−
a+

. The lemma follows from writing

(60) Tr(AB) = 0

in conformal coordinates. In fact, by (58), we obtain that (60) is equiv-
alent to

(61) B ∈ E−µA
.

Hence, u solves (59) for a general A(x) if and only if D2u(x) ∈ E−µA(x)

almost everywhere. Putting A(x) ∈
{( 1√

K
0

0
√

K

)
,

( √
K 0
0 1√

K

)}
finishes the proof. �

4.1. Upper exponents. As in the isotropic case, the first step is to
define the appropriate complete metric space.

Definition 4.1. Let

U = {A ∈ R
2×2
sym : a+ < k|�a−|}
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E−k

Ek

Figure 3. The set E{k,−k} and the rank-one cone in R2×2
sym.

Let X be the closure in the weak topology of W 2,2 of the set

(62) X0 =

⎧⎪⎪⎨
⎪⎪⎩u ∈ W 2,∞(Ω, R2) :

• u piecewise affine
•D2u(x) ∈ U a.e.

• u(x) = |x|2
2

on ∂Ω
•∇u(x) = x on ∂Ω

⎫⎪⎪⎬
⎪⎪⎭ .

Lemma 4.2. With the above definitions,

E
lc,1
{k.−k} = E

pc
{k,−k} = U

Proof. Let f : R2×2
sym → R be f(A) = �(a−)2 +(1− k2)�(a+)2 +det(A).

Then it is easy to see that if A ∈ E, f(A) = 0. Therefore by defi-
nition 2.2 if A ∈ Epc f(A) ≤ 0. But this implies that A ∈ U . On
the other hand any A ∈ U lies in a rank-one segment [B, C] with
b+ = k�(b−), c+ = −k�(c−) and B − C = t(1, 1) �
Remark 4.1. The above lemma is equivalent to proving that for equa-
tions of the type

(63) 2∂zf = µ∂zf + µ∂zf

the corresponding G-closure is given by G(k,−k) = [−k, k].

Now we can repeat the arguments in Section 3 word by word. The
only difference is that we need to use the part ii) of Lemma 2.1 to stay
in symmetric matrices.

Lemma 4.3. The space (X, w) is metrizable, with metric d, and for
any f ∈ X we have D2u(x) ∈ U a.e. in Ω. Furthermore the set of
continuity points of the map D2 : (X, w) → L2(Ω, R2×2

sym) is second
category in (X, w).

Proof. We can use elliptic regularity here as well to obtain that X is
metrizable. Indeed by [2, Theorem 3.6] there exists an uniform constant
c = c(K, Ω) such that ∫

Ω

|D2u|2 ≤ c
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for every u ∈ X. Since fu = (ux,−uy) is K-quasiregular and affine in
the boundary of Ω we obtain that Dfu ∈ W 1,p(Ω) for p > 2. Thus, we
obtain continuity of the determinant respect to the weak topology in
W 2,2, which implies as in Lemma 3.3 that D2u(x) ∈ Upc. The rest of
the proof is exactly the same as in Lemma 4.3. �
Lemma 4.4. The set of points of continuity in (X, d) of D2 satisfy
that D2u(x) ∈ E{k,−k} almost everywhere.

Proof. We can repeat line by line the proof of Lemma 3.4. The only
difference is at (30) when we use part ii) of Lemma 2.1 instead of part
i). �
Corollary 4.1. The set of mappings in X such that D2u(x) ∈ E{k,−k}
is of second category

4.1.1. Laminates and Integrability.

Proposition 4.1 (The symmetric strong staircase). Let A ∈ U . Then
there exists a sequence {νn}∞n=1 ∈ L(U) such that

(64)

∫
R

2×2
sym

λdνn = A,

lim
n→∞

∫
R

2×2
sym

|λ| 2K
K−1 dνn = ∞.

Proof. We give the building blocks of the appropriate staircase lami-
nate. Let ek = 1

1+k
(k, 1) and e−k = 1

1+k
(−k, 1) in conformal coordi-

nates. We define

(65) νn = λ1
nδnek

+ λ2
nδ(n+1)e−k

+ λ3
nδ(n+1)J ,

where λ1
n = 1+k

2nk−1−k
, λ2

n = (1− 1+k
2nk−1−k

)1+k
2nk

and λ3
n = (1− 1+k

2nk−1−k
)(1−

1+k
2nk

). Then νn is a second order laminate
∫

λdνn = (0, n). Moreover,

(66) Πn
i=1λ

3
i ≈ n− 2K

K−1 .

Then the measures νn are obtained from νn exactly as in [11]. We

briefly recall the process. To start with we put ν1
def
= ν1. The first

step is to construct a new measure ν2 ∈ L(E) by replacing δ2J in
the definition of ν1 by ν2. Then ν2 has an atom δ3J . This is further
replaced by ν3 yielding a new measure ν3. The process is continued till
infinity replacing always δnJ by the laminate νn obtaining a measure
νn. The center of mass νn will be always J and (64) follows from
(66). To achieve that the support of νn is contained in U we shift the
construction considering the measures ν̃n(·) = νn(· + J).

The set E{k,−k} it is invariant under multiplication for scalars and
addition of matrices with conformal coordinates (0, ti). Therefore we
can do the previous constructions with any matrix in the plane E0 as
center of mass. Finally any A ∈ U is rank-one connected to E0 along
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the rank one line (1, 1). Thus, we can argue as in the Proposition 3.1
to have the laminates with center of mass A. �

Since the proofs are again exactly the same we just quote the final
outcome.

Proposition 4.2. The set of points in X such that
∫

B(x,r)
|D2u| 2K

K−1 =

∞ for all B(x, r) ⊂ Ω is second category in (X, d)

Theorem 4.1. Let K > 1 and k = K−1
K+1

. For any bounded open set

Ω ⊂ R2 there exists a function u ∈ W 2,2(Ω; R2) with the following
properties:

(i) u(x) = x on ∂Ω,
(ii) D2u(x) ∈ E{k,−k} a.e. in Ω,

(iii) For any ball B ⊂ Ω we have
∫

B
|D2(x)| 2K

K−1 dx = ∞.

4.2. Lower critical exponent. As in the case of the upper exponent
the proofs here are very similar. We start by a geometric lemma de-
scribing the rank-one connections of any matrix to E{k,−k}
Lemma 4.5. For every A ∈ R2×2

sym there exists P ∈ E∞ and and Q ∈
E{k,−k} with rank (P − Q) = 1 such that A ∈ [P, Q] and

(67)
1

cK
|A| ≤ |P − Q| ≤ cK |A|

Proof. Let A = (a+, a−) ∈ R2×2
sym. Then for P = (a+ ± |a−|, 0) ∈

E∞, det(P −A) = 0. The line P + t(±|a−|, a−) is rank one and eventu-
ally it will hit the planes Ek and E−k. The estimates (67) follow from
Lemma 3.5 �

Next, we find that laminates with the required integrability exists
also in this setting.

Lemma 4.6 (One symmetric weak step ). Let A ∈ Br(nI) for some
0 < r < 1/2. There exists a laminate νA of third order with the follow-
ing properties:

• νA = A,
• spt νA ⊂ E{k,−k} ∪

{
(n + 1)I

}
,

• spt νA ⊂ {
ξ ∈ R2×2 : c−1

K n < |ξ| < cKn
}
,

• (1 − c−1
K

r
n
)βn < νA

({(n + 1)I}) < (1 + cK
r
n
)βn,

where

(68) βn =
n

n + 1

1 − k + 2n

1 + k + 2n
,

and cK > 1 is a constant only depending on K.

Proof. Let

(69) Ck =
1

1 + k
(k, 1), C−k =

1

1 + k
(k,−1)
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in conformal coordinates. If A = nI the claim follows by considering
the laminate

νA =
(
λ1δnCk

+ (1 − λ1)
(
λ2δ(n+1)C−k

+ (1 − λ2)δ(n+1)I

))
,

with

λ1 =
1 + k

2n + 1 + k
,(70)

λ2 =
(1 + k)

2(n + 1)
.(71)

This is by definition a laminate and (1 − λ2)(1 − λ3) = βn. The argu-
ment for A ∈ B(nI, r) different for nI combines this observation with
Lemma 4.5 just as in the case of isotropic equations, Lemma 3.7. �
Proposition 4.3 (The symmetric weak staircase). Let K > 1 and
k = K−1

K+1
. Let α ∈ (0, 1), δ > 0 and τ : [0,∞) → (0, 1] a continuous,

non increasing function with τ(0) > 0 and
∫ ∞

1
τ(t)

t
dt < ∞.

For any bounded open set Ω ⊂ R2 there exists a piecewise affine
function u ∈ W 2,1(Ω; R) ∩ C1,α(Ω; R) with the following properties:

(i) u(x) = x on ∂Ω,
(ii) [u − 1

2
〈Cx, x〉]C1,α(Ω) < δ,

(iii) dist
(
D2u(x), E{k,−k}

)
< τ

(|D2u(x)|) a.e. in Ω,

and there exists a constant cK,τ > 0 so that for all t > 1 we have

(72)
1

cK,τ
t−

2K
K+1 <

∣∣{x ∈ Ω : |D2u(x)| > t}∣∣ < cK,τ t
− 2K

K+1 .

Proof. The proof mimics once more the corresponding situation for
isotropic equations. The difference is that the step laminates are those
from Lemma 4.6 and that since the laminate is supported in symmetrics
we can approximate the laminate by the distributions of Hessians.

�
Theorem 4.2. Let K > 1, k = K−1

K+1
and let F ∈ R2×2 \ {0}. For any

α ∈ (0, 1), δ > 0 and for any bounded open set Ω ⊂ R2 there exists a
function u ∈ W 2,1(Ω; R) ∩ Cα(Ω; R) with the following properties:

(i) u(x) = 1
2
〈Fx, x〉 on ∂Ω,

(ii) [u − 1
2
〈Cx, x〉]C1,α(Ω) < δ,

(iii) D2u(x) ∈ E{k,−k} a.e. in Ω,
(iv) For any ball B ⊂ Ω there exists a constant cB > 1 such that

1

cB
t−

2K
K+1 <

∣∣{x ∈ B : |D2u(x)| > t}∣∣ < cBt−
2K

K+1

for all t � 1.

In particular u ∈ W 2,q(Ω) for every q < 2K
K+1

but for any ball B ⊂ Ω

we have
∫

B
|D2u(x)| 2K

K+1 dx = ∞.
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Proof. The scheme of the proof for the corresponding theorem for
isotropic equations, Theorem 3.2 can be followed line by line, replacing
always Lemma 3.6 by Lemma 4.5 and part (i) of Lemma 2.1 by part
(ii). �
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