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This is the first of a series of works on the continuum mechanics and thermody-
namics of creep and recrystallization of large polycrystalline masses. The general
continuum theory presented here is suited to mono- and multi-mineral rocks. It
encompasses several symmetry groups (e.g. orthotropic and transversely isotropic)
and diverse crystal classes of triclinic, monoclinic, and rhombic systems, among
others. The cornerstone of the current approach is the theory of mixtures with con-
tinuous diversity, which allows one to regard the polycrystal as a ‘mixture of lattice
orientations’. Following this picture, balance equations of mass, linear momentum,
lattice spin, energy, dislocations, and entropy are set forth to describe the response
of the polycrystal (i.e. the ‘mixture’), as well as of a group of crystallites sharing the
same lattice orientation (viz. a ‘species’). The connection between the balance equa-
tions for a ‘species’ and those for the ‘mixture’ is established by homogenization
rules, formulated for every field of the theory.

Keywords: continuous diversity; thermodynamics; mechanics; polycrystal;
plasticity; anisotropy; fabric; texture; ice; olivine; rock-salt

1. Introduction

Geomorphological processes often involve the deformation of large masses of rock,
flowing in a slow and continuous viscoplastic regime named creep. In nature, creep-
ing rocks are seldom monomineral —like ice in glaciers and ice sheets, or pure halite
(rock-salt) in salt domes and beds (Handin et al. 1986; Paterson 1994)— but some-
times one mineral may be predominant, constituting what is called the primary or
connected phase: e.g. olivine in the upper mantle, or anhydrite-rich halite in large
salt deposits in the crust (Hobbs et al. 1976; Chopra 1986). The corroboration of
such a prevailing, connected phase is essential for regarding the medium (in a good
approximation) as a monomineral rock. Nevertheless, in most common situations
the material is indeed multi-mineral, and requires therefore a multiphase descrip-
tion. In this work, both cases (single- and multiphase modelling) will be addressed.

Independently of the mono- or multi-mineral character of the rock, its structure
is typically crystalline. This means that minerals and rocks are generally com-
posed of crystallites (also called grains) possessing a highly-ordered atomic struc-
ture: the lattice. The peculiar symmetry of the lattice, geometrically represented
by crystallographic azes (Kocks et al. 1998), causes crystallites to be remarkably
anisotropic. As a consequence, the orientational distribution of crystallographic
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2 S. H. Faria

axes —called texture, or fabrict— is of prime importance for the mechanics of the
rock. On the other hand, during deformation, the lattice of some crystallites may
bend, twist, break, and rotate, changing so the original fabric. The latter may also
be modified by the growth and shrink of grains, as well as by dynamic recrystal-
lization, which involves the nucleation of new grains and the irregular migration of
their boundaries (Poirier 1985; Humphreys & Hatherly 2004).

Besides all issues mentioned so far, the deformation of large rock masses is also
complicated by its experimental unattainability: usual geomorphological processes
last for millennia, reaching remarkably large strains in such a slow pace, that it is
impossible to reproduce analogous conditions in laboratory. Further, field observa-
tions are often hindered by the environment, either because of inhospitality (e.g.
ice sheets) or due to natural barriers (e.g. Earth’s mantle). Hence, to proceed on
the subject, we are forced to rely on good hypotheses and theories.

This series is an attempt in that direction. Its objective is to present a general
continuum theory for the mechanics and thermodynamics of large polycrystalline
masses, | including fabric (i.e. texture) evolution, anisotropic response and recrystal-
lization. The theory is intended for mono- and multi-mineral rocks and encompasses
several symmetry groups, including transversely isotropic and orthotropic, as well
as any crystal class whose symmetry is susceptible of being described in terms of
three orthogonal axes. In this Part I, general balance equations and homogenization
rules are presented. The ensuing Part IT (Faria et al. 2005) deals with the construc-
tion of a thermodynamically consistent constitutive theory for a whole class of
polycrystalline media. Finally, Part III (Faria 2005) illustrates the usefulness of the
theory for the particular case of anisotropic ice sheets.

The structure of this article is as follows: §2 introduces the general formalism of
mixtures with continuous diversity, which represents the cornerstone of the present
theory, and shows how to incorporate polycrystals into this scheme. In §3, balance
equations and homogenization rules are derived for monomineral rocks. Finally, §4
ends the article with remarks on the extension of the theory to multi-mineral rocks.
Important information about notation is provided in Appendix A.

2. Polycrystals as mixtures with continuous diversity

At first sight, we could naively conjecture that polycrystalline minerals are simply
dull gatherings of single crystals. However, the truth is much more complex than
that: polycrystals are made of grains that interact continually trough exchanges of
mass, energy, momenta, and entropy. Thus, from a thermodynamic point of view,
we may say that crystallites are mutually-interacting open systems.

(a) Miztures of crystallites

Examples of interacting open systems are abundant in nature: granules with
different sizes in a polydisperse granular medium, distinct phases of a material
undergoing phase changes, incompatible populations disputing a common territory,
chemical substances reacting in a mixture, just to mention some. All these examples

1 In order to avoid the vocabulary conflict between geology and materials science, the terms
‘texture’ and ‘fabric’ are used here as synonyms to the preferred orientations of the lattice. No
particular word is employed in reference to grain sizes and shapes.

1 Here, ‘large’ means ‘big enough to allow the description of fabric through a continuous func-
tion’. In practice, we can bluntly estimate it as <1010 crystallites, with n > 1’ (cf. Part III).
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Creep and recrystallization of polycrystals — 1. Continuum theory 3

have in common the fact that their dynamics is described by the same set of fun-
damental laws, which form the basis of the standard theory of mixtures. Of course,
the word ‘mixture’ is used here in its broadest sense, as a ‘mixture of grain sizes’,
a ‘mixture of phases’, a ‘mixture of populations’, or a ‘mixture of chemical sub-
stances’. It should be noticed that the identification of the constituents (or species)
in these examples also differs from mixture to mixture. For instance, in mixtures of
populations we can use either taxonomic or physiological attributes to identify the
members of a species, whereas in a chemical mixture the species are distinguished by
chemical composition. For polycrystals, there are many crystallite properties which
can be used to identify a species, like grain size and shape, orientation of crystallo-
graphic axes, etc., depending on the characteristics of the material and the problem.
Experience shows, however, that crystallographic orientation is frequently the most
significant distinctive property. Hence, by adhering to such a characterization we
may portray the polycrystal as a mizture of orientations, in the sense that grains
with similar lattice orientations within the same aggregate should behave alike.{
At this moment we face a technical problem: an appropriate mixture theory for
polycrystals should be able to cope with all possible species, viz. an infinite number
of them, for the lattice orientation may vary continuously in space. Standard mix-
ture theory is not suitable for this case, since it can deal solely with a limited number
of constituents. Hence, we are forced to resort to a different kind of theory, apt to
model less orthodox types of mixtures possessing a continuous diversity of species.

(b) Résumé of the theory of mixtures with continuous diversity

Succinctly, a mixture with continuous diversity can be regarded as a multi-
component medium made up of an infinite number of mutually-interacting species
whose distinctive properties vary smoothly from one to another. As a matter of fact,
the intuitive notion of continuous diversity is remarkably old (see Asimov 1979),
and also its mathematical modelling is long-established, being formally rooted in
Euler’s (1767) pioneering work on the demography of structured populations. Since
then indeed, the same concept has been improved and/or independently rediscov-
ered in diverse contexts, ranging from chemical mixtures (de Donder 1931; Aris &
Gavalas 1966) and gas dynamics (Curtiss 1956; Dahler 1959) to anisotropic fluids
(Condiff & Brenner 1969) and sea ice (Coon et al. 1974). Eventually, the term ‘mix-
ture with continuous diversity’ has been coined (Faria 2001) in an effort to incorpo-
rate all those formerly unrelated approaches into a unified thermodynamic theory.

Mathematically, the idea of continuous diversity can be readily grasped by con-
sidering the example of an ordinary chemical mixture of N components. In this
simple case, the mass density field of the a-th species at position x; and time in-
stant ¢ is denoted by o*(z;,t), with a =1,2,..., N. Notice that the species label «
is not just a counter: the mixture can only have a physical meaning if there exists
a one-to-one relation between o and the distinctive properties of the constituents,
e.g. a« =1 liquid, o = 2 + solid, etc. Now, to derive the respective mass density

1 The notion of a ‘mixture of orientations’ is well-established in the literature. In rheology,
for instance, it has been invoked by Prager (1955), Curtiss (1956), Dahler (1959) and many
others (see references in Faria 2001 and Faria & Hutter 2002). Within the context of crystal
mechanics, models based on the concept of ‘orientational distribution function’ bear a notice-
able resemblance to the present approach (cf. Zhang & Jenkins 1993; Kumar & Dawson 1996;
Raabe & Roters 2004), although the analogy between polycrystals and ‘mixtures of orientations’
seems to have been first explicitly exploited by Faria et al. (2003).
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4 S. H. Faria

field in a mixture with continuous diversity we must simply allow the species label
a to be a real variable, defined in a compact interval [amin, @max] = A C R called
species assemblage. The end points iy and apax are generally chosen so that A
has complete diversity, i.e. it accounts for all possible species in the medium.

A result of the procedure outlined above is that « € A has acquired the status of
a new variable, in addition to x; and ¢, in such a manner that the mass density field
of the a-th speciest is given by o*(z;,t, @) and should be interpreted as a density
on R? x A. The superscript ‘+’ indicates that the respective field is a function not
only of x; and ¢, but also of a. Of course, the same procedure can be extended to all
other physical quantities of interest, enabling so the definition of the species fields
of stress t;(zk, t, ), internal energy e*(z;,t, @), velocity v} (z;,t, a), etc.

(¢) Definition of a crystalline species

On many occasions it may happen that the specification of a species requires
more than one distinctive property, in such a manner that multiple labels ., € A”
(v=1,...,v) must be introduced (Faria 2001). This is for instance the case of
polycrystals modelled as ‘mixtures of crystallographic orientations’, for which we
generally need v = 3, as explained below (see also Fig. 1).

We all know that lattice orientations can be represented in a number of ways, e.g.
through Fuler angles, quaternions, Cayley—Klein parameters, Rodrigues vectors, etc.
(Synge 1960; Bunge 1993; Sutton & Balluffi 1995; Goldstein et al. 2002). Suppose
we decide to use Euler angles, viz. ¢, 8 and ), which are the standard choice for the
analytical treatment of fabrics. Thus, we could in principle set a; = ¢, as = 0 and
a3 = Y, but this choice of labels turns calculations rather cumbersome. Instead, we
follow the standpoint of Liu (1982, 2002) that constitutive relations for anisotropic
media —including crystalline matter— are best expressed in terms of anisotropic
invariants. In diverse situations these invariants account for anisotropy by means
of an orthogonal triad of unit vectors {nil,nf,ng}, which determines the axes of
symmetry of the lattice. This is the case of transversely isotropic and orthotropic
symmetries, as well as diverse crystal classes of triclinic, monoclinic and rhombic
systems, among others (for a comprehensive list see Liu 1982).

Equivalence between the nine components of the triad {n},n?,nj} and the three
Euler angles ¢, 8 and  is established through the orthonormality conditions}

2.2 _ 1

iy =1,

nint =n ning =0 and ni = ieijkn;n,f , (2.1)

(cf. Appendix A), which imply that only three components of the triad are in fact

independent: n{, nd and n?, say. As illustrated in figure 1b, we can easily identify
these three key components with the labels a;, as and as which specify a species:

a1 =nl =sinBcost , s =nl =sinBsin¢ , (2.2)
a3 =n? = cosBcos cos P — sinhsin Y . ’

1 As a matter of fact, the continuity of a renders the precise determination of a single, definite
species impossible: only references to an ‘infinitesimal range of species’ da (which includes « itself)
have strict meaning. Notwithstanding, we adhere here, for simplicity, to the common shorthand
‘the species o’ when referring to such a ‘species range’ (cf. Aris & Gavalas 1966; Faria et al. 2005).

1 The = sign in (2.1)3 stands for +1 for a right-handed triad and —1 for a left-handed one. Of
course, both triads are related by an inversion transformation. In this sense, the symbol + can be
interpreted as an axial unit scalar, which ensures that nf is an absolute vector.
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Rotation sequence:
b 8 — Y
(named ‘y convention’ by
Goldstein et al. 2002)

Reference orientation:
$=0 nf = 63;
6 =0 nf = 611‘
=0 nf = b2

(d)

Figure 1. Description of lattice orientations in terms of Euler angles. For the particular case
of transverse isotropy (a) just two Euler angles (¢, 6) suffice. In more general situations (b)
all three Euler angles (¢, 0, ) are needed. The meanings of these angles are best illustrated
through the ‘drifting boat’ metaphor (¢) and (d), as explained in the text.

An instructive interpretation of (2.1) and (2.2) is provided by the drifting boat
metaphor (figures 1c and 1d; see also Kocks et al. 1998). The first two Euler angles ¢
and 0 specify, respectively, the longitude and colatitude of a ‘fictitious boat’ drifting
on the surface of the unit sphere S? C R3. Clearly, these two angles establish the
orientation of the unit radius vector n; of §?. On the other hand, rotations about n}
are described by the third Euler angle Y, which defines the instantaneous direction
of the ‘bow of the boat’ with respect to the local southward direction. In other
words, the angle Y determines the orientation of the unit vector n?, which specifies
a point in the unit circle S C 7,82, where 7,:S? is the tangent space of S at n}
(Appendix A; Abraham et al. 1988). Of course, any orthonormal triad is completely
determined through the knowledge of n] and n?, seing that n? is given by (2.1)s.

To sum up, any species in a polycrystal modelled as a ‘mixture of orienta-
tions’ is uniquely determined by three species labels, which can be related to two
mutually-orthogonal unit vectors n! € §? C R? and n? € S' C 7,82 The appro-
priate species assemblage for the kind of polycrystals considered here is therefore
A3 := 82 x ST, also called orientation space, since it comprises all possible orienta-
tions of the lattice. Accordingly, the vectors n;}, njg and nj are also named orien-
tation vectors. Hence, by using just two of such vectors n? (A =1, 2) we can intro-
duce, in conformity with §2b, thermodynamic fields that are orientation dependent:
the species mass density o*(zi,t,n}), the species Cauchy stress t;(zx,t,n;'), etc.

Remark 2.1. The fact that just n! and n? suffice to define a lattice orienta-
tion does not mean that nf is dispensable: all three vectors are needed to describe
material symmetries in an intelligible manner. Further, n] is also requisite to distin-
guish between crystallites with right- and left-handed symmetries, as occurring e.g.
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6 S. H. Faria

in deformation twins (Humphreys & Hatherly 2004). It must be noticed, however,
that from the viewpoint of the present theory no continuous process can transform
a right-handed lattice into a left-handed one, and vice versa: twinning is a dis-
continuous transformation. Consequently, crystallites with left- and right-handed
symmetries must be treated as distinct materials, requiring so a multiphase theory,
just like the case of multi-mineral rocks. This topic is examined in §4.

Remark 2.2. In the simple case of a polycrystal made of transversely isotropic
grains, just one crystallographic axis turns out to be relevant (figure 1a). The angle
W becomes superfluous, and the triad {n}, nf, ng} reduces to a single orientation
vector: n! = n;. Accordingly, the orientation space is restricted to S? and the
species fields assume the forms o*(zi,t,n;), t7;(zx,t, ), etc. Materials of this sort
are examined in Parts IT and III (Faria et al. 2005; Faria 2005).

3. Balance equations for several crystal classes

Continuous diversity inevitably implies some kind of ‘species hierarchy’, which is
intuitively expressed by the notion of familiarity: two species are said familiar if
their distinctive properties —and consequently, their behaviours— are alike, though
not identical. The concept of familiarity stems from the existence of a metric in A",
and it is clearly the counterpart in A” of the usual notion of closeness in R>. As
discussed below, familiarity plays a key role in the construction of balance equations,
owing to its relevance for interactions and mass exchanges between species.

(a) Transition rate, lattice spin velocity and orientational gradient

One of the greatest virtues of familiarity is that it allows us to treat the species
labels ay and the position vector z; at the same footing. For instance, we can con-
ceive a situation in which, besides usual mass transfers by transport phenomena,
the mass of constituent o, varies in time through inter-species transitions. From the
obvious similarity of these transitions in A" with ordinary motions in R3, we im-
mediately conclude that the rate at which such continuous mutations occur can be
described by a kind of ‘velocity’, called transition rate and denoted by uf;(a:i, t, o),
with «v,6 = 1,...,v. In fact, by considering a unit volume in a medium at rest
(viz. v (2;,t,ay) = 0), we readily infer that uj; determines the rate at which the
amount of mass ¢* performs a continuous transition from the constituent a. to
some other familiar species, by altering its distinctive properties.

Now, let us apply the concepts of familiarity and transition rate to polycrystals.
The starting point is a suitable interpretation of familiarity in polycrystalline media:
within a given material particle, two crystalline regions made of the same substance
and possessing the same symmetry are said to belong to familiar species if their
relevant crystallographic axes are closely oriented. Clearly, what is meant by ‘closely
oriented’ depends on the medium and the problem under consideration, (familiarity
in 8% x 81, like neighbourhood in R3, is a relative notion). Be that as it may, the
formation of subgrain boundaries can be used to establish a natural upper bound for
familiarity in polycrystals. Hence, in this work we assume the simple convention that
subgrains of a given crystallite belong to familiar species, whereas highly misoriented
grains (> 10°, say) pertain to disparate species.

Turning attention now to transition rates, we conclude from §2b and the dis-
cussion above that continuous transitions in S? x S' must correspond to smooth
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Creep and recrystallization of polycrystals — 1. Continuum theory 7

Figure 2. Relation between transition rates and the lattice spin velocity. In the particular
case of transverse isotropy (a) the lattice spin velocity s; is always orthogonal to both, the
orientation vector n; and the transition rate u;. Yet, in a general situation (b,c) the lattice
spin velocity may have an arbitrary orientation, though it can still be decomposed in two
parts: one orthogonal (s}, ) and another parallel (s};) to n/, cf. (¢) and (3.3). Associated
to each of these parts (d) there is a corresponding transition rate, namely u]* and uf*.

changes of orientation. We may express such changes by two transition rate vectors
(cf. Goldstein et al. 2002) —viz. u*(x;,t,n;), with A, B =1, 2— related to the
time rates of the Euler angles ¢, 8 (A =1), and Y (A =2). It is evident that only
three of the six components of u#* are independent: u{*, u3* and u$*, say, while
the other three are determined by the conditions (cf. (2.1))

njful* =nfuf* =0, and nfuf*=0. (3.1)
Hence, both transition rate vectors are tangent to the sphere S2, while in addition,
u?* must also be tangent to the circle S (cf. figures 1b and 2d). On the other hand,
from the notion of familiarity we immediately infer that the continuous transitions
expressed by the rates u** must correspond to rotations of the crystalline lattice.
This conclusion is illuminating, because it implies that u* can be expressed in
terms of a more fundamental quantity: the lattice spin velocity s} (cf. figure 2)

b 1 o oox 1 gx 1
Ui = elijjLnk = Ewksj’nk = lknk 5 (3 2)
2% . ok 2 w1\ 12 o 83qx 2\,,3 '
u;t = €ijRSy Ny = (spnp)ewknj ny = (nj Shng)ng
* o, * 1 1 * %k * * L o*
Sq = (Sknk)ni ) SiL =Sy T Sy Sij = —CijkSk - (3'3)

Of course, in the case of transverse isotropy we have s}, = s}, the vector n? becomes
superfluous, and hence we can set n} = n; and u}* = u}, as it should be.

From a different perspective, we may interpret the introduction of transition
rates as a direct generalization of the notion of velocity, by replacing v; with

{vf, ujl ,uf*}. Evidently, such a generalization stems from a related extension of
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8 S. H. Faria

the concept of position, from z; to {z;, njl ,n% }. Now, it is obvious that any change
in the description of position entails upon a corresponding extension of the spatial
gradient operator 0/dx;, which becomes {9/dx;, 8]1 ,0F }, where 07 (with A = 1, 2)
denote the orientational differential operators in S? and S?, respectively:

0 0
1 . 1,1
O = onl 7nink8n,ﬁ’
2 0 2,2 0 1,1 3,3 0 (34)
OF = guz T Mgz T MMk gar = MM

The first term on the right-hand side of (3.4); represents the usual directional
derivative along n/, while the second term arises from the normalization condition
(2.1)1, which implies that 8] cannot have a component in the n] direction. Likewise,
it follows from (2.1) 2 that 7 cannot have components in the directions given either
by n! or by n? —there remains just the n; direction available— as expressed by
(3.4)2. Of course, in the simple instance of transversely isotropic crystallites we
have n] = n; and consequently ] = 9;, since 97 is not defined in this case.

(b) Balance equations for polycrystals

Within the framework of continuum theories, crystals and polycrystals have
sometimes been modelled as polar mediat (e.g. Forrest et al. 2000), a supposition
which dates back to Voigt (1887) and the Cosserat brothers (1909). Presently, the
equations of polar theory are well-known (Dahler & Scriven 1963; Truesdell &
Noll 1965; Capriz 1989; Svendsen 2001) and counsist of the balance equations of mass,
linear momentum, angular momentum (spin) and internal energy, respectively:

% gz, (@) =0, (3.5)

8;:1 + % (ovivj — tij) = 0gi , (3.6)

8%1;51' + 8;; (olsivj — mij) + €ijrtin = oCi (3.7)

% + % (0evi + ;) — tijg—;); - mijg—;; — €k Sitjr = or, (3.8)

where o, ov;, ols; and pe denote the densities of mass, linear momentum, spin
momentum and internal energy, respectively. For brevity, other fields occurring in
(3.5)—(3.8) are defined in Appendix A. In some situations it may be advantageous
to replace (3.8) by the more fundamental balance equation of total energy

DoF

E=e+ 10+ 1Is®,  Qi=q —thivk —muise, R=r1+ grop + cxse, (3.10)

(0Ev; + Qi) = oR, (3.9)

from which (3.8) can be derived with the help of (3.6) and (3.7).
1 Roughly, polar media are microstructured continua characterized by couple stresses, body
couples, and additional degrees of freedom subsumed in an intrinsic angular momentum called

spin (Dahler & Scriven 1963; Truesdell & Noll 1965; Capriz 1989; Svendsen 2001).
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In practice, however, the classification of polycrystals as polar media is often un-
necessary. Experience shows that in many situations m;; = I = ¢; = 0 and s; = w;
(where w; := %eijkavk /0z; denotes the local angular velocity of the continuum, i.e.
one half of vorticity) may be good assumptions, in such a manner that (3.5)—(3.8)
reduce to the balance equations of ordinary (non-polar) continua:

0o 0
go ) =0, 11
2+ (gn) =0 (3.11)
8gvi 0
220 T (ovivy — tij) = 0gi , 3.12
8t + 817]' (QU U] ]) 09 ( )
€ijrtik =0, (3.13)
doe O v;
22 L = (pevi+ qi) — tij— = or . 3.14
Consequently, (3.9) and (3.10) simplify to
OoE 0
ge~ Buv; +Q;) = 1
5 + oz, (0Ev; + Q;) = oR, (3.15)
E:e—l—%v2 , Qi = q — trivg , R=r+grvg . (3.16)

Equations (3.11)—(3.13), (3.15) are also known as the continuity equation, Euler’s
first and second laws of motion, and the first law of thermodynamics, respectively.

The set of balance equations (3.11)—(3.16) has since long been used in many
theories for polycrystals as a rule of thumb. Notwithstanding, in the current ap-
proach we do not need to postulate the validity of (3.11)—(3.16); rather, we may
adopt, a priori, the more general equations (3.5)—(3.10) and then, through an ap-
propriate constitutive theory, it is possible to prove that (3.11)—(3.16) are valid for
some particular problem (see Part III, Faria 2005).

That grains in a polycrystal should generally be modelled as polar media is
justified by the micromechanics of crystals (see e.g. Asaro 1983; Forrest et al. 2000):
torsion/bending of grains and the rotation of crystallographic axes relative to the
matrix are clear indications of couples and asymmetric stresses acting on the grains.
In this sense, polycrystals can also be seen as ‘mixtures of polar media’. What
remains questionable is if such ‘mixtures of polar media’ do behave themselves as
polar media, or if the couples and asymmetric stresses acting on distinct species
cancel each other on average, resulting in no net outcome.

In ordinary mixture theory (e.g. Faria & Hutter 2002), species balance equations
are obtained from (3.5)—(3.10) in two simple steps. First, every field in (3.5)—(3.10)
is replaced by its respective species field, characterized by the label o =1,..., N,
viz.: p(x;,t) becomes p*(z;,t), and s;(z;,t) becomes s (x;,t), etc. Second, a pro-
duction/exchange term describing inter-species interactions is added to every bal-
ance equation, since mixed species are in fact interacting open systems (cf. §2a).

In contrast, polycrystals modelled as mixtures with continuous diversity need
slightly more complex species balance equations, in view of the generalizations
discussed in §3a. Hence, we must convert the two steps mentioned above into four:

1. Every field in (3.5)—(3.10) is replaced by its respective species field, viz.: o(z;,t)
becomes o*(zi,t,n?), and si(z;,t) becomes s} (z;,t,ny), etc.

2. A production/exchange term describing interspecies interactions is added to ev-
ery balance equation, since mixed species are in fact interacting open systems.
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10 S. H. Faria

3. As explained in §3a, the velocity v; is replaced by {v},u]*,u?*}, with uf* given

by (3.2), while the gradient operator 8/0x; is replaced by {9/0z; , 8]1 , 8]'-2}, with
0; defined in (3.4).

4. Following the same reasoning of the last item, also fluxes and stresses must
be extended to have their counterparts in the species assemblage S? x S'. These
extensions are the interspecies stresses and fluzes 7/;*, w/" and §'*, with A =1, 2
(see Appendix A for the definitions of these fields).

Through these four steps, we derive from (3.5)—(3.10) the species balance equa-
tions for polycrystals modelled as mixtures with continuous diversity (summation
convention applied to lowercase and capital repeated indices, cf. Appendix A)

® 1mass

50 T gy (€7 + O (eTui) = oI (3.17)
e linear momentum
8Q*v; 8 kK ok * A *x ok Ak Ax * % * %
J

e lattice spin momentum

do*Is* 0
Qat “t (0" Is7v; — mi;) +07 (0" Isiu] "~y ) +eijutsy, = o"c; +o™ v, (3.19)
J

e internal energy

ag*e* a * kK * * sk * *
5 T gy, (@€ + ) +Of (e Ui+ E)
J
3.20
* g% *81}: *85f A* A * A* A _* * ok * _k ( )
— €ijkS; Uik _ti]’—axj - ij—axj — 7707 v] —wi 0f's; = o"r* + 0" .

It must be noticed that (3.20) is not derived directly from (3.8), but rather from
(3.9) and (3.10) through the species balance equation of total energy

a‘g*E* * * * * * * * Ak * * * *
5 T B (0" E*vf + Q) + 0 (0" E* uf*+ Z) = o*R* + o*L*,  (3.21)
?
E* = e* + %'U*z‘i- %18*2 7
Q=g —tiol - mist, B =& - wisi, (322
L* =" + kv +v]s], R* =" + gyv; + cisy, -

Again, all fields in (3.17)—(3.22) are defined in Appendix A. Details of the derivation
of (3.20) from (3.9), (3.10), (3.21) and (3.22) are given in Faria & Hutter (2002).}

Remark 3.1. Two points are worthy of notice concerning (3.17)—(3.21): first, no
balance equation is proposed for u/**, since these fields can be derived from s} via
(3.2). Second, the corresponding balance equations for transversely isotropic crystal-
lites are much simpler, seeing that in this case we can drop the superscripts ‘A’ out
of all equations (e.g. £** becomes £, etc.; see also remark 2.2 and Faria et al. 2005).

1 The cited authors considered only the particular case of transverse isotropy, but the procedure
is exactly the same for more complex symmetries considered here.
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dxl
X1 x1+dx X1

Figure 3. Distinction between spatial fluxes, conductive fluxes, and production rates. Left:
a material particle at z1 (z2 and z3 are irrelevant here) contains some grains with the
lattice orientation n;', identified by dark grey. Spatial fluxes/stresses to this species (e.g.
q1, ti1, etc.) represent conductive transfers from all crystallites in the neighbourhood to
the dark-grey grains at x1. Right: the same polycrystalline particle at x1, but now under
the action of production/exchange rates and interspecies fluxes/stresses. In this case all
interactions occur within the same material particle. For simplicity, only three disparate
lattice orientations are considered: white, light grey and dark grey. The effect of a familiar
species is illustrated by an additional grain in a slightly lighter dark grey, representing a
crystallite closely oriented to nf*. Dark arrows stand for production/exchange rates (*,
K;, etc.), viz. high-angle interactions between light- and dark-grey grains. Interspecies
fluxes/stresses (£**, Tﬁ:, etc.) are represented by the curved, light-grey arrow, which
symbolizes the low-angle interaction between the two familiar dark-grey grains.

At first sight, (3.17)—(3.22) may look somewhat formidable in comparison to
(3.5)—(3.10). However, a careful analysis shows that the differences are actually not
so striking. There is even an interpretation of (3.17)—(3.22), without direct reference
to 8% x S, that can be valuable in certain situations. Consider for instance the
species balance equation of linear momentum (3.18). We can readily rearrange it as

0o* v} 0

55 o (0*vjv] —t5;) — 0" g7 = "k} + 077" — 07 (o*viuf™) . (3.23)
J

The left-hand side of (3.23) has exactly the form of the usual balance equation of
linear momentum (3.6) or (3.12). Now, the right-hand side of (3.23) can, as a whole,
be interpreted as an effective production/exchange rate of linear momentum within
a polycrystalline particle (cf. figure 3): the first term describes interactions between
highly misoriented crystallites, i.e. interactions across high-angle grain boundaries;
on the other hand, the term 8;‘7'1-;‘-* can be interpreted as an specialized produc-
tion/exchange rate in R3 that describes interactions across low-angle grain bound-
aries (i.e. subgrain boundaries). Finally, the last term on the right-hand side of
(3.23) does not represent a production/exchange by interactions, but rather by mass
transfer: when the lattice of a grain rotates, its mass is in effect transferred from
one orientation to another, and consequently its inherent properties (e.g. stored
energy, etc.) are carried with it through a kind of ‘rotational convection’.

(¢) On the irreversibility of recrystallization:
the balance equation of dislocations and the second law of thermodynamics

Mass, momenta and energy are clearly not enough to model the thermodynamics
of creep and recrystallization. Indeed, the basic fields o*, v}, s} and e*, that are so-
lutions of the system (3.17)—(3.20), do suffice to describe fabric, motion, lattice spin
and temperature, respectively, but they fail to define uniquely a recrystallization
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process. The cause of this failure lies in the fact that the driving force for recrystal-
lization is closely related to a particular part of the internal energy, which is stored
during deformation in linear lattice defects called dislocations. Consequently, what
we need is a balance equation of dislocations.

Kroner (2001) has shown that the notion of dislocation density as a scalar
internal variable can be illuminatingly introduced in continuum mechanics by means
of statistical arguments. Using a similar approach, Faria et al. (2003) proposed a
species balance equation of dislocations for ice sheets. Here, based on the results
derived so far, such an equation can be generalized for diverse classes of polycrystals,
by proposing the following species balance equation of dislocations

atD + 8_3% (pDvi) + 8114 (pDu? +]§i) = HD ) (324)

Succinctly, the species dislocation density p? is an internal variable representing
the total length of dislocations in crystallites with crystallographic axes directed
towards nf and enclosed in a unit volume of the polycrystal. Hence, its dimension
is length/volume, i.e. length=2. The dislocation production rate II} represents the
production/consumption of dislocations by Frank—-Read sources, dipole annihila-
tion, etc., (Asaro 1983; Poirier 1985). Finally, the interspecies dislocation fluxes
jgr portray the dislocation exchange between subgrains. Clearly, such interspecies
fluxes are relevant only in specialized models of dislocation—subgrain-boundary in-
teractions, so that j'f may be neglected in most common applications.

Comparison of (3.24) with (3.17)—(3.21) reveals that there are two terms ab-
sent in (3.24), namely the (spatial) divergence of a conductive flux and an external
supply. The absence of the latter is obvious: dislocations cannot be supplied from
external sources to the bulk of the polycrystal. In contrast, the absence of a con-
ductive flux of dislocations is less obvious and was discussed in detail by Faria
et al. (2003). Succinctly, it is a particularity of the theory of mixtures with continu-
ous diversity applied to large polycrystalline masses (see footnote in §1): in this case
the mean free path of mobile dislocations turns out to be many orders of magnitude
smaller than the size of a single material particle, in such a manner that —on a
large-scale perspective— all dislocations seem to be ‘tied’ to the material.

The last but not least fundamental quantity to be introduced in this theory is the
entropy, which expresses the irreversibility of natural processes. Its species balance
equation arises as part of the so-called entropy principle, which sets up the second
law of thermodynamics in a suitable mathematical form for continuum theories:

Axiom 3.1 (Entropy Principle). There exists for every species in a mixture
with continuous diversity a scalar quantity called entropy, such that:

1. it is additive and evolves according to the species balance equation of entropy

do*n*

(o"n"v; + ¢7) + 07 (" n"ui™ + @) = 0"s" + 0"¢"; (3.25)

2. for every species of the mixzture, the specific entropy n*, its fluzes ¢F and o™,
as well as its specific production rate <* are all given by constitutive relations;

3. the net entropy production rate density of the mizture is non-negative for all
thermodynamic processes.
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As regards the last item, it should be emphasized that the entropy production
rates of some species can be negative —provided that any such losses are compen-
sated for with simultaneous positive productions by other species— so that ¢* may
have a non-vanishing lower bound. The crucial question is thus whether such a lower
bound can be mathematically expressed in a tractable form, viz. by a conventional
constitutive equation.t The answer is fortunately affirmative:I

Proposition 3.1. There exists for every species in a mixture with continuous di-
versity a scalar quantity 6*, called specific entropy deviation rate, such that:

1. it is given by a conventional constitutive equation;

2. the inequality 6* < ¢* holds for all thermodynamic processes.

The proposition above offers an interpretation of the second law of thermody-
namics that is as general as —and is much simpler to be exploited on the species
level than— the one presented in item 3 of axiom 3.1 (see Part II, Faria et al. 2005).
A formal proof of it can be found in (Faria 2001). The fact that the lower bound for
¢* can indeed be expressed by a conventional constitutive equation is only possible
because the species entropy production rate can always be written, without loss of
generality, as ¢* = §"+ ¢*P, where ¢* > 0 denotes the specific entropy production
rate of the pure species, i.e. in the limiting case when all other species are absent.
For polycrystals modelled as mixtures with continuous diversity, such a pure species
is evidently a single crystal (with crystallographic axes parallel to n').

(d) Homogenization rules

The basic strategy of the theory of mixtures with continuous diversity applied
to polycrystals is to solve the coupled problem of creep, evolving fabric and recrys-
tallization first on the species level, where a solution is easier to be found. Then,
once all species fields are determined, the behaviour of the polycrystal (i.e., of the
‘mixture’) can be derived by accounting for the response of all species. The connec-
tion between species and mixture responses is set out by certain averaging relations,
called homogenization rules. Such rules can be derived in a similar manner as done
for ordinary chemical mixtures, namely by exploring the additivity of density fields,
combined with the expected forms of the mixture balance equations. For polycrys-
tals, such equations are (3.5)—(3.9), together with the mixture balance equations of
dislocations and entropy (cf. Groma 1997; Acharya & Beaudoin 2000; Liu 2002)

0po 0 _ don
ot T o, Pove) = 1o ot T o,

(onv; + ¢;) = 0s + o5 , (3.26)

where all quantities are defined, as usual, in Appendix A.

Homogenization rules appropriate for polycrystals made of transversely isotropic
grains have been discussed by Faria & Hutter (2002). Here, we extend those rules to
more general crystal symmetries. First, we notice that all species density fields have
been defined with respect to a common volume, viz. a unit volume of the mizture.

t Here, ‘conventional constitutive equation’ means a non-linear, constitutive function (or func-
tional) of the same general type supposed to hold for ¢*, n*, e*, etc. (cf. Faria et al. 2005).

1 This result is trivial for ordinary mixtures, but not for mixtures with continuous diversity,
since in the latter case the entropy production rate of the mixture is given by a non-conventional,
integral relation (see (3.27)) that can hardly be exploited on the species level.
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14 S. H. Faria

Consequently, all such fields are additive, in the sense that mixture densities result
from the combination of the densities of all species. From this reasoning we obtain
the first three series of homogenization rules, valid for the fundamental density
fields (D,,) and their respective production/exchange rate densities (P and C;)

D;L = {Qa Qvi,QISj,QEapD,Qn} ’

D D,
< H) :/ ( 5) d“o ) /CZ da=0 ) PA = {HDv Qg} 3 (327)
Py ) Py J

Ce = {ol, ki, ovj, oL} .

The last integral in (3.27) vanishes because of the conservation of mass, momenta
and total energy of the mixture. The explicit forms of the integrals (3.27) depend
on the domains of their respective integrands: for polycrystals in general, we havef

1 T p2T p27
/(.)* d'a = /(.)* & — —2// / ()" sin® dwdé e, (3.28)
872 Jo Jo Jo
Av S2x St
whereas for the particular case of polycrystals made of transversely isotropic grains:
1 T p2m
/()* d"a :/(.)* d’n = —// (-)* sinBd¢pde . (3.29)
ar Jo Jo
Av S2

Notice that in both instances the integrals are normalized, so that they yield unity
when the integrand is just a unit constant.
Now, to derive further homogenization rules we will need the the following result:

Proposition 3.2. Let A” be a compact manifold and Q, : A” — TA” a vector
field of class CF (int A”), with ooy € AY, k> 1, andy=1,...,v. Then

L 09y
/Z Por, d’a=0. (3.30)

This proposition is a direct specialization of the divergence theorem in v dimen-
sions (Abraham et al. 1988). In order to apply it to polycrystals, we observe first
that the diversity completeness of the orientation space A% := S2 x S! implies the
tangentiality of interspecies fluxes, i.e. J35 : §* x §' = T(§? x §') —otherwise the
interspecies fluxes Jlg; could reach extraneous species outside S? x S'— so that

Jorgaa =0, a5 = Okl @i BN (3
AV

where D, is defined in (3.27) and the explicit form of the integral above is given by
(3.28) or (3.29). Hence, integration of the balance equations (3.17)—(3.21), (3.24),
(3.25) over the whole orientation space S? x S!, combined with (3.27) and (3.31),
with subsequent subtraction of the resulting expressions from (3.5)—(3.9), (3.26),

t Application of (3.28) to (3.27) implies o :/g* d3n, /g*n;‘ d®n =0, etc.

S2x st S2x st
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t=tg t>1g

Figure 4. Selective grain shifting (remark 3.2). For simplicity, just three lattice orientations
are considered (white, light and dark grey). We suppose that recrystallization occurs at
one grain boundary only, and the new grains nucleate with a preferred lattice orientation,
viz. dark grey. The aggregate of small crystallites is likely to deform by grain boundary
sliding, whereas the large grains deform mainly by dislocation glide and climb. Left: initial
configuration. Right: during deformation, small grains move rightwards by grain boundary
sliding. Thus, there is a net shifting of the dark-grey species to the right (C; # 0).

leads directly to the last homogenization rules of interest. Such a procedure is
described in detail in Faria & Hutter (2002) and references therein. In short, its
outcome is the set of homogenization rules for external supplies

S, :/S; d"a Ss = {09:, 0ci, oR, 08} , (3.32)
AV

and for stresses and fluxes
Fyj = {ti‘7mk'7Qj7¢j}7
= [y —ouie aa, Tl @)
XJ A,,(X] b% ]) UX:{CmIGkaEﬂY}v
where the relative velocities C} := v} —v; and G} := s} — s; are respectively called
grain shifting velocity and lattice deflecting rate. Finally, from (3.10), (3.22), (3.27),

(3.32) and (3.33) we obtain the homogenization rules for the heat flux and for the
density, production/exchange and supply of internal energy, respectively

0 /{q;f + o (e*+ 1oy %IG*2) Cr— 15,05 — m;jaj} d¥a

Au
oe :/ 0" (e* + %C’*Q + %IG*Q) d"a (3.34)
AV
/@* (" +#7C; +1/G}) d"a=0,  or :/9* (r+g;Cf +cG}) d¥a.
Av A

Thus, with the help of (3.27), (3.31)—(3.34) we can recover the balance equations
(3.5)—(3.9), (3.26), for the polycrystal through integration of the species balance
equations (3.17)—(3.21), (3.24), (3.25) over all possible lattice orientations.

Remark 3.2. The homogenization rules presented in this section are very general,
occasionally too general even, in the sense that C} = I = 0 are often reasonable
assumptions. Indeed, the velocity C} is only relevant when a pronounced, selective
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shifting of grains with some particular lattice orientation takes place (figure 4). This
is most likely to occur during superplastic flow (Poirier 1985). Nevertheless, super-
plastic flow with selective grain shifting constitutes a very particular situation: in
most common cases we may set v (x;,t,ng) = v;(x;,t) instead, which represents
a prodigious simplification to the theory.t In contrast, it is obvious that we can-
not expect s;(x;,t,ny) = si(z;,t) to hold in general, because this would imply a
‘frozen fabric’, i.e. no texture development. Nevertheless, it is evident that the rota-
tional inertia of the lattice must be extremely small —the lattice does not continue
rotating after cessation of the applied torques— so that I = 0 is valid as a rule.

4. Closing remarks

This work presented a general continuum theory for the thermomechanics of large
polycrystalline masses, including fabric (i.e. texture) evolution, anisotropic response
and recrystallization. It encompasses several symmetry groups, including trans-
versely isotropic and orthotropic, as well as all crystal classes whose symmetries
can be described in terms of three orthogonal axes (cf. Liu 1982). The theory is
based on the concept of a mixture with continuous diversity (Faria 2001), by re-
garding the polycrystal as a ‘mixture of lattice orientations’. Its strategy consists
in solving the coupled problem of creep, evolving fabric and recrystallization on the
species level (i.e. for every ‘component of the mixture’) as described by the system
of equations (3.17)—(3.20) and (3.24). Once all species fields are determined, the
original initial/boundary-value problem for the polycrystal can thus be solved by
application of the homogenization rules (3.27) and (3.31)—(3.34).

It should be observed, however, that the approach studied so far is suitable
only to monomineral rocks, in contrast to the assertion in §1 (cf. also remark 2.1).
Nevertheless, the extension of the theory for multi-mineral rocks is formally di-
rect: it represents what was named by Faria (2001) and Faria & Hutter (2002)
a hybrid mizture with continuous diversity (viz. involving discrete and continuous
species labels). Effectively, the essential difference between mono- and multi-mineral
rocks is that in the latter case we must deal with N phases (every rock-forming
mineral being regarded as a particular phase), i.e. with N distinct ‘mixtures of
orientations’. Thus, in a multiphase polycrystal we need to add a discrete species
label a = 1,..., N to every field of the theory presented so far. For instance, the
species fields of mass density and Cauchy stress in a rock made of N minerals read
0**(zi,t,n;) and i (wk,t,n;'), respectively, with a = 1,2,...,N and A = 1, 2.
The fundamental equations (3.17)—(3.22), (3.24) and (3.25) remain exactly the same
as before (except, of course, for the appearance of the superscript « in every field),
whereas the homogenization rules (3.27) and (3.31)—(3.34) incorporate now a sum

t The assumption v} = v; has no relation at all to artificial constraints on the strain of indi-
vidual grains (e.g. Voigt—Taylor/Sachs—Reuss upper/lower bounds, cf. Asaro 1983; Humphreys &
Hatherly 2004). In the present theory, all crystallites may undergo arbitrary deformations, since
each material particle is large enough to contain a huge number of grains. Thus, stress and strain
inhomogeneities on the grain level are already smeared out in the definitions of v; and t;f‘]- , which de-
scribe the average response of the grains belonging to a given species (cf. remark 2.1 of Part III).
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over «. For instance, the homogenization rule (3.33) for the Cauchy stress becomes

?

N
tij :/ Z (i — o™ CyoC;™) da, where  C;%:=v/"—v;. (4.1)
Av a=1

Further details about balance equations and homogenization rules for hybrid mix-
tures with continuous diversity are available in Faria & Hutter (2002).

Finally, the construction of constitutive equations is studied in the subsequent
parts of this series (Faria et al. 2005; Faria 2005).

This work was conceived during the EPICA-DML 2003/04 deep-drilling expedition in
Dronning Maud Land, Antarctica. It was resumed in Brazil, and finished in Leipzig. I am
grateful to D. Freche, K. Hutter, G. M. Kremer, P. Shipman and E. Zeidler for suggestions
and assistance, as well as to I. Hamann, S. Kipfstuhl, H. Miller and the science group of
the mentioned expedition for enjoyable discussions in situ. Financial support is acknowl-
edged from the Alfred Wegener Institute for Polar and Marine Research (Bremerhaven)
and the Darmstadt University of Technology. This work is a contribution to the ‘European
Project for Ice Coring in Antarctica’ (EPICA), a joint ESF (European Science Founda-
tion)/EC scientific programme, funded by the European Commission and by national
contributions from Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway,
Sweden, Switzerland and the United Kingdom. This is EPICA publication no. xxx.

Appendix A. Notation

The notation described here holds also for Parts II and III (Faria et al. 2005; Faria 2005).

All fields are assumed continuously differentiable, except when mentioned other-
wise. Vectors and tensors are always expressed in terms of their three-dimensional
Cartesian components (e.g. v;, t;;, etc., with 4,j = 1,2, 3). Einstein’s summation
convention (see e.g. Chadwick 1999) is adopted for repeated lowercase Latin indices
(4, j, etc.). For convenience, a similar summation convention is also applied to re-
peated capital Latin indices (A, B, etc.) written as superscripts and ranging from
1 to 2, in a context explained in the text. In contrast, any other kind of repeated
indices should not be summed, except when explicitly indicated.

German letters (§, &, etc.) represent functions and functionals, while sans
serif Latin letters (A, B, etc.) refer to generic fields. As usual, R™ stands for the
n-dimensional Euclidean space. Manifolds in R™ are indicated by calligraphic Latin
letters (A, B, etc.). Two manifolds of special interest are the 2-sphere S2, conceived
as a closed spherical surface of unit radius in R®, and the 1-sphere S', which is,
likewise, thought of as a closed unit circle in R? (Abraham et al. 1988; figure 1). In
this context, 7,S? denotes the tangent space of S? at the point N; € S2.

Several mathematical expressions are for convenience written in condensed form.
In particular, N; € 8? (or alternatively N; € S? C R3) is used as a shorthand for
‘the vector that specifies a point in S? and whose Cartesian components in R? are
N;’. As a rule, mathematical operations involving vectors and tensors are performed
in R?; it is in this context that products like N;G; or €;;xN;Gy (with N; € §? C R3
and G; € 8! C 7,8? C R3) should make sense.

Finally, G? := G;G; represents the scalar self-product of the vector G;, while the
symmetric, skew-symmetric, and deviatoric parts of a tensor G;; are denoted respec-
tively by G(ij) = %(G” + G]'i) R G[ij] = %(G” - G]'i) , G(ij) = G(ij) — %Gkkéij .
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Further symbols frequently used in all three parts of this series are listed below.

Conventions: G = generic quantity; G = generic set; G" = G*, G.
References: [1] Abraham et al. 1988; [2] Faria et al. 2005; [3] Chadwick 1999.

""""""""""""""""""""" Miscellany - c-rrrrrrrrmrrrsr e
G"|g ... Equilibrium part of G~. booo.... Burgers vector (material constant).
G~ ‘)Z ... Non-equilibrium part of G™. Coovnn Fitting constant of the stored energy
Gy ... Part of G~ due to dislocations. (€~0.7).

Gy..... Dislocation-free part of G~ I....... Material constant of spin inertia

' (G := G"— G). (specific lattice spin inertia).

Gyy, - - - - Part of G with strictly non-linear kg...... Boltzmann constant.
dependence on dissipative variables. nf‘, n; .. Orientation vector.

oG..... Boundary of G. too... Time instant.

intG ... Interior of G (int G := G\ 9G). Tiooon.. Position vector.

7G..... Tangent bundle of G.[1] 0y, a. .. Generic species label (y =1,...,v).

Ck(G). . Set of all continuous functions on G 3(-) .... Dirac delta ‘function’.[1]
with compact support and continuous Sij e Identity tensor (Kronecker delta).!3]
derivatives up to order k. . © e

. oo o €ijk - - .- Permutation tensor (Levi-Civita
G ..... Material time derivative of G~.[2:3] symbol).m

e . . . .

o, 0; .. Orl.entatllonal dlffer.entlal operator (9,8, y) Euler angles.
(orientational gradient). o
5?, ;.. Constrained orientational gradient.[Q] A*i;\* D>:* } Lagrange multipliers.[?]
1 NGy

..................................... F’L@lds " s s s s s rvasereeeeseseerreemreennanE
Agjo.... Structure tensor. mi.... Voigt couple stress.
cr..... Grain shifting velocity (CF:= v} —v;). P*..... Driving pressure for grain boundary
Chovnnn Concentration of dislocations per unit migration (recrystallization pressure).

mass (¢ = pp/07)- P Thermodynamic pressure.
Civennnn Specific external supply of lattice spin  Q; ..... Total energy flux density.
(body couple). q; e Heat flux density.
Dy ... Strain rate. R ..... Specific external supply of total
E-..... Specific total energy. energy.
e ... Specific internal energy. T Specific external supply of internal
o Species mass fraction (f*:= o*/p). energy (radiation supply).
G.. ... Shear modulus. SZJ ..... Lattice spin velocity tensor
Gr..... Lattice deflecting rate (G} := s} — s;). (535 = €jinsi)-
g Specific Gibbs free energy ST Specific external supply of entropy.
(g7:=h"—Tn"). 85 e Lattice spin velocity.
gy Specific external supply of linear T...... Thermodynamic temperature.
momentum (body force). Tyioo... Temperature gradient (T;; := 8T /0x;).
H e Relative spin velocity tensor i Cauchy stress.
(Hjj:= 8 = W) A% u¥ Interspecies transition rate.
hooo... Spfmﬁc mfree ?nﬂialpy Vi Translational velocity.
(h:=e"+p" /o). s
Ak . . Wij .... Vorticity tensor.
Jbi, i Interspecies flux density of . ) _
dislocations. B ... Fabric parameter (3 =1,...,%).
kipo.o.o. Thermal conductivity tensor. re.... Specific Pr.Odu.CtiOH rate of mass
L..... Specific production rate of total (recrystallization rate).
energy. [ dislocation parameter.
M* .... Species grain boundary mobility. PR Specific entropy deviation rate.
M;; ... Schmid tensor. €7 .. Specific production rate of internal
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N Specific entropy. T Surplus of the interspecies couple

¥*n;n; Equilibrium anisotropic stress. stress.

a .

L Surplus of the interspecies flux density wij*7 w;'kj Interspecies couple stress.
of entropy. 0 . Mass density.

Ky e Specific production rate of linear mo-  pg...... Dislocation density.

mentum (high-angle interaction force). S Specific production rate of entropy.

77O Specific Gibbs free energy of

¢*P .... Specific production rate of entropy of
dislocations (dislocation potential).

a ‘pure species’ (e.g. a single crystal).

Hijet - Viscosity tensor. Ol Dissipative stress.

V.. Sfl)ec}iﬁc pfoduction rate of lzla,ttice spin Ax % nterspecies stress.
igh-angle interaction couple).

o (hig g ) ple) b . Entropy flux density.

=A% =¥ Interspecies flux density of total . .

@i @7 Interspecies flux density of entropy.

energy. ;
A% £ .. Interspecies heat flux density. LEREE ?Efmﬁc Fel?h?)ltz free energy
=e " =Tn").
;... Production rate density of

dislocations.
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